
IMPLEMENTATIONOF NASTRANONTHE

IBM/370 CMSOPERATINGSYSTEM*

Stephen S. Britten

M.I.T. Lincoln Laboratory

Betsy Schumacker

M.I.T. Department of Civil Engineering

SUMMARY

The NASAStructural Analysis (NASTRAN)computer program is
operational on the IBM 360/370 series computers. While execution
of NASTRANhas been described (ref. I) and implemented under the
virtual storage (VS) operating systems of the IBM 370 models, the
IBM 370/168 computer can also operate in a time-sharing mode under
the virtual machine (VM) operating system using the Conversational
Monitor System (CMS) subset. This report describes the changes re-
quired to make NASTRANoperational under the CMSoperating system.

"The views and conclusions contained in this
document are those of the contractor and should
not be interpreted as necessarily representing
the official policies, either expressed or implied,
of the United States Government."

This work is sponsored by the Department of the Air Force

189

https://ntrs.nasa.gov/search.jsp?R=19800016166 2020-03-21T19:00:56+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42864971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTRODUCTIONAND BACKGROUND

M.I.T. Lincoln Laboratory first obtained NASTRANin April 1974, when it
purchased Level 15.5 from COSMIC for use on its newly installed IBM 370/168
computer. Minor modifications were made in order to make NASTRANoperational
under the virtual storage concept of the IBM 370 system. However, much of
the source code did not match the specialexecutable load module code that
had been received for direct loading onto IBM 3330 disk driveS.

The Laboratory's NASTRANcapabilities were upgraded to Level 15.5.3+ in
November 1975 with the assistance of NASA Goddard Spaceflight Center. The
new source code and new executable load module code was in complete agree-
ment. This Level 15.5.3+ of NASTRANhas adequately served the computational
needs of the Laboratory since that original installation.

However, the Laboratory's computer configuration and operational schedule
restrict the original version of NASTRANto nighttime operation under the
virtual storage (VS) batch-processing environment. The daytime operating
mode (when engineering users are present) consists of an interactive time-
sharing environment of up to 170 users under the virtual machine (VM) opera-
ting system using the Conversational Monitor System (CMS) subset.

It was desired to have NASTRANavailable for general use in the inter-
active (CMS) as well as the batch (VS) environment, with commonality of input
files. From an engineering user standpoint, the availability of NASTRANin
both environments is highly desirable. The CMSenvironment can be used for
input data syntax checking, plotting of input and/or output data, and execu-
tion of relatively small analyses; while the VS environment can be used for
execution of large analyses that require substantial computer time. The CMS
environment is also useful to the programmer for maintenance and development
of the many NASTRANsubroutines and functions.

For these reasons, the decision was made to develop a CMS/370 version of
NASTRAN, working from the Laboratory's Level 15.5.3+ source. Compatability
between the source files, the source listings, and the executable code under
both the VS and CMSoperating systems was required. Our primary objective
was to make NASTRANoperational with minimal changes in computer coding.

This report describes the changes which were made to the NASTRANcomputer
program to develop a time-sharing version under 370-CMS and a compatible 370-VSl
batch-processing version. In this report, the following terminology is used:

I. CMS-NASTRAN: the version of NASTRANdeveloped at M.I.T.
Lincoln Laboratory to operate under VM/370 (Virtual Machine
facility for the IBM S/370) using the CMS (Conversational
Monitor System) subset of VM/370.

190

2. VSI-NASTRAN: the version of NASTRANdeveloped at M.I.T.
Lincoln Laboratory to operate under the VSl (Virtual
Storage) operating system for the IBM S/370.

The following definitions are based on the hardware and software devel-
oped by IBM for the implementation of the virtual storage concept.

Address Space - the set of memory addresses used by a
program. VSI allows a maximum total address space
of 16 megabytes. CMS allows each user a possible
maximum address space of up to 16 megabytes (limited
at MIT-LL to 2 megabytes).

Pa__a____ - a subdivision of the address space, 2K bytes on
VSI and 4K bytes on CMS.

Real Memory - the set of memory addresses which are
physically available on the CPU. (3 megabytes
on the Lincoln computer).

Virtual Memory - the address space which can be
addressed by a relocating CPU. Physically,
the virtual memory exists on a direct access
storage device, and although a program may
reference virtual memory in a random fashion,
the information must be transmitted from virtual
memory (direct access) to real memory one page
at a time.

CMS DIFFERENCES AFFECTING NASTRAN

The CMS subset of the VM operating system is noticeably different from
its VS operating system counterpart, in several areas:

(I) Input/output file structure,

(2) Load module formation, and

(3) Memory management and open core concepts.

These differences between CMS and VS required design decisions regarding
implementation of NASTRANunder CMS. In all cases, we attempted to introduce
minimal coding chan_es into the Level 15.5.3+ version of NASTRANand tried
to remain consistent with the original design philosophy regarding NASTRAN
operation on IBM computers.

The following sections will deal in specifics concerning the above-
mentioned areas of difference and will describe our solutions to the problems

191

encountered. The final section will mention some discovered coding errors
as well as the implementation of a plotting package using the SC4060 plotter.

Input/Output File Structure

Execution of NASTRANunder the VS operating systems requires a large
number of standard Job Control Language (JCL) cards. Modification of the
Procedure (PROC) card that precedes these basic JCL cards allows the user
flexibility to define space allocations, physical units, and program libraries
to be searched.

The CMSoperating system has NOJob Control Language cards. File defini-
tions are performed by issuing FILEDEF commandsimmediately prior to execution
time. The FILEDEF commanddefines the physical device type and the character-
istics of the file. All CMSfiles are always stored and retrieved in 800
byte blocks. Wehave chosen 6400 byte blocks for the NASTRANfiles - a size
which will physically fit two blocks per track on an IBM 3330 disk drive as
well as be wholly compatible with CMSblock sizes. These FILEDEF commands
are stored into an EXECfile which can be invoked by a user along with other
commandsto load and execute CMS-NASTRAN.(refer to Appendix A).

In order to minimize the coding changes required in GNFIAT (the program
that generates the file allocation tables), it was necessary to provide a
list of acceptable file names as input to the program. Under the VS operating
system, acceptable names are chosen from the JCL cards included in the data
deck. In CMS, the first card in the IOLIST file indicates (412 format) the
number of acceptable (permanent, primary, secondary, and tertiary) file names,
and the names themselves follow (refer to Appendix B).

Since file chaining is accomplished by CMS, the SPACElimitations needed
for VS operations are no longer pertinent under CMS. For this reason, all
IOLIST files were allowed to expand in additional 6400 byte blocks as often
as needed to provide file space. The VSI-NASTRANversion uses the same file
extension scheme outlined (ref. 2) for NASTRANon the IBM 360-370 operating
system.

The POINTmacro differs in its operation under CMSfrom that under VS
and thus coding changes were necessary for successful operation of BSAMI/0
processing in CMS-NASTRAN.

Load Module Formation and Usage

The most significant difference concerning load module formation and
usage under the CMSoperating system is that no provision exists in CMSfor
an overlay structure. The NASTRANload module generation under VS attempts
to minimize the core requirements of each control routine LINKNSii, ii = 01,
..., 14 by use of overlay structures. Program core space in a virtual machine
no longer becomes so critical, and thus provisions for overlay structure under
CMSwere felt not to be important.

192

As a simple first approach, the load module generation of all fourteen
control routines LINKNSii was carried outwith no overlays. While LINKNSOI
required 660K for storage, the next largest, LINKNSI3, required only 530K.
NASTRAN,the super-link module, needs 45K and the system consumes 129K. Allow-
ing for a reasonable work space in open core and providing FORTRANwith
sufficient buffer space, CMS-NASTRANthus requires a minimal core of 120OK.
Our present account structure provides us with 2048K which we fully utilize
while running CMS-NASTRAN.However, we are eyeing the possibilities of
reducing core requirements to I024K by splitting the larger LINKNSii control
routines into multiple modules.

Load module formation under CMSalso differs from the process of linkage
editing used by VS. The linkage editor under CMSfirst searches the user's
directory for TEXT files with the same names as CSECTentry names and then
searches user-specified libraries called TXTLIBs in a specified order. Unlike
partitioned-data sets (PDSs) on VS where member names are user-specified, the
CMSmain entry in a TXTLIB consists of the nameof the first CSECTin the
program, irrespective of the original nameof the compiled program. For this
reason, FORTRANsubroutines in NASTRANcontaining only BLOCKDATA statements
and named COMMONshave the CSECTname of the first named COMMONwhen compiled
and thus that entry namewhen stored in TXTLIBs under CMS, but have the
assigned member namewhen stored in OBJECTPDS's under VS.

In VS, the linkage editor has input cards - such as INCLUDEand INSERT -
which specify specific members to be included in a module from a PDSand
specify specific placemen£ of a CSECTwithin a load module. It was this ability
of the linkage editor to have the user specify placement within a module which
enabled the developers of NASTRANto implement the open core concept on IBM
batch systems.

In CMS, there is no linkage editor, per se, but rather a loader with two
user functions associated with it - LOADand INCLUDE. The loader builds its
own CSECTlist which can be resolved from only two places: TEXT files or
TXTLIBs. All TEXT file names and entry names in TXTLIBs must therefore be
CSECTnames. Since the loading process is primarily a search process, the
order of CSECTsin a module will depend on the order in which programs were
encountered in the search. This absence of user-specified ordering in CMS
loading required the removal of certain CSECTs(CONMSG,MAPFNS,EJDUM2,and
some named COMMONs)from TXTLIBs and their storage in TEXT files with file
names different from CSECTnames. These CSECTswill be unresolved externs
after the LOADfunction but will then be put at the end of the module in a
user-specified order by means of the INCLUDEfunction, making sure EJDUM2is
last since it represents open core.

The CMSlinkage editor also differs from its VS counterpart in that it
resolves COMMONCSECTsat execution time rather than at load time. For this
reason, a way had to be found to force those FORTRANsubroutines containing
only BLOCKDATAstatements and namedCOMMONsto be loaded with the other CSECTs.

193

This was accomplished by writing additional FORTRANsubroutines LINKiiC that
did nothing more than CALL the namedCOMMONswhose CSECTentries existed in
the TXTLIBs. This forced inclusion at load time. (Refer to Appendix C.)

A change was also required to LINKNSii and NASTRANto reference the proper
entries in the current FORTRANfunction library (e.g. IHOERRM,etc.).

The lengths of all load modules formed in the CMSsystem are stored in a
MASTERfile. These lengths can than be used to control the open core require-
ments described in the next section. Load module generation under CMSreserves
the first 128K (origin hex 20000) for the operating system and CMS. All load
modules have the user's lowest address origin_d to 20000, which for NASTRAN
execution meant loading the super-link NASTRANat location 20000. In order
to allow for future growth and/or modifications to the super-link NASTRAN,the
origin for all LINKNSii entries was taken to be hex location 2ADO0. This
LINK origin is stored in the MASTERfile along with the total load module
lengths of all fourteen LINKNSii modules (refer to Appendix D).

Memory Management and Open Core Concepts

Memory management and open core concepts under the VS operating system
have been very clearly presented (ref. I) and will not be reviewed here. In-
stead, the manner in which the CMSoperating system must handle these tasks
will be explained.

Under CMS, the super-link NASTRANload module is initially loaded into
core at origin hex 20000 and execution begins. (Figure 1 depicts address
space allocation for CMS-NASTRANexecution.)

I. Within the NASTRANmodule, a user request for
working storage (GETMAIN)will be issued for all
of available memory.

2. The NASTRANmodule then releases FOURK(16K words
under CMS) high address space for operating system
use via the FREEMAINmacro.

3. All of the GETMAINedarea will be managed by
NASTRANrather than by CMSfor all executions
of LINKNSii load modules requested by the
super-link program NASTRAN.

4. The load modules LINKNSOI thru LINKNSI4 have been
generated at origin 2ADO0and are loaded with the
CMSmacro LOADMODinstruction as they are needed.

194

The above memory management scheme was required since the CMSsimulation
of VS LINK, GETMAIN,and FREEMAINmacros did not present a duplicate image of
core to NASTRANof that which VS presented. Thus, the macro for loading a
module into core could not be LINK but had to be LOADMOD.This in turn said
memory had to be obtained prior to and for the LOADMOD.Since the LOADMOD
forced CMSto obtain buffer space for itself, we were forced to resort to a
single GETMAINwith total core management performed by NASTRANso that frag-
mentation of memory (into NASTRANblocks intersperced with system blocks) was
eliminated.

Since CMS-NASTRANhas now assumed the responsibility of managing memory,
the "open core" concept of data management must also be assumed by NASTRAN.
Under the overlay load module structure of VS, "open core" at the end of an
overlay tree segment was denoted by a dummynamed-COMMONsection. This named-
COMMONcould contain an array whose length extended into the open core region
but yet would not destroy or overwrite code or data in other segments of the
overlay. Unfortunately, under CMSwith no overlay structure, we are faced
with numerous dummynamed-COMMONs,each of which must be located near the
end of the load module so that it will not overwrite other code and/or data
in the module. The placement of these named-COMMONsis accomplished by
INCLUDing newly-written FORTRANsubroutines, LINKiiCC, when doing the load
module generation (refer to Appexdix E).

Minor Differences

Several subroutines contain DATA statements which are used to initialize
variables which are subsequently modified. The DATAstatements were used
assuming that the programs containing these statements exist on segments of
the overlay tree in VS, implying that a fresh copy of the subroutine will be
loaded (and thus reinitialization of DATAvariables will occur) each time the
segment is needed. Under CMS, the subroutine when it is reentered contains
the last values of the DATAvariables and they are not reinitialized, thus
causing errors. This problem would also occur in a non-overlay VS version of
NASTRAN.

The graphics package acceptable to the CMSenvironment at M.I.T. Lincoln
Laboratory utilizes SC4060meta code to generate the meta code for on-line
Tektronix terminals. For this reason, a SC4060 plotting package was added
to the NASTRANpackage. Since the CMSenvironment provides disk file facilities
for graphics as well as standard I/0, restrictions on graphics files in NASTRAN
were removed so that disk file definitions for PLTI and/or PLT2 files are
permissible.

Conclusions

The implementation of CMS-NASTRANhas been completed. While operation
has been limited to test examples and several small production runs, it
definitely shows promise as a useful program on future projects inwhich

195

NASTRANwill be needed. Program enhancements (such as the SC4060 graphics
package) are easily made while working in the CMSenvironment and can be
added to the VS-NASTRANafter successful debugging has been completed.

A new VSI-NASTRANis being generated at the present time. It will embody
the design philosophy of CMS-NASTRANand, thus, will not be in overlay struc-
ture. Compatibility of source (except for several assembly language programs)
and executable code between the two systems should provide for the reliability
needed to assure identical results in either mode.

It is anticipated that CHKPNTsaves and restarts should be possible be-
tween the CMSand VS operating systems. This would allow preprocessing (data
syntax checking, undeformed structural plots, etc.) to be performed and check
pointed under CMS; restored, executed, and checkpointed under VS; and finally
restored and postprocessed (including deformed structural plots) under CMS.

196

REFERENCES

I. McCormick, C. W. and Redner, K. K.: "Study of the Modifications
Needed for Effective Operation of NASTRANon IBM Virtual Storage
Computers", NASACR-2527, 1975.

2. Anon. The NASTRANProgrammer's Manual (Level 15.5), NASASP-223(01),
May 1973.

197

Figure 1 CMSAllocation of Address Space For NASTRAN

X' 20000'

NASTRANModule

ILOC)_
LI NKORIG "'--._ "free space"

LINKNSii
Modu]e

7 (loaded via LOADMOD)

(COREHELD)
LINK LENGTH

op

z

rv-

v)

Data Area

o

(AFCB) _

FCB' s (LAREAI)

'Y- (ADCB)

DCB's ,, (LAREA2)
(ADECB)---..._=.

i

DECB' s r (LAREA3)

for operating system (FOURK)
use (buffers, etc.) .,

• I

CMS direct0ry,
etc.

198

Appendix A: Partial Listing of NASTRAN EXEC File

gCONT__OL OFT NOMSG

-STARE gTYPE ENTER FILENAME OF NAST_AN FILE

gREAD ARGS

gIF gINDEX NE I gGOYO -START

gFN = g l

-CONT _[YPE ENTER FILEMODE FOR NAS_RAN OUTPUT FILES

gREAD AEGS

glF gINDEX NE 1 gGOTO -CONT

gFM = gl

FILEDEF 1 DISK =T01 NAST gF_ (BLOCK 80 RECFM F LRECL 80

FILEDEF 4 DISK FY04 NAST SFM (BLOCK 133 RECFM F LRECL 133
FILEDEF 5 DISK gFN NASTRA%I

FILEDEF 6 DISK SFN OUTPUT 8F_ (BLOCK 133 RECF_ F LRECL 133

FILEDEF 7 DISK g_N PUNCH _F_ (BLOCK 80 RECF;_ F LREC_, 80

FILEDEF POOL DISK POOL NAST gFM (BLOCK 6400 RECFM F

FILEDEF NPTP DISK NPTP NAST gFM (BLOCK 6400 RECFM F

FILEDE_ ODTD DISK OPTP NAST _Y_ (BLOCK 6400 RECFM F

F!LEDEF PLT2 DISK gFN 4060 GFM (BLOCK 800 RECF_ F LRECL 800

FILEDEF PRI01 DISK PRI01 NAST $F_ (BLOCK 6400 RECFM F

F!LEDEF PRI02 DISK PRI02 NAST gFM (BLOCK 6400 PECRM F

ILEDEF PRI03 DISK PRI03 NAST gFM (BLOCK 6400 RECF F

Q

FILEDEF PRI30 DISK PRI30 NAST SFM (BLOCK 6400 RECFM F

FILEDEF PRI31 DISK PRI31 NAST gFM (BLOCK 6400 RECFM F

FILEDEF PR132 DISK PRI32 NAST gF_ (BLOCK 6400 RECFM F

FILEDEF SEC01 DISK SEC01 NAST gF_ (BLOCK 6400 RECFM F

_ILEDEF SEC02 DISK SEC02 NAST 8FM (BLOCK 6400 RECFM F

FILEDEF SEC03 DISK SEC03 NAST 8FM (BLOCK 6400 RECFM F

FILEDEF TER01 DISK TER01 NAST gFM (BLOCK 6400 RECFM F
LOADMOD NASTRAN

S_ART

Appendix B: Listing of NASTRAN IOLIST File

0_320301

PE_MPOOL

PERMNPTP

PERMOPTP

PERMPLT2

PRIMPRI01

PRIMPRI02

PRIMPRI03

PRIMPP, I0_

PRIMPRI05

PRIMPRI06

PRIMPRI07

PRIMPRI08

PRIMPRI09
PR IM PRI 10

'PRIMPRI11

PRIMPRI12

PRIMPRII 3

PRIMPRII 4

PRIMPRI15

PRIMPRI16

PRIMPRI17

PRIM PRI 18

PRIMPRI 19

PRIMPRI20

PRIMPRI21

PRIMPRI22

PRIMPRI23

PRIMPRI2_

PRIMPRI25
PRIMPRI26

PRIMPRI27

PRIMPRI28

PRIMPRI29

PRIMPRI30

PPIMPRI31

PRIMPRI32

SECOSECO 1

SECOSEC02

SECOSEC03

TERTTER01

200

Appendix C: Listing of Typical LNKiiC FORTRAN Subroutine

SUBROUTINE INK0 IC

C

C SUBBOUTINE RPDA_D

CALL XSFAI

C SUBROUTINE IFXDBD

CALL IFPDTA

C SUBROUTINE IFXOBD

CALL I_PX0

C SUBROUTINE IFXIBD

CALL IFPXI

C SUBROUTINE IFX2BD

CALL I]_PX2

C SUBROUTINE IFX3BD

CALL IFPX3

C SUBROUTINE IFX4BD

CALL IFPX4

C SUBROUTINE IFX5BD

CALL IFPX5

C SUB£OUTINE IFX6BD

CALL IFPX6

C SUBROU?INE IFX7BD

CALL IFPX7

C SUBROUTINE IFPABD

C ALL IFP IA

C SUBROUTINE AXICBD

CALL IFP3BD

C SUBROUTINE XGPIBD

CALL XGPIC

C SUBROUTINE XMPLBD

CALL XGPI2

C SUBROUTINE XSORBD

CALL XSRTBD

C SUBROUTINE UMFZBD

CALL UMFZZZ

C SUBROUTINE XBSBD
CALL XLKSPC

C

RETURN

END

201

Appendix D: Listing of NASTRAN MASTER File

LINKORIG 02AD00

LINKNS01 0D00A8

LINKNS02 08C580

LINKNS03 092F50

LINKNS04 072030

LINKNS05 094F00

LINKNS06 078218

LINKNS07 078428

LINKNS08 0976B0

LINKNS09 054950

LINKNS10 073AD8

LINKNS11 08DSD0

LINKNS 12 05C688

LINKNS13 0AF908

LINKNSI_ 07A390

202

.Appendix E: Listing of Typical LNKiiCC FORTRAN Subroutine

C DUMMY TO FORCE XGPI1 TO COME JUST BEFORE EJDUM2 (OPEN CORE)

BLOCK DATA

COMMON DUM_ (100)

COMMON /GINOX/ DUM6 (163)

COMMON /SETUP/ DUM2(7)

COMMON /IFP3LV/ DUM10 (104)
C BEGINNING OF DUMMY CO[_ONS THAT MARK START OF OPEN CORE.

COMMON /IFPIX/ DUM9 (371)

COMMON /ENDSSS/ DUM7(2)

COMMON /IFPXX/ DUMB

COMMON /IFP3ZZ/ DUM11

COMMON /IFP4ZZ/ DUM12

COMMON /IFP5ZZ/ DUM13

COMMON /XCSABF/ DUMI_

COMMON /ESOPT/ DUM

COMMON /UMFZXX/ DUM1
COMMON /ESFA/ DUM5

COMMON /XGPII/ DUM20 (5)

COMMON /EJDUM2/ DUM21
END

203

