NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

A RADIATIVE TRANSFER MODEL FOR REMOTE SENSING OF

LASER INDUCED FLUORESCENCE OF PHYTOPLANKTON
IN NON-HOMOGFNEOUS TURBID WATER

ANNUAL REPORT
 COOPERATIVE AGREEMENT NCC1-11

May 1980
D. D. Venable

Department of Physics
HAMPTON INSTITUTE
Hampton, Virginia 23668

A Radtative transfer Model for remote sensing of LASER INDUCED FLUOREGCENCE OF PHY'TOPLANKTON IN NON-HOMOGENEOUS TURBID WATER

MAY 1980
D. D. Venable

A RADIATIVE tRANSFER MODEL FOR REMOTE SENSING OF LASER INDUCED FLUORESCENCE OF PHYTOPLANKTON IN NON-HOMOGENEOUS TURBID WATER

Abstract

Remotely sensed optical data are now available to allow the characterization of pistoplankton from laser induced fluorescence of chlorophyll a. In this otudy, a radiative transfer computer model was developed to characterize the total flux of fluoresced or backscattered photons when laser radiation is incident on turbid water that contains a non-homogeneous suspension of inorganic sediments and phytoplankton, This radiative transfer model fis based on the Monte Carlo technique. The computer model assumes that the aquatic medium can be represented by a stratified concentration profile and that appropriate optical parameters can be defined for each layer. The model is designed to minimize the required computer resources and run time. Results are presented for an anacystis marinus culturn.

Page
The Monte Carlo Technique for Fluorescent Models 1
Comparison with Other Techniques 1
Coordinate Transformation 3
Ftep Profiles 7
Distance to Vertical Bounds 9
Reflection at Vertical Bounds 11
Distance to Horizontal Bounds 14
Reflection at Horizontal Bounds 14
Refraction at Horizontal Surfaces 18
Reflection Coefficients 19
Optical Parameters 20
Scattering 20
Absorption 22
Photon Path Length 23
Fluorescent Efficiency 23
Fluorescent Phase Function 24
Computer Model 24
Anacystis Marinus 25
Simulation Results 29
Appendices 39
References 54

The Monte Carlo Technique for Fluorescent Models

The Monte Carlo technique is based on the probabilitiee of cccurrences of various events. Consider two possible physical events, "A" and "B", with relative probabilities of occurrences, P_{A} and P_{B}, respectively, If a random number, E, is selected on the range 0 to 1 and ε found to be less than P_{A}, then it can be assumed that event " A " occurred, otherwise evant "B" occurred. In the Monte Carlo scheme, a process similar to this is repeatedily employed for any number of events until suitable statistics are achleved for the outcome. Thus a tecinique is avallable to predict the outcome of any definable sequence of events.

For the fluorescence of chlorophyll a in marine environments, a straight forward Monte Carlo approach can be used. A single photon of weight I_{0} is incident on the water surface at known azimuth and polar angles. Random numbers are selected to determine the course of events undertaken by the photon. Figure 1 shows the flow of possible events. In general, random numbers are selected to determine which of several events will be simulated and to select appropriate parameters via probability distribution functions, This latter technique is used to determine the distance a photon travels before some type of interaction occurs and the angles through which photons are scattered or fluoresced.

The photon's position must be continually monitored to determine if the water-air surface or other boundaries have been contacted. Whenever the photon leaves the medium, its position, direction of travel, wavelength and weight are recorded for further analysis.

Comparison Wtth Other Techniques

There are several advantages in using the Monte Carlo technique for the laser induced fluorescence problem. First, any probability distribu-

\odot

tion function can be used. Since we store these functions in tabular focm, we can easily change from one function to another with a minimum of code changes. Second, the interactina medium can be easily divided into layers with different optical properties. The physical bounds of these layers can be easily changed. Finally, any number of detectors can be used simultaneously and various evaluation schemes can be used.

As with any ecinique there are some disadvantages. In general the technique may require large amounts of computer time. Statistical fluctutions might affect the results. Finally the method is impractical for extremely large optical depths.

Coordinate Transformation

The problems in cooxdinate tüanslation and rotation have been solved In general (Kattawa). In our analysis we must keep track of the photons location at all times. In general, scattering angles are determined with respect to the photon's direction of travel prior to undergoing a scattering event. We must therefore determine the direction cosines of the new direction of travel with respect to a predefined fixed coordinate system. Some of the results derived here were presented by Kattawa.

A scattering event can be treated as a rotation of a coordinate system. See Figure 2. The vector, $\overrightarrow{\mathrm{P}}_{\mathrm{o}}$, represents the location of the photon prior to scattering. The $z^{\prime \prime}$ axis of the rotated coordinated system is parallel with $\overrightarrow{\mathrm{P}}_{0}$. The scattering polar, θ^{\prime}, and azimuth, ϕ^{\prime}, angles are defined with respect to the rotated (primed) coordinate system. Our task is to determine a set of direction cosines that defines the directidn of travel of the photon after scattering with respect to the fixed coordinate system.

Vector \vec{P} - represents the position of the photon after scattering. The components of \vec{p}^{-}in the rotated system are given by:

$$
\begin{align*}
& \vec{p}_{x} n \hat{i} p^{\prime} \sin \theta^{\prime} \cos \phi^{\prime} \tag{1i4}\\
& \overrightarrow{\underline{p}}_{y}^{\prime}=\hat{j} p^{\prime} \sin \theta^{\prime} \sin \phi^{\prime} \tag{1b}\\
& \overrightarrow{\mathrm{P}}_{z}^{\prime}=\hat{i} p^{\prime} \cos \theta^{\circ} \tag{1c}
\end{align*}
$$

The components of p^{\prime} in the fixed system are determined by two successive rotations, Let the polar and azimuthal angles in the fixed coordinate system before scattering be θ_{0} and ϕ_{0} respectively. Since the z^{\prime} axis is parallel to \vec{P}_{o}, these angles represent the degree of rotation between the two coordinate systems. First rotate through an angle ϕ_{0} about the z axis, resulting in an intermediate system, $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$. Next rotate through an angle θ_{0} about the $y^{\prime \prime}$ axis. The resulting rotations are given by

$$
\left[\begin{array}{l}
P_{x}^{\prime} \tag{2}\\
P_{y}^{\prime} \\
P_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta_{0} & \overline{0} & -\sin \theta_{0} \\
0 & 1 & 0 \\
\sin \theta_{0} & 0 & \cos \theta_{0}
\end{array}\right]\left[\begin{array}{ccc}
\cos \phi_{0} & \sin \phi_{0} & 0 \\
-\sin \phi_{0} & \cos \phi_{0} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y} \\
P_{z}
\end{array}\right]
$$

P_{x}, P_{y}, and P_{z} are the components of P in the fixed coordinate system, then

$$
\left[\begin{array}{l}
P_{x} \tag{3a}\\
P_{y} \\
P_{z}
\end{array}\right]=M\left[\begin{array}{l}
P_{x}^{\prime} \\
P_{y}^{\prime} \\
P_{z}^{\prime}
\end{array}\right]
$$

where

$$
M=\left[\begin{array}{ccc}
\cos \theta_{0} \cos \phi_{0} & -\sin \phi_{0} & \sin \theta_{0} \cos \phi_{0} \tag{3b}\\
\cos \theta_{0} \sin \phi_{0} & \cos \phi_{0} & \sin \theta_{0} \sin \phi_{0} \\
-\sin \theta_{0} & 0 & \cos \theta_{0}
\end{array}\right] .
$$

Before acattering the direction cosines with reepect to the fixed coordinate
system are

$$
\begin{align*}
& u=\frac{P_{0 x}}{P_{0}}=\sin \theta_{0} \cos \phi_{0} \tag{4a}\\
& v=\frac{P_{o y}}{P_{0}}=\sin \theta_{0} \sin \phi_{0} \tag{4b}\\
& w=\frac{P_{o z}}{P_{0}}=\cos \theta_{0} . \tag{4c}
\end{align*}
$$

Using equations ($4 \mathrm{a}-\mathrm{c}$) and equation (3b) we have

$$
\left[\begin{array}{l}
p_{x} \tag{5}\\
p_{y} \\
p_{z}
\end{array}\right]\left[\begin{array}{ccc}
\frac{u w}{\sqrt{1-w^{2}}} & \frac{-v}{\sqrt{1-w^{2}}} & u \\
\frac{u w}{\sqrt{1-w^{2}}} & \frac{u}{\sqrt{1-w^{2}}} & v \\
-\sqrt{1-w^{2}} & 0 & w
\end{array}\right]\left[\begin{array}{l}
B C \\
B D \\
A
\end{array}\right]\left|\frac{t}{p}\right|
$$

where $\quad A=\cos \theta^{-}$
$B=\sin \theta^{+}$

$$
\begin{equation*}
C=\cos \phi^{\prime} \tag{6b}
\end{equation*}
$$

$$
\begin{equation*}
D=\sin \phi^{\prime} \tag{6c}
\end{equation*}
$$

Finally the direction cosines with respect to the fixed coordinate system are

$$
\begin{align*}
& \frac{p_{x}}{P^{\prime}}=u^{\prime}=\frac{u W B C-v B D}{\sqrt{1-w^{2}}}+u A \tag{7a}\\
& \frac{P_{y}}{P^{\prime}}=v^{\prime}=\frac{v w B C+u B D}{\sqrt{1-w^{2}}}+v A \tag{7b}\\
& \frac{P_{z}}{p^{\prime}}=w^{\prime}=-\sqrt{1-w^{2}} B C+w A \tag{7c}
\end{align*}
$$

For coordinate translation we have

$$
\begin{align*}
& P_{x}=p_{o x}+p^{\prime} u^{\prime} \tag{8a}\\
& P_{y}=p_{o y}+p^{\prime} v^{\prime} \tag{8b}\\
& P_{z}=p_{o z}+P^{\prime} w^{\prime} \tag{8c}
\end{align*}
$$

The series of equations derived above are used to determine the location of the photon after each event, If θ_{0} approaches 0 , then equations (7a-c) must be modilifed. Then

$$
\begin{align*}
& \mathbf{u}^{\prime}=\mathrm{BCW} \tag{8a}\\
& \mathbf{v}^{\prime}=\mathrm{BC} \tag{8b}\\
& \mathrm{w}^{\prime} \mathrm{AW} \tag{8c}
\end{align*}
$$

Step Profilisg

A stratfied model is used to represent changes in optical parametars as a function of depth. This approach allows homogeneous layers of various thicknesses to represent changing concentration frofiles. We assume that appropriate optical parameters can be defined for each layer. No lateral variations in optical parameters are allowed.
Special consideration must be given when the photon moves to the interface between two layers. Figure 3 depicts a case in which a photon starts In layer 1 and travels toward layer 2. We select the distance the photon travels, d_{j}, from an appropriate distribution function. The value of d_{j} is the distance the photon would travel in a homogeneous media, that is if It remained in layer 1. This distance does not account for optical properties of layer 2. When the trajectory reaches the interface several results are possible. If there is a difference in the refractive indices of the two layers, there will be a finite probability of reflection at the interface. We then compare a randomly selected number to the reflection

probability, If it is found that reflection is to be simulated the reflection angles are determined, the trajectory is adjusted for reflection at these angles and the photon continues its path in layer 1 . prior to reflection the photon travels a distance $d_{j}{ }_{j}$ and after reflection the photon travels d_{j} * such that

$$
\begin{equation*}
d_{j}^{\prime}+d_{j}{ }^{\mu}=d_{j} \tag{9}
\end{equation*}
$$

If the photon is not reflected at the interface, then refraction must be simulated. Appropriate refraction angles are calculated and the photon is made to enter layer 2. The distance that the photon travels in layer 2, $d_{j}{ }^{\sim \prime}$, will depend on the relative optical attenuation coefficients of lajers 1 and 2.

$$
\begin{equation*}
d_{j}^{\mu}=\left(d_{j}-d_{j}\right) \frac{\alpha_{T}^{(1)}}{\alpha_{T}(2)} \tag{10}
\end{equation*}
$$

where $\alpha_{T}{ }^{(1)}$ is the total optical attenuation coefficient of layer i.

Distance to Vertical Bounds

It is necessary to determine the distance from the photon to any vertical bound to ascertain if the photon reaches the boundary for a particular d_{j} value. Figure $4 a$ is a horizontal profection of the photon's tritjectory and a section of the cyclindrical vertical boundary; Figure 4b is the wartical projection. The photon is located at coordinate (x, y, z) and its new direction of travel is given by \vec{d}_{j}. R_{o} represents the horizontal distance from the origin to the photon and R_{t} is the horizontal distance from the origin to the point where the photon will intel sept the boundary. Also, d_{w} is the distance from the photon to the boundary along the direction of travel and d is the horizontal projection of d_{w}. The angles α and β are respectively the angles that R_{0} and d make with the x axis and θ is the angle that d_{w} makes with the z axis. The distance d_{w} is related

to d by the expression

$$
\begin{equation*}
d_{w}=\frac{d}{s \ln \theta} \tag{11}
\end{equation*}
$$

The direction cosines of d_{w} are

$$
\begin{align*}
& u=\cos \beta \sin \theta \tag{12}\\
& v=\sin \beta \sin \theta \tag{13}\\
& w=\cos \theta \tag{14}
\end{align*}
$$

The distance R_{t} is given by the relationship

$$
\begin{equation*}
R_{t}^{2}=R_{o}^{2}+d^{2}+2 R_{o} d \cos (\alpha-\beta) \tag{15}
\end{equation*}
$$

Using equations (12, 1.3 and 1.4) and a trigonometric identity, the $\cos (\alpha-\beta)$ can be written

$$
\begin{equation*}
\cos (\alpha-\beta)=\frac{x}{R_{0}} \frac{u}{\sin \theta}+\frac{y}{R_{0}} \frac{v}{\sin \theta} . \tag{16}
\end{equation*}
$$

Combining equations (16 and 15) and solving for d, we have

$$
\begin{equation*}
d=-\frac{x u+y v}{\sin \theta}+\sqrt{\left(\frac{x u+y v}{\sin \theta}\right)^{2}+R_{t}^{2}-R_{0}^{2}} \tag{17}
\end{equation*}
$$

and using equations (1.1) and (1.4), we have

$$
\begin{equation*}
d_{w}=-\frac{x u+y v}{1-w^{2}}+\frac{1}{\sqrt{1-w^{2}}} \sqrt{\frac{(x u+y v)^{2}}{1-w^{2}}+R_{t}^{2}-R_{0}^{2}} . \tag{18}
\end{equation*}
$$

Reflection at Vertical Bounds

If we determined that the photon reaches a vertical bound, it is forced to be reflected. The new dixection of travel after reflection must be determined. Figure 5 shows the geometry for this task. When the photon is reflected from a vertical bound a rotated coordinate system is defined with its z° axis perpendicular to the boundary and its x^{-}axis in the -2 direction. The new polar and azimuthal angles, θ^{\wedge} and ϕ^{\wedge}, respectively, are defined with respect to the rotated system from appropriate distribution functions. We must again find the direction cosines with respect

FIGURE 5
to the fixed coordinate system.
To accomplish this we first rotate through an angle $-\pi / 2$ about the y^{*} axis. This aligns the z^{\prime} and z axes. The rotation creates an intermediate coordinate system x^{μ}, y^{*}, z^{N}. We then rotate through an angle $\pi-\phi_{0}$ to align the x^{-}and x axes. Mathematically these rotations are represented as follows:

$$
\begin{align*}
{\left[\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right] } & =\left[\begin{array}{ccc}
\cos \left(\pi-\phi_{0}\right) & \sin \left(i-\phi_{0}\right) & 0 \\
-\sin \left(\pi-\phi_{0}\right) & \cos \left(\pi-\phi_{0}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
\cos (-\pi / 2) & 0 & -\sin (-\pi / 2) \\
0 & 1 & 0 \\
\sin (-\pi / 2) & 0 & \cos (-\pi / 2)
\end{array}\right]\left[\begin{array}{c}
P_{x}^{-} \\
P_{y}^{-} \\
P_{z}^{-}
\end{array}\right] \tag{19}\\
& =M\left[\begin{array}{l}
P_{x}^{\prime} \\
P_{y}^{\prime} \\
P_{z}^{\prime}
\end{array}\right] \tag{20}
\end{align*}
$$

where P^{\prime} is the position vector of the photon after reflection in the rotated system and

$$
M=\left[\begin{array}{ccc}
0 & \sin \phi_{0} & -\cos \phi_{0} \tag{21}\\
0 & -\cos \phi_{0} & -\sin \phi_{0} \\
-1 & 0 & 0
\end{array}\right]
$$

The direction cosines of z^{\prime} (normal to the boundary) with respect to the fixed coordinaties are determined by noting that z^{\prime} is perpendicular to z. Thus

$$
\begin{align*}
& v=-\sin \phi_{0} \tag{22}\\
& u=-\cos \phi_{0} \tag{23}\\
& w=0 . \tag{24}
\end{align*}
$$

The coordinates of the photon after reflection from the bound are

$$
\begin{align*}
& x^{\prime}=P^{\prime} \sin \theta^{\prime} \cos \phi^{\prime} \quad P^{\prime} P^{\prime} B C \tag{25}\\
& y^{\prime}=P^{\prime} \sin \theta^{\circ} \sin \phi^{\prime}=P^{\prime} B D \tag{26}\\
& z^{\prime}=P^{\prime} \cos \theta^{\prime} \tag{27}
\end{align*} \quad=P^{\prime} A . ~ l
$$

The direction cosines in the fixed coordinate system are then obtained from equation (20, 22-24 and 25-27).

$$
\begin{align*}
& u^{\prime}=\frac{x^{\prime}}{P^{\prime}}=-u B D+u A \tag{28}\\
& v^{\prime}=\frac{y^{\prime}}{P^{\prime}}=u B D+v A \tag{29}\\
& w^{\prime}=\frac{z^{\prime}}{P^{\prime}}=-B C \quad . \tag{30}
\end{align*}
$$

It should be noted that equations (28-30) can also be obtained by substituting equation (24) into equations (7a-7c).

Distance to Horizontal Boundaries

We now develop an equation that determines the distance to a horizontal bound. See Figure 6. The distance, along the direction of trave1, from the present location of the photon x, y, z to a horizontal bound is given by

$$
\begin{equation*}
d_{H}=\frac{d_{T}-z}{\cos \theta}=\frac{d_{T}-z}{W} \tag{31}
\end{equation*}
$$

Here θ is the angle between the direction of travel and the z axis of the fixed coordinate system and d_{T} is the thickness of the horizontal layer.

Reflection of Horizontal Bounds

Two types of reflectionsoccur at horizontal boundaries. Specular reflection occurs at the air water fnterface and at layer boundaries. Nonspecular reflection occurs at the bottom surface layer, for example the ground or tank bottom.

When a photon is reflected nonspecularly, a new coordinate system is defined with the z^{\prime} axis normal to the lower surface (anti-parallel to

FIGURE 6
the z axis) and the y^{*} axis is defined to be paralled to the y axis, see Figure 7. The angles through which the photon is reflected, θ° and ϕ^{\prime}, are defined with respact to the new coordinate system. These angles are selected from an appropriate distribution function. A single rotation through an angle of it about the y^{\prime} axis will align the coordinate systems. The position vector, $\overrightarrow{\mathrm{p}}$ ' has components

$$
\begin{align*}
& P_{x}^{\prime}=P^{\prime} \sin \theta^{\prime} \cos \phi^{\prime}=P^{\prime} B C \tag{32}\\
& P_{y}^{\prime}=P^{\prime} \sin \theta^{\prime} \sin \phi^{\prime}=P^{\prime} B D \tag{33}\\
& P_{z}^{\prime}=P^{\prime} \cos \theta^{\prime}=P^{\prime} A \tag{34}
\end{align*}
$$

The components of \vec{p}^{-}in the fixed coordinate system are given by

$$
\left[\begin{array}{l}
\mathrm{P}_{\mathrm{x}} \tag{35}\\
\mathrm{P}_{\mathrm{y}} \\
\mathrm{P}_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \pi & 0 & -\sin \pi \\
0 & 1 & 0 \\
\sin \pi & 0 & \cos \pi
\end{array}\right]\left[\begin{array}{c}
\mathrm{P}_{x}^{\prime} \\
\mathrm{P}_{\mathrm{y}}^{\prime} \\
\mathrm{P}_{z}^{\prime}
\end{array}\right] .
$$

Thus the direction cosines of P in the fixed coordinate system are

$$
\begin{align*}
& \mathbf{u}^{\prime}=-B C \tag{36}\\
& \mathbf{v}^{\prime}=B D \tag{37}\\
& \mathbf{w}^{\prime}=-A \tag{38}
\end{align*}
$$

For specular reflection, the angle of incidence is equal to the angle of reflection when measured with respect to a normal to the surface. Thus the polar angle after reflection θ° is related to the polar angle before reflection, θ_{0} by the relationship

$$
\begin{equation*}
\theta^{\prime}=\pi-\theta_{0} \tag{39}
\end{equation*}
$$

Since specular reflection does not change the photon's plane of motion, the azimuthal angle does not change,

$$
\begin{equation*}
\phi^{\prime}=\phi_{0} \tag{40}
\end{equation*}
$$

FIGURE 7

The new direction cosines are thus

$$
\begin{align*}
& u^{\prime}=u \tag{41}\\
& v^{\prime}=v \tag{42}\\
& w^{\prime}=w . \tag{43}
\end{align*}
$$

Refraction at Horizontal Surfaces

For refraction, the photon travels from one transparent medium of refractive index, r_{0}, to a medium of different refractive index, r^{\wedge}. The azimuthal angle does not change upon refraction. The polar angle changes In accordance with Snell's Law of Refraction

$$
\begin{equation*}
r_{0} \sin \theta_{0}=r^{\prime} \sin \theta . \tag{44}
\end{equation*}
$$

The initial direction cosines of the photon's position vector, $\overrightarrow{\mathrm{P}}_{\mathrm{o}}$, are

$$
\begin{align*}
& u=\sin \theta_{0} \cos \phi_{0} \tag{45}\\
& v=\sin \theta_{0} \sin \phi_{0} \tag{46}\\
& w=\cos \theta_{0} . \tag{47}
\end{align*}
$$

The direction cosines after refraction can be calculated from equation (44) and equations (45-47).

$$
\begin{align*}
& u^{\prime}=\sin \theta^{\prime} \cos \phi^{\prime}=\frac{r_{0}}{r^{\prime}} \sin \theta_{0} \cos \phi_{0} \tag{48}\\
& v^{\prime}=\sin \theta^{\prime} \sin \phi^{\prime}=\frac{r_{0}}{r^{\prime}} \sin \theta_{0} \sin \phi_{0} \tag{49}\\
& w^{\prime}=\cos \theta^{\prime} \quad=\sqrt{1-\left(\frac{r_{0}}{r^{\prime}}\right)^{2} \sin ^{2} \theta_{0}} \tag{50}
\end{align*}
$$

These equations can be written in terins of the initial direction cosines.

$$
\begin{align*}
& u^{\prime}=\frac{r_{0}}{r^{\prime}} u \tag{51}\\
& v^{\prime}=\frac{r_{0}}{r^{\prime}} v \tag{52}\\
& w^{\prime}=\sqrt{1-\left(\frac{r_{0}}{r^{\prime}}\right)^{2}\left(1-w^{2}\right)} \tag{53}
\end{align*}
$$

Reflection Coefficients

Fresnel reflection probabilities are used to determine if the photon is to be reflected or transmitted. Since we have developed our conrdinate transformations in terms of direction cosines, it is convenient to express the Fresnel reflection coefficient in n similar manner. If the photon makes an angle θ_{0} with the z axis before refraction and an angle θ^{\prime} with this axis after refraction, the Fresnel reflection coefficient, f_{r}, is then

$$
\begin{equation*}
f_{r}=\frac{1}{2}\left[\frac{\tan ^{2}\left(\theta^{-}-\theta_{o}\right)}{\tan ^{2}\left(\theta^{\prime}+\theta_{o}\right)}+\frac{\sin ^{2}\left(\theta^{\prime}-\theta_{o}\right)}{\sin ^{2}\left(\theta+\theta_{o}\right)}\right] . \tag{54}
\end{equation*}
$$

Writing the tangent function in terms of sine and cosine functions and using equations (47) and (53), equation (54) can be written

$$
\begin{equation*}
f_{r}=\frac{1}{2}\left[\frac{\frac{r_{0}}{r^{\prime}} w-w^{\prime}}{\frac{r_{0}}{r^{\prime}} w+w^{\prime}}\right]^{2}\left[1+\left[\frac{w w^{\prime}-\frac{r_{0}}{r^{\prime}}\left(1-w^{2}\right)}{w w^{\prime}+\frac{r_{0}}{r^{\prime}}\left(1-w^{2}\right)}\right]\right] \tag{55}
\end{equation*}
$$

Optical Parameture

The radiative transfer is influenced by the optical properties of the medium. In general a total attenuation coefficient can be defined for a homogeneous medium, Several concerns exist: scattering and absorption for pure water, scattering and absorption for suspended passive particulates, and scattering and absorption for chlorophyll a. If photons are absorbed by chlorophyll, then fluorescence must be considered. The total attenuation at wavelength, λ, of the medium can be represented by

$$
\begin{equation*}
\alpha_{T}(\lambda)=\alpha_{w}(\lambda)+\alpha_{p}(\lambda)+\alpha_{c}(\lambda) \tag{56}
\end{equation*}
$$

where $\alpha_{w}(\lambda), \alpha_{p}(\lambda)$ and $\alpha_{c}(\lambda)$ are the total attenuation coefficients for water, suspended particulates and chlorophyll a, respectively. Each attenuation coefficient can be written in terms of a scattering coefficient, s, and an absorption coefficient, a,

$$
\begin{align*}
& \alpha_{w}(\lambda)=a_{w}(\lambda)+s_{w}(\lambda) \tag{57}\\
& \alpha_{p}(\lambda)=a_{p}(\lambda)+s_{p}(\lambda) \tag{58}\\
& \alpha_{c}(\lambda)=a_{c}(\lambda)+s_{c}(\lambda) . \tag{59}
\end{align*}
$$

Again the subscripts w, p, and c corresponds to water, particulates and chlorophyll a.

Scattering

For ou: simulations, it is assumed that scattering by pure water is negligible. When it is decided that a scattering event by phytoplankton Wr particulates is to be simulated, it becomes necessary to determine the direction of travel of the photon after scattering. An appropriate scattering phase function mus be used. A typical function for polar angles 1s shown in Figure 9. These data are stored in the computer in tabular

form and the appropriate polar angle is determined by melecting a random number, E, and comparing this number to the probability of acattering at a particular angle. For example, if $\varepsilon=0.1$, then Irom Figure 9, the appropriate polar scattering angle will be 1.1 degrees.

The azimuthal angle is assumed to be evenly distributed on the range $-\pi$ to π and can thus be randomly selected by the function

$$
\begin{equation*}
\phi^{\prime}=\pi(2 \varepsilon-1), \quad 0<\varepsilon<1 \text {. } \tag{60}
\end{equation*}
$$

Since scattering can also occur on contact with vertical and horizontal bounds, appropriate scattering functions must be defined for these situations. For these cases, we assume Lambertian surfaces which produce the same luminance in all outward directions (Driscoll). It is thus assumed that the $\sin ^{2} \theta^{\prime}$ is evenly distributed on the range 0 to 1 , and ϕ^{\prime} is evenly distributed from $-\pi$ to π. In terms of randomly selected numbers θ^{\prime} and ϕ^{\prime} for reflection from Lambertian surfaces are defined by the equations

$$
\begin{align*}
\sin \theta^{\prime} & =\sqrt{\varepsilon_{1}} \tag{61}\\
\cos \theta^{\prime} & =\sqrt{1-\varepsilon_{1}} \tag{62}\\
\phi^{\prime} & =\pi\left(2 \varepsilon_{2}-1\right) . \tag{63}
\end{align*}
$$

Absorption

In all cases appropriate absorption coefficients are needed for water. For our simulations, we use the values reported in the literature (Smith and Taylor). The effects of pure water absorption are accounted for by adjusting the weight of the photon each time a trajectory of length d_{j} is traversed. If I_{0} is the initial weight of the photon, the adjusted weight due to water absorption is

$$
I_{0}=I_{o} e^{-a_{w}(\lambda) d_{j}}
$$

If a suepended particulate in contacted, the absorption is again accounted for by a weight adjustment. The procedure we follow in this case is to force a scattering process and reduce the weight of the photon by the relative probabllity that acattering would have occurred. (See Appendix 1). The photon's waight after seatering is then

$$
\begin{equation*}
I_{0}=I_{0}\left(1-\frac{a_{p}(\lambda)}{a_{p}(\lambda)+a_{p}(\lambda)}\right) \tag{65}
\end{equation*}
$$

For phytoplankton, absorption must be accounted for directly, since fluorescence will occur after the photon has been absorbed. When phytoplankton is contacted it is first decided if scattering or absorption is to be simulated by comparing the relative probability of these two events
 as described in the previous paragraphs. If absorption is to be simulated, we assume that the photon will be absorbed and subsequently fluoresced at the filuorescent wavelength, λ_{F}. If the photon's wavelength is λ_{F} before absorption we assume that it will be lost upon any further absorption by phytoptankton.

Photon Path Length

The distance, d_{j}, that a photon travels between events is selected from a distribution function of the form

$$
\begin{equation*}
d_{j}=-\frac{1}{\alpha_{T}(\lambda)} \ln (\varepsilon) \tag{66}
\end{equation*}
$$

Again ε is a random number on the range 0 to 1 , and $\alpha_{T}(\lambda)$ is the total attenuation coefficient for a photon of wavelength λ.

Fluorescent Efficiency

Since all absorbed photons will not be fluoresced, in our simulations the weight of the photon is adjusted and fluorescence is forced to occur.

The fluorescent efficiency of the photon, n, is assumed to be related to the fluorescent cross section and the concentration of phytoplankton. (See Appendix 2).

$$
\begin{equation*}
\eta(\lambda)=\frac{\sigma(\lambda) C N_{a} m}{K a(\lambda) W}, \tag{67}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma= & \text { fluorescent cross section }\left(\mathrm{cm}^{2} /\right. \text { molecule) } \\
\mathrm{C}= & \text { concentration of phytoplankton (cells/m1) } \\
\mathrm{N}_{\mathrm{a}}= & \text { Avagadro's number } \\
\mathrm{W}= & \text { mass per mole of chlorophyll } \underline{a} \\
\mathrm{~m}= & \text { mass per cell. } \\
\mathrm{K}= & \text { fraction of photons absorbed by phytoplankton that } \\
& \text { gets absorbed by chlorophyll a } \\
a(\lambda)= & \text { absorption coefficient of phytoplankton at wave } . \\
& \text { length } \lambda .
\end{aligned}
$$

For our analysis K is assumed to be unity. The adjusted weight of the photon after fluorescence is given by

$$
\begin{equation*}
I_{0}^{\prime}=\eta I_{0} \tag{68}
\end{equation*}
$$

Fluorescent Phase Function

When the photon is fluoresced the cosine of the polar angle of emission is assumed evenly distributed. The polar angle is then selected using the function

$$
\begin{equation*}
\cos \theta^{\circ}=2 \varepsilon_{1}^{-1} \tag{69}
\end{equation*}
$$

and the azimuthal angle is given by

$$
\begin{equation*}
\phi^{*}=\pi\left(2 \varepsilon_{2}-1\right) \tag{70}
\end{equation*}
$$

Computer Model

Two computer programs, CARLO 1 and CARLO 4, were developed for the

Monte Carlo model. The first program is 1isted in Appendix 3. CARLO 1 is a single color group model and CARLO 4 in a four color group model. Both programs were written in BASIC-PLUS in EXTEND mode for execution on the PDP11/34 computer with RSTS/E operating system.

Lines 150-490 of the program includn program laput variables. A 1ist of input variables and their functions follows the program listing in Table A1. Lines 700-995 inftlalize program parameters Lines 1000-1010 begin the loop for each photon and lines 1100-1140 begin the loop for each event by calculating the distance the photon will travel (in line 1130) and testing Its weight. Ihe photon's prisition is calculated at 11 ne 1150 and Ines 1170-1340 determine if any boundaries are contacted. Lines 1350-1420 correct the photon's location if boundaries are contacted. Lines 1460-1700 determine the appropriate action if boundaries were contacted. Lines 17201770 control progran parameters and flow for cases in which boundaries are not contacted. Lines 1805-1880 calculate direction cosines. The events counter and photons counter are incremented in 1ines 3000 and 4000 and a summary is presented in lines 5000-5020. An analysis of the returned photons i.s done in lines 11000-11290. Lines 19200-19260 and 19500-19699 are for various outputs. Program functions are defined in lines 1929019310.

Anacystis Marinus

An anacystis marinus culture, grown by NASA-Langley personnel (Poole) was used to provide optical data for the Monte Carlo medel. This culture w111 be referred to as AM480.

The absorption measurements for AM480 were made with a spectra absorption coefficient instrument, SPACI, (Friedman, et al). Total attenuation coefficient measurements were taken with a small angle scattering meter,

SASM, This instrument is similar in dắsign and concept to the Scripps Institute of Oceanography ALSCAT (Austin and Petzold), except the SASM used cells of various length to allow for high turbidity measurement rather than in situ as employed by the ALSCAT. To obtain the yolume scattering function, $B(\theta)$, small angle measurements, less than 25°, were made with the SASM, Large angle measurement 25° to 155°, were made with a modified Brice Phoenix light scattering photometer. These modifications were made to achleve the same spectral range and resolution as the SASM. The complete volume scattering function was obtained by cubic spline fits to these data. The appropriate scattering probability distribution $p(\theta)$, was determined by normalization and integration of the volume scattering function.

$$
\begin{align*}
P(\theta) & =\int_{\Omega} \frac{\beta(\theta)}{S} d \Omega \tag{71}\\
& =\frac{2 \pi}{s} \int_{0}^{\pi} \beta(\theta) \sin \theta d \theta . \tag{72}
\end{align*}
$$

The scattering coefficient s, was obtained by the subtracting the absorption ooefficient from the total attenuation coefficient.

$$
\begin{equation*}
s=\alpha-a \tag{73}
\end{equation*}
$$

Figure 10 shows graphs of the scattering and absorption coefficients as a function of wavelength. The scattering probability distribution is shown in Figure 9. This distribution was assumed to be wavelength independent. Fox the simulations, incident photon wavelength of $454,539,598$ and 617 nm were used. These values corresponded with those used in the NASA Airborne Lidar Oceanographic Probing Experiment, ALOPE, (Browel,). The fluorescent wavelength used for the cholorphyll molecule was 685 nm . A summary of the optical constants for AM480 is given in Table 1 . To determine the fluorescent efficiencies several quantities that were not . measured directly for AM480 were estimated from earlier data runs (Farmer).

TABLE 1

OPTICAL PARAMETERS AM480

λ $(n m)$	$\begin{gathered} a_{\text {bulk }} \\ \left(m^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathbf{s}_{\text {bulk }} \\ & \left(\mathrm{m}^{-1}\right) \end{aligned}$	a water $\left(m^{-1}\right)$	$\begin{gathered} { }^{\text {ch1o }} \\ \left(m^{-1}\right) \end{gathered}$	(m2/molecule)	
454	2.3	13.7	. 03	2.27	0.1×10^{-21}	. 0025
539	0.9	9.8	. 05	0.85	0.2×10^{-21}	. 013
598	1.2	9.1	. 19	1.01	1.0×10^{-21}	. 049
617	1.4	7.8	. 25	1.15	1.7×10^{-21}	. 073
685	1.2	7.0	. 45	. 75	-	-

These included a cell concentration, 1.7 cell/mi, a mass per cell of 5.1 X $10^{-15} \mathrm{~g} / \mathrm{cel} 1$ and the scattering cross sections σ_{F}, given in Table 1 . The molecular weight of chlorophyll a was taken to be $893 \mathrm{~g} / \mathrm{mole}$. Since pure water attributed to the total measured absorption coefficient, absorption coefficient values for water (Smith and Taylor) were subtracted from the total measured values to give absorption coefficients for chlorophyll a.

Simulation Results

To provide input for the computer model, optical parameters were IInearly extrapolatedover a concentration range of $1 \times 10^{6} \mathrm{cells} / \mathrm{ml}$ to 1×10^{8} cells/m1. All photons that were backscattered within a radius of 1 meter of the origin were collected and analyzed. The normalized weights of the returned photons were plotted against $f\left(\alpha^{*}\right)$ where

$$
\begin{equation*}
f\left(\alpha^{*}\right)=\frac{C}{\alpha(\lambda)(1-\omega(\lambda) F)+\alpha(685)(1-\omega(685) F)} \tag{74}
\end{equation*}
$$

and C is the concentration of chlorophyll a and F is the fraction of photons scattered in the forward direction. The quantity $\omega(\lambda)$ is the scattering albedo and is given by

$$
\begin{equation*}
\omega(\lambda)=\frac{s(\lambda)}{\alpha(\lambda)} \tag{75}
\end{equation*}
$$

A graph of $f\left(\alpha^{\circ}\right)$ versus concentration is given in Figure 11. A value of $F=.98$, obtained from the probability distribution given in Figure 9 was used in these plots.

Theoretical analysis (Browell) suggests that we might expect a linear dependence for the power received at a detector on $f\left(\alpha^{\prime}\right)$. Here we have introduced the quantity

$$
\begin{equation*}
\alpha^{-}(\lambda)=\alpha(\lambda)(1-\omega(\lambda) F) \tag{76}
\end{equation*}
$$

to partially account for the effects of multiple scattering.
Our preliminary results are presented in Figures $12-15$ and summarized

[lw/s|loow 9ヨl] (X)」

[৮-ヨ!] (WV7)OH/(S89) H
[৮-ヨ!] (Wナ7) OH/(S89) JH

[ヶ-3!] (WV7)OH/(589)dH

[ط-31] (WV7) $\mathrm{OH} /(589) \mathrm{dH}$

In Eigure 16. The dapendent axis in aach of these plote is the accumulated weight of photons that are returned at the fluoresced wavelength, nomalized by the necumulated weight (numbar of photons) incident at the exciting wavalength.

These analyses show a tendency for exponential behavior at high concentrations. However these results cannot be used as a conclusive test of the type of dependence on equation (74) because target geometry of the ALOPE system is not fully simulated, In addition, errors in the estimated sample properties can affect the results. To correct this latter problem, another culture is being grown for analysis. A complete measurement set will be made for this specimen.

Detector geometry can be fully simulated by special techniques. Consider the case of a finite detector a height ${ }_{0}$ above tha water burface. See Figure 17. Any event occurring within the interaction volume has a finite probability of contributing to the detector signal. When a photon undergoes a scattering event in the interaction volume the probability that the photon will be detected is given by ΔP_{A} where

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{A}}=\int_{\Omega_{\mathrm{A}}} \frac{\beta(\theta)}{s} \mathrm{~d} \Omega_{\mathrm{A}} \tag{77}
\end{equation*}
$$

and Ω_{A} is the solid angle subtended by the detector aperture relative to the current photon position. This integral can be approximated by

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{A}}=\frac{B\left(\theta^{\circ}\right)}{\mathrm{S}} \Omega_{\mathrm{A}}, \tag{78}
\end{equation*}
$$

where θ^{-}is the scattering angle that will cause the photon to travel in a direction toward the center of the detector aperture.

At each scattering event the contribution to the detector signal, W, is calculated where

$$
\begin{equation*}
W=I_{o j} e^{-\alpha d} \Delta P_{A}\left(\frac{s}{a+s}\right) \tag{79}
\end{equation*}
$$

In equation (79), $I_{o f}$ in the weight of the photon prior to undargoing the jth ecattering event and the quantity

$$
\frac{e}{a+s}
$$

is the probability that the photon will be scattered (as opposed to being absorbed). The path length from the photon to the top of the water surface is d and the total attenuation of the medium $1 s a$. Then the quantity $e^{-a d}$ represent the survival probability of the photon while traveling toward the detector.

Photons can be forced to remain within the interaction volume by selecting the distance that the photon travels between events, d_{j}, from a truncated distribution function and correspondingly adjusting the photon's weight. If the path length from the photon to the edge of interaction volume Is d_{E}, then d_{j} is given by (Katedwa)

$$
\begin{equation*}
d_{j}=-\ln \left(1-\varepsilon\left(1-e^{-\alpha d^{2}}\right)\right) / \alpha \tag{80}
\end{equation*}
$$

and the corresponding weight adjustment is given by

$$
\begin{equation*}
I_{o j}=I_{o}\left(1-e^{-\alpha d_{E}}\right) \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{E}=d_{W}+\sin \delta \frac{d_{w} \cos \theta+z}{\sin (\theta-\delta)}, \delta<\theta . \tag{82}
\end{equation*}
$$

We are presently implementing these procedures in our Monte Carlo computer model.

FIGURE 17

Appendix 1

WEIGHINC TECHNLQUE (Poole)

The number of events occurringin a distance x is distributed as a Polsson distribution written in a spatial rather than temporal sense, or

$$
\begin{align*}
& p_{m}(x)=\frac{(\alpha x)^{m}}{m!} e^{-\alpha x} \tag{1-1}\\
& x=\text { distance traveled } \\
& m=\text { number of events } \\
& \alpha=\text { attenuation coefficient. }
\end{align*}
$$

where

As an alternative welghting technique for suspended particulates we multiply the photon's waight by the probablidty (P) of scattering for that event, where

$$
\begin{equation*}
p=\frac{s}{\alpha}=\omega_{0} \tag{1-2}
\end{equation*}
$$

After a large number of photons have traveled a distance D, the expected value of the average photon welght, $E(W)$, is

$$
\begin{align*}
E(W) & =E\left[\left(\tilde{\omega}_{0}\right)^{m}\right] \tag{1-3}\\
& =\sum_{m=0}^{\infty} p_{m}(D)\left(\tilde{\omega}_{0}\right)^{m} \\
& =P_{0}(D)(1)+p_{1}(D) \tilde{\omega}_{0}+P_{2}(D) \tilde{\omega}_{0}^{2}+\ldots
\end{align*}
$$

Substitution from equation (1-1) for $p_{m}(x)$ yields

$$
\begin{align*}
E\left(\omega_{0}\right)^{\prime \prime \prime} & =e^{-\alpha D}+\frac{\alpha D}{1!} e^{-\alpha D} \omega_{0}+\frac{(\alpha D)^{2}}{2!} e^{-\alpha D}{\underset{\omega}{0}}_{2}^{2}+\ldots \\
& =e^{-\alpha D}\left[1+\frac{\alpha D}{1!} \tilde{\omega}_{0}+\frac{\left(\alpha D \omega_{0}\right)^{2}}{2!}+\ldots\right] \\
& =e^{-\alpha D} e^{\alpha D \omega_{0}} \\
& =e^{-\alpha D} e^{s D}=e^{-(\alpha-s) D}=e^{-a D} \tag{1-4}
\end{align*}
$$

Appendix 2

FLUORESCENT EFFICIENCY CALCULATION

Consider the fluorescent efficiency, n, where

$$
\begin{align*}
\eta & =\frac{M \text { of photons fluoresced by cholorophyll a }}{\text { of photons absorbed by cholorophyli a }} \\
& =\frac{I_{F}}{I_{0} \cdot k_{\alpha}^{a}} \tag{2-1}
\end{align*}
$$

and
$a=$ absorption coefficient for medium
$\alpha=$ attenution coefficient for medium
$\frac{a}{\alpha}=$ probability of absoription by the medium
$K=$ fraction of absorption photons that are absorbed by cholorophyll a
The fluorescent cross section, σ, is

$$
\sigma=\frac{\# \text { of photon fluoresced }}{\| \text { of photon incident } \times \# \text { of molecules per } \mathrm{cm}^{2}}=\frac{\mathrm{I}_{\mathrm{F}}}{\mathrm{I}_{0} N} .
$$

Therefore,

$$
\begin{equation*}
\eta=\frac{\sigma N}{k \frac{a}{\alpha}} \tag{2-2}
\end{equation*}
$$

Also $\quad C=$ concentration in ce11/cm ${ }^{3}$

$$
\begin{aligned}
N_{A} & =\text { number of molecules per mole } \\
W & =\text { number of grams per mole } \\
m & =\text { number of grams per cell } \\
\ell & =\text { mean free path length of photon }=\frac{1}{\alpha}
\end{aligned}
$$

$$
C\left(\frac{c e l 1}{3}\right)=N\left(\frac{\text { molecules }}{\mathrm{cm}^{2}}\right) \frac{1}{\mathrm{~N}^{2} \frac{\text { molecules }}{\text { mole }}} \mathrm{W}\left(\frac{\mathrm{~g}}{\mathrm{~mole}}\right) \frac{1}{\mathrm{~m}\left(\frac{\mathrm{~g}}{\mathrm{cell}}\right)} \frac{1}{\ell(\mathrm{~cm})}
$$

$N\left(\frac{\text { molecules }}{\mathrm{cm}^{2}}\right)=\frac{C\left(\frac{\text { cell }}{3}\right) N_{A}\left(\frac{\text { molecules }}{\text { mole }}\right) \mathrm{m}\left(\frac{\mathrm{g}}{\mathrm{cell}}\right) \ell(\mathrm{cm})}{W\left(\frac{\mathrm{~g}}{\mathrm{~mole}}\right)}$

Then the quantum efficiency is given by

$$
\begin{equation*}
\eta=\frac{\sigma}{k_{\alpha}^{a}} \frac{{ }^{\frac{a}{\alpha}}}{W} A^{m} \ell \tag{2-3}
\end{equation*}
$$

If a normalized value for a is used then, η can be written as

$$
\eta=\frac{\sigma N_{A^{m}}}{K a x^{*}},
$$

where $a^{*}=\frac{a}{C}$.

PROGRAM LISTTNG

I!!!!!! HONTECARLO FLUORESCEN:E HODEL!!!!!!
2!!!1!1!----CARLO1-----FEB 25 1980------!!!!!!!
5I!!!!!ISECOKD TEST CASE FOR CHLOROPHYLL HODEL
hohogenerus chlo
NO PART, AlACYSTIS hARINUS-LPOI infinte bounds Input data L.fPOLE

G!!I!!!SIMGLE COLOR GROUP MODEL!!!!!!!

10 EXTEND

40 DIN $Q(3), D E L Q(3), 01(3), \operatorname{REFX}(10,5), \operatorname{LDPTH}(10,5), S C U(10,5), \operatorname{SCP}(10,5), \operatorname{SCC}(10,5), A C P(10,5), A C C(10,5), A C H(10,5), T A P(10,5)$
42 DIM $\operatorname{TAC}(10,5), \operatorname{TAT}(10,5), \mathrm{CPP}(10,5), \mathrm{CPC}(10,5), \mathrm{IHTN}(5), \operatorname{TANK}(5,5), \mathrm{H}(3), \mathrm{H}(3)$, $\mathrm{W} 4(3), \mathrm{ETA}(5), Y(101)$
150
1
IINPUT Paraketers
$!$
$160 \mathrm{~L}=2$
170 L.AKMO $=1$
180 NPH=100
190 NEV $=100$
200 THETO $=0$
210 PHIO $=0$
219 FILEs='00'

225 TITLES='AMACYSTIS MARINUS-1/80-1 COLOR HODEL'
$230 \mathrm{R} 0=1$
240 SCUS='SULPO1, DAT'
250 OUT\$ $=$ 'KB!'
$252 \mathrm{COMP}=0$
$255 \mathrm{CONC=1.7E7}$
257 CONX $=1$
$260 \mathrm{H} N \mathrm{~N}=1 \mathrm{EE}-3$
270 ROUT $=1$
271 ROUT2=ROUTn2

$280!$
$!$
!DATA ARRAYg
$!$
300 HAT READ LDPTH $(0,5)$!
310 DATA $0, \quad 0, \quad 0, \quad 0, \quad 0$,

320 HAT READ TANK!
33O DATA $\begin{array}{llllll}0_{1} & 0_{1} & 0_{1} & O_{1} & 0_{2}\end{array}$

0_{1}	0_{1}	0_{1}	0_{1}	0_{1}
0_{1}	0_{1}	0_{1}	0_{1}	0_{1}
0_{1}	0_{1}	0_{1}	0_{1}	0_{1}
0_{1}	0_{1}	0_{1}	0_{1}	0

340 Mat read rex $(10,5)!$
350 DATA \quad i, $1, \quad 1, \quad 1, \quad 1$,
$\begin{array}{lllll}1,33, & 1,331 & 1,33, & 1,33, & 1,33\end{array}$
360 MAT READ SCC(LO,5)
370 DATA $\quad 0, \quad 0, \quad 0, \quad 01 \quad 0$,
8,06E-7,5,74E-7,4,76E-7,4,59E-7,4,12E-7
390 MAT READ SCP(LO,5)

390 DATA | 01 | 0_{1} | 0_{1} | 0, | 01 |
| :--- | :--- | :--- | :--- | :--- |
| 0, | 0_{1} | 0_{1} | 0_{1} | 0 |

$\begin{array}{lllll}400 & \text { MAT READ ACC }(L 0,5)! \\ 410 \text { DATA } & 0, & 0, & 0, & 0,\end{array}$ 1, 34E-7, ,500E-7, ,594E-7, ,676E-7, ,441E-7
120 MAT READ ACP (L0,5)!

430 DATA | 01 | 01 | 01 | 01 | 0, |
| :--- | :--- | :--- | :--- | :--- |
| | 01 | 0, | 01 | 0, |
| 0 | | | | |

440 HAT REAU ACH(LO,5)!

460 HAT REND ETA(5)!
470 DATA ,00254, ,013, ,048B, ,0731, 0
480 mat read scu(L0,5)!

490 DATA | 0, | 0, | 0, | 01 | 01 |
| :--- | :--- | :--- | :--- | :--- |
| 01 | 0, | 01 | 01 | 0 |

$700!$
!
IINITIALIZE PARNHETERS
$!$
$!$
705 KAT SCC=(CONC) $\pm S C C$
MAT ACC=(COMC) *ACC
(HAT SCP=(COMP) \&SCP
\MAT ACP=(COHP) \$ACP

\HAT $\mathrm{CCH}=(\mathrm{COH}+\mathrm{W}) * \mathrm{SCH}$
710 HAT TAS=ZER(LD,5)
MAAT TAP=ZER(LO,5)
\hat TAC=ZER(LO.5)
\MAT TAT=ZER(L0,5)
720 OPEN SCUS FOR INPUT AS FILE $\$ 2$
LOPEN OUTS FGR DUTPUT AS FILE $\$ 4$
820 HAT TAU=ACH $+5 C H$

\HAT TAPFACPHECP

\HAT TAC=ACCHECC
What taj=thpttac
BJO FOR I=2 TO LO
\FOR J=1 TO 5
\CPP(1, J) $=T A P(1, J) / T A T(1, J)$
\CPC(I, J) $\operatorname{TAC}(I, J) / \operatorname{TAT}(I, J)$
VEXT J
VIEXI I
B40 FOR $I=1$ TO 5

(LIPTHLLO,I)=TANK(2,1)
\ $\angle \mathrm{BPTH}(\mathrm{L}, \mathrm{t})=0$
WEXT I
050 OXIE $=1.00001$
पHAT TMIN=CON
\IHPUT 22,SCUTs
YFOR I=1 To 101
(Infur $\$ 2$ Y(I)
WEXT I
\IF Y(101)〈>180.00 THEN STOP
852 HAT $Y=(.017453) * Y$
860 सPR=0
\Cs=','
CIF AF
870 HAT IHIIIE(HINU) KIHIN
\THETO=THETO\$:017453
\PHID=PHIO $\#, 017453$
\PHIL=PHIO
\THET=FMASN(SIM(THETO)/REFX(2LLAMO)*REFX(1,LAMO))
880 U $=5$ SN(THET)
($1 / 4(1)=\mathrm{H} 3 \mathrm{CCOS}(\mathrm{PHI})$

\Kis=FNR(REFX(1,LAHO)/REFX(2,LAMO) $144(3)$, H3,0)
890 FOR $I=1$ TO RO
\DIERTD
WEXT I
\OPEN FILES FOR OUTPUT AS FILE $\$ 1$
IGOSUB 19200
995 PRINTA1,TITLES
ICLOSE 2
1000!
1
!START I-FH PHOTOK
!
1
1010 FOR $I=1$ TO NPH

VILL=2

llakelaho
\10:1
lhat gazer
\MAT H=HA
पH2 $\mathrm{H} / \mathrm{H} 3$
leve=0
\THETI=0
\PHII=0
\RATIO $=1$
\IF RHDKRR THEN 1670
11001
1
ISTART J-TH EUENT
!
1
1110 FOR J=1 TO MEV
1130 DJ=-LOO(SND)/TAT(LLLLAN)
\EVC=EUC+1
1140 IF IOSININ(LAM) THEN J=HEV
1g0TO 3000
1147 !
1
ISET TRIAL COORDINATE
1
1
1150 MAT DELO $=(\mathrm{D})$) 相
\hat di=atdela
$1152!$
!
IDJAGNOSTIC OUTPUT
$!$
1154 GOTD 1160
1155 gosub 19600
1160 !
$!$
ldeterhine if bolnd, contacted
$!$
$!$
$1170 \mathrm{BR}=0$
\C $6=0$
\RATID=1
\IJBMD=-1

1180 IF $\mathrm{H}(3)<0$ THEN PKD $=-1$
IGOTO 1250
1190 PMD=1
\IF OA(3)<LDPTH(LL+0,LAN) OR LDPTH(LL+OLLAM) $=0$ THEN 1310

\IF HCP=0 THEN 1230

DDSMLLED.JMALL/H2
1220 IF DNHALLADTOB THEN 1330

1240 DJDMAODJTOB
\EDTO 1340
1250 IF OI(3) LLDPTH(LL-1,LAKK) THEN 1310

UIF $\mathrm{KCP}=0$ THEN 1290

D.

1280 IF DJHLLLLDJTOB THEM 1330
1290 IF LLPTH(LL- $1, L$ LAK $)=0$ THEN BR=A ELSE BR=5
1300 DJBHD=D.JTOB
\goto 1340
1310 IF WCPFO THEN 1350
$1320 \mathrm{SXH}=(0(1)+4(1)+0(2)$ 相(2))/42

1330 DJBND $=$ DJMALL
\BR=1
1340 RATID=DJBND/D.J
1350 !
1
IUPRATE IO, $X_{1}, y_{1} Z_{1}$ AMD BRAMCH TO TYPE OF CONTACT
!
$!$
$141010=10 * E X P(-A C U(1.1, L A M) \& R A T I O * D J)$
1415 IF $g R=0$ THEN HMTi $0=01$
lgoro 1430

Lhat $a=a+$ del 0
1460 애 $1+8 \mathrm{~B}$ 60T0 1720,1500,1540,1610,1640,1540
1500 !
$!$
Ihall CONTACtED
!
!
1510 PHIL=PI*(2tRND-1)
$\backslash \mathrm{DI}=\mathrm{RND}$
\An=SOR(ONE-D1)
(BESOR(D1)
($\mathrm{H}(1)=\mathrm{ED}(1) / \mathrm{TANK}(1, \mathrm{LAK})$

```
    UH(2)=-Q(2)/TANK(1,LAK)
    IV(3)=0
    \BI=B*COS(PHII)
1520 B2*B#SIM(PHII)
    WW(1)=-82tu(2)+A\M(1)
    \HI(2)=82*N(1)+A&W(2)
    \H1(3)=-B1
    \H2"SRR(OHE-BIN2)
    \HAT H=UI
1530 IO#10:TAKK(3ILAK)
    \COTO 3000
15401
    I
    ILAYER BOUND CONTACTED
    !
    !
1560 IF REFX(LL,LAH)=REFX(LLTPMD,LAM)THEN 1603
1570 IF REFX(LL,LAM)&U2/REFX(LL+PHD,LAK)>1 THEN W(3)=-H(3)
        \G0TO 1605
1580 IF RHD\FNR(REFX(LL.LAM)/REFX(UL.APHD,LAK),H(3),W2,O) THEN W(3)=-W(3)
        \GOTO 1605
1590 DI=REFX(LL,LAM)/REFX(LLIPKD,LAM)
    VH(1)=D1t*(1)
    U|(2)=DI却(2)
    \W2=D!則2
    \H(3)=SGN(H(3))*SUR(ONE-42n2)
1603 DJ=DJ%TAT(LL.LAK)/TAT(LLLPPHD,LAH)
    V.L.=LLTPMD
1605 DJ=(1-RATIO)*DJ
        \IF DJ\IE-5 THEN 1140 ELSE 3000
1610!
    !
    IBOTTOK CONTACTED
    |
    |
1620 PWII=PI*(2tRHD-1)
        \DI=RND
        W(3)=-SOR(OXE-D1)
        \B=SUR(DI)
        \H(1)=-B*COS(PHI1)
        (H(2)=B*SIN(PHIL)
        \H2=B
1630 I0=10KTAKK(4ILAK)
            \GOTO 3000
1610 I
        I
        ISURFACE CONTACTED
    I
SURFACE CONTAATED
```


1

1650 IF REFX(2LLAH) *U2>1 THEN H(3) $-H(3)$
(D. $1=(1-R A T I O) \div D . J$

IIF DJ>1E-5 THEN LILO ELSE 3000

\10×10)(1-D1)
1670 THET2aFNASN(REFX(2)LAH1) 4 H2)
(PHI2=ATN(H(2)/U(1))
$1680 \mathrm{~J}=\mathrm{KE} \mathrm{V}$
UMPR=NPR+1
(1F NPR/POxINT(IPRR/PD) THEN GOSUB 19500

170060703000
$1720!$
!
IPARTICLE CONTACTED, DETERHINE TYPE
$!$
1730 IF RHDCCPC(LL,LAKH) THEN 1780
1740 If RHDDACC(LLLLAH)/TAC(LLLLAAH) THEN 1760
$1746!$
$!$
ICHLO ABS OR FLUO
1
!
$175010=10$ ETETALLAK)
LLAM=5
\PHII $=$ PIt (2*RND-1)
W $\mathrm{W}(3)=2 \pm \mathrm{FR} \mathrm{ND}-1$

($\mathrm{H}(1)=\mathrm{H} 2 \mathrm{CCOS}(\mathrm{PHII})$
(HI2) $=1245 I N(P 1 I 1)$
\6070 3000
$1760!$
1
ichlo scattering
$!$
1
1770 G0T0 1810
1780 :
1
ipart contact adj for abs and force scattering
1
1
1790 ID=ID*(1-ACP(LLALAK)/TAP(LL, IAM))
1800 G0T0 1810
1805 !
1

IDIRECTION COSINES

$!$
!
1010 D120100木RHD
1D2 $21+5 \mathrm{HT}(\mathrm{DII})$
\THETI=Y(D2) $+(Y(D 2+1)-Y(122)) *(D 2-D 1)$

$1830 A=\operatorname{COS}$ (THETA)
($B=S$ SH(T)ETI)

\82=RKGIII(PHII)
\IF ABS(H(3)) $), 999$ THEN 1870

1860 coto 1880
1870 UI(1) $=11+14(3)$
(H1(2) $=82$

1830 MAT W=H1
(IF H(3)<al THEN H2=5RR(1-H(3)~~2) ELSE W2=0
$1900!$
1
,
1
3000 NEXT J
4000 KEXT I
5000 PRINTt4, NPH;' photons rim 'infrl' photons retirned '

5020 CLOSE $\$$
50901
!

I

11001 !
1
1
11015 OPEN FILES FOR INFUT AS FILE 33%
11010 PRIHT\$1\%,
(PRINT\#GZ, 'UEIGHT ANALYSIS FOR FILE: ";FILE
IPRINT44\%,
11050 INPUTE3K,Ts

\PRINTE4\%,
\DIH H9(9\%)

MAT Mazer
LON EREOR COTO 11200
 11105

IF $\mathrm{X}^{n} 2+\mathrm{Y}^{n} 2$ ROUT3, THEN 1100 III RESTRICT OUTPUT RAD TO ROUT METER

11110 !!!!!!DACHOSTIS PRINT\&A\%, OUTI!!!!!
11120607011140

11140 W9(1) $=19(1)$ tho
(Wy (6) 대9(6) + $\mathrm{HO}+\cos (\mathrm{T})$
1W9(5) $5199(5)+1$
UF $\mathrm{J}=0$ TMEH H9(2) $=\mathrm{HP}(2)+\mathrm{HS}$

1607011100

149(0) $=49(0)+40 \pm C O S(T)$
\GOTO 11100
$1166049(4)=49(4)+140$
(49(9) $=49(9)+\mathrm{HOtcos}(\mathrm{T})$
1 Gato 11100
11200 IF ERR $\ 111$ THEN ON ERROR 60100
11210 PRINTAAK, 'END OF FILE'
11220 PRITIT 44K,

IPRRHT 41\%,

11280 CLOSE \$3\%
ICLOSE $\ddagger 4 \%$
11290 goto 32373
19090 STOP
19200!
IPARAKETERS PRIRT\&, OOUT
1
19205 PRINT:4,
\PRINT*A'PILER RAHEI 'IFILE
\PRIHT\#4,
19207 PRINT E4K, 'SCATTERING VECTOR: 'fSCVTs
Verint marconc cmlo: "come
IPRINT A4K'CONC PART: ‘COONP
IPRINT 44K, 'COHG RATER: ';CONW

```
    IFKIHT 14%, LAMDA PARAKF 'HLAKO
    \PRIHT 14%'STEPHL; "iLO
    \PRIMT $1%,'MGHT HIN: 'IMIMN
19210 PRIHT$A, LAYER DEPTH'
    \HAY PRINIIM,IDPTH,
    \PRIHTIM,'REFRACTIVE INDEX"
    MMAI PRIHTGARREFX,
    \PRIHTHM,'GCAT COEF PART,'
    WMT FRIHTIS,SCP;
19220 PRIIITA,'SCAT COEF CHLD,"
    \mat fnIHT\A,SCC,
    \PRIRT&A,'NDS COEF PART,'
    \MAT PRIHTA,ACP,
    \PRTHT$1,'ABS COEF CHLO,'
    VHAT PRIHT&4,NCC,
19230 PRIMTIA,'ABS COEF HATER'
    \hat PRIITSA,SCHy
    \FRLITG4, 'ETA'
    WAT PRINT\A;ETA,
    \PRIMI利'TAMK PAROHETERS'
    MMT PRIMTEA.TANK,
19245 SLEEP 10
    \TIMOETIKE(O)
```



```
    \TIK3=TIKE(3)
19250 PEIHT:A,STRINGS(4,10)
    UPRINTEA;" X Y 10 THETA PHI LAM EUN PHOTON'
19260 RETURH
19290 I
    IDEF FM ARCCOS ARCSIN FRESHEL REFL
    !
19300 DEF FNASN(X)=ATH(X/SOR(ONE-Xn2))
    \OEF FMACS(X)=ATH(SOR(ONE-Xn2)/X)~PI$(X<O)
19310 DEF FAR(A,BrCFD)
    \B=ABS(B)
    \D=SOR(1-(A)CC)
    \01=0**
    \02=AkB
    \03=解^2
    iFNR=,5k(((02-D)/(D2+D))
    IFHEND
19500!
    ITERHIMAL PRINOUT
    !
```



```
EWC,I
19520 RETURH
19600!
    ITERHIMAL OUTPUT FOR DIAGHGSTICS
```


1

19610 PRINT $84,1 X_{1}, Y, Z^{\prime}, Q(1), 0(2), Q(3)$

\PRRTT\&4, 'THET,PHI,J',
19620 PRINT $\ddagger 1,57,2958$ \&FHACSiH(3)) ,57,2958*ATN(H(2)/H(1)), J \PRRNTA4, 1 U, V, H', H(1), H(2) ,H(3)

\PRINTE4, ' $X^{\prime}, Y^{\prime}, Z^{\prime}, \mathrm{M}^{\prime \prime}, 01(1), 01(2), 01(3), \mathrm{D}_{1}$
19699 PRINT多,
\RETURN
32373 END

Table Al
INPUT VARIABLE LIST

Variable	Function
$\operatorname{ACC}(10,5)$	Absorption coefficients for chlorophyl1 a
ACP $(10,5)$	Absorption coefficients for subspended particulates
ACW (10,5)	Absorption coefficients for water
CONC	Concentration of chlorophyll
CONP	Concentration of particulates
CONW	Concentration of water
ETA	Fluorescent efficiency of chlorophyll a
FILES	File name fo, utput data storage
LO	Number of proixile steps plus 1, first is always air
LAMO	Photon wavelength parameter, column index
LDPTH (10,5)	The depth of each profile step
MINW	Minimum photon weight
NEV	Number of events
NPH	Number of photons
OUT\$	Output data file name
PHIO	Incident azimuth angle
R0	Random number seed
REFX (10,5)	Refractive indices of each layer
ROUT	Maximum output radius
$\operatorname{SCC}(10,5)$	Scattering coefficients of chlorophy11 a
SCP (10,5)	Scattering coefficients for suspended particulates
SCV\$	File name for probability scattering distribution function
SCW (10,5)	Scattering coefficients of water
TANK (5,5)	External boundary parameters
	TANK ($1, L A M$) =Vertical bound radius for wavelength parameter LAM
	TANK (2,LAM)=Horizontal bound depth for wavelength parameter LAM
	TANK ($3, \mathrm{LAM}$) =Vertical bound reflectivity for wavelength parameter LAM
	TANK (4, LAM) $=$ Horizontal bound reflectivity for wavelength parameter LAM
	TANK ($5, L A M$) $=0$, (used,internally)
THETC	Incident polar angle
TITLES	Title of output data file

The columns of multidimensional arrays represents variations in wavelength and rows (for all arrays except TANK (5,5) represent profile steps.

REFERENCES

R. W, Austin and J. J. Patzold, Optieal Engineering, 64, p. 50 (1975).

Edward V. Browell, "Analygis of Laser Pluorosensor System for Remote Algae Detoction and Quantification." NASA 'l'N Dm8447 (June 1977).

Walter (i. Driseoll, Bd. and W. Vaughan, Assoc. Ed., Hambook of Optese, Mograw 1111 book Company (1978).
F. Farmer, Unpubllshed, NASA Langley Rescarch Center.
F. Frfedman, I, Poole, A. Cherdak, and W. Houghton, "Absorption Goeffetent Instrument for Tubid Waters." Applted Opttes, 19, May 15, 1980.
G. W. Kattawar, "Monte Carlo Mothods in Radlative Iransfer," Unpublished.
I. Poole, Unpublished, NASA Langley Research Center:
R. Smith and J. Tylor, "Transmission of Solar Radintion Lnto Natural Waters," in photochemtoal and Photohlologitat Roviows, Valumo 1 , (K. Smith, Ed.) Plenum Proses

