NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

LIDS.FR.960

Research Supported By:
NASi Grant No. NSG 1312
N80-25038
(LIDS-FR-960) ROBUSTNESS PROPERTIES OF
discrete time regulatiors, log regulaniors and HYBRID SYSTEMS Final Report (Massachusetts Inst. of Tech.) 69 p HC A04/MF AOt CSCL 12A Unclas G3/63 21478

ROBUSTNESS PROPERTIES OF DISCRETE TIME REGULATORS, LQG REGUl_ATORS AND HYBRID SYSTEMS

Prepared by
Gunter Stein Michael Athans

Laborutory for Information and Decisior Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETYS 02139

Laboratory for Information and Decision Systems Massachusetts Institute of Technology Cambridge, Massachusetts 021.39

ROBUSTNESS PROPERTTLS OF DISCRETE-TIME REGULATORS, LQG REGGULATORS AND HYBRID SYSTEMS

Final Report
NASA Grant No. NSG 1312

Prepared by
Gunter Stein and Michael Athans

Submitted to:

Dr. E. Armstrong
NASA Langley Research Center
Mail Stop 152A
Theoretical Mechanics Branch
Hampton, Virginia 23665

ABSTRACI

This report summarizes research accomplishments achieved under NASA Grant NSG-1312. Robustness properties of samplo-data LQ regulators aro derived which show that these regulators have fundamentally inferior uneertainty tolerances when compared to their continuous-time counterparts. Now results are also presented in stability theory, multivariable frequency domain analysis, JQG robustness, and mathomatical representations of hybrid systoms.

IABLE OF CONTENIS

SECIION PAGE

1. INTRODUCITON 1
2. GENERAIIZED STABIIITY THFORY 3
3. ROBUSTNESS GUARANTEES FOR SAMPLE DATA THGUIATORS 1.1
4. FREQUENCY DOMAIN INTERPRETATIONS 19
5. SYSTEM SPECIFIC ROBUSTNESS PROPERTIES 23
6. COMPENSATED SAMPLE-DATA FILTERS 25
7. LQG ROBUSTNESS PROPERTIES 27
8. HYBRID SXSTEM DESCRIPTIONS 31.
9. CONCLUSIONS 45
REFERENCES 47
APPENDIX A
APPENDIX B
APPENDIX C

LTSI OF Figureg

Figure No. Title Rage

1. Safonov Stability Theory 4
2 Scetor of stable state Fecaback systems 14
3 Optimal. Nyquist Diagram 19
4 Typical Digitally-Tmplemented Control System 34
5 Triangle strip 37
6 Optimal Approximating operator 38

1. INTRODUCTION

Over the past several years, MIT's Laboratory for Information and Decision Systems (LIDS) has been conducting research for NASA on the properties of multivariable digital control systems. These types of systems are becoming increasingly imporiant as small, powerful, flight-qualified digital computers take over the burden of control law implementation in various NASA vehicles and other control system applications. Examples include the shuttle orbiter, the HIMAT and F-8C DFBW aircraft, satellites such as ATS-6, various proposed large space systems, and many more.

The overall goal of the research program has been to evolve improved desjign methods for multivariable digital control laws. Research effort was concentrated initially on the primary available synthesis tool -- namely the sample-data (discrete-time) Linear-Quadratic (LQ) regulator problem [Athans, 1]. Various properties of this problem formulation were studied, and key features of its solution were investigated. In the latter category, the basic robustness properties of sample-data $L Q$ solutions were studied under the specific NASA research grant NSG-1312. Research findings attributable to this grant are summarized in this report.

We will use the term "robustness" qualitatively to describe the ability of control system designs to maintain stability and performance in the face of plant uncertainties. The larger the level of uncertainties which can be tolerated, the more robust a design is considered to be. In real-life applications, robustness properties are anong the most important features of control designs. This is true whether the designs are achieved with classical or modern synthesis methods, and whether they are implemented in analog or
digital fashion. In cach case, the actual plant being controlled will invariably differ from the design model, thus necessitating a healthy measure of uncartainty tolerance. Further discussion of engineering motivations for robugtness can be found in a tutorial paper by stein, propared in part under the NSG-1312 grant [2].

The report sumunarizes our robustness research in the form of seven short topical sections. Eacin section dessribes a major research area, briefly summarizes the principal findings and their significance, and cites published papers and/or appendices for further details, The major areas are the following:

Section 2 - Generalized Stability Theory
Section 3 - Robustnoss Guarantees for Sample Data Regulators
Section 4 - Frequency Domain Interpretations
Section 5-System Specific Robustness properties

Section 6 - Compensated Sample-Data Filters
Section 7 - LQG Robustness properties
Section 8 - Hybrid System Descriptions

Three appendices are included to provide supporting details and derivations for topics where published manuscripts are not yet available.

2. GENERALIZED STABTLITY THEORY

Since stability is the foremost essential foature of feedback systems, its robustness properties with respect to plant uncertainties received primary research investigation. The major theoretical tools used for these investigations include the classical Nyquist ard Lyapunov stability theories as well as a more abstract and general interpretation of stability due to Safonov. The latter was developed in part under the present grant.

Stability as topological Separation

In Safonov's interpretation, the stability property of a feedback system is viewed in an abstract yet elegantly simple way. The system is stable if its feedback and feedforward elements are appropriately separated in the function spaces on which they are defined. This notion is illustrated conceptually in Figure 1. Part A of this figure shows a standard feedback system with feedforward element $\underset{\sim}{\underset{\sim}{G}}$ and feedback element $\underset{\sim}{\underset{\sim}{A}}$. These elements are viewed quite abstractly as "relations" between their respective input functions and output function. This simply means that if we let X and Y denote the function spaces to which the points (functions) x and y belong, then $\underset{\sim}{\bar{G}}$ and $\underset{\sim}{\underset{\sim}{H}}$ are subsets of the Cartesian product $X \times Y$. Part B 'of Figure 1 shows this interpretation schematically. X is represented as the real line (one axis), Y is another real line (the second axis), and $X \times Y$ is the plane. $\underset{\sim}{\bar{G}}$ and $\underset{\sim}{\underset{\sim}{F}}$ are then two subsets of the plane.

It follows fron this abstract view of $\underset{\sim}{\underset{\sim}{G}}$ and $\underset{\sim}{\mathrm{H}}$, that all solutions of their feedback interconnection in Part A must be common points of the two subsets in Part B. Moreover, if it is known that these two subsets are separated such that (in the absence of disturbances and initial conditions)

Dart A, Fecdback Systom

Part B. Stable Scparation

Figure 1. Safonov Stability Theory
they only have zero functions in common, as represented by the point $(0,0)$ e $X \times Y$, then the feedback system must be stable.

This simple statement of geparation is the essonce of safonov's stability theory. Formally, of course, the theory requires much more elaboration and mathematical machinery. The function spaces X and Y must be extended inner product spaces, relations $\underset{\sim}{\underset{\sim}{G}}$ and $\underset{\sim}{\underset{\sim}{\sim}}$ must account for disturbances and initial conditions through functional dependences of their own, and the notion of separation must be properly quantified. These formal developments are carried out in Safonov's Ph, D. thesis [3, part 2] and in reference [4], Only the major ideas needed to quantify separation are further discussed below. Separating Functionals, Sectors, and the Multivaxiable Circle criterion

The key idea which makes the above stability interpretation useful as ā stability analysis tool is the concept of "separating functionals." These allow us to test whether the feedback system's elements indeed have only the origin in common. Very simply, a separating functional is any scalar valued function-of-functions $d(\underline{x}, \underline{y})$ defined on the Cartesian product space $X \times Y$, whose sign separates this space into two regions. One region consists of all the points (pajirs of functions) for which

$$
\begin{equation*}
a(\underline{x}, \underline{y})<0, \tag{1}
\end{equation*}
$$

and the other region consists of points

$$
\begin{equation*}
d(\underline{x}, \underline{y})>0, \tag{2}
\end{equation*}
$$

with $d(\underline{x}, \underline{y})=0$ obviously forming the boundary. In terms of such separating functionals, a feedback system is stable if its two elements $\underset{\sim}{\underset{\sim}{G}}$ and $\underset{\sim}{\underset{\sim}{\underset{~}{\sim}}}$ satisfy
(i) $\quad a(x, y) \geq n(x, y) \geq 4$
for all (x, y) corresponaing to g, E,
(ii) $a(x, y)<0$
for ald (x, y) corrempunding to $\frac{\text { I. }}{\sim}$

Here $\eta(x, y)$ is a positive defindte radialiy unbounded sealar functionail which is imposed to atsura a techmical requirumant that the subsets in Flgure 1 grow "sufficiently far nart" as x undor \mathcal{Z} get laxge.

Safonov has shown in [3] and [4] that the notion of stability as topologi.cal separation and establithed via separating functiunals is quite general indeed. For example, the chastical brability thoory of lyapunov can be darived
 stability rosult of Zamoff [r], and hence its corollaxies -- the popov, circle, passivity, and small-gadn stability criteria -m can also be derived from this perspective. In fact, safonov has invented spocific kinds of separating functionals which generalize 'bame's eoneept of conic sectors and lead to a general multivarifible varsion of the circle criterion.

Safonov's generalized conic sectors, simply called "sectors," are defined to be regions of the space $X \times Y$ which are based on the following specific separating functionals:

Here ${\underset{F}{11}}$ and ${\underset{\sim}{21}}$ are operators marping Y into a third function spase Z, F_{12} and ${\underset{\sim}{22}}$ are operators mapping X into Z, and $\left.\leqslant \cdot, \cdot\right\rangle$ denotes an innor product defined on Z. Then the "suetor of \mathbb{E} " is the set of points $(\underline{x}, \underline{Y})$ for which

$$
\begin{equation*}
\mathrm{E}(x, \underline{x}) \leq 0 . \tag{6}
\end{equation*}
$$

It follows from our previous interpretation of atability that the facdback system of Flgure 1 will be stable if the subset of points corresponding to $\underset{\sim}{\underset{H}{\mid}}$ is inside the bector of some functional $\underset{\sim}{E}$ while the subset of points corresponding to $\underset{\sim}{G}$ is strictly outside that pector. Hoxe the words "strictily outside" are used to imply the same kind in inereasing scparation with increasing x and/or y as was used in Condition (i) above.

In terms of this definition, the SISO conic sectors of zames are simply the sectors of special functionals E in the form

$$
\left.\begin{array}{l}
{\underset{\sim}{11}}={\underset{\sim}{\sim}}_{21}=1 \tag{7}\\
{\underset{\sim}{2}}_{12}=-(c+x) \\
{\underset{\sim}{22}}=-(c-x)
\end{array}\right\},
$$

where c and r are scalars called the "center" and "radius" of the conic sector, respectively. These types of regions ware used by Zames [5] to establish stability conditions which include the circle criterion [6] as a special case. The more general sectors were used by Safonov in [4] and [7] to prove a more general multivariable version of the circle criterion.

Without going into the derivations or formality in detail, the multivariable circle eriterion was developed for a linear dynamic operator as the feedforward element, $\underset{\sim}{\mathcal{G}}$ and a nonlinear dynamic operator as the feedback element, $\underset{\sim}{\text { H. }}$ Suppose $\underset{\sim}{d}$ lies inside the generalized conic sector defined by
i.e. $\mathbb{E}_{11}=E_{21}=1, \mathcal{E}_{12}=-\mathcal{C}-\mathbb{R}$ and $\mathbb{E}_{22}=-\mathbb{L}+\mathbb{R}$ where the multivariable center and radius, $\mathcal{\sim}$ and P , are themselves 1 inear dynamic operators, and where $\langle\cdot, \cdot\rangle$ denotes the standard inn-" product on extended L_{2} function space (i.e., $\left.\langle\underline{a}, \underline{b}\rangle_{T} \Delta \int_{0}^{T} a^{T}(t) b(t) d t, V T\right)$. Then, according to the topological separation concept, the feedback system will be stable if all points corresponding to $\underset{\sim}{G}$ fall outside the sector of E, or equivalently, if for all points $\underline{x}=$ Gy we have

$$
\begin{align*}
& =\|(1-C G) y\|^{2}-\|R G y\|^{2} \tag{9}
\end{align*}
$$

Using Parseval's theorem, the last expression can be transformed into the frequency đomain to get the following sufficient stability criterion:

$$
\begin{equation*}
0 \leq[I-C G(-j \omega)]^{T}[I-C G(j \omega)]-R G(-j \omega)^{T} R G(j \omega) \text { for all } \omega \tag{10}
\end{equation*}
$$

As a technical detail, it should be noted that the application of Parseval's theorem in the last step requires that the systems defined by transfer functions $G(I-C G)^{-1}$ and R must be themselves stable. This can be established by a separate Nyquist encirclement count or by explicit calculation of roots. For the sector radius, \mathbb{R} stability is usually imposed by assumption. Further details and other equivalent forms of (10) can be found in Safonov's thesis [3] and in the snfonov/nthans papor \{7]. It is particulariy interesting to note that (10) can be expressed in terms of singular values to get the stability robustness conditions of Doyle [13].

Some Comments on Significance

Aside from the obvious significance of the above results as a "global" theory encompassing various previous stability results as special cases, the
topological geparation and sector concopts of Safonov have two specific features which make them invaluable for the rescarch objectives of the current study. Firgt, the abstract treatmont of the two olements $\underset{\sim}{\underset{\sim}{G}}$ and $\underset{\sim}{\mathbb{H}}$ makes no assumption about the underlying nature of these relations, e.g., whether they represont continuous or discrete devices. Hence, the stability results apply equally well to analog and digital control system analysis. Second, by theix very naturo, the results face up to the robustness equations. Stability is not assessed for specific system elements $\underset{\sim}{G}$ and $\underset{\sim}{H}$ but for a whole class of elements covered by the possible points within a sector. A feedback system
 remain stable for all perturbed elements $\underset{\sim}{\bar{H}}$ withir that sector. Hence, the "size" of the sector, as measured, for example, by the magnitude of its radius, $\underset{\sim}{R}$, becomes an immediate indicator of the degree of robustness of the system. The utility of both of these features becomes evident below.

3. ROBUSINESS GIJARANTEES FOR SAMPLE DATA REGULATORS

For the research objectives of the NSG-1312 grant, we are specifically interested in discrete time or sample data representations of linear dynamic systems in the following form:

$$
\begin{align*}
& x_{k+1}=A x_{k}+B u_{k} \tag{11}\\
& u_{k}=-G x_{k} \tag{12}
\end{align*}
$$

Here x_{k} denotes the usual n-dimensional state vector corresponding to continuous system states sampled at discrete instants of time, u_{k} is an m-vector of controls which is constant ovex each sample interval, and A, B, G are matrices of appropriate dimension. We assume that the feedback gain G is obtained by solving a sample-data linear-quadratic regulator problem, and that it therefore satisfies the well known discrete time Riccati equations [l]:

$$
\begin{align*}
& G=\left(R+B^{T} K B\right)^{-1} B^{T} K A \tag{13}\\
& K=(A-B G)^{T} K(A-B G)+Q+G^{T} R G \tag{14}
\end{align*}
$$

Under mild assumptions on A, B, Q and R, the resulting closed loop system is, of course, stable and can be made to exhibit desirable dynamic properties through appropriate manipulations of Q and R. The research question at hand is to quan.. tify the extent to which these properties -- stability in particular -- will be maintained as the true system description in (11) - (12) deviates from the design model used to compute G in (13) - (14).

The stability theory summarized in Section 2 proves ideally suited to this research task. We note first that equations (11) - (12) provide very specific
forms for the goneral input-output rolations $\overline{\mathrm{G}}$, $\overline{\mathrm{H}}$ considexed earlier. The feedforward relation, G, for instance, can be taken to be the (nominally). algebraic mep

$$
\begin{align*}
x & =G Y \tag{1.5}\\
& =(A-B G) X
\end{align*}
$$

and $\underset{\sim}{H}$ onn be taken as a multivarinble delay oporator

$$
\begin{align*}
X & =\underline{\operatorname{Ix}} \\
& =\left\{y_{k+1}=x_{k} ; \quad k=0,1, \ldots, \text { wi.th } y_{0}=0\right\} \tag{16}
\end{align*}
$$

Both are operators on the (extended) function space of n-dimensional sequences with inner product

$$
\begin{equation*}
\langle\underline{x}, \underline{y}\rangle_{\tau} \triangleq \sum_{k=1}^{\tau} x_{k}^{T} Y_{k} \quad \forall \tau \tag{17}
\end{equation*}
$$

Using (17) in Safonov's definition of sectors, it is then a simple matter to show that the points (pairs of sequences) corresponding to $\underset{\sim}{H}$ fall into sectors defined by

$$
\begin{equation*}
\underset{\sim}{\underline{w}}(\underline{x}, y)=\left\langle p^{1 / 2} y-p^{1 / 2} x, p^{1 / 2} y+p^{1 / 2} \underline{x}\right\rangle \tag{18}
\end{equation*}
$$

fox any positive definite symmetric matrix $\mathrm{p}^{1 / 2}$. This is true because (18) evaluated at points satisfying (16) becomes

$$
\begin{align*}
\underset{\sim}{F}(x, H x) & =\sum_{i=1}^{T} x_{i-1}^{T} p x_{i-1}-\sum_{i=1}^{q} x_{i}^{T} P x_{i} \\
& =-x_{T}^{T} P x_{T} \leq 0 \quad \forall \tau \tag{19}
\end{align*}
$$

It then follows immedately that the feodback system (11) - (12) will be stable 12
whenever the sequences (x, y) corresponding to (15) fall strictly outside the sector defined by (18). The entire complement of sector ($\underset{r}{ }$) thus forms the pemissible range of plant variations which do not compromise stabidity.

Rolustness of State Feedback

The above obscrvations laad to the following fundamentad result on the inherent robustness of sample-data state feedrack:

Let G be an arbitrary state feedback gain matrix which stabilizes the nominal design model (i.e., A - BG is stable). Define P to be the solution of the following steady state Lyapunov equation

$$
\begin{equation*}
P=(A-B G)^{T} p(A-B G)+S, \quad S=S^{T} \geq 0 \tag{20}
\end{equation*}
$$

Then the feedback system (11) - (12) remains stable for all perturbed systems A - $B G$, where A and B are pextuxbed matrices or even nonlinear dynamic operators, provided that the points ($\underline{v}, \underline{w}$) corresponding to
$\underline{w}=p^{1 / 2}(\underset{\sim}{A}-\underset{\sim}{B G}) \underline{V}$
fall strictly inside the conic sector
$\underset{\sim}{F}(\underline{v}, \underline{w})=\left\langle\underline{w}-p^{1 / 2} \underline{v}, \underline{w}+p^{1 / 2} \underline{v}\right\rangle$
More simply, the system remains stable whenever the perturbed system matrix $\left.P^{1 / 2}{ }^{(A}-\underset{\sim}{A}\right)$ lies within the bounds $\pm P^{1 / 2}$. This is illustrated schematicallÿ in Figure 2.

To prove this result, it is only necessary to show that the sector conditions
(21) - (22) imply that all points (\underline{x}, y) corresponding to $\underset{\sim}{A}-\underset{\sim}{B}$ are strictiy outside some sector of the form (18). To do this, we note that in the feedback interconnection of $\bar{\sim}$ and $\underset{\sim}{\underset{H}{*}}$, the input of $\underset{\sim}{\bar{G}}$ corresponds to $\underset{Y}{ } \equiv \underline{v}$ and the output of $\bar{\sim}$ corresponds to $x \equiv \mathrm{P}^{-1 / 2} \underline{W}$. Then

$$
\begin{aligned}
& \left.\leq \underline{w}-p^{1 / 2} \underline{v}, \underline{w}+p^{1 / 2} \underline{v}\right\rangle \leq 0 \\
& \Rightarrow \quad p^{1 / 2} \underline{x}-p^{1 / 2} y, p^{1 / 2} x+p^{1 / 2} y>\leq 0 \\
& \Rightarrow\left\langle p^{1 / 2} y-p^{1 / 2} x, p^{1 / 2} \underline{y}+p^{1 / 2} x\right\rangle \geq 0
\end{aligned}
$$

Q.E.D.

Figure 2. Sector of Stable State Feedback Systems

This is strictly a formal development, of course. A rigorous proof again requires the mathematics of extended function spaces, operators which are functionally dependent on disturbances, etc. Such proofs are developed in detail in Safonov's thesis [3, part IV].

Robustiness of Optimal Regulators

The above robustness result for sample-data state feedback applies directly to optimal regulators as well because these are known to satisfy the Riccati equation (14). Note that with G fixed, this equation is a Lyapunov equation like (20) with a specific choice of S. Hence, we can conclude directly that the $L Q$-regulator (11) - (12) remains stable for all perturbed operators $\underset{\sim}{A}-\underset{\sim}{B G}$ such that

$$
\begin{align*}
& F(\underline{w}, \underline{v})=\left\langle\underline{w}-K^{1 / 2} \underline{v}, \underline{w}+K^{1 / 2} \underline{v}\right\rangle \leq 0 \\
& \text { for all points }(\underline{w}, \underline{v}) \text { such that } \underline{w}=K^{1 / 2}(\underset{\sim}{A}-\underset{\sim}{B G}) \underline{v} \tag{23}
\end{align*}
$$

Here again, the perturbed system $\underset{\sim}{A}-\underset{\sim}{B}$ can consist of perturbed matrices A and B, for the matrices may themselves be nonlinear dynamic operators. This is evidently a very general robustness condition with various special applications

Gain and Phase Margins

Two particulaxly meaningful applications concern the regulator's robustness with respect to specific perturbations such as gain changes, phase changer, or nonlinearities in the control channels. These manifest themselves as perturbed operators of the form

$$
\begin{equation*}
\underset{\sim}{A}-\underset{\sim}{B G}=A-B \underset{\sim}{B N G} \tag{24}
\end{equation*}
$$

where $\underset{\sim}{N}$ is a $m \times m$ nonlinear dynamic system nominally equal to identity. If we
assume that $\underset{\sim}{N}$ and the weighting matrix, R in (1.3) are both diagonal, then it is shown in [3] that the robustness condition (23) is satisfied whenever all diagonal elements of $\underset{\sim}{N}$ satisfy

$$
\begin{align*}
& f\left(\underline{w}_{i}, \underline{v}_{i}\right)=\left\langle\underline{w}_{i}-\left(c_{i}+r_{i}\right) \underline{v}_{i} \prime \underline{w}_{i}-\left(c_{i}+r_{i}\right) \underline{v}_{i}\right\rangle \leq 0 \\
& \text { for } c_{i}=\frac{1}{1-a_{i}^{2}} \\
& r_{i}=\frac{a_{i}}{1-a_{i}^{2}} \\
& a_{i}=\sqrt{R_{i i} /\left[R_{i, i}+\lambda_{\max }\left(B^{T} K B\right)\right]} \\
& \text { and all }\left(\underline{w}_{i}, \underline{v}_{i}\right) \text { such that } \underline{w}_{i}={\underset{\sim}{N}}_{i i} \underline{v}_{i} \tag{25}
\end{align*}
$$

This condition requires that the points of each $\underset{\sim}{N}$ ii must lie in a conic sector with center c_{i} and radius r_{i}, both defined by the weighting matrix elements $R_{i i}$ and by the Riccati matrix K. If ${\underset{\sim}{N}}{ }_{i i}$ is a pure algebraic gain or algebraic nonlinearity, for example, this requires that

$$
\begin{align*}
& c_{i}-r_{i} \leq \frac{N_{i i}\left(v_{k}\right)}{v_{k}} \leq c_{j}+r_{i} \\
& \frac{1}{1+a_{i}} \leq \frac{N_{i, i}\left(v_{k}\right)}{v_{k}} \leq \frac{1}{1-a_{i}} \tag{26}
\end{align*}
$$

for all $k=1,2, \ldots$ Likewise, if $\underset{\sim}{N}{ }_{i i}$ is a stable linear dynamic system, say ${\underset{\sim}{i}}^{L_{i}}$, then we must have

$$
\begin{align*}
& <\left(L_{i}-c_{i}\right) \underline{v}_{i}-r_{i} \underline{V}_{i} \prime\left(L_{\sim}-c_{i}\right) \underline{v}_{i}+r_{i} v_{i}>\leq 0 \\
& \Rightarrow\left\|\left(I_{i}-c_{i}\right) v_{i}\right\|^{2} \leq\left\|r_{i \underline{v}_{i}}\right\|^{2} \\
& \Rightarrow \quad \|\left(L_{i}\left(e^{j \omega \Delta}\right)-c_{i} \|^{2} \leq r_{i}^{2} \quad \forall \omega\right. \tag{27}
\end{align*}
$$

where $L_{i}(z)$ is the z-transform of the operator ${\underset{\sim}{i}}$. This constraint confines $L_{i}(z)$, when evaluated at $z=e^{j \omega \Delta}$, to lie within a circle with center c_{i} and radus r_{i}, Given that $L_{i}(z)$ is nominally unity, it can therefore be perturbed in pure gain from $c_{i}-r_{i}=1 /\left(1+a_{i}\right)$ to $c_{i}+r_{i}=1 /\left(i r_{i}\right)$ and is pure phase by

$$
\begin{equation*}
|\phi| \leq 2 \sin ^{-1}\left(a_{i} / 2\right) \tag{28}
\end{equation*}
$$

These then are the guaranteed gain and phase margins of the sample-data regulator. Note that they apply individually or in any combination to the m control channels.

Significance

The significance of the above margins can be be appreciated by noting that the scalars a_{i} in (25) - (27) are approximately unity. Their deviation from 1.0 is controlled by the quantity $\lambda_{\max }\left(B^{T} K B\right)$ in (26) which is known to tend to zero as sample intervals Δ tend to zero $(B \rightarrow 0$ while $K \rightarrow$ const). Hence the a_{i} 's approach unity from below and

```
Gain Margins }->1/2\mathrm{ to +o
Phase Margins & }\pm60\mathrm{ deg.
```

These limite ara precisely the gtability marging enjoyed by the continuous time linear-quadratic regulator [8]. The sample-data regulator, however, achieves these maxgins only asymptotically as sample rates get large. For all finite ratos, it has Eundamentally poorer margins.

A second impostant distinction between samplo-data and continuous-time mar:ging is that the latter are independent of plant and cost matrices. They are a consequence of optimality alone. In the samplo data case, the parameters a ${ }_{1}$ depend on plant data (through R and $B^{T} K B$) and hence the margins are no longer global plant-independent guarantees.

Similar results as these ajply to samplemata kalman filters and to nonlinear systems linearized about various operating points (x, y) as well. These additional results of the NSG-1312 grant are fuju geveloped in Reference [3].

4. EREQUENCY DOMAIN INTERPRETATIONS

Both the continuous time marging in [8] and the sample data margins abova were developed with relatively sophisticated mathemationl machinexy. This tonde to make the results lass accossible to practicing engineors than desirable. To overcome this problem, wo have attempted under NSG-1312 to develop simple frequency domain explanations. These have proven quite useful in commanicating the results and are briefly summarized below.

The Continuous-Time Case

The robustness properties of LQ-regulators can be viewed as multivariable generalizations of single-input frequency domain results datinç back to Kalman. For the single-input case, Kalman proved that the return difference $T(s) \triangleq 1+g^{T}(s I-A)^{-1} b$ of an optimal controller satisfies [9]

$$
\begin{equation*}
|T(j \omega)|^{2} \geq 1 \tag{29}
\end{equation*}
$$

at all frequencies, ω. Hence, the loop transfer function $G_{0}(s) \triangleq g^{T}(s I-A)^{-I_{b}}$ lies outside of a unit circle centered at $(-1, j 0)$ in the complex plane. This is illustrated in Figure 3 below;

Fiqure 3, Optimal Nyquist Diagram

The $(-6$ to $+d b\rangle-g a i n$ and tho acgree phaso tolorances then follow from the Nyquist Stability Theorem applied to this goometry. Recall that the nominal system is stable. Hence, its encirclement count of the ($-1,0$) point is correct and will remain correct for all pexturbations $G=G_{0}+\varepsilon \delta G$ which do not cause the new Nyquigt diagram to pass through ($-1,0$) for some $0 \leq \varepsilon<\infty$. If wo considor perturbations which are pure gain changes only, for example, then $G=E G_{0}$ and it is clear that tho systom remaing starla for all E, exeept when G_{0} falis on the real axis for some ω, i.c., $G_{0}=-\alpha+j 0$. In that oase, the tolerable ε range is $\frac{1}{\alpha} \leq \varepsilon \therefore \omega$. Since α is guaranteed to be greator than or equal to 2.0 (point A), the gain margin result follows. Similarly, if we consider pure phase changes such that $G=e^{j \varepsilon_{G}}{ }_{O}$ it follows that the system remains stable for all ε unioss $\left|G_{0}\right|=1$. In that case, the points B and B^{\prime} are the worst locations for G_{0} and the ± 60 deg. phase margin property follows. In terms of the multivariable generalization, it can be shown that the matrix version of the optimal return difference also satisfies an inequality, namely

$$
\begin{equation*}
\left[I+G^{\prime}(-j \omega)\right]^{T}\left[I+G^{\prime}(j \omega)\right] \geq I \tag{30}
\end{equation*}
$$

This inequality implies that the loop transfer matrix $G^{\prime}(s) \triangleq R^{1 / 2} G(s) R^{-1 / 2}$ lies outside of a unit ball centered at $(-I, j 0)$ in the m-dimensional space of complex numbers. The (-6 to $+\infty \mathrm{db}$)-gain or ± 60 degree phase tolerances for each control channel then follow from the geometry of this ball. We again invoke Nyquist's Stability Theorem which now requires that the function $\operatorname{dot}\left[3+G^{\prime}(j \omega)\right]$ encircle the origin a requisite number of times. This number is correct for the nominal system and will remain correct as long as $I+G '(j \omega)$ remains nonsingular. This is assured as long as

$$
\begin{equation*}
\left(I+G^{\prime}\right) v \neq 0 \tag{31}
\end{equation*}
$$

for all unit vectors v. However, from (30), we have that

$$
\begin{equation*}
\left|\left(I+G^{\prime}\right) v\right| \geq|v| \tag{32}
\end{equation*}
$$

This means that G'v lies outside of a oall centored at $-v$ with radius $|v|$, projected onto any plane, the geemetry of this ball looks just like pigure 3 and hence the allowable perturbations in G' follow from the game geometric arguments.

The Discrete Time Case

The analogous property to (29) fox optimal sample data systems is

$$
\begin{equation*}
|1+G(z)|^{2} \geq \frac{r}{r+b^{T} K b} ; \quad s=e^{j \omega \Delta} \tag{33}
\end{equation*}
$$

where r is the (scalar) control weight, K is the Riccati matrix and Δ is sample time.

This condition implies that $G(z)$, like $G(s)$, lies outside of a circle centered at $(-1, j 0)$, but with radius $\mu \triangleq\left[r /\left(r+b^{T} K b\right)\right]^{1 / 2}$ less than undty. Hence, from the Nyquist stability Theorem and the geometry of this smaller circle, it is clear that gain increases by factors greater than $1 /(1-\mu)$, gain decreases by factors greater than $1 /(1+\mu)$, or phase changes less than ± 60 degrees could produce instability. Moreover, the radius parameter μ, and hence the margins, are plant-specific because they depend on K and b.

This same argument carries over to multivariable problems where the return difference can be shown to satisfy

$$
\begin{aligned}
& {\left[I+G^{\prime}\left(\frac{1}{z}\right)\right]^{T}\left[I+G^{\prime}(z)\right] \geq \underline{R}^{-1 / 2} R \underline{R}^{-1 / 2}, \quad z=e^{j \omega \tau}} \\
& \text { with } \underline{R}=R+B^{T} K B \\
& \text { and } G^{\prime}(z)=\underline{R}^{1 / 2} G\{z) \underline{R}^{-1 / 2} \text {. }
\end{aligned}
$$

Here the loop transfer function G ' (z) is moen to lie outgide of an "elilpsoidal ball" with minimum radius

$$
\mu=\left(\lambda_{\min }\left(\underline{\underline{R}}^{-1 / 2} R \underline{\underline{g}}^{-1 / 2}\right)\right)^{1 / 2}
$$

less than unity. As above, the margin properties follow from the geometry of this ball.

As in Section 3, the radius of the ball above is seen to approach unity as $B^{T} K B$ approaches zero. Hence, the continuous time margins and plant independent robustness guarantees are recovered asymptoticall.y as sample rates tend to infinity.

5. SYSTEM SPECIFIC ROBUSTNES3 PROPERTIES

A. we obsarved above, the robustncse proportios of continuous time Loregulators axa quite profound theoretically, Thoy hold with no montion of tho actual plant boing controllod or ite performance inda\%. The margine are a consequence of optimality alonel All that in neaded are the usual oxistonce and uniquaness assumptions for $\mathrm{L} Q$ controls. Moroover, we have shown by counter examples that the margins are the broadest which can be achioved without Iurther reforence to particular system characteristics [10].

These observations do not mean, of course, that it is useless to look for broader plant-specific tolexance bounds, In many design problems, for example, it may woll be important to increase the 50 gain reduction tolerance (-6 db) all the way to 100% (1.e. open loop) in order to achieve system reliability, Results which indicate that this is possible for specific problems have been derived by Wong, Athans and Stein [10] in part under the NSG-1312 grant. A particular result from [10] $1 . s$ that tolerable gain reductions can be bounded by

$$
\begin{equation*}
\Lambda>1 / 2\left[I-R^{1 / 2} G_{Q}^{T_{Q}-1} Q_{R}^{1 / 2}\right]^{-1} \quad \text { (Q invertible) } \tag{35}
\end{equation*}
$$

where $\Lambda=$ diag $\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ is a diagonal pure gain perturbation in the control channels.

In specific examples, these lower bounds have been shown to be equal to the system's linear critical gain, which means that they achieve the broadest tolerance region possible for the example. Note that the bounds also provide, for the first time, an explicit relationship between gain margins and quadratic weights.

Analogous plant-specific robustness properties for discrete-time systems
were developed wholly under NSG-1312 and are documented in detail in a draft manuscript included Appendix A.

6. COMPENSATED SAMPLE-DATA FLLTMERS

We remarked in Section 3 that the robustness results achieved via Safonov stability theory apply to Kalman filter designs as well as to regulators. Ihis connection is explored fully in [3]. Under NSG-131.2 we also explored ways to onnance the resulting inherent filter robustnoss by dynamically compensating the filters so as to remove estimation biases. The details of this work are reported in a paper by Lee and Athans [1.1].

The basic premise of this paper is that the residual process of a discretetime filter will exhibit low frequency biases whonever modeling errors and slowly varying inputs are present simultaneously. These biases can be modeled approximately as random walk processes. They can be observed by monitocing the residuals, and hence, they can be estimated by an auxiliary filter which uses the residuals as its "measurement" sequence. When the auxiliary and original filters are combined, they generate $a 2 n+m$ dimensional composite system which is effectively immune to unmodeled low frequency orror mechanisms. Derivations and examples of this compensation procedure are given in [1ג].

7. LQG ROBUSTNESS PROPERTIES

As discussed in Sections 3 and 4, our robustness results for sarmple-data LQ regulators show that the very act of sampling seems to impose a loss of uncertainty tolerance (less gain margin, less phase margin, etc.) when compared with continuous time LQ-regulators. This "loss of robustness" in discrete regulators is also exhibited by continuous time regulators with state estimam tion. Hence, the possibility that there may exist common underlying reasons or at least useful interrelations between these two phenomena motivated further studies of the LQG continuous time case.

Results of these further studies are described in detail in a draft manuscript included in Appendix B. Highlights of these results are briefly reviewed here. First, the most basic discovery is that LQG-regulators have no guaranteed uncertainty tolerances whatsoever. This was established directly by a small design example due to Doyle [12] which produces a technically legitimate LQGregulator with arbitrarily small tolerance for gain uncertainty (gain perturbation of $\pm \varepsilon$, with ε arbitrarily small, cause instability). The main significance of this example is that it shows LQG robustness to be a design-specific property. For the research effort, it meant that instead of looking for global guarantees, we should seek out generic design situations in which tolerances are likely to be good or poor. For the latter, we should devise adjustment procedures to improve robustness. The following results along these lines have been developed.

1. Margin recovery with "adapted Kalman filters"

If the Kalman filter in an LQG-implementation receives the correct control signal (e.g., as altered by gain uncertainties) the LQG controller has gain margins equivalent to the full.
state case. This result is stated and proven as Proposition 1 in Appendix B. It is also proven in a more abstract setting in [3].

2. Asymptotic Margin Recovery I

Full-state gain margins can be recovered asymptotically as the following ratio tends to infinity:

$$
\frac{\min _{x^{T} x=1}-x^{T}\left(A+H_{0} C^{T}\right) x}{\max _{x^{T} x=1}-x^{T}\left(A+B G_{0}^{T}\right) x}
$$

Here, A, B, C are the system dynamics, input and output matrices, and $\mathrm{G}_{0}^{\mathrm{T}}$ and H_{0} are the controller and filter gain matrices respectively.
3. Asymptoti.c Margin Recover II

Full-state gain margins can be recovered asymptotically if the process noise covariance, Φ, in the Kalman filter design tends to infinity in the following special manner:

$$
\begin{equation*}
\Phi \rightarrow \phi_{2} \mathrm{BB}^{\mathrm{T}}, \quad \phi_{2} \rightarrow \infty \tag{37}
\end{equation*}
$$

Here ϕ_{2} denotes a scalar.
The two asymptotic recovery results are stated and proven as propositions 2 and 4 in the appendix. They serve the important function of providing ways to adjust LQG design parameters in design situations where nominal model-motivated parameters produce excessively sensitive controllers.
4. General Gain Margin Bounds

IQG systems are stable for the following range of control gain variations:

$$
\begin{align*}
& \mathrm{G}^{\mathrm{T}}=\mathrm{G}_{0}^{\mathrm{T}} \tag{38}\\
& \text { with } \lambda_{-} \mathrm{I}<\Lambda<\lambda_{+} \mathrm{I} \\
& \lambda_{+} \triangleq 1+1 / \sqrt{\omega_{0}} \\
& \quad \lambda_{-} \triangleq \max \left[1-1 / \mathrm{x}_{0^{\prime}} \quad 1 / \lambda_{+}\right] \tag{39}
\end{align*}
$$

Here Λ is a diagonal matrix, $\omega_{0}>0$ is a scalar which can be
made small by proper solection of design parameters, $x_{0}>0$ is a scalar which can be brought close to unity. Hence, this result also provides a systematic way to improve gain margins of an LQG-design. It is stated and preren as proposition 3.

More detailed statements, proofs, and discussions of these results are provided in Appendix B. In addition, further rescarch directions are also outlined there which are worthy of continued research effort.

8. HYBRID SXSTEM DESCRIPTIONS

We have now seen that sample data LQ-regulators are fundamentally inferior to their cortinuous-time counterparts in the sense that their robustness properties are not as good. They share this inferiority to some extent with continuous LQG regulators, but the latter can recover their robustness losses at least asymptotically by appropriate filter redesign. The only way that sample-data regulators can recover these losses is apparently to increase the sample rate arbitrarily.

Motivated by these apparent limitations of the existing sample data $L Q$ synthesis methodology, the research effort under NSG-1312 was re-directed toward more fundamental issues of digitally-implemented control systems. The first task of the redirected effort was to find a mathematical representation which properly captures both the continuous-time (analog) and the discretetime (digital) processes which occur side by side in a digital control system. Such a representation was developed in what we call the "hybrid operator model" of the control process. This model provides an analog input-output view of the control process which explicitly includes sampling operations, digital calculations, hold operations, and continuous plant evolutions. The structure of this operator is summarized briefly below and in more detail in Appendix C. The latter is a draft manuscript of A. Kostovetsky's Master's thesis prepared under the research grant.

An immediate application of the hybrid operator is to explain the common use of prefilters in practical digital control systems. Simple norm calculations in Appendix C show that the hybrid operator will have unbounded gain (in an appropriate function space sense) as the sampling process tends toward the
ideal impulsive sampling normally assumed in sample-data theory. Physically, this means that it provides arbitrary amplification for certain inputs (e.g., nojse). Non-impulsive sampling, as obtained with pre-filters, bounds this amplification.

The second task of the redirected research made use of the hybrid operator model to answer the following very basic approximation question: How well can digitally-implemented control laws mimic analog ones? More specifically, if samplers, holds and digital algorithms are all selected to best approximate a given linear, time-invariant analog system, how good can the approximation be? The answer to this question is elegantly simple and profound. The digitallyimplemented system can exactly duplicate the impulse response matrix, $G(t-\theta)$, of the analog system at all points in the t, θ-plane except on a strip of width τ (sample time) along the main diagonal $(t=\theta)$. Inside this strip, the hybrid system's impulse response must be zero on various triangular segments. We have accordingly named this region of approximation the "triangle strip." Details of the optimal sampling, hold, and digital function for this approximation are again summarized below and derived in detail in Appendix C.

The significance of the above approximation result is that it provides a simple and clear picture of the basic limitations inherent in digitallyimplemented controls. Such controls are fundamentally inferior to their analog counterparts because they cannot utilize all the input data in the triangle strip. This limits bandwidth, restricts performance, and precludes robustness guarąntees such as those enjoyed by the continuous-time LQ regulator. The precise quantitative way in which these limitations manifest themsel.ves, however, is not yet understood and provides basic motivation for continued research efforts.

Hybrid Systams

We will consider digital control systems which can be represented by the block diagram of Figure 4. The three main functions associated with the controller block in this diagram are:

1. The sampling oporation which converts M-dimensional analog inputs $u(t)$ on the interval ($\ell-1) \tau \leq t \leq \ell \tau$ into N-dimensional discrete samples $\xi_{\ell}, \ell=1,2, \ldots$,
2. the digital algorithm which converts the N-dimensional sequences ξ_{ℓ} into L-dimensional sequences $\eta_{k}, k=0,1, \ldots$, and
3. the hold operation which converts the L-dimensional sequences η_{k} into k-aimensional analog functions $v(t)$ on the interval $k \tau \leq t \leq(k+1) \tau$.

The system's sample time will be designated by the symbol τ. These three functions willl be assumed to have the forms

$$
\begin{align*}
& \xi_{\ell}=\int_{(\ell-1)}^{\ell \tau} f_{\ell}(\theta) u(\theta) d \theta=\int_{(\ell-1)}^{\ell \tau} f_{0}(\theta-\ell \tau) u(\theta) d \theta \tag{40}\\
& \eta_{k}=\sum_{\ell=1}^{k} D_{k \ell} \xi_{l} \tag{41}\\
& v(t)=g_{k}(t) \eta_{k}=g_{0}(t-k \tau) \eta_{k} \tag{42}
\end{align*}
$$

The first of these equations is a simple analog convolution operation with weighting function (impulse response) $f_{0}(\lambda)$. This could be the weighting function of an analog prefilter, an approximate impulsive sample, or various other vector valued input averaging operations. Some examples are given in Appendix C. The second equation is a standard digital convolution with coefficients $D_{k \ell}$. The third is a generalized output hold operation with weighting function $g_{0}(\lambda)$. This could be a simple constant to represent the common

Figure 4. Typical Digitally-Implemented Control System
"zero-order-hold," but in general it will be selected to achieve broader goals. Some examples are again givon in the appendix. Note that the controller is completely characterized by the two matrix-valued functions $f_{0}(\lambda), g_{0}(\lambda)$ and by the coefficient matrices $D_{k l}$.

Hybrid Operatox Representation

Given the above descfiption of a digitally-implemented controller, it is straightforward (Appendix C, Section 2) to write its input-output operator representation, $\underset{\sim}{G}$, in the terms of an impulse response matrix, $G(t, \theta)$. That is,

$$
\begin{equation*}
\underline{v}=\underset{\sim}{\underline{u}} \tag{43}
\end{equation*}
$$

where \underline{v} and \underline{u} denotes functions on $(0, \infty)$ related by the convolution

$$
\begin{equation*}
v(t)=\int_{0}^{t} G(t, \theta) u(\theta) d \theta \tag{44}
\end{equation*}
$$

with

$$
\begin{equation*}
G(t, \theta)=g_{0}(t-k \tau) \sum_{\ell=1}^{k} D_{k l} f_{0}(\theta-l \tau) \tag{45}
\end{equation*}
$$

Here k is understood to be the largest integer less than or equal to t / τ. We will refer to this input-output description of the controller as "the hybrid operator model" or simply as the "hybrid controller." Note that it is a timevarying linear dynamic system characterized by $g_{0^{\prime}} f_{0^{\prime}}$ and $D_{k \ell^{\prime}}$

Optimal Hybrid Approximation

Consider now the problem of finding a hybrid operator model $\underset{\sim}{G}\left(g_{0}, f_{0}, D_{k \ell}\right)$ to approximate a continuous-time linear dynamic control law with impulse response matrix

$$
\begin{equation*}
\bar{G}(t, \theta)=C e^{A(t-\theta)_{B}} \tag{46}
\end{equation*}
$$

where A, B, and C are given system matrices.
Let the approximation criterion be to minimize

$$
\begin{equation*}
J=E\left\{\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}| | v(t)-\left.\bar{v}(t)\right|^{2} d t\right\} \tag{47}
\end{equation*}
$$

where $v(t)$ and $\bar{v}(t)$ are the outputs of the hybrid and pure analog controllers respectively, when exci.ted by the same white noise input. Then it is shown in Appendix C, Section 4, that the optimal approximating hybxid controller has the following sampling function:

$$
\begin{equation*}
f_{0}(a)=e^{-A \lambda_{B}} \tag{48}
\end{equation*}
$$

Its corresponding hold function is

$$
\begin{equation*}
g_{0}(\lambda)=C e^{A} \tag{49}
\end{equation*}
$$

and the digital algorithm is

$$
\begin{equation*}
D_{\ell \ell}=M_{k} d_{\ell}=e^{A T(k-\ell)} \tag{50}
\end{equation*}
$$

Moreover, these parameters cause (40) to duplicate (46) exactly everywhere except on the "triangle strip" of Figure 5. Note that the sampling and hold functions (48) - (49) of this optimal hybrid approximation are themselves n-th order dynamic systems, where n is the dimension of A. Hence, the overall hybrid controller can be visualized as shown in Figure 6.

As indicated earlier, the significance of the above result is not the optimal structure in Figure 6 itself (after all, the sampling and hold functions are quite complex, each literally duplicating the analog system), but rather

Figure 5. Triangle Strip

Figure 6. Optimal Approximating Operator
the fact that the inhorent lyymid system Iimitatione are mo mimply and clearly displayed by the triangle strip in Figure 5, It follows from this figure that tho minimum approximation error is given by the error operator

$$
\begin{equation*}
\underline{Q}=(\underset{\sim}{G-G}) \underline{u} \tag{51}
\end{equation*}
$$

where $\underset{\sim}{G-G}$ has the impulse response representation

$$
\begin{equation*}
\theta(t)=\int_{k T}^{t} \bar{G}(t-\theta) u(\theta) d \theta \tag{52}
\end{equation*}
$$

Qualitativaly therefore, the hybrid system suffers an inherent time varying "data lapse" with a maximum duration of T seconds (average $\tau / 2$), and with data weighting propoertional to the desired impulse response, \vec{G}. Hence, both the nominal function \bar{G} and the sample time τ contribute to the significance of the error. Small errors are assured if $\bar{G}(\lambda)$ is small over the whole intervai. $0 \leq \tau \leq T$ and $u(\theta)$ is relatively "smooth." These observations are given further interpretation later.

Extensions and Applications

Two additional research results are developed in Appendix C which demonm strate the utility of the hybrid operator model. One result deals with constrained optimization of critexion (47), subject to fixed sample and hold strucm tures, and the second deals with orror bounds for expression (51).

Constrained Optimization

Ihis result provides optimal approximating hybrid operators which best match a given analog system when the sampling and/or hold circuits are prem specified to tako certain (simple) fixed forms. The major results are as follows:

Let

$$
\begin{equation*}
\bar{G}(t, \theta)=\bar{H}(t) \bar{S}(\theta) \tag{53}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { with either } & \text { (i) } \bar{H}\left(t_{1}+t_{2}\right)=\bar{H}\left(t_{1}\right) \bar{M}\left(t_{2}\right) \quad \text { or } \\
& \text { (ii) } \bar{S}\left(t_{1}+t_{2}\right)=\bar{d}\left(t_{1}\right) \bar{S}\left(t_{2}\right) \tag{54}
\end{array}
$$

Fixed Sampler Result (using property (i)):

$$
\begin{align*}
& f_{0}(\lambda) \text { given, yields } \\
& g_{0}(\lambda)=\bar{H}(\lambda) \text { and } \\
& D_{k \ell}=\bar{M}(k \tau) d_{\ell} \text { with } \\
& d_{\ell}=\left[\int_{-\tau}^{0} \bar{s}(\lambda+\tau \ell) f_{0}^{T}(\lambda) d \lambda\right]\left[\int_{-\tau}^{0} f_{0}(\lambda) f_{0}^{T}(\lambda) d \lambda\right]^{-1} \tag{55}
\end{align*}
$$

Fixed Hold Result (using property ii):

$$
\begin{align*}
& g_{0}(\lambda) \text { given, yields } \\
& f_{0}(\lambda)=\bar{s}(\lambda) \text { and } \\
& D_{k \ell}=M_{k} \bar{\alpha}(\tau \ell) \text { with } \\
& M_{k}=\left[\int_{0}^{T} g_{0}^{T}(\lambda) g_{0}(\lambda) d \lambda\right]^{-1}\left[\int_{0}^{\tau} g_{0}^{T}(\lambda) \bar{H}(\lambda+k \tau) d \lambda\right] \tag{56}
\end{align*}
$$

Fixed Sampler and Fixed Hold Result:

$$
\begin{align*}
& f_{0}(\lambda), g_{0}(\lambda) \text { both given, yields } \\
& D_{k \ell}=M_{k} d_{\ell} \text { with } M_{k} \text { and } d_{\ell} \text { as defined in (16) and (17) } \tag{57}
\end{align*}
$$

These expressions define optimal digital algorithms and sample or hold functions
under various fixed structure assumptions. In general, their approximation errors will no longer be zero outside the triangle strip. The nature and significance of these added exrors remain to be evaluated.

An interesting application of formulas (55) is carried out in Appendix A for the desired nominal system

$$
\begin{equation*}
\bar{G}(t, \theta)=e^{A(t-\theta)}=\left(e^{A L}\right)\left(e^{-A \theta}\right) \tag{58}
\end{equation*}
$$

with a fixed, nearly impulsive sampling operation

$$
f_{0}(\lambda)= \begin{cases}\frac{1}{\varepsilon} I & -\varepsilon \leq \lambda \leq 0 \tag{59}\\ 0 & \text { elsewhere }\end{cases}
$$

The optima, hold is found to be

$$
\begin{equation*}
\dot{y}_{0}(\lambda)=e^{A t} \tag{60}
\end{equation*}
$$

and the corresponding digital algorithm is

$$
\begin{equation*}
D_{k \ell}=e^{A k(-l)} \int_{-\varepsilon}^{0} e^{-A \lambda} d \lambda \tag{61}
\end{equation*}
$$

The fact to note here is that $\mathrm{D}_{\mathrm{k} \mathrm{\ell}}$ tends to zero as ε becomes small. This is counterintuitive, at first, until we reall that impulsive sampling yields infinite function space norms. $D_{k \ell}$ must tend to zero in order to preserve a finite-gain hybrid approximation of \bar{G}. This again highlights the weaknesses associated with pure semple data system representation and with impulsive sampling assumptions.

Error Bounds

The second additional line of research in Appendix C deals with bounds for the inherent approximation errors of the optimal hybrid operator in figure 6.

Whis researoh is motivated by the practical desire to include hybrid operators within the class of systems which can be handled by the stability robustness theory of Safonov, Doyle, Sandell, and Stein $[3,13,14,15]$. One of the basic results of this theory is the following: A nominally stable feedback system with nominal return difference operator $I+G$ remains utable under additive perturbations $\underset{\sim}{G}+\Delta \underset{\sim}{G}$ if tho perturbations satisfy [14]

$$
\begin{equation*}
\left\|(X+\underset{\sim}{G})^{-1}| |\right\| \Delta \underset{\sim}{G} \|<1 \tag{62}
\end{equation*}
$$

This is a special version of equation (9) in Section 2. If $\underset{\sim}{G}$ and $\Delta \underset{\sim}{G}$ are time invariant linear systems with transfer functions $G(s)$ and $\Delta G(s)$, condition (62) is also often written in the form [1,6]

$$
\begin{equation*}
\underline{\sigma}[I+G(j \omega)]<\bar{\sigma}[\Delta G(j \omega)] \quad \text { for all } \omega \tag{63}
\end{equation*}
$$

where $\underline{\sigma}$ and $\bar{\sigma}$ denote maximum and minimum singular values of their respective matrices.

These stability-robustness results are relevant to our present study of hybrid systems because they provide a way to assess the consequences of hybrid approximation errors. Specifically, if we think, of $\underset{\sim}{G}$ as $\underset{\sim}{G}$ (the nominal analog system being approximated) and $\underset{\sim}{G}$ as the approximation error operator due to digial implementation, (equation (51)) then (62) and (63) provide a way to assess the impact of hybrid approximations on the stability property. In this sense, hybrid errors play exactly the same role as other uncertainties which are associated with the nominal analog system. In fact, if other uncertainties are "large" compared with $\Delta \underset{\sim}{G}$ of (51), then the internal digital nature of the hybrid controller becomes inconsequential. Moreover, it should then be possible to relax (simplify) some of its parameters (samplers, holds, sample rates,
etc.) at the expense of increasing $\Delta \underset{\sim}{G}$. Clearly, simple tight bounds for $\|\Delta \underset{\sim}{\|}\|$ will play a critical role in making these analyses and simplifications possible. To date, only the following conservative bound is available for ΔG (Appendix C, Section 5):

$$
\begin{equation*}
||\Delta G|| \leq \max _{0 \leq 0 \leq \tau} \bar{\sigma}[G(0)] \tau \tag{64}
\end{equation*}
$$

This bound is merely the maximum singular value of $g(t-\theta)$ on the interval $k \tau \leq \theta \leq t$, scaled by τ. The τ-dependence makes it immediatoly useful as a coarse selection criterion for maximum tolerable sample periods. It tends to be conservative, however. A third order hybrid controller illustration in Appendix C, for example, violates (62) with (64) at $\tau=0.36$ sec. Actual instability does not occur unti, 1 reaches 0.54 sec . Another limitation of (64) is that it does not provide frequency dependent bounds for use in (63). Much tighter bounds should be possible if the frequency content of signals is taken into account. This question forms an important area for future research.

9. CONCLUSIONS

This report has summarized research accomplishments achieved under NASA Research Grant NSG-1312. The overall objectives of this research were to analyze the basic robustness properties of linear-quadratic sample-data regulators and to explore the suitability of these regulators as tools for digital control system design.

The major conclusion of the research is that sample-data $L Q$ regulators are fundamentally inferior to their continuous time counterparts in the sense that their robustness properties are not as good. They share this limitation with continuous LQG designs. In both cases, however, the continuous time properties can be recovered asymptotically by increasing sample rates and by filter redesign, respectively. The research also accomplished important new developments in stability theory, multivariable frequency domain analysis, and mathematical representation of digitally implemented (hybrid) control systems.

REFERENCES

1. M. Athans, "The Role and Use of the Stochastic Linear-Quadratic-Gaussian Problem in Control System Design," IEEE Trans. Auto. Control, Dec. 1971, pp. 529-551.
2. G. Stein, "Robust Stability of Liuear Systems: Engineering Motivation," 2nd Annual Workshop on Information Linkage Between Applied Math and Industry, Monterey, CA, Feb. 20-24, 1979 (LIDS-P-901).
3. M.G. Safonov, "Robustness Aspects of Stochastic Multivariable Feedback System Design," Ph.D. Thesis; MIT, 1977.
4. M.G. Safonov and M. Athans, "On Stability Theory," 17th Decision and Control Conf., Jan. 1979.
5. G. Zames, "On the Input-Output Stability of Time Varying Nonlinear Feedback Systems, Parts I and II," IEEE Trans. Auto. Control, April 1966, June 1966.
6. C.A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, 1975.
7. M.G. Safonov and M. Athans, "A Multiloop Generalization of the Circle Stability Criterion," 12th Asilomar Conf. on Circuits, Systems, and Computers, November 1978.
8. M.G. Safonov and M. Athans, "Gain and Phase Margins for Multiloop LQG Regulators," IEEE Trans. Auto. Control, April 1977.
9. R.E. Kalman, "When is a Linear Control System Optimal," Trans. ASME J. Basic Engineering, March 1964.
10. A.K. Wong, G. Stein, and M. Athans, "Structural Reliability and Robustness Properties of Optimal Linear Quadratic Multivariable Regulators," IFAC, 1978.
11. W.H. Lee and M. Athans, "The Discrete-Time Compensated Kalman Filter," Int. J. Control, 2, 29, $1979 \mathrm{pp} .293-311$.
12. J.C. Doyle, "Guaranteed Margins of LQG Regulators," IEEE Trans. Auto. Control, August 1978.
13. J.C. Doyle, "Robustness of Multiloop Linear Feedback systems," CDC Proceedings, San Diego, January, 1979.
14. N.R. Sandell, Jr., "Robust Stability of Multivariable Feedback Systems," Proceedings Allerton Conference, Oct. 1978.
15. G. Stein and J.C. Doyle, "Singular Values and Feedback: Design Examples," proceedings Allerton Conference, Oct., 1978.
16. M.G. Safonov, "Tight Bounds on the Response of Multivariable Systems with Component Uncertainty," Proceedings Allerton Conference, Oct. 1978.

APPENDIX A
 ROBUSTNESS OF LQ-OPTIMAL SAMPLED-DATA CONTROL SYSTEM: A SUMMARY OF NEW RESULTS
 P. K. Wong
 M. Athens

This appendix presents the discrete time version of the continuous-time feedback robustness results for LQ-design reported in [10] (Theorems 1 and 2) and documents a new result for robustness of sampled-data control systems under $L(2$-design to changes in the sampling rate (Theorem 3).

A. Sampled-data System

$$
\begin{align*}
& x e \mathbb{R}^{n} \\
& u e \mathbb{R}^{m} \tag{Al}
\end{align*}
$$

Given the system $\dot{x}=A x+B u$

We have the following sampled-data model (see Fig. 1):

$$
\begin{equation*}
x_{(k+1) \Delta}=A_{\Delta} x_{k \Delta}+B_{\Delta} u_{k \Delta} \tag{AR}
\end{equation*}
$$

where

$$
\begin{align*}
A_{\Delta} & \triangleq e^{A \Delta} \\
{ }^{B} \Delta & \triangleq M_{\Delta} B \tag{AB}\\
M_{\Delta} & \triangleq\left(\int_{0}^{\Delta} e^{A \tau} d \tau\right) \\
& =A^{-1}\left(e^{A \Delta}-\text { I) if } A^{-1}\right. \text { exists } \\
\Delta & =\text { sampling period } \\
1 / \Delta & =\text { sampling rate }
\end{align*}
$$

$$
\text { \} }
$$

Figure 1

Definition

${ }^{A_{\Delta}}$ is discrete-time-sense (DT) Ntable if

$$
\begin{equation*}
\left|\lambda_{i}\left(A_{\Delta}\right)\right|<1 \quad \forall \text { eigenvalues } \lambda_{i} \text { of } A_{\Delta} \tag{A5}
\end{equation*}
$$

The following (Lyapunov) results will be of use in deriving the results for the rest of the report:

Discrete-time Stability Theorem (Lyapunov):
Suppose $\operatorname{G} K>0$ and Q - 0 such that

$$
K=A^{T} K A+Q
$$

Then A is (DT)-stable.

For the rest of section A of this report, the notation A_{Δ} and B_{Δ} shall be used to denote general discrete-time system parameters $1 . e$. , they need not satisfy (A3); the results of Theorems 1 and 2 are valid for any linear discrete-time system, not just those which are sampled-data system models.

LQ-design (DT) - Summary of known results
Problem

$$
\begin{array}{ll}
\min _{\left\{u_{k}\right\}} \sum_{k=0}^{\infty}\left(x_{k+1}^{T} Q x_{k+1}+u_{k}^{T} R u_{k}\right)=J & (Q \geq \underline{0}, R>\underline{0}) \\
\text { s.t. to } x_{k+1}=A_{\Delta} x_{k}+\underbrace{M_{\Delta} B}_{B_{\Delta}} u_{k} & \left(A_{\Delta^{\prime}} B_{\Delta}\right) \text { stabilizable } \\
\left(Q^{1 / 2}, A_{\Delta}\right) \text { detectable }
\end{array}
$$

Result

$$
\begin{align*}
& u_{k}^{*}=G_{\Delta}^{T} x_{k} \tag{A8}\\
& G_{\Delta}^{T}=-\left(R+B_{\Delta}^{T} K_{\Delta}\right)^{-1} B_{\Delta^{T}}^{T} \Delta^{A} \Delta \tag{A9}\\
& K_{\Delta}=A_{\Delta}^{T}\left\{K_{\Delta}-K_{\Delta} B_{\Delta}\left(R+B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right)^{-1}{ }_{B}{ }_{\Delta} K_{\Delta}\right\} A_{\Delta}+Q \tag{Alo}\\
& \Leftrightarrow K_{\Delta}=\left(A_{\Delta}+B_{\Delta} G^{T}\right)^{T} K_{\Delta}\left(A_{\Delta}+B_{\Delta} G_{\Delta}^{2}\right)+Q+G \Delta_{\Delta} G_{\Delta}^{T} \tag{A11}\\
& \Leftrightarrow \quad K_{\Delta}=A_{\Delta}^{T} K \Delta_{\Delta}+2-G_{\Delta}\left(R+B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right) G_{\Delta}^{T} \tag{A12}\\
& \Leftrightarrow \quad \hat{K}_{\Delta}=A_{\Delta}^{T} \hat{K}_{\Delta} A_{\Delta}+\hat{Q}_{\Delta}-M_{\Delta}^{T} G_{\Delta}\left(R+B \Delta_{\Delta}^{T} \hat{K}_{\Delta} B\right) G_{\Delta}^{T} M_{\Delta} \tag{A1.3}\\
& \text { where } \hat{\mathrm{k}}_{\Delta} \equiv M_{\Delta}^{T} K_{\Delta} M_{\Delta} \tag{A14}\\
& \hat{Q}_{\Delta} \equiv M_{\Delta}^{T} Q_{\Delta} M_{\Delta} \tag{A15}\\
& \Leftrightarrow \hat{K}_{\Delta}=\left(A_{\Delta}+B G_{\Delta}^{T} M_{\Delta}\right)^{T} \hat{K}_{\Delta}\left(A_{\Delta}+B G_{\Delta}^{M} \Delta^{T}\right)+\hat{Q}_{\Delta}+M_{\Delta}^{T} G_{\Delta} R G_{\Delta}^{T M}
\end{align*}
$$

In what follows we shall assume that $Q \geq 0$

Theorem 1 (Discrete-time LQ-gain margin property)

$$
\begin{align*}
& \left(A_{\Delta}+B_{\Delta} \Lambda G_{\Delta}^{T}\right) \text { is stable (DT) i.f: } \\
& \left(G_{\Delta^{T}}^{T} G_{\Delta}\right)^{-1}+\Lambda^{T} R \Lambda>\left(\Lambda^{T}-I\right)\left(R+B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right)(\Lambda-I) \tag{A18}
\end{align*}
$$

or equivalently,

$$
\begin{aligned}
& \left(\left(G_{\Delta}^{T} Q^{-1} G_{\Delta}\right)^{-1}+R\left(B_{\Delta}^{T} K_{\Delta} \Delta^{B}\right)^{-1} R+R\right)> \\
& \quad\left(\Lambda^{T}-I-R\left(B_{\Delta}^{T} X_{\Delta} \Delta^{B}\right)^{-1}\right)\left(B_{\Delta}^{T} K_{\Delta} \Delta^{B}\right)\left(\Lambda-I-\left(B_{\Delta}^{T} X^{B} \Delta^{B}\right)^{-1} R\right)
\end{aligned}
$$

Remark

From equation (A19), in Theorem 1 it is obvious that there is both an upper bound as well as a lower bound on the values of the admissible Λ. This is most transparently demonstrated in the case when there is only a single control-input, so that Λ becomes a scalar in this cases

Corollary 1.1

(for the case of a single-control input LQ -design)

$$
\begin{align*}
& {\left[A_{\Delta}+b_{\Delta} \alpha g_{\Delta}^{T}\right] \text { is (DT)-stable if }} \\
& \left.\left.\left(1+\frac{r}{m}\right)-\sqrt{\frac{1}{m}\left(\frac{1}{w}+r\left(1+\frac{r}{m}\right)\right.}\right)<\alpha<\left(1+\frac{r}{m}\right)+\sqrt{\frac{1}{m}\left(\frac{1}{w}+r\left(1+\frac{r}{m}\right)\right.}\right) \tag{A20}
\end{align*}
$$

where $m \triangleq b_{\Delta}^{T}{ }^{T} \Delta_{\Delta}$

$$
w \Delta g_{\Delta}^{T} Q^{-1} g_{\Delta}
$$

Theorem 1 can be re-stated in a different way which shows explicitly the range of admissible Λ, by simply generalizing the above 'square-rooting' procedure used for the single-input case to the multi-input aituation: Corollary 1.2

$$
\left(A_{\Delta}+B_{\Delta} \Lambda G_{\Delta}^{T}\right) \text { is (DT)-stable } v
$$

$$
\begin{aligned}
\Lambda= & \left(I+W_{\Delta}^{-1} R\right) \pm\left(M_{1}\right)^{1 / 4} \delta^{1 / 2}\left(W_{\Lambda}\right)^{-1 / 2} \\
& \text { for all } \Sigma=\Sigma^{M} \text { s.t. } 0 \leq \Sigma<I
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{1} \Delta\left[\left(G_{\Delta}^{T} Q^{-1} G_{\Delta}\right)^{-1}+R W_{\Delta}^{-1} R+R\right] \\
& W_{\Delta} \Delta\left(B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right)
\end{aligned}
$$

Theorem 2 (General Discretemime LQ Gain Robustnoss)

$$
\left(A_{\Delta}+B_{\Delta}\left(F G_{\Delta}^{m}+\delta G^{T}\right)\right) \text { is DM-stable } v \delta G e R\left(\rho^{-1} G_{\Delta}\right)^{1} \text { and } F e R^{m \times m}
$$

guch that

$$
\begin{equation*}
\delta G^{T} Q^{-1} \delta G<\left[W_{\Delta}+\left(W_{\Delta}(L-F)+\mathfrak{R}\right) 2^{-1}\left(\left(I-F^{T}\right) W_{\Delta}+R\right)\right]^{-1} \tag{621}
\end{equation*}
$$

where

$$
\left.2 \Delta G_{\Delta}^{T} Q^{-1} G_{\Delta}\right)^{-1}+F^{T} R F-\left(I-F^{T}\right)\left(W_{\Delta}+R\right)(I-F)>0
$$

and

$$
\begin{equation*}
W_{\Delta} \Delta B_{\Delta}^{T} K_{\Delta} B_{\Delta} \tag{A22}
\end{equation*}
$$

Remark

Theorem 2 is the discrete-time version of Corollary 2.1 in Wong, stein and Athans for the continuous case. Unlike the continuous-time result, the discrete-time version is much more complicated and is probably of little computational usefulness.
B. Sampling-time Robustness of LQ-design

Given the system $\dot{x}=A x+B u$

Suppose we ample the system state at rate $(1 / \Delta)$. The equivalent sampled-data model of the syatom in:

$$
\begin{aligned}
&{ }^{x}(k+1) \Delta{ }^{\prime} A_{\Delta} x_{k \Delta}+B_{\Delta}{ }^{u} k \Delta \\
& A_{\Delta}=e^{A \Delta} \\
& B_{\Delta}=M_{\Delta} B=\left(\int_{0}^{A} e^{A \tau} d \tau\right)_{B}
\end{aligned}
$$

If wo choose a discrete-time LQ-design to stabilize the sampled data model (B2), then the closed-loop system ($\Lambda_{\Delta}+B_{\Delta} G_{\Delta}^{T}$) is stable, where G_{Δ}^{T} is the optimal gain computed for the sampled-data model when the sampling xate is $\frac{1}{\Delta}$ and for the cost-weightings Q and R.

Suppose now we chango tho sampling rato to $\left(\frac{1}{\Delta+\Delta}\right)$; the corresponding sampled-data model becomos

$$
\begin{equation*}
x_{(k+1)\left(\Delta+\Delta^{\prime}\right)}=A_{\Delta+\Delta^{\prime}} x_{k\left(\Delta+\Delta^{\prime}\right)}+B_{\Delta+\Delta^{\prime}}, u_{k\left(\Delta+\Delta^{\prime}\right)} \tag{B3}
\end{equation*}
$$

If we do not change the gains G_{Δ}^{T} computed previously, the new closedloop system at the new sampling rate becomes

$$
\begin{equation*}
\left(A_{\Delta+\Delta^{\prime}}+B_{\Delta+\Delta^{\prime}} G_{\Delta^{\prime}}^{\mathrm{q}}\right) \tag{B4}
\end{equation*}
$$

which of course is not necessarily stable. The problem we want to pose is: for what range of Δ^{\prime} would (B4) remain stable?

We have the following sufficiency result:

Theorem 3 (Sampling-rate robustness of Lo-design)

$$
\left(A_{\Delta+\Delta^{\prime}}+B_{\Delta+\Delta^{\prime}} G_{\Delta}^{T}\right) \text { is stable if }
$$

$$
\begin{gather*}
K_{\Delta}-e^{A^{T} \Delta^{\prime}}\left(K_{\Delta}-\Omega\right) e^{A \Delta^{\prime}}+\left(e^{A \Delta^{\prime}}+M_{\Delta} M_{\Delta}^{-1}\right)^{T} G_{\Delta} R G_{\Delta}^{T}\left(a^{A \Delta^{\prime}}+M_{\Delta^{\prime}} M_{\Delta}^{-1}\right) \\
>\left(M_{\Delta^{\prime}} M_{\Delta}^{-1}\right)^{T} G_{\Delta}\left(R+B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right) G_{\Delta}^{T}\left(M_{\Delta^{\prime}} M_{\Delta}^{-1}\right) \tag{B5}
\end{gather*}
$$

Remark

$$
M_{\Delta^{\prime}} M_{\Delta}^{-1}=\left(I-e^{A \Delta^{\prime}}\right)\left(I-e^{A \Delta}\right)^{-1} \text { if } A^{-1} \text { exists }
$$

Remark

It is not obvicus what physical intorpretation can be made of the expression ($B 5$), some numerical examplos will be worked out to gain insight into the meaning of (B5) in future research.

Remack

The case when $\Delta^{\prime}=\Delta$ (i.e. doubling of sampling period) is a particularly simple spectal case of theorem 3:

Corollary (Robustness to doubling of sampling period)

$$
\begin{align*}
& \left(A_{2 \Delta}+B_{2 \Delta} G_{\Delta}^{T}\right) \text { is (DT)-stable if } \\
& Q+e^{A^{T}} \Delta_{Q} e^{A \Delta}+\left(e^{A^{T}} \Delta^{T}+I\right) G_{\Delta} R G_{\Delta}^{T}\left(e^{A \Delta}+I\right)>2 G_{\Delta}\left(R+B_{\Delta}{ }^{T} K_{\Delta} \Delta_{\Delta}\right) G_{\Delta}^{T} \tag{B6}
\end{align*}
$$

APPENDIX

Proof of Theorem 1

The proof of Theorem 1 follows immediately from Theorem 2, as (A21) is automatically satisfied for $\delta G \equiv 0$, and wo need only to ensure that (A22) holds, but (A18) is just (A22) Ly substituting $\Lambda=F^{T}$. To show that (A18) is equivalent to (A19), we just have to "complete square" by appropriately factoring Λ.
(algebraic details: let $G_{\Delta}^{T} G_{\Delta} \triangleq W_{0} \quad B_{\Delta}^{T} K_{\Delta} B_{\Delta}=M$
Then $(A 18) \Leftrightarrow W_{0}^{-1}+\Lambda^{T} R \Lambda-\left[\Lambda^{T}(R+M) \Lambda-(R+M) \Lambda-\Lambda^{T}(R+M)+(R+M)\right]>0$
$\Leftrightarrow W_{0}^{-1}+\Lambda^{T}(R+M)+(R+M) \Lambda-(R+M)-\Lambda^{T} M \Lambda>0$
$\Leftrightarrow W_{0}^{-1}-(R+M)-\left(R_{M}^{T} M-\Lambda^{T}(R+M)+(R+\Lambda \Lambda) \Lambda\right)>0$
$\Leftrightarrow W_{0}^{-1}-(R+M)+(R+M) M^{-1}(R+M)-\left[\Lambda^{T} M-(R+M)\right] M^{-1}[M A-(R+M)]>0$
$\Leftrightarrow W_{0}^{-1}-(R+M)+R M^{-1} R+2 R+M-\left[\Lambda^{T}-\left(I+R M^{-1}\right)\right] M\left[\Lambda-\left(I+M^{-1} R\right)\right]>0$
$\Leftrightarrow W_{0}^{-1}+R+R M^{-1} R>\left[\Lambda^{T}-\left(I+R M^{-1}\right)\right] M\left[\Lambda-\left(I+M^{-1} R\right)\right]$
proof of Corollary 1.2
The proof utilizes the following lemma:

Lemma 0

$$
\begin{aligned}
& \left\{H^{T} \mid H^{T} M_{2} H<M_{1} \text { where } M_{1}>0, M_{2}>0\right\} \\
= & \left\{H^{T} \mid H^{T}= \pm M_{1}^{1 / 2} \Lambda^{1 / 2}\left(M_{2}^{1 / 2}\right)^{-1}, \quad \underline{0} \leq \Lambda<I\right\}
\end{aligned}
$$

Proof

$$
\begin{aligned}
& H^{T}= \pm M_{1}^{\frac{1}{2}} \Lambda^{\frac{1}{2}}\left(M_{2}^{\frac{1}{2}}\right)^{-1} \\
& \Rightarrow \quad H^{T} M_{2} H^{\prime}=M_{1}^{1 / 2} \Lambda M_{1}^{1 / 2}<M_{1}^{1 / 2} M_{1}^{1 / 2}=M_{1}
\end{aligned}
$$

Proof of torollary 2.1:

Let $H^{T}=\Lambda-\left(I+W_{\Delta}^{-1} R\right)$ in the above lemma and substituting appropriately for M_{1}, M_{2}.

Proof of Theorem 2

(Assume without loss of generality that $\left[G_{\Delta} \delta G\right]$ is of full rank in what follows)

We have

$$
\begin{equation*}
K_{\Delta}=A_{\Delta}^{T} K_{\Delta}{ }_{\Delta}{ }^{2}+Q-G_{\Delta}\left(R+B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right) G_{\Delta}^{T} \tag{2.1}
\end{equation*}
$$

so

$$
\begin{equation*}
K_{\Delta}=\left(A_{\Delta}+B_{\Delta}\left(F_{\Delta}^{T}+\delta G^{T}\right)\right)^{T} K_{\Delta}\left(A_{\Delta}+B_{\Delta}\left(\text { FG }_{\Delta}^{T}+\delta G^{T}\right)\right)+\tilde{Q} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{Q} \triangleq Q-G_{\Delta}\left(R+W_{\Delta}\right) G_{\Delta}^{T} m\left[\left(G \sigma^{T}+\delta G\right) B_{\Delta}^{T} \Delta^{A} \Delta^{T}+A_{\Delta}^{T} \Delta_{\Delta} \Delta^{B}\left(F G_{\Delta}^{T}+\delta G^{T}\right)\right] \\
& \left.-\left(G{ }_{\Delta} F^{T}+\delta G\right) B_{\Delta}^{T} K_{\Delta}^{B} \Delta^{\left(F G_{\Delta}^{T}\right.}+\delta G^{T}\right) \\
& =Q-G_{\Delta}\left[R+W_{\Delta}+F^{T} W_{\Delta} F\right] G_{\Delta}^{T}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\delta G \left[B^{T} \Delta^{K} \Delta^{A} \Delta^{3}+\left[A^{T} \Delta^{K} \Delta^{B} \Delta^{2} \delta^{\mathrm{T}}\right)\right.\right. \\
& \text { - SG W }{ }_{\Delta} \delta G^{T P} \\
& =Q-G_{\Delta}\left[R+W_{\Delta}+F^{T} W_{\Delta}{ }^{F}\right] G_{\Delta}^{T}
\end{aligned}
$$

$$
\begin{align*}
& +\delta G\left(R+W_{\Delta}\right) G_{\Delta}^{T}+G_{\Delta}\left(R+W_{\Delta}\right) \delta G^{T} \cdots \delta G \Delta_{\Delta} \Delta^{\delta G^{T}} \\
& =Q+G_{\Delta}\left[F^{T}\left(R+W_{\Delta}\right)+\left(R+W_{\Delta}\right) F-\left(R+W_{\Delta}\right)-F^{T} W_{\Delta} F^{T} G_{\Delta}^{T}\right. \\
& +G_{\Delta}\left[R+W_{\Delta}-F^{T} W_{\Delta}\right] \delta G^{T}+\delta G\left[R+W_{\Delta}-W_{\Delta}\right] G_{\Delta}^{T} \\
& -\delta G \Delta^{W} \Delta^{\delta G^{T}} \\
& =Q+\left[{ }_{\Delta} \delta G\right]\left[\begin{array}{c:c}
F^{T} R F-\left(F^{T}-I\right)\left(R+W_{\Delta}\right)(F-I) & R-\left(F^{T}-I\right) W_{\Delta} \\
\hdashline R-W_{\Delta}(F-I) & -W_{\Delta}
\end{array}\right]\left[\begin{array}{c}
G_{\Delta}^{T} \\
\delta G^{T}
\end{array}\right] \tag{2.3}
\end{align*}
$$

Since $Q>\underline{O}$, we have

$$
\begin{align*}
& \left.\tilde{Q}>0 \Leftrightarrow Q^{-1}+Q^{-1} G_{\Delta} \delta G\right] M\left[\begin{array}{l}
G_{\Delta}^{T} \\
\delta G^{T}
\end{array}\right] Q^{-1}>0 \tag{2.4}\\
& \Leftrightarrow\left[\begin{array}{c}
G_{\Delta}^{T} \\
\delta G^{T}
\end{array}\right]\left(Q^{-1}+Q^{-1}\left[G_{\Delta} \delta G\right] M\left[\begin{array}{c}
G_{\Delta}^{T} \\
\delta G^{T}
\end{array}\right] Q^{-1}\right)\left[G_{\Delta} \delta G_{\Delta}\right]>0
\end{align*}
$$

(see Lemma 1 in Appendix of Wong, Stein, Athans)

$$
\Leftrightarrow\left[\begin{array}{ll}
x_{1} & 0 \tag{2.5}\\
0 & x_{2}
\end{array}\right]+\left[\begin{array}{ll}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right] M\left[\begin{array}{ll}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]>\underline{0}
$$

$$
\begin{align*}
& \Leftrightarrow\left[\begin{array}{ll}
x_{1}+x_{1} M_{1} x_{1} & x_{1} M_{12} x_{2} \\
x_{2} M_{21} x_{1} & x_{2} M_{2} x_{2}+x_{2}
\end{array}\right]>\underline{0} \tag{2.7}\\
& \Leftrightarrow\left\{\begin{array}{l}
x_{1}+x_{1} M_{1} x_{1}>\underline{0} \\
x_{2}+x_{2}\left\{M_{2}-M_{21} x_{1}\left(x_{1} M_{1} x_{1}+x_{1}\right)^{-1} x_{1} M_{12}\right\} x_{2}>\underline{0}
\end{array}\right. \tag{2,8}\\
& (2.8) \Leftrightarrow x_{1}^{-1}+M_{1}>0 \\
& \Leftrightarrow z \triangleq\left(G_{\Delta}^{T} Q^{-1} G_{\Delta}\right)+F^{T} R F-\left(F^{T}-I\right)\left(D+W_{\Delta}\right)(F-I)>\underline{0} \tag{2.10}\\
& x_{2} \triangleq \delta G^{T} Q^{-1} \delta G \quad \text { and } \quad \delta G \in R\left(Q^{-1} G_{\Delta}\right) \tag{2.6}
\end{align*}
$$

where $\quad X_{1} \triangleq G_{\Delta}^{T} Q^{-1}{ }_{\Delta}$
(2.9) and (2.1.0)

$$
\begin{align*}
& \Leftrightarrow x_{2}+x_{2}\left[M_{2}-M_{21} Z^{-1} M_{12}\right\} x_{2}>0 \\
& \Leftrightarrow x_{2}^{-1}+\left\{M_{2}-M_{21} Z^{-1} M_{12}\right\}>0 \\
& \Leftrightarrow x_{2}^{-1}+\left\{-W_{\Delta}-\left(R+W_{\Delta}(I-F)\right) z^{-1}\left(R+\left(I-F^{T}\right) W_{\Delta}\right)\right\}>0 \\
& \Leftrightarrow x_{2}^{-1}>\left[W_{\Delta}+\left(R+W_{\Delta}(I-F)\right) z^{-1}\left(R+\left(I-F^{T}\right) W_{\Delta}\right)\right]>0
\end{align*}
$$

Thus we have shown that

$$
\begin{aligned}
(2.10) \text { and }(2.11) \Leftrightarrow \tilde{Q}>0 \Rightarrow & \left(A \Delta+B_{\Delta}\left(F G_{\Delta}^{T}+\delta G^{T}\right)\right) \text { is stable (DT) } \\
& \text { from }(2.2)
\end{aligned}
$$

Q.E.D.

Proof of Theorem 3

The proof of Theorem 3 is facilitated by the following lemmas:

Lemma $1 \quad{ }^{A} \Delta$ commutes wi.th $M_{\Delta^{\prime}}$, and $M_{\Delta^{\prime}}^{-1} \forall \Delta$ and Δ^{\prime}
Proof

$$
\begin{aligned}
& \text { Of } \\
& e^{A \Delta} \int_{0}^{\Delta^{\prime}} e^{A \tau} d \tau=\int_{0}^{\Delta^{\prime}} e^{A \tau} d \tau e^{A \Delta} \\
& e^{A \Delta}\left(\int_{0}^{\Delta^{\prime}} e^{A \tau} d \tau\right)^{-1}=\left(e^{-A \Delta}\right)^{-1}\left(\int_{0}^{\Delta^{\prime}} e^{A \tau} d \tau\right)^{-1}=\left(\int_{0}^{\Delta^{\prime}} e^{A \tau} d \tau e^{-A \Delta}\right)^{-1} \\
&=\left(\int_{0}^{\Delta^{\prime}} e^{A \tau} d \tau\right)^{-1} e^{A \Delta}
\end{aligned}
$$

Lemma 2

$$
\left(A_{\Delta}+B_{\Delta} G^{I}\right) \text { is stable } \Leftrightarrow\left(A_{\Delta}+B G^{T} M_{\Delta}\right) \text { is stable. }
$$

Proof

$$
\begin{aligned}
\left(A_{\Delta}\right. & \left.+B_{\Delta} G^{T}\right) \text { stable } \\
\Leftrightarrow & M_{\Delta}^{-1}\left(A_{\Delta}+B_{\Delta} G^{T}\right) M_{\Delta} \text { stable } \\
& =M_{\Delta}^{-1} A_{\Delta} M^{\prime}+B G^{T} M_{\Delta} \\
& =M_{\Delta}^{-1} M_{\Delta} A_{\Delta}+B G^{T} M_{\Delta} \quad\left(: A_{\Delta} \Delta^{M}=M_{\Delta} \Delta^{\prime}\right) \\
& =A_{\Delta}+B G^{T} M_{\Delta}
\end{aligned}
$$

Lemma 3

$$
M_{\Delta+\Delta^{\prime}}=M_{\Delta}+A_{\Delta^{\prime}} M_{\Delta^{\prime}}=M_{\Delta^{\prime}}+A_{\Delta^{\prime}} M_{\Delta}
$$

Proof

$$
\begin{aligned}
M_{\Delta+\Delta^{\prime}}=\int_{0}^{\Delta+\Delta^{\prime}} e^{A \tau} d \tau & =\int_{0}^{\Delta} e^{A \tau} d \tau+\int_{\Delta}^{\Delta+\Delta^{\prime}} e^{A \tau} d \tau \\
& =M_{\Delta^{\prime}}+e^{A \Delta} \int_{\Delta}^{\Delta+\Delta^{\prime}} e^{A(\tau-\Delta)} d \tau \\
& =M_{\Delta}+e^{A \Delta} M_{\Delta^{\prime}}
\end{aligned}
$$

Proof of Theorem 3

$$
\text { We have } \begin{align*}
& \left(A_{\Delta+\Lambda^{\prime}}+B_{\Delta+\Delta^{\prime}} G_{\Delta^{\prime}}^{T}\right) \text { stable (DT) } \\
& <>\left(A_{\Delta+\Delta^{\prime}}+B G_{\Delta}^{T} M_{\Delta+\Delta^{\prime}}\right) \text { stable (DT) from Lemrna } 2 \tag{3.1}\\
= & \left(A_{\Delta}+B G_{\Delta}^{T} M_{\Delta+\Delta^{\prime}} A_{\Delta^{\prime}}^{-1}\right) A_{\Delta^{\prime}} \\
= & \left(A_{\Delta}+B G_{\Delta}^{T}\left(M_{\Delta^{\prime}}+M_{\Delta^{\prime}} A_{\Delta^{\prime}}\right) A_{\Delta^{\prime}}^{-1}\right) A_{\Delta^{\prime}} \quad \text { from Lemma } 3 \\
= & \left(A_{\Delta^{\prime}}+B G_{\Delta}^{T}\left(M_{\Delta}+M_{\Delta^{\prime}} A_{\Delta^{\prime}}^{-1}\right)\right) A_{\Delta^{\prime}} \tag{3.2}
\end{align*}
$$

Now

$$
\begin{align*}
& \Leftrightarrow \hat{K}_{\Delta}=A_{\Delta}^{\mathbb{N}^{n}} \Delta_{\Delta}^{A}+\hat{C}_{\Delta}-M_{\Delta}^{T} G_{\Delta}\left(R+B_{\Delta}^{T} \hat{K}_{\Delta} B\right) G_{\Delta}^{T M} \Delta^{T} \tag{A12}\\
& \text { where } \hat{K}_{\Delta}=M_{\Delta}^{T} K_{\Delta} M_{\Delta} \\
& \hat{q}_{\Delta}=M_{\Delta}^{T} \Delta_{\Delta} M_{\Delta} \\
& \text { to (A15) }
\end{align*}
$$

so

$$
\hat{K}_{\Delta}=\left[A_{\Delta}+B G_{\Delta}^{T}\left(M_{\Delta}+M_{\Delta^{\prime}} A_{\Delta^{\prime}}^{-1}\right)\right]_{\underline{\sum_{P}}}^{T} \hat{K}_{\Delta}\left[A_{\Delta}+B G_{\Delta}^{T}\left(M_{\Delta}+M_{\Delta^{\prime}} A_{\Delta^{\prime}}^{-1}\right)\right]+\tilde{Q}_{\Delta}
$$

where

$$
\begin{equation*}
\tilde{Q}_{\Delta} \equiv \hat{Q}_{\Delta}+P^{T} G_{\Delta} R_{\Delta} G_{\Delta}^{T} P-\left(P^{T}-M_{\Delta}\right) G_{\Delta} W_{\Delta} G_{\Delta}^{T}\left(P-M_{\Delta}\right) \tag{3.4}
\end{equation*}
$$

(after some algebraic manipulation)

$$
\begin{aligned}
& \text { with } W_{\Delta} \equiv B^{T} \hat{K}_{\Delta} B
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow & \hat{k}_{\Delta}-A_{c}^{T} \hat{K}_{\Delta} A_{c}=\hat{k}_{\Delta}-A_{\Delta}^{T}\left(\hat{k}_{\Delta}-\tilde{\hat{q}}_{\Delta}\right) A_{\Delta^{\prime}} \tag{3.6}\\
\text { since } \hat{k}> & \underline{0} \text {, wa have } \\
& \hat{K}_{\Delta}-A_{c}^{T} \hat{X}_{\Delta} A_{c}>0 \rightarrow A_{c} \text { is (DT) stable } \tag{3.7}
\end{align*}
$$

Thus (3.6) and (3.7) together m

$$
\begin{aligned}
\hat{\mathrm{K}}_{\Delta}-\hat{A}_{\Delta^{\prime}}^{T}\left(\hat{\mathrm{~K}}_{\Delta}-\tilde{Q}_{\Delta^{\prime}}\right) A_{\Delta^{\prime}}>0 & \Rightarrow\left(A_{\Delta+\Delta^{\prime}}+\mathrm{B} \mathrm{G}_{\Delta^{M}}^{\mathrm{M}} \Delta_{+\Delta^{\prime}}\right) \text { stable } \\
& \Leftrightarrow\left(A_{\Delta+\Delta^{\prime}}+{ }^{\mathrm{B}}{\Delta+\Delta^{\prime}} G_{\Delta^{T}}^{T}\right. \text {) stable }
\end{aligned}
$$

Now

$$
\begin{aligned}
& \hat{K}_{\Delta}-A_{\Delta^{\prime}}^{T}\left(\hat{K}_{\Delta}-\tilde{Q}_{\Delta^{\prime}}\right) A_{\Delta^{\prime}}>0 \\
& \Leftrightarrow K_{\Delta}-A_{\Delta^{\prime}}^{T}\left(K_{\Delta}-M_{\Delta}^{T-1} \tilde{Q}_{\Delta} M_{\Delta}^{-1}\right) A_{\Delta^{\prime}}>\underline{0} \\
& \Leftrightarrow K_{\Delta}-A_{\Delta^{\prime}}^{T}\left(K_{\Delta}-Q\right) A_{\Delta^{\prime}}+A_{\Delta^{\prime}}^{T} M_{\Delta}^{T-1} P^{T} G_{\Delta^{\prime}} G_{\Delta^{P}}^{T} M_{\Delta}^{-1} A_{\Delta^{\prime}} \\
& >A_{\Delta}^{T} M_{\Delta}^{T-1}\left(P^{T}-M_{\Delta}\right) G_{\Delta} W_{\Delta} G_{\Delta}^{T}\left(P-M_{\Delta}\right) M_{\Delta}^{-1} A_{\Delta^{\prime}} \\
& \Leftrightarrow K_{\Delta}-A_{\Delta^{\prime}}^{T}\left(K_{\Delta}-Q\right) A_{\Delta^{\prime}}+\left(A_{\Delta^{\prime}}+M_{\Delta} \cdot M_{\Delta}^{-1}\right)^{T} G_{\Delta} R G_{\Delta}^{T}\left(A_{\Delta^{\prime}}+M_{\Delta} M_{\Delta} M^{-1}\right) \\
& >\left(M_{\Delta} \cdot M_{\Delta}^{-1}\right)^{T} G_{\Delta}\left(R+B_{\Delta}^{T} K_{\Delta} B_{\Delta}\right) G_{\Delta}^{T}\left(M_{\Delta}, M_{\Delta}^{-1}\right)
\end{aligned}
$$

GAIN-MARGINS AND STABILITY ROBUSTAESS OF LQG REGULATOR

by

Poh Kam Wong
Gunter Stein
Michael Athans

ABSTRACT

New sufficiency characterizations of the gain-margins of the standard full LQG (Tinear-Quadratic-Gaussian) regulator design (which incorporates a Kalman filter in the feedback loop) are presented. These results show that full recovery of tQSF-gain margins can be achieved either through non-divergent filter structure adaptation, or when plant-driving noise that enters through the same channels as the control inputs greatly dominate other noise terms. An explicit sufficiency bound on the gain-margins of LQG-design that varies with a ratio of quadratic forms of the filter error dynamics \& the plant dynamios is also presented. These results further clarify the recent work of Doyle, and suggest potential new directions of research.

1. Introduction

As has been demonstrated in recent research (e.g. [1], [2] and [3] and references cited therein), the standard muitivariable Linear-Quadratic-State-Feedback regulator design (LOSF) is known to have rather robust stability properties. In particular, as has been shown in (3), the LQSF control design has the following gain-margin property.

If $\underline{u}^{*}(t)$ is the optimal LisF control gain-vector, then the clogedloop system plant under the control of $\underline{u}^{\star}(t)$ remains stable for all gain perturbations:

$$
\underline{u}^{\star}(t) \longmapsto \underline{\Lambda}(t) \underline{u}^{*}(t)
$$

where

$$
\underline{\Lambda}(t)=\left[\begin{array}{ccc}
\alpha_{1}(t) & \underline{0} \\
\underline{0} & \cdot & \alpha_{n}(t)
\end{array}\right] \quad \text { is such that }
$$

$$
\Lambda(t)>\frac{1}{2}\left(\underline{I}-\underline{x}_{0}^{-1}\right)
$$

where $\quad \underline{X}_{0} \triangleq\left(\underline{R}^{1 / 2} \underline{G}_{O_{0}}^{-1} \underline{G}_{-}^{1 / 2}\right), \quad \underline{2}>\underline{0}, \underline{R}=$ diagonal matrix $>\underline{0}$ being the L O cost weightings, and $G_{0}^{\bar{T}}$ is the optimal gain matrix.

That is, LQSF guarantees strictly greater than - 6db. gain reduction \& infinite gain margin, regardless of the choice of cost criteria $\underline{Q}>\underline{0}$ and \underline{R} diagonal >0.

Because of this and other stability robustness properties of the LQSE (see [2], [3] For further details), there has been great interest in the question as to whether the full Linear-Quadratic-Gaussian regulator design, which employs output feedback using a Kalman fil,ter: retains any of these stabilinty robustness properties in general and the gain margin property (GM) stated above in particular. In a short paper entitled "Guaranteed margins for LQG regulators," and carrying an abstract with the single sentence "There aren't any," J.C. Doyle has shown through a simple counter-example that there exists no guaranteed gain margins independent of the choice of cost-criteria \& noise characteristics specification. In other words, design-parameter-dependent characterizations of the gain-margins of full LQG-system need to be investigated before one can evaluate the stability robustness of the LQG-methodology.

It is the aim of this report to present preliminary results of our research in investigatıng the design-parameter-dependent characterization of the gain margins of LQG regulator.

The organization of this paper is as follows. In Section 2, we state our formulation of the full LQG gain margin characterization problem. In Section 3, some useful sufficiency results which we have obtained are reported and their significance discussed. Finally, in. Section 4 , we present discussion on potential future research directions.

Notationg and Definitions

A^{T} denotes the transpose of A
$R(\underline{H})$ denotes the range space of \mathbf{H}
$R(\underline{H})^{\perp}$ denotes the orthogonal complement of $R(H)$
If $Q \in \mathbb{R}^{n \times n}$ is positive definite (positive semidefinita), we will writes $2>0 \quad(0 \geq 0)$
If $Q \geq \underline{0}$ and $\underline{x}^{T} \underline{x}>0$ for all $\underline{x} \in R(\underline{H}), \underline{x} \neq \underline{0}$, we write $Q>\left.0\right|_{R(\underline{H})}$
(i.e. the positive semidefinite matrix Q is positive in the range space of H).

2. Problem Formulation

Given the linear time-invariant dynamic system ($\mathcal{A}, \underline{B}, C^{T}$) such that

$$
\begin{align*}
& (\underline{A}, \underline{B}) \quad \text { is a stabilizable pair } \tag{1}\\
& \left(\underline{C}^{T}, \underline{B}\right) \text { is a detectable pair } \tag{2}
\end{align*}
$$

Let G_{O}^{T} denote the optimal LgSF-control gain for some $\Omega>0$ and
diagonal $\underline{R}>\underline{0}$, where

$$
\begin{equation*}
\underline{K A}+\underline{A}^{T} \underline{K}-\underline{K B R^{-1}} \underline{B}^{T} \underline{K}+2=\underline{0} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{G}_{0}^{T} \triangleq-\underline{R}^{-1} \underline{B}^{T} \underline{K} \tag{4}
\end{equation*}
$$

Further, let H_{O} denote the optimal Kalman filter gain for some $\underline{E}>\underline{0}$ and $\underline{0}>\underline{0}$, where

$$
\begin{equation*}
\Sigma \underline{A}^{T}+\underline{A} \Sigma-\underline{\underline{C}} \underline{Q}^{-1} \underline{C}^{T} \underline{\square}+\underline{\underline{E}}=\underline{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{H}_{0} \triangleq-\underline{\sum} \underline{c^{-2}} \tag{6}
\end{equation*}
$$

Then the closed-loop, full LQG-system becomes:

$$
\left[\begin{array}{l}
\underline{\dot{x}} \tag{7}\\
\dot{\hat{x}}
\end{array}\right]=\left[\begin{array}{ll}
\underline{A} & \underline{B G^{T}} \\
-\underline{H}_{O} C^{T} & \underline{n}+\underline{H}^{H} C^{T}+\underline{B G}^{T}
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
\hat{\underline{x}}
\end{array}\right]+\text { (noise terms) }
$$

where

$$
\begin{aligned}
& \underline{x}(\cdot)=\text { plant state vector } \\
& \underline{\hat{x}}(\cdot)=\text { filter state vector }
\end{aligned}
$$

(we shall ignore the external noise terms in what follows as they are not relevant in subsequent discussion on closed-loop stability).

Suppose now that the optimal feedback $\underline{u}^{*}(t)=\underline{G}_{\underline{N}}^{T}(t)$ is perturbed:

$$
\begin{equation*}
\underline{u}^{*}(t) \longmapsto \underline{\Lambda}(t) \underline{u}^{*}(t) \tag{8}
\end{equation*}
$$

where $\Lambda(t)$ is a diagonal matrix for all $\mathrm{t} \varepsilon(0, \infty)$. The perturbed closed-loop system becomes

$$
\left[\begin{array}{l}
\underline{\dot{x}}(t) \tag{9}\\
\dot{\hat{x}}(t)
\end{array}\right]=\left[\begin{array}{ll}
\underline{A} & \underline{B} \underline{\Lambda}(t) \underline{S}_{0}^{T} \\
-\underline{H}_{O} C^{T} & \underline{A}+\underline{B} \underline{G}_{O}^{T}+\underline{H}_{O} C^{T}
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
\hat{x} \\
\underline{x}
\end{array}\right]
$$

Problem: For what range of $\Lambda(t), t \in(0, \infty)$ can we guarantee that the purturbed system (9) is stable in the sense that

$$
\left[\begin{array}{l}
\underline{x}(t) \\
\underline{\hat{x}}(t)
\end{array}\right] \rightarrow \underline{0} \quad \text { as } t \rightarrow \infty
$$

Remark:

The class of perturbation (8) includes the class of all non-dynamic, nonlinear functions:

(10)

This follows from the simple observation that, given (10), we can define
and

$$
\left.\begin{array}{rl}
\lambda_{i}(t) \Delta & \frac{f_{i}\left(u_{i}^{*}(t), t\right)}{u_{i}^{*}(t)}, \tag{11}\\
u_{i}^{*}(t) \neq 0 \\
\Delta \text { arbitrary, } & u_{i}^{*}(t)=0
\end{array}\right\} i=1, \ldots, m
$$

$\underline{\Lambda}(t) \triangleq\left[\begin{array}{lll}\lambda_{1}(t) & & \underline{0} \\ \underline{0} & \cdot & \lambda_{m}(t)\end{array}\right]$
Note that the restriction of diagonality on $\Lambda(t)$ was made in (8) because of the natural interpretation of $\Lambda(t)$ that follows from (10) and (11).

Remark:

We shail first oxamine the case

$$
\begin{equation*}
\Lambda(t) \equiv \Lambda \text { constant matrix } \tag{12}
\end{equation*}
$$

in what follows. The general time-varying case of $\underline{n}(t)$ will be covered by a trivial generalization of the time-constant case in a later section. This procedure of presentation not only simplifies the proofs, but also helps to make the methodology of analysis (simple application of cyapunov theory) more transparent. With the assumption (12) given, the stability of (9) can be investigated by examining the stability of the system matrix

$$
\left[\begin{array}{ll}
\underline{A} & \underline{B} \Lambda G_{O}^{T} \tag{13}\\
-H_{O} C^{T} & \underline{A}+\underline{B} G_{O}^{T}+{\underset{O}{O}}^{T}
\end{array}\right]
$$

(in the sense that (1.3) is stable if all its ejgenvalues have negative real parts).

Remark

In the above formulation we have assumed that the Kalman filter structure remains fixed at the nominal design values in the face of the control feedback perturbations. For greater generality, we can assume that some kiowledge of the control perturbations may be 'communicated' to the Kalman filter design, or that the Kalman filter structure can be adjusted to 'track' the control perturbations in some mannex to be specified. This can be incorporated into our problem formulation by
assumang that the filter structure is of the following form:

$$
\begin{align*}
\dot{\hat{x}}(t) & =\left(\underline{A}+\underline{B} \hat{\Lambda} \underline{G}_{o}^{T}\right) \underline{\hat{x}}(t)+\underline{H}_{O} C^{T}(\underline{\hat{x}}(t)-\underline{x}(t)) \\
& =\left(\underline{A}+\underline{B} \underline{\hat{\Lambda}} \underline{G}_{O}^{T}+\underline{H}_{O} C^{T}\right) \underline{\hat{x}}(t)-\underline{H}_{O}^{C} \underline{x}(t) \tag{14}
\end{align*}
$$

where $\underline{\Lambda} \equiv$ ('adjustable') filter structure parameter

$$
=I \text { nominally }
$$

Byincorporating the assumptions in Remark 2 and 3, we therefore arrive at the following modified problem formulation:

LOG Stability Robustness Problem

$$
\text { For what } \underline{\Lambda}=\left[\begin{array}{lll}
\lambda_{1} & \underline{0} \\
& , & \\
\underline{0} & & \lambda_{m}
\end{array}\right] \text { and } \hat{\Lambda}=\left[\begin{array}{lll}
\hat{\lambda}_{1} & & 0 \\
0 & & \\
\underline{0} & & \hat{\lambda}_{m}
\end{array}\right]
$$

is the closed-loop system matrix

$$
\left[\begin{array}{ll}
A & \underline{B} \Lambda G^{T} \tag{*}\\
-H C^{T} & \underline{A}+\underline{B} \hat{\Lambda} G_{O}^{T}+{\underset{O}{O}}^{T} C^{T}
\end{array}\right]
$$

stable?

Results
The main results we have obtained in the direction of sufficiency solutions to the LOG Stability Robustness Problem as formulated in the previous section will be presented in this section in the form of four
proposittions, A fifth proposition genernizzes the previous rasults to the more goneral time-varying gain-perturbation case. In arriving at these results we have utilizod nothing more than simple applications of standard Lyapunov theory. The basic results from which all the propositions in this section are derived has been stated as a Lemma (Lemma 4) in the Appendix.

Our lizst result pertains to the specinl case when we have perfect 'tracking' of the gain perturbation, i.e. when we have 'communicated' to the filter structure the exact perturbation values Λ, so that $\widehat{\Lambda} \equiv \Lambda$.

Proposition 1:

If $\hat{\Lambda} \equiv \Lambda$ then (*) is stable for all

$$
\Lambda>\frac{1}{2}\left(I-x_{0}^{-1}\right)
$$

where

$$
x_{0} \stackrel{\Delta}{=}\left(R^{1 / 2} G_{0}^{1} Q^{-1} G_{0} R^{1 / 2}\right)
$$

i.e. The LQSF- gain margin is completely recovered.

Remaxk:
The condition $\hat{\Lambda}=\Lambda$ in proposition 1 ensures that the filter error dynamies are 'non-divergent.' This is best seen by examinig the error equation in detail:

$$
\begin{align*}
& \underline{e}=\underline{\hat{x}}-\underline{x} \\
& \underline{\dot{e}}=\left(\underline{A}+\underline{H}_{0} c^{W}+\underline{B}(\underline{\hat{\Lambda}}-\underline{\Lambda}) G_{o}^{\prime W}\right) \underline{e}+\underline{B}(\underline{\Lambda}-\underline{\Lambda}) \underline{G}_{o}^{T} \underline{x} \tag{16}
\end{align*}
$$

if $\hat{\Lambda} \equiv \Lambda$ then the 'feedback' drivingterm from the plant-state drops out, and the extra term in the system matrix of the error dynamics disappears.

Remark:

Since LQSF- gain margin may be wide enough to tolerate some channel failures (see [3]), Proposition 1 guarantees that such reliability of LQSF design remains with L, Q provided corresponding change in the filter structure is made.

Proposition 1 assures us that full recovery of LQSF gain-margins is guaranteed with perfect knowledge of gain perturbations incorporated within the filter structure ('non-divergent' estimation, see [1],[5] for more details). There is another special situation under which sitilarly full recovery of LQSF gain margin can be guaranteed; this is the substance of our next proposition:

P-oposition 2
If

$$
\begin{equation*}
\frac{\min _{x^{T}}^{\max _{x}=1} \underline{x}^{T}\left(-\left(\underline{\lambda}+\underline{H}_{O^{\prime}} C^{T}\right) \underline{x}\right]}{\underline{x}^{T} \underline{x}=1} \rightarrow \infty \tag{17}
\end{equation*}
$$

Then (*) is stable for all

$$
\Lambda>\frac{1}{2}\left(\underline{I}-\underline{x}_{0}^{-1}\right)
$$

i.e. the LQSF-gain margin is recovered in the limit as the ratio (17) tends to infinity.

While Proposition 2 demonstrates that full LQSF-gain margins are recovered in a specific limit, it does not tell us anything about the 'rate of convergence' to gain-margin recovery, i.e. the explicit dependence of gain margins on the ratio (17). The following proposition provides a partial answer to this question by giving an explicit sufficient bounds on the gain margins.

Proposition 3

Suppose $\hat{\Lambda} \equiv I$. Then (*) is stable for all $\Lambda>0$ s.t.

$$
\begin{equation*}
\lambda_{-} I<\Lambda<\lambda_{+} I \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{+} \triangleq 1+1 / \sqrt{\omega_{0}} \tag{19}\\
& \lambda_{-} \triangleq \max \left\{1-\left(1 / x_{0}\right), 1 / \lambda_{+}\right\} \tag{20}
\end{align*}
$$

with

$$
\begin{align*}
& \omega_{0} \triangleq \max \lambda\left(\underline{\omega}_{0}\right) \tag{2la}
\end{align*}
$$

$$
\begin{align*}
& \underline{K}_{f}\left(\underline{A}+\underline{H}_{O} C^{T}\right)+\left(\underline{A}+\underline{H}_{O} C^{T}\right)^{T} \underline{K}_{f}+\underline{Q}+\underline{G}_{C} \underline{R G}^{T}=\underline{0} \tag{21c}\\
& x_{0} \triangleq \max \lambda\left(x_{0}\right)
\end{align*}
$$

Moreover, w_{0} satisfios the following bound:

$$
\begin{align*}
& \sqrt{\omega_{0}} \leq \lambda_{\min }(\underline{K}) \frac{\lambda_{\max }\left(\underline{Q}+G_{0} B G_{0}^{T}\right)}{\lambda_{\min }\left(\underline{Q}+G_{0} G_{0}^{T}\right)} \cdot \frac{\max _{\underline{1} x=1}\left[\underline{x}^{T}\left(-\left(\underline{A}+B G_{0}^{T}\right) \underline{x}\right]\right.}{\min _{x^{T} x=1}^{\left[x^{T}\left(-\left(\underline{A}+H_{-} C^{T}\right) \underline{x}\right]\right.}} \cdot \\
& \sqrt{\frac{\lambda_{\max }\left(R^{-1} B^{T} B\right)}{\lambda_{\min }(Q)}} \tag{22}
\end{align*}
$$

Remark

The bounds on \perp obtained in proposition 3 are only sufficient, and are in general rather conservative. Moreover, they are not the tightest possible bounds that can be derived from our approach (they have been essentially derived from Lemma 4 by choosing the parameter α to simplify the solution of the bounds rather than to optimize them, which entail much more tedious algebraic manipulations). The actual numerical computation of the parameter ω_{0} is straightforward although a bit tedious (requiring the solution of a Lyapunov equation (21)), but perhaps of greater theoretical significance is the simple bound on ω_{0} given in Equation (22). Taken together, Equation (18) and Equation (22) show that the upper bound on the gain-margin increment increases at least linearly with the ratio

$$
\frac{\min _{\max ^{T} x=1}\left[x^{T}\left(-\left(A+H C^{T}\right) x\right]\right.}{x^{T} x=1}\left[x^{T}\left(-\left(A+B G^{T}\right) x\right]\right.
$$

Remark

In the results presented so far, no use has actually been made of the fact that the filter incorporated in the feedback loop is a Kalman filter; the only information of the filter we have utilized is the filter error dynamics matrix ($\underset{A}{ }+\underline{M}_{0} C^{T}$) which could well have been designed by any other methods. More generally, therefore, the above results actually apply to any full-state filter design incorporated in the control feedback loop, and we can conjecture that similar versions of proposition 2 and 3 apply in the case of any estimator dynamic compensator incorporated in the feedback loop.

Remark: Note that $9>0$ is crucial for Proposition 3 to hold.
The next proposition, unlike the previous ones, explicitly make use of the assumption that the filter design incorporated in the control feedback loop is a Kalman filter. The basic question of interest is, for what choice of the noise specification Φ, \ominus will it be possible for the LQSF-gain margins to be fully recovered? Proposition 4 provides one answer.

Eroposition 4

Let $\hat{\Lambda} \equiv I$ and suppose that $\Phi m \Phi_{1}+\phi_{2} E \underline{B}^{\eta}$ for some $E>0$ and scalar $\phi_{2}>0$, and where $\Phi_{1}>0$,

Then as $\phi_{2} \rightarrow \infty$
The gain margins of Λ approaches

$$
\Lambda>\frac{1}{2}\left(I-x_{0}^{-1}\right)
$$

i.e. full LQSF-gain margins are recovered as the plant driving noisemtexms entering directly through the control input channels becomes greatly dominant (i.e. if $\underline{B} \underline{u}^{*}$ is the control term, the noise term \underline{w}_{2} that gives rise to the variance $\phi_{2} \underline{B} E \mathbb{E}^{T}$ enters as $\underline{B}\left(\underline{u}^{*}+\underline{w}_{2}\right)$.

Remark
Proposition 4 is essentially the same as Doyle's result in Doyle [6] (where his assumptions are slightly different, and unnecessary, from ours) but our proof technique is completely different from his (which is a 'frequency domain' computation) and moreover our initial motivation has been independent from his work.

The most natural interpretation of proposition 4 is that, for those systems whose plant driving noise-tems enter primarily through the same channel as the control inputs (hence the form of the noise-variance term $\phi_{2}-\underline{E} \underline{B}^{T}$) themselves, recovery of LQSF-gain margins tends to be facilitated, with recoverry complete if these plant driving-noise terms
becomes greatly dominant over the observation ehannal noise. Thiemakes sense intuitively, as Doyle pointed out, because the noise that enters the plant through the same channels as the control inputs can be interpreted as perturbations on the control inputs themselves, and this will. get communicatod through the mathematies into the filtor design in such a. way as to provide 'hedges' for the uncertainties in the control inputs.

Remark

Although we have assumed $\hat{\Lambda} \equiv I$ in in proposition 4 (as this is the case of interest), this assumptions is actually not necessary - any finite $\hat{\Lambda}$ wiil do, as is obvious from the proof. of course, this can only be true in the case as $\phi_{2}+\infty$. For large but finite ϕ_{2}, there can be great differences on the gain=margins depending on what value $\hat{\hat{\Lambda}}$ takes.

Example 1

mo illustrate the above propositions, consider the following single state, single control and single output system:

$$
\begin{array}{ll}
\underline{A}=a>0, & \underline{B}=b \quad \underline{C}^{T}=c \\
\underline{Q}=q, & \underline{R}=1 \\
\underline{D}=\phi, & \underline{Q}=1
\end{array}
$$

The regulator design is:

$$
\begin{array}{ll}
k=\frac{a}{b^{2}}[1+\sqrt{1+(1 / n)}] & \text { (Riccati matrix) } \\
g_{0}=-\frac{a}{b}[1+\sqrt{1+(1 / n)}] & \text { (Optima1 gains) }
\end{array}
$$

$$
\begin{array}{ll}
x_{0}=[\sqrt{\eta}+\sqrt{1+\eta}]^{2} & \left(\mathbb{R}^{1 / 2} G_{0}^{Q^{2}} G_{0} R^{1 / 2}\right) \\
a+b g_{0}=-(\sqrt{1+1 / \eta}) a & \text { (closed loop dynamics), }
\end{array}
$$

where $\eta \frac{\Delta}{\#} a^{2} / \mathrm{qb}^{2}$. Also, by duality, the filter design is

$$
\begin{array}{ll}
a=\frac{a}{c^{2}}\left[1+\sqrt{1+1 / \eta_{f}}\right] & \text { (covariance matrix) } \\
h_{0}=-\frac{a}{c}\left[1+\sqrt{1+1 / n_{f}}\right] & \text { (filter gains) } \\
a+h_{0} c=-\left(\sqrt{1+1 / n_{f}}\right) a & \text { (error dynamics) }
\end{array}
$$

where $\eta_{f} \Delta a^{2} / \phi c^{2}$. Then the K_{f} matrix of equation (21) is given by

$$
K_{E}=\frac{q}{2 a \sqrt{1+\frac{\phi c^{2}}{a^{2}}}}\left\{1+[\sqrt{n}+\sqrt{1+\eta}]^{2}\right\}
$$

and ω_{0} of (19) is

$$
\begin{aligned}
\sqrt{\omega_{0}} & =\frac{\sqrt{q b}}{2 a \sqrt{1+\frac{\phi c^{2}}{a^{2}}}\left(1+x_{0}\right)} \\
& =\left(\sqrt{\frac{q}{\phi}}\right)\left(\frac{b}{c}\right)\left(\frac{1+x_{0}}{2}\right) \frac{1}{\sqrt{1+n_{f}}}
\end{aligned}
$$

If we let q, ϕ to be buch that

$$
\begin{array}{ll}
q>\left(\frac{a}{b}\right)^{2} & \text { (i.e. a wide band regulator) } \\
\phi>\left(\frac{a}{c}\right)^{2} & \text { (i.e. a wide band regulator) }
\end{array}
$$

Then

$$
\begin{aligned}
& \eta=\frac{1}{q}\left(\frac{a}{b}\right)^{2} \rightarrow 0 \\
& \eta_{f}=\frac{1}{\phi}\left(\frac{a}{c}\right)^{2} \rightarrow 0
\end{aligned}
$$

and $x_{0}+1$
so

$$
\omega_{0}+\sqrt{\frac{q b^{2}}{\phi c^{2}}}
$$

and we have

$$
\max \left\{0, \lambda_{+}\right\}<\lambda<1+\sqrt{\frac{\phi c^{2}}{q b^{2}}}
$$

or

$$
-1+\sqrt{\frac{\phi c^{2}}{q b^{2}}}<\lambda<1+\sqrt{\frac{\phi c^{2}}{2}}
$$

The following reprosentative values of λ_{+}and λ_{-}as a function of $\left(\frac{\phi c^{2}}{q b^{2}}\right)$ are illustrative:

$$
\left.\begin{array}{cccccccccc}
\left(\frac{\phi c^{2}}{q b^{2}}\right.
\end{array}\right)=\begin{array}{ccc}
\ll 1 & 1 / 100 & 1 / 16 \\
1 / 4 & 1 & 4 \\
1.6 & 100 & \gg 1 \\
\lambda_{+} & -1 & 11 / 10 \\
5 / 4 & 3 / 2 & 2 \\
\hline
\end{array}
$$

The results presented so far have been restricted to the case of control perturbations of the form:

$$
\begin{equation*}
\underline{u}^{*}(t) \quad \underline{\underline{u}} \underline{u}^{*}(t) \quad \text { for all } t \in(0, \infty) \tag{24}
\end{equation*}
$$

where 1 is a constant matrix. We now censider the more general case when the perturbations are given as time-varyirg:

$$
\begin{equation*}
\underline{u}^{\star}(t) \mapsto \underline{(t)} \underline{u}^{\star}(t) \quad t \in[0, \infty) \tag{25}
\end{equation*}
$$

As it turns out, the extension of our results in the previous section to the more general case (25) is trivially simple:

Proposition 5

If for each $t \in[0, \infty)$ point-wise, the functions $\Lambda(t)$ and $\hat{\Lambda}(t)$ satisfles the conditions on Λ and $\hat{\Lambda}$ in any of the previous propositions, then that proposition holds for the time-varying perturbations $\{\Lambda(t), t \in[0, \infty)\}$, and $\left\{\hat{\Lambda}_{\hat{\Lambda}}(t), \quad t \in\{0, \infty)\right\}$.

Remark

Recall that, in genoral, if $\left\{\hat{A}(t), t \in\left[t_{1}, t_{2}\right]\right\}$ is guch that for each $t \in\left[t_{1}, E_{2}\right]$ pointwigu, $A(t)$ has aji its eigonvalues with negative real. parte, it still need NOT bo true that

$$
\dot{\tilde{x}}(t)=\tilde{\underline{\Lambda}}(t) \underline{x}(t)
$$

i.s stable (in the sonse that $\tilde{x}(t) \rightarrow 0$ as $t \rightarrow \infty$). Thus one cannot 'prove' proposition 5 by arguing that, if

$$
\underline{A}(t) \triangleq\left[\begin{array}{cl}
\underline{\Lambda} & \underline{B} \Lambda(t) \underline{G}_{0}^{T} \\
-H_{0} \underline{C}^{T} & \underline{\Lambda}+\underline{B} \underline{\Lambda}(t) \underline{G}_{0}^{T}+\underline{H}_{0} \underline{C}^{T}
\end{array}\right] \text { is a stable matrix }
$$

(all oigenvalues have negative real parts) for each $t \varepsilon[0, \infty)$ pointwise, then

$$
\dot{\tilde{x}}(t)=\tilde{\tilde{A}}(t) \tilde{x}(t), \quad t \in[0, \infty)
$$

is stable $(\underline{\tilde{X}}(t)$ or 0 as $t \rightarrow \infty$. The fact that proposition 5 neverthelegs doos hold is because of the guaranteed existence of a gingle Lyapunov matrix for all $t \varepsilon[0, \infty)$.

Remark

The perturbation class $\{\Lambda(t), t \in(0, \infty)\}$ can bo trivially extended to the more general one of $\left.\left\{\underline{\Lambda}\left(\underline{x}(\tau), \underline{u}^{*}(T), q \in[0, t]\right\}, t\right), t \in[0, \infty)\right\}$ which incorporates dependence on $\underline{x}(\cdot)$ and $\underline{u}^{*}(\cdot)$.

Future Research Directions

Several arans of potontially fruitful rozoazch nee readily suggested by the preliminary rosults we have obtained so far. We shall briofly list some of these below, not necessarily in any oxder of guggested priority.

1. Determining tho 'rata of convergence' to LQSE-gain margin recovery by the noise specification

$$
\Phi-\Phi_{2}+\phi_{2} B E \mathrm{~B}^{\mathrm{T}} \quad \text { as } \phi_{2} \text { varies }
$$

Although proposition 4 [and Doyle] has guggested the desirability of using noise specification of the above form for gain-margin congideration, that result, like proposition 2, is a limit characterization that provides no clues as to the bohavior of the gainmargins as ϕ_{2} varies. An explicit sufficiency bounding solution similar in form to that of proposition 3 which can demonstrate the dependence of some sufficient gainmargins bounding on ϕ_{2} will be highly useful in practical deaign. Since the proof of proposition 4 uses a peocedure closely similar to that of proposition 2 and 3, it appears that such a sufficiency bounding can be similarly derived for Proposition 4 . We have not had sufficient time to investigate this.
2. As noted, the sufficiency bounds in Proposition 3 are not the tightest possible that can be dexived from Lemma 4. A nore careful effort in optimizing the bounds by exhausting all the free variables provjded by Lemma 4 may lead to significantly tighter bounds.
3. proposition 2 and 3 have pointed out that, purely from the gnin-margin maximization point of viow, those filters that havo large ratios

$$
\begin{equation*}
\frac{\min \left[-x^{T}\left(a+1 H_{0} c^{T}\right) x\right]}{\max \left[-x^{T}\left(a+1 G_{0}^{T}\right) x\right]} \tag{p}
\end{equation*}
$$

tend to be better. The following question therefore arises: Is there a simple way to classify the set of all possible design parametéts
($2, \mathrm{R}, \mathbf{1}, 0$)
into those combinations that havo the property (P) and those that tend to be otherwise?
4. We have introduced the parameter $\hat{\Lambda}$ into our formulation as it provides a natural interpretation of how a fillter might adapts its structure to minimize 'divergence'. The actual implementational consideration of this 'gainperturbation tracking' concept may lead to practical design significance (e.g. how to modify filter structure when there is control channal failure to glarantee stability of tog system. The paxameter $\widehat{\Lambda}$ telle us what needs to be changea).
5. Extension to discrete-time system, similar to what has been done for the tQSF case [5].
6. Application of results (especially proposition 3 and 4) to some real physical systems (e.g. aircraft) to study the actual behavior of gain-margin bounds as $\$_{2}$ or $\left(A+H_{0} C^{T}\right)$ are varied.

APPENDIX

The following lemmas will be useful in the proofs of the propositions in this paper.

Lemma 1

$$
\text { If } M_{1} \in R^{n \times n}, M_{2} \varepsilon R^{m \times m} \text { are symmetric and } \underline{H} \varepsilon R^{n \times m} \text { is arbitrary, }
$$

then

$$
\left.\begin{array}{l}
\underline{M}_{1}>\underline{0} \\
\left(\underline{M}_{1}+\underline{M}_{1} \underline{H M}_{2} \underline{H}^{\mathrm{T}_{1}} \underline{-}_{1}>\left.\underline{0}\right|_{\mathrm{R}(\mathrm{H})}\right.
\end{array}\right\} \Rightarrow \underline{M}_{1}+\underline{M}_{1} \underline{H M}_{2} \underline{H}^{T} \underline{M}_{1}>\underline{0}
$$

Proof
See [2], Lemma 1 proof.

Lemma 2
If $\quad \underline{Q}_{1}>\underline{0}$ and $\underline{Q}_{2}>\underline{Q}_{21} \underline{Q}_{1}^{-1} \underline{Q}_{12}$
Then

$$
\left[\begin{array}{ll}
\underline{g}_{1} & \underline{\underline{g}}_{12} \\
\mathfrak{g}_{21} & \underline{\Omega}_{2}
\end{array}\right]>\underline{0}
$$

Proof

See any standard Linear Algebra text.
whero $\underline{\underline{m}}_{2}>\underline{\underline{0}}$ and the inverses dofined in the equation exist.
proof

$$
\begin{aligned}
& \underline{H}^{T}\left(\underline{M}_{1}+\underline{H M} \underline{M}_{2} \underline{H}^{T}\right)^{-1} \underline{H}=\underline{\underline{H}}^{T \mathrm{~T}}\left\{\underline{M}_{1}^{-1}-\underline{M}_{1}^{-1} \underline{H}\left(\underline{M}_{2}^{-1}+\underline{H}^{T} \underline{M}_{1}^{-1} \underline{H}\right)^{-1} \underline{H}^{T} \underline{M}_{1}^{-1}\right\} \underline{H} \\
& =\left(\underline{\underline{T}}^{\mathrm{T}} \underline{\underline{M}}_{1}^{-1} \underline{\underline{H}}\right)-\left(\underline{\underline{H}}^{\mathrm{T}} \underline{M}_{1}^{-1} \underline{\underline{H}}\right)\left(\underline{\underline{M}}_{2}^{-1}+\underline{\underline{H}}^{\mathrm{T}} \underline{M}_{1}^{-1} \underline{H}\right)^{-1}\left(\underline{\underline{M}}^{\mathrm{T}} \underline{\underline{M}}_{1}^{-1} \underline{H}\right) \\
& =\left[\underline{M}_{2}+\left(\underline{\underline{H}}_{1}^{T} \underline{M}_{1}^{-1} \underline{H}\right)^{-1}\right)^{-1}
\end{aligned}
$$

Lemma 4

(*) is stable for $\underline{R}>0, \underline{A}$ and $\hat{\Lambda}$ diagonal if there exists a matrix $\underline{\underline{L}}>\underline{0}$ and a matix $\hat{\hat{O}}>0$ for which the following conditions hold:
(i) $\quad 2 \underline{\Lambda}-(\underline{I}+\underline{L})+X_{0}^{-1}>\underline{0} \Leftrightarrow \underline{\Lambda}>\frac{1}{2}\left(\underline{\left.\underline{I}+\underline{L})-X_{0}^{-1}\right), ~}\right.$
(iii) $\hat{Q}>\underline{G}_{0} \underline{R}^{1 / 2}\left[\underline{I}+\underline{X}_{0}^{-1}\right]^{-1} \underline{R}^{1 / 2} \underline{G}_{0}^{T}$

$$
+\underline{\hat{K} B(\underline{(N-\hat{N}})^{2}(\underline{\underline{R}})^{-1} B^{T} \hat{K} \hat{N}}
$$

where

$$
\underline{\hat{k}}\left(\underline{A}+\underline{H}_{O} C^{T}\right)+\left(\underline{A}+\underline{H}_{O} C^{T}\right)^{T} \underline{\hat{k}}+\hat{Q}=0
$$

Proof of Lemma 4

We have

$$
\left[\begin{array}{l}
\underline{x} \tag{A1}\\
\hat{x}
\end{array}\right]=\left[\begin{array}{cl}
\underline{A} & \underline{B \Lambda G_{0}^{T}} \\
-\underline{H}^{T} & \underline{A}+\underline{H}^{T} C^{T} \\
\underline{B} \hat{\Lambda G}^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]
$$

Let $\quad \underline{e} \equiv \underline{\hat{x}}-\underline{x}$

When ($A 1$) <6>

The matrix $\underset{\underline{A}}{ }$ can be rewritten as

Since \tilde{n}_{0} is a stable matrix, for every $\underline{\underline{Q}}>\underline{0}$ there exists a $\underline{\tilde{K}}>\underline{\underline{0}}$
such that

$$
\begin{equation*}
\tilde{K A}_{0}+\tilde{A}_{\underline{M}}^{\underline{K}}+\tilde{\underline{\Sigma}}=\underline{0} \tag{A5}
\end{equation*}
$$

by Lyapunov Theorem.

(where $\hat{\Omega}>0$ is to bo specified s.t. (AG) holds)
When (AS) $m \quad \tilde{K}=\left[\begin{array}{ll}\underline{K} & \underline{0} \\ \underline{0} & \underline{K}\end{array}\right]$
where $\underline{\underline{K}}>\underline{\underline{O}}$ is the unique solution to the Riccati equation:

$$
\begin{equation*}
\underline{K A}+\underline{A}^{T} \underline{K}-K B B^{-1} \underline{B}^{T} \underline{K}+\underline{Q}=\underline{0} \tag{10}
\end{equation*}
$$

and $\hat{\widehat{K}}>\underline{O}$ is the unique solution to the ryapunov equation:

$$
\begin{equation*}
\hat{\underline{K}}\left(\underline{A}+H_{0} C^{T}\right)+\left(\mathbb{A}+H_{0} C^{T}\right)^{T} \hat{\mathbf{K}}+\hat{\underline{Q}}=\underline{0} \tag{A9}
\end{equation*}
$$

Further, from (A5), we have

$$
\begin{equation*}
\tilde{\underline{\underline{ }}}\left(\tilde{\tilde{A}}_{0}+\delta \underline{\tilde{A}}\right)+\left(\underline{\tilde{A}}_{0}+\delta \underline{\tilde{\tilde{A}}}\right)^{T} \underline{\tilde{\underline{x}}}+\delta \tilde{\underline{\underline{Q}}}=\underline{0} \tag{A10}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \tilde{\underline{Q}} \triangleq \tilde{Q}-\left(\underline{\tilde{K}} \delta \tilde{\tilde{A}}+\delta \tilde{\underline{A}}_{\underline{\tilde{T}} \underline{\tilde{K}})}\right. \tag{All}
\end{equation*}
$$

so from Lyapunov theorem, we know that ($\left.\underline{A}_{0}+\delta \tilde{\tilde{A}}\right)$ is stable if

$$
\begin{equation*}
\delta \tilde{\mathscr{R}}>\underline{0} \tag{A12}
\end{equation*}
$$

Given the choice of $\underline{\tilde{Q}}$ as in (A6) and the corresponding form of $\underline{\tilde{K}}$ as in (A7), we get (with R diagonal)

From Lemma 2, the condition (2.6) is equivalent to:
 where $\quad \underline{x}_{0} \triangleq\left(\underline{B}^{1 / 2}{ }_{-}^{T} Q^{-1} G_{0}^{R^{1 / 2}}\right)$
what remains to be proved is that the conditions in Lemma 4 are sufficient for $\underline{\delta} \tilde{\mathscr{O}}>\underline{0}$. Now, from (A13), we have for any diagonal $\underline{\underline{L}}$

If $L>0$, then the scoond term of (Al7) is positive semidefinite, so if the first term of (A17) is >0, then it will. follow that $\delta \underline{\tilde{g}}>0$. But sufficient conditions for the first term of (Al7) to be $>\underline{\underline{0}}$ are as follows (from Lemma 2):

$$
\begin{align*}
& \left\{\begin{array}{l}
\underline{Q}+\underline{G}_{0}\left(2 \Lambda-\left(\underline{I}+\underline{L}_{1}\right)\right) \underline{R G}_{0}^{T}>\underline{0} \\
\hat{Q}>\underline{G}_{0}(\Lambda-\underline{L}) \underline{R G}_{0}^{T}\left[Q+\underline{G}_{0}\left(2 \Lambda-(\underline{I}+\underline{\underline{L}}) \quad \underline{R G}_{0}^{T}\right]^{-1} \underline{G}_{0} \underline{R}(\Lambda-\underline{I}) \underline{G}_{0}^{T}\right.
\end{array}\right. \tag{A18}
\end{align*}
$$

$$
\begin{aligned}
& \text { and (Al.8) } \Leftrightarrow \underline{\Lambda}>\frac{1}{2}\left((\underline{X}+\underline{L})-\underline{x}_{-0}^{-1}\right) \quad \text { (after applying Lemma 1) } \\
& \text { while (A19) } \Leftrightarrow
\end{aligned}
$$

$$
\begin{align*}
& +\hat{K} B\left(\Lambda-\hat{\Lambda}^{2} \underline{L L R}^{-1} \underline{B}^{12} \hat{\underline{K}}\right. \tag{A21}
\end{align*}
$$

(after applying Lemme 3)

Lemma 5

Let \tilde{A} be a stable matrix, $\underline{\underline{Q}}>\underline{\underline{Q}}$, and $\tilde{K}>\underline{\underline{X}}$ be the unique solution to the Lyapunov equation

$$
\underline{\tilde{K} \tilde{A}}+\underline{\tilde{n}} \underline{\mathrm{~T}} \underline{\underline{K}}+\underline{\tilde{Q}}=\underline{0}
$$

then

$$
\begin{aligned}
& \lambda_{\min }(\tilde{K}) \geq \frac{\lambda_{\min (\underline{Q})}}{\left.2 \max _{\substack{x \neq 0}} \underline{x}(-\tilde{A}) x\right]}
\end{aligned}
$$

Proof

We have

$$
\begin{array}{cc}
\underline{\tilde{K}}(-\tilde{A})+(-\tilde{N})^{T} \underline{K}=\underline{\tilde{Q}} \\
\underline{x}^{T}\left(\underline{\tilde{K}}(-\tilde{A})+(-\tilde{A})^{T} \underline{K}\right) \underline{x}=\underline{x}^{T} \underline{Q x} & \forall x \neq 0, \quad \underline{x}^{T} \underline{x}=1 \\
\underline{x}^{T}\left(\underline{\tilde{K}}(-\tilde{A})+(-\tilde{A})^{T} \tilde{K}\right) x \leq \lambda_{\max }(0) & \forall x \neq 0, \quad x^{T} \underline{x}=1
\end{array}
$$

Now chose $x=\tilde{x} \neq 0$ such that

$$
\underline{\tilde{K} \tilde{x}}=\lambda_{\max }(\tilde{\underline{K}}) \underline{\tilde{x}}, \quad \tilde{x}^{T} \underline{\tilde{x}}=1
$$

Then

$$
2 \lambda_{\max }(\tilde{\tilde{K}})\left[\tilde{\tilde{x}}^{\mathrm{I}}(-\tilde{\mathrm{A}}) \dot{\underline{y}}\right] \leq \lambda_{\max }(\tilde{\mathrm{O}})
$$

Now

$$
\begin{aligned}
& \min _{\underline{x} \neq 0} \quad \underline{x}^{T}(-\tilde{\tilde{A}}) \underline{x} \leq \tilde{x}^{T}(-\tilde{\tilde{A}}) \tilde{x} x \\
& \underline{x}^{T} \underline{x}=1
\end{aligned}
$$

so
or

$$
\lambda_{\max }(\tilde{\mathrm{K}}) \leq \frac{\lambda_{\max }(\tilde{Q})}{2 \min _{\substack{x \neq 0}}\left[\underline{\underline{I}}^{T}(-\tilde{\tilde{A}}) \underline{x}\right]}
$$

similarly, we can write

$$
x^{T}\left(\underline{K}(-\tilde{A})+(-\tilde{A})^{T} \tilde{K}\right) x \geq \lambda_{\min }(\tilde{Q})
$$

and choose ${\underset{x}{*}}^{*} \neq 0, x^{*}{\underset{x}{x}}^{*}=1$ s.t.

$$
\tilde{\mathrm{K}}^{*}=\lambda_{\min }(\underline{\tilde{K}}) \underline{x}^{*}
$$

Then $2 \lambda_{\min }(\underline{\tilde{K}})\left[\underline{x}^{*}(-\tilde{N}) \underline{x}^{*}\right] \geq \lambda_{\min }(\tilde{\underline{g}})$
and

$$
\lambda_{\min }(\tilde{\tilde{K}}) \geq \frac{\lambda_{\min (\underline{\Omega})}}{2 \max _{\substack{x \neq 0}}^{\left.x^{T}(-\tilde{A}) x\right]}}
$$

Lemma 6
rect

$$
\omega_{0} \triangleq \lambda_{\max }\left(\mathrm{N}_{\mathrm{O}}\right) \Delta \lambda_{\max }\left(\mathbb{R}^{\left.-1 / 2_{B^{2}} \mathrm{~K}_{\mathrm{f}} \varrho^{-1} \mathrm{~K}_{\mathrm{f}} \mathrm{ER}^{-1 / 2}\right), ~}\right.
$$

with

$$
\underline{K}_{f}\left(\underline{A}+\underline{H}_{-} o^{T}\right)+\left(\underline{A}+\underline{H}_{0} C^{T}\right)^{T} \underline{E}_{f}+\underline{Q}+\underline{G}_{0} \underline{R G}_{0}^{T}=0
$$

Then

Proof of Leman 6

We have

$$
\begin{aligned}
& \underline{K}\left[-\left(\underset{A}{A}+G_{0}^{T}\right)\right]+\left[-\left(A+B G_{0}^{T}\right)\right]^{T} \underline{K}=\underline{Q}+\underline{G}_{0} \underline{R G}_{0}^{T}
\end{aligned}
$$

so from Lemma 5

$$
\begin{aligned}
& \lambda_{\max }\left(\underline{K}_{f}\right) \leq \frac{\lambda_{\text {max }}\left(\underline{Q}+G_{0} G_{o}^{I}\right)}{2 \min _{\substack{x \neq 0}}\left[\underline{x}^{T}\left(-\left(\underline{A}+H_{0} C^{T}\right)\right) \underline{x}\right]} \\
& \lambda_{\min }(\underline{K}) \geq \frac{\lambda_{\min }\left(\underline{Q}+G_{0} R G_{o}^{T}\right)}{\left.2 \max _{\substack{x \neq 0}}\left[-\left(\underline{A}+B G_{o}^{\mathrm{T}}\right)\right) \underline{x}\right]}
\end{aligned}
$$

and hence

We also have

$$
\begin{aligned}
\omega_{0} & =\lambda_{\max }\left(\underline{R}^{-1 / 2} \underline{B}^{T} \underline{K}_{f} Q^{-1} \underline{K}_{f} \underline{B R}^{-1 / 2}\right) \\
& \leq \lambda_{\max }\left(K_{f} Q^{-1} \underline{K}_{f}\right) \lambda_{\max }\left(\underline{B R}^{-1} \underline{B}^{T}\right) \\
& \leq \lambda_{\max }\left(\underline{K}_{f}^{2}\right) \lambda_{\max }\left(9^{-1}\right) \lambda_{\max }\left(\underline{B R}^{-1} \underline{B}^{T}\right) \\
& \leq\left[\lambda_{\max }\left(\underline{K}_{E}\right)\right]^{2}\left[\lambda_{\min }(\Omega)\right]^{-1} \lambda_{\max }\left(\underline{R}^{-1} \underline{B}^{T} \underline{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence, } \\
& \sqrt{\omega_{0} \leq \lambda_{\max }\left(K_{f}\right) \sqrt{\frac{\lambda_{\max }\left(\mathbb{R}^{-1} B^{T} \underline{B}\right)}{\lambda_{\min }(Q)}}} .
\end{aligned}
$$

Whis and the bound on $\lambda_{\max }\left(\underline{K}_{F}\right)$ establish the temma.

Proof of Proposition 1
If $\hat{\Lambda} \equiv \Lambda$ then by letting $\underline{L}=\alpha \underline{I}, \alpha>0$ the conditions in Lemma 4 becomes
(i) $\quad \Lambda>\frac{1}{2}\left((1+\alpha) \underline{I}-\underline{x}_{0}^{-1}\right)$
(ii) $\quad \hat{\underline{Q}}>{\underset{O}{\mathrm{G}}}^{1 / 2}\left(\underline{I}+\underline{x}_{0}^{-1}\right)^{-1} \underline{R}^{1 / 2} G_{0}$
(iiii) $\quad \hat{\hat{Q}}>\underline{G}_{0}\left\{a \underline{R}+\underline{R}^{1 / 2}(\underline{\Lambda}-\alpha I)\left[2 \Lambda-(1+\alpha) \underline{I}+\underline{X}_{0}^{-1}\right]^{-1}(\Lambda-\alpha I) \underline{R}^{1 / 2} \underline{G}_{0}^{T}\right.$
By choosing \hat{Q} sufficiently large (positive definite) and by letting $\alpha \rightarrow 0$, conditions (ii)' \& (iii)' are always satisfied while condition (i) $\rightarrow \underline{\Lambda}>\frac{1}{2}\left(\underline{I}-{\underset{o}{o}}_{-1}^{\prime}\right)$.

Proof of Proposition 2

Let $\hat{\underline{Q}}{ }^{\wedge} B\left(\underline{Q}+G_{0} B G_{0}^{4}\right)$ where $\beta>0$ is chosen such that condition (ii) of Lemma 4 isi satisfied, i.0.

$$
\begin{equation*}
B\left(Q+G_{0} R G_{0}^{T}\right)=G R^{1 / 2}\left[I+X_{0}^{-1}\right]^{-1} R^{1 / 2} G_{o}^{T} \tag{A23}
\end{equation*}
$$

Then $\hat{K}=\mathrm{BK}_{\mathrm{E}}>\underline{0}$
where ${\underset{K}{f}}$ is the unique Lyapunov solution of

$$
\begin{equation*}
\underline{K}_{F}\left(A+\underline{H}_{\sigma} C^{T}\right)+\left(A+\underline{H}_{0} C^{T}\right)^{T} \underline{K}_{f}+Q+\underline{G}_{0} \underline{R G}_{0}^{T}=\underline{O} \tag{A24}
\end{equation*}
$$

Let $\pm m \alpha, \alpha>0$. Condition (iiii) in Lemma 4 then becomes

$$
\begin{align*}
& +\underline{G}_{0}\left((\beta-\alpha) R-R^{1 / 2}(\Lambda-\alpha I)\left[2 \Lambda-(1+\alpha) I+\underline{X}_{0}^{-1}\right)^{-1}(\Lambda-\alpha I) \underline{R}^{1 / 2}\right)_{G_{0}^{T}}>\underline{O} \tag{A25}
\end{align*}
$$

A sufficient conditions for (A25) to hold is therefore:

$$
\left\{\begin{array}{l}
\underline{Q}>\frac{B}{\alpha} K_{f} \underline{B}(\Lambda-\hat{\Lambda})^{2} \underline{\underline{R}}^{-1} \underline{B}^{\prime} \underline{k}_{f} \tag{A26}\\
(\beta-\alpha) \underline{I}-(\underline{\Lambda}-\alpha I)\left[2 \underline{\Lambda}-(1+\alpha) \underline{I}+\underline{x}_{0}^{-1}\right]^{-1}(\underline{(\Lambda-\alpha I)>0}
\end{array}\right.
$$

The condition $g>0$ and Lemma 1 can now be used to show that
(A26) \Leftrightarrow

$$
\left(\underline{\underline{R}}^{-1 / 2} \underline{B}^{T} \underline{K}_{F} \underline{Q}^{-1} \underline{K}_{F} \underline{B R}^{-1 / 2}\right)^{-1}>\frac{B}{\alpha}(\underline{\Lambda}-\hat{\hat{\Lambda}})^{2}
$$

or

$$
\begin{equation*}
\left(\underline{W}_{0}\right)^{-1}>\frac{\beta}{\alpha}(\Lambda-\hat{\Lambda})^{2} \tag{A29}
\end{equation*}
$$

A sufficient condition for (A29) is

$$
\begin{equation*}
\frac{1}{\omega_{0}} I>\frac{B}{\alpha}(\Lambda-\hat{\Lambda})^{2} \tag{A30}
\end{equation*}
$$

where $\omega_{0} \lambda_{\text {max }}\left(\omega_{0}\right)$. If we now take

$$
\begin{equation*}
\beta=\sqrt[4]{\omega_{0}}, a=1 / \beta \tag{AMI}
\end{equation*}
$$

When (A30) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{\omega_{0}}} \underline{x}>(\hat{\Lambda}-\hat{\Lambda})^{2} \tag{n32}
\end{equation*}
$$

But from Lama σ,
so if this ratio tends to infinity then $(\Lambda-\underline{\Lambda})^{2}$ may become arbitrarily large.

Moreover, from (A31), $\alpha \rightarrow 0$ and $\beta \rightarrow \infty$, so the conditions (A23)
and (A27) are satisfied for all \underline{L} st. $\left[2 \underline{-}(1+\alpha) \underline{I}+\underline{x}_{o}^{-1}\right]^{-1}$ is finite. The only remaining condition of Lemma 4 is Condition (i), which tends to:

$$
\Lambda>\frac{1}{2}\left((1+\alpha) \underline{I}-x_{0}^{-1}\right) \longrightarrow \Lambda>\frac{1}{2}\left(I-\underline{x}_{0}^{-1}\right)
$$

Proof of Proponition 3

From the proof of proposition 2, the following conditions axa gufficiont for ($*$) to bo stable:

```
\((a) \quad \Lambda>\frac{1}{2}\left((1+\alpha) x-x_{0}^{-1}\right)\)
(b) \({\underset{W}{W}}^{-1}>\frac{B}{\alpha}(\Lambda-\hat{\Lambda})^{2}\)
(c) \((\beta-\alpha) \underline{I}>(\Lambda-\alpha I)\left[2 \Lambda-(1+\alpha) I+x_{0}^{-1}\right]^{-1}(\underline{L}-\alpha I)\)
(d) \(\beta\left(Q+\underline{G}_{0} \mathcal{G G}_{0}^{T}\right)>G_{O} \underline{R}^{1 / 2}\left[I+X_{0}^{-1}\right]^{-1} \underline{R}^{1 / 2} \underline{G}_{0}^{T}\)
```

To simplify tho proof consider firgt the case $\Lambda=\lambda I, \gg 0$, and $\hat{\Lambda}=I$. If we choose $\alpha=\lambda$, then conditions (a) (c) become
(a) $\lambda \underline{I}>\left(\underline{I}-x_{0}^{-1}\right)$
(b) $\quad W_{0}^{-1}>\frac{B(\lambda-1)^{2}}{\lambda} I$
(c) $\quad \beta>\lambda$
(840)

Sufficdent conditions for: (a)'-(b)' to hold are;

$$
\begin{array}{ll}
\lambda>\left(1,-\frac{1}{x_{0}}\right) & \text { where } x_{0} \triangleq \max \lambda\left(x_{0}\right) \\
\omega_{0}<\frac{\lambda}{\beta(\lambda-1)^{2}} & \text { where } \omega_{0} \triangleq \max \lambda\left(W_{0}\right) \tag{M42}
\end{array}
$$

To find the apper bound λ_{+}of given $(A 40),(A 41),(A 42)$ and (A37), set

$$
\begin{equation*}
\beta=\lambda_{+} \tag{A13}
\end{equation*}
$$

Then (A42) yxelda

$$
\begin{equation*}
\omega_{0}=\frac{1}{\left(\lambda_{+}-1\right)^{2}} \tag{A44}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{+}+1+\frac{1}{\sqrt{\omega}_{0}}>1 \tag{A45}
\end{equation*}
$$

We ceill need to check that (A37) is satisfiod, i.e.

$$
\begin{equation*}
\lambda_{+}\left(Q+\underline{G}_{0} \mathrm{RG}_{0}^{\mathrm{P}}\right) \geqslant \underline{G}_{0}^{R^{1 / 2}}\left[I+\underline{x}_{0}^{-1}\right)^{-1} \underline{S}^{1 / 2} G_{0}^{T} \tag{A46}
\end{equation*}
$$

It can be shown, abbeit with some amount of algebraic manipulations by applying Lemma 1 and 3, that a sufficient condition for (A46) is:

$$
\begin{equation*}
\lambda_{+}>\frac{x_{0}^{2}}{\left(1+x_{0}\right)^{2}} \tag{A47}
\end{equation*}
$$

Since $\left(\frac{x_{0}}{\left(1+x_{0}\right)}\right)^{2}<1$ and $\lambda_{+}>1, \quad($ M47) is satisfied.
To find a lower bound $\lambda_{\text {_ }}$ of λ, we first find the lower bound λ_{1}, given by equation (A42). We have

$$
\begin{equation*}
\omega_{0}=\frac{\lambda_{-}^{\prime}}{\lambda_{4}\left(\lambda_{-}^{\prime}-1\right)^{2}} \tag{A48}
\end{equation*}
$$

It can be shown, after some algobraic manipulation, thot $\lambda_{-}^{\prime}=1 / \lambda_{+}$(A49).

Since λ must also satisfies the lower bound given by (AA1), we therefore have

$$
\begin{equation*}
\lambda_{\ldots} \triangleq \max \left\{\left(1-\frac{1}{x_{0}}\right), \lambda_{-}^{\prime}\right\} \tag{A50}
\end{equation*}
$$

?g have thus shown that $(*)$ is stable for all $\Lambda=\lambda I$ (and $\hat{\Lambda} \equiv I$) such that

$$
\begin{equation*}
\lambda_{-}<\lambda<\lambda_{+} \tag{ASl}
\end{equation*}
$$

where λ_{+}is defined by (A45) and $\lambda_{\text {.. }}$ by (A50). The generalization to the case

$$
\begin{equation*}
\lambda_{-} I<\Lambda<\lambda_{+} I \tag{AS}
\end{equation*}
$$

for general diagonal Λ is obtained by replacing choice of $\underline{L}=\alpha I$ by a general $\underline{L}>\underline{0}$ as provided by Lemma 4. We shall omit the details of the proof of this as it is straightforward (albeit tedious).

Proof of Proposition 4

Consider the Kalman filter Riccati equation:

$$
\begin{align*}
& \left.\underline{\underline{A}}+\underline{H}_{o} C^{T}\right)^{T}+\left(\underline{A}+\underline{H}_{\sigma} C^{T}\right) \sum+\sum \underline{C} \underline{\theta}^{-1} \underline{C}^{T} \underline{L}+\Phi=\underline{0} \tag{A53}\\
& < \\
& \left.\left(\underline{A}+\underline{H}_{\sigma^{2}}\right)^{T} \underline{\Sigma}^{-1}+\underline{\Sigma}^{-1} \underline{(A}+\underline{H}_{o} C^{T}\right)+\underline{C} \underline{Q}^{-1} \underline{C}^{T}+\underline{\Sigma}^{-1} \Phi \underline{\Sigma}^{-1}=\underline{0} \tag{A54}
\end{align*}
$$

If we let $\hat{g} \triangleq \beta\left(\underline{C}^{-1} \underline{C}^{T}+\underline{\Sigma}^{-1} \Phi \underline{\Sigma}^{-1}\right.$) in Lemma 4 (such that condition (iii) holds)
then

$$
\begin{equation*}
\underline{K}=\beta \underline{K}^{-1} \tag{ASS}
\end{equation*}
$$

and Condition (iii) in Lemma 4 becomes

Whare, by letting $\mathrm{r}_{3} \cdots \underset{\neq z}{ }, x>0$

$$
\begin{align*}
& M^{\Lambda} \Lambda \alpha I+\left(\Lambda-(X I)\left[2 \Lambda-(1+\alpha) I+x_{0}^{m 1}\right]^{-1}(\Lambda-\alpha I) \quad 0\right. \tag{A57}\\
& \text { IE } \Phi^{\wedge} \Phi_{1}+\phi_{2} B: B^{\prime \prime} \tag{A58}
\end{align*}
$$

Then (A56) 《a>

$$
\begin{align*}
& \left.\beta \sum^{-1} \underline{B}\left(\phi_{2} \underline{E}-\frac{\beta}{\alpha}(\underline{\Lambda}-\hat{\Lambda})^{2} \underline{R}^{-1}\right) \underline{B}^{\mathrm{T}} \Gamma^{-1}>0 \Leftrightarrow \alpha+0\right) \tag{A59}
\end{align*}
$$

If we take $\left(\Leftrightarrow=1 / \beta\right.$, and let $\phi_{2}+\infty, \beta \rightarrow \infty$ in such a way that $\phi_{2} / \beta^{2} \Rightarrow \infty$, then in the uimit (A59) is satisfied for all $(\Lambda-\hat{\Lambda})^{2}$ and $\underline{\Lambda}$ finite and Condition (1.1) of Lemma (4) tends to: $\Lambda>\frac{1}{2}\left(\underline{I}-\underline{x}_{0}^{-1}\right)$.

proof of Proposition 5

By Lyapunov theorem, the dynamic system

$$
\dot{\tilde{X}}=\tilde{A}(t) \mathbb{X}(t), \quad t \in[0, \infty), \tilde{X}(0) \text { given, finite }
$$

is stable $(\tilde{\tilde{x}}(\mathrm{t}) \rightarrow 0$ ass $\mathrm{t}+\infty)$ if there exists a positive function s.t.
a) $\quad \mathrm{v}(\tilde{\tilde{X}})>0 \quad \hat{X} \neq 0$
(A61)
2) $\frac{d v}{d t}(\mathbb{G}(t))=0$
$t \in[0, \infty)$ and $\tilde{x}(t)$ satisfying (A60)
(A62)

If we now consider the function
$\eta:\left[\begin{array}{l}\underline{x} \\ \underline{Q}\end{array}\right]=\underset{\sim}{x} \rightarrow \underset{\sim}{\underline{K}} \tilde{x} \quad$ where $\underset{\sim}{\underline{X}}$ is the tyapunov matrix
as defined in (A5).
then
(1) $n>0 \quad \underline{\tilde{x}} \neq 0 \quad$ since $\underline{\tilde{K}}>\underline{0}$
and
(2) $\dot{\eta}=\dot{\dot{x}}^{T} \underset{\underline{x}}{\underline{x}}+\underline{\tilde{x}}^{\eta} \underline{\tilde{\underline{K}}} \underline{\tilde{x}}$

$$
=-\tilde{x}^{T} S \tilde{\theta} \tilde{\underline{x}} \quad(\text { from }(A 12))
$$

$$
(A 65)
$$

$$
<0 \quad x \neq 0 \quad \text { since } \delta \tilde{\sim} \text { is guaranteed to be }>0
$$ in each of the propositions 2 to 5, according to Lemma 4 .

Hence, η satisfies the stability theorem.

Proposition 5 is proved.

$$
\begin{aligned}
& =\underline{x}^{T}\left(\underline{A}^{T} \underset{K}{\underline{K}}+\underset{\sim}{\tilde{K}}\right) \tilde{x} \quad \text { (where } \tilde{A}=\tilde{A}_{0}+\delta \tilde{A} \quad \text { as clefined in } \\
& \text { equation (A4)) }
\end{aligned}
$$

APDENDIX C

SOME INVESTIGATIONS
OF HYBRID SXSTEMS
by

Alex Kostovetsky

Subuitted to the Department of Mechanical Engineering on May 11,1979 in partial. fulfillment of the roquirements for the Degree of Master of Science.

ABSTRACI

Whe purpuze of this thegis was to investigate some inherent properties of hybrid systems. These systems include both continuous in time and discrete parts and have a particular importance in design and implementation of various digital control algorithms. In particular, problems of hybrid approximation for continuous "nominal" system and robustness of hybrid systems are studied.

The robustness problem for general control systems has been studied by M. Safonov but his results cannot be applied directly to hybrid systemi in order to determine a critical value of the sampling interval which assures the system robustness. The probiem is investigated in the thesis as well.

The practical three-dimensional control systom is shown in order to illustrate tho general relationships obtained for hybrid systems.

Thesis Supervisor: Professor Gunter Stein, Department of Electrical Engineering and Computer science

ACKNOWLEDGMENTS

I am very grateful to Professor Gunter Stein for the constant encouragement, moral tupport and guidance he offered me during various stages of this thesis.

TABLE OP CONTENTS

Abstract i
Acknowledgments $1 i$
Table of Contenta $1 i 1$
List of Figures iv
Introduction 1
SECIION 1 - Hybrid Systems 3
SECTION 2 - Hybrid Operator Representation 7
SECTION 3 - Norm Inequalities for Hybrid Operators 13
SECTION 4 - Hybrid Approximation of Continuous Operators 19
Perfectly Matched Hold 21
Perfectly Matched Sampler 31
The General Case 35
SECTION 5 - Robustness of Hybrid System 40
SECTION 6 - A Hybrid Control System Example 45
List of Used Symbols and Their Dimensions 56
Conclusions 58
Directions for Further Investigations 58
Appendix 60
Figure No. Pitle Page
1 Eybria System 3
2 Sampling operation 4
3 Sampling 5
i Hold Oporation 6
5 Operator $G\{t, \theta)$ 967
Example of Sampling and Hold 10
Exponentially Weighted Sampling 10
Example of Multivaxiable Sampling 11
Example of Multivariable Hold 12
Norm Bounds for Hybrid Operator 18
Optimization Square 23
12 The "Triangle Strip" 27
13 Optimal Sampler 28
14 Optimal Hold 28
15
Simplified Sampler 3016
Sampler of Reduced Dimension 30
17 Optimal Hybrid Approximation 38
General Case
18 Feedhack Loop with Perturbations 40
19 Control System 41
20 Control System 42
21 Control System Example 45
22 Dependence $\sigma^{2}(\omega)$ 47
23 Feedback Control System with Hybrid Operator 49
24
Hold Device to Approximate Closed Loop System 51

INTRODUCTION

The subject of this thesis is investigation of some properties of hybrid systems. Such systoms include both continuous (plant) and discrete (digital computer) parts. Inherent properties of hybrid structures are of particular interest when designing digital and analog devices to be used in closed-loop systems (control systems, for instance).

The fixst section provides a general description of hybrid systems, their components and introduces some notations.

In the second section a continuous time representation is shown for the hybrid system. Examples given in the section explain general features of a hybrid structure.

The third section of the thesis deals with properties of the induced norm of the hybrid operator. Both lower and upper bounds for that norm are derived. Their dependence on the sampling averaging interval is clarified as well as their impulse-1ike behavior.

A hybrid approximation of continuous operators is considered in the fourth section. An optimal approximation criterion is discussed and inter.. preted. The optimal coefficients of the hybrid approximation are derived for a sufficiently large class of linear continuous operators. Possible structural simplifications both in sampler and hold circuits are discusaed and the optimal approximation for these situations are derived. Some examples are shown in the end of the section.

The fifth section of the thesis deals with the robustness problem for hybrid systems. This problem has been solved in general for various control systems but either for continuous or for discrete case. Those results are used to develop an appropriate sufficient stabilicy conditions for hybrid
gystems, The approach suggestod for thif purpose provides the value of sampling rate which preserves stability of a nominal continuous time system. The last aection describes an exanple of the concepts and methods developed in previous sections. A three-dimensional single input-single output closed loop control system is considered. A sampling rate which assures stablility of the corresponded hybrid system is found by the suggested mathod. The optimal approximation hybrid systam is constructed and compared with alternate hybrid system. To compare their performance when subject to noise, both systens have baen simulated on a computer. Results of the simulation are discussed.

SECTION 1

IIXBRID SYEMEMS

Consider two general 1 inoar operators

$$
\begin{align*}
& v(t)=\int_{0}^{t} G(t, \theta) u(\theta) d \theta \tag{1.1}\\
& v_{k}(t)=\sum_{l=1}^{k} G_{k l}(t) \xi_{l} \tag{1,2}
\end{align*}
$$

where $u(0), v(t),{ }^{5} \ell^{\prime} v_{k}(t)$ are vectors of dimensions M, N, L, N, respectively, $G(t, \theta)$ is an NxM matrix and $G_{k \ell}(t)$ is an LxM matrix.

The operator (1,1) represents a physical continuous time system, while (1.2) is a bystem which includes both digital and analog components. Systems of this type will be called "hybria systems". Usually, they have the following structure.

Fig. 1 Hybrid system

As seen in the Fig. 1, both input and output of a hybrid system are continous time signals. Such systems may be connected directly with various continuous time plants for different purposes.

A hybrid systom consiate of threc partis: mamplex, computex and hold circuit.
a) Samplor is a device which converts analog signals to a mequence of numbers (vector-valued) gotting to a computer.

Fig. 2. Sampling operation

The input signal $n(\theta)$ is averaged in some way over time interval T so that each τ seconds a new value of ξ_{ρ} gets to the computer. This operation over a single time interval from $(\ell-1)$ to ℓt may be representod as

$$
\begin{equation*}
\xi_{\ell}=\int_{(\ell-1) \tau}^{\ell \tau} f_{\ell}(\theta) u(\theta) d \theta \tag{1.3}
\end{equation*}
$$

where $f_{\ell}(\theta)$ is a cortain matrix valued function, $u(\theta)$ and ξ_{ℓ} are vectors.
We define $f_{\ell}(\theta)$ so that
$f_{\ell}(\theta)=0$ if $\theta(\tau(\ell-1), \tau \ell)$.
b) Digital Computer. This block performs transformation of input
sequence $\left\{\xi_{\ell}\right\}, \ell=1,2, \ldots$ into output sequence $\left\{n_{K}\right\}, K=0,1 \ldots$. In case of linear realizable system it may be written as

Fig. 3. Sampling

$$
\begin{equation*}
\eta_{k}=\sum_{\ell=1}^{k} D_{k \ell} \xi_{\ell} \tag{1.4}
\end{equation*}
$$

where ξ_{l} is an L-vector, η_{k} is an L_{1}-vector, and $D_{k l}$ is an $L_{1} x L$ matrix sequence.
c) Hold circuit. The input of this device is the sequence $\left\{\eta_{k}\right\}$ which can be multiplied by some continuous function $g_{k}(t)$ over each interval $[k T,(k+1) \tau)$ to produce the ultimate output of the hybrid system $v_{k}(t)$.

$$
v_{k}(t)=g_{k}(t) \cdot \eta_{k}
$$

where $g_{k}(t)$ is a $\mathrm{NXL}_{\mathrm{I}}$ matrix and is also defined to be zero outside the interval ($k \tau,(k+1) \tau)$.

Finally, the overall hybrid system which transforms $u(\theta)$ to $v_{k}(t)$ may be presented in the form

$$
\begin{equation*}
v_{k}(t)=g_{k}(t) \sum_{\ell=1}^{k} p_{k v^{\prime}} E_{\ell^{\prime}} k=0,1 \ldots \tag{1.5}
\end{equation*}
$$

whare

$$
\xi_{\ell}=\int_{(l=1) \tau}^{\ell \tau} f_{\ell}(\hat{\beta}) u(\theta) d \theta
$$

Fig. 4. Hold Operation.

SECTION 2

Hybrid Operator Representatior

In this section we show how the hybrid system may be presented in a continuous time operator form. This representation allows us to investigate some specific norm properties of general hybrid operators and also is helpful in applying methods of continuous time systems to hybrid controllers.

The transformation (1.5) may be written in a continuous time form

$$
\begin{equation*}
v(t)=\int_{0}^{t} G(t, \theta) u(\theta) d \theta \tag{2.1}
\end{equation*}
$$

if we introduce the function

$$
\begin{equation*}
G(t, \theta)=g_{k}(t) \sum_{\ell=1}^{k} \sum_{k \ell^{\prime} f^{\prime}}(\theta) \tag{2.2}
\end{equation*}
$$

and let $k=\left[\frac{t}{\tau}\right]$ be in the integer paxt of $\frac{t}{\tau}$. This is verified by using expression (2.2) in the formula (2.1). We have

$$
v(t)=\int_{0}^{t} g_{k}(k) \sum_{\ell=1}^{k} D_{k \ell} f_{\ell}(\theta) u(\theta) d \theta=
$$

$$
=g_{k}(t) \sum_{\ell=1}^{k} \sum_{k \ell} \int_{0}^{k T} f_{\ell}(\theta) u(\theta) d \theta=
$$

$$
\begin{equation*}
=g_{k}(t) \sum_{\ell=1}^{k} p_{k l} \int_{(\ell-1) \tau}^{\ell \tau} f_{\ell}(\theta) u(\theta) d \theta= \tag{2.3}
\end{equation*}
$$

$$
=g_{k}(t) \sum_{l=1}^{k} D_{k l} \xi_{l}=v_{k}(t), k=0,1 \ldots
$$

The result bhows that any hybrid operator (1.5) may be presented in a form (2.1) with a weighting function(2.2). Also, one can see from the expression (2.2) that the hybrid operator is inherently factorizad into two factors: one depends only on t, the other only on θ.

Usually, shifted vorsions of the same function are used both in sampling and hold devices, i.e.

$$
\begin{align*}
& g_{m}(t)=g_{0}(t-m \tau) \tag{2.4}\\
& f_{\ell}(\theta)=f_{0}(\theta-\ell \tau)
\end{align*}
$$

where m and l are arbitrory integers, and $g_{0}(\lambda)$ and $f_{0}(\lambda)$ are given sample and hold functions.

Example.
Consider the following example of a scalar hybrid system

Sampler: $\quad f_{0}(\lambda)= \begin{cases}\frac{1}{E} & -\varepsilon<\lambda \leq 0 \\ 0 & \text { otherwise }\end{cases}$
Computer: $\quad D_{k \ell}=\mu^{k-\ell}$

Hold: $\quad g_{0}(\lambda)=1 . \quad 0 \leq \lambda<\tau$

Formula (1.5) yields for $G(t, \theta)$:
$G(t, \theta)=\sum_{i=1}^{k} \mu^{k-\ell_{\ell}}$
whore

$$
\xi_{0}=\frac{1}{\varepsilon} \int_{-\varepsilon}^{0} u(0) d 0
$$

Fig. 5. Operator Get, 0)
Fig. 5 shows a structure of the function $G(t, \theta)$. In this particular case functions $g_{0}(\lambda)$ and $f_{0}(\lambda)$ are shown in Fig. G. They represent so called "zero order hold" and approximate "impulsive sampling", respectively [i] . Another possible example of a sampling function is

$$
\begin{equation*}
f_{0}(\lambda)=\frac{1}{c} o^{-\alpha \lambda} \tag{2.7}
\end{equation*}
$$

where
$c=\frac{1}{\alpha}\left(e^{\alpha T}-1\right)$

Fig. 6. Example of Sampling and Hold Functions

This is called exponentially weighted sampling and also approximates impulsive sampling for α sufficiently large.

Fig. 7. Exponentially Weighted Sampling

In more general situation functions $f_{0}(\lambda)$ and $g_{0}(\lambda)$ are not necessarily scalars. For example, the samples might be

$$
f_{0}(\lambda)=\binom{f_{10}(\lambda)}{f_{20}(\lambda)}
$$

where $E_{10}(\lambda)$ and $f_{20}(\lambda)$ are scalar functions shown on Fig. 8 .

Fig. B. Example of Multivariable Sampling

$$
\begin{align*}
& f_{1,0}(\lambda)= \begin{cases}1 & -\tau<\lambda \leq 0 \\
0 & \text { otherwi.se }\end{cases} \\
& f_{20}(\lambda)= \begin{cases}B\left(0+\frac{\tau}{2}\right) & -\tau<\lambda \leq 0 \\
0 & \text { otherwise }\end{cases} \tag{2.8}
\end{align*}
$$

In this case f_{10} samples the average value and samples the average slopu of the input function. Similarly, the hold circuit may have the form

$$
g_{0}(\lambda)=\left(g_{1,0}(\lambda), g_{20}(\lambda)\right)
$$

where $g_{10}(\lambda)$ and $g_{20}(\lambda)$ are, for example

$$
\begin{aligned}
& g_{10}(\lambda)= \begin{cases}1, & 0 \leq \lambda<\tau \\
0, & \text { otherwise }\end{cases} \\
& g_{20}(\lambda)= \begin{cases}\gamma \lambda, & 0 \leq \lambda<\tau \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Fig. 9. Examplo of Multivariable Hold

Here, g_{10} is a zero ordre hold and g_{20} is an ideal first order hold. The computer can then command both the level and the slope of the output function.

SECTION 3

Norm Inequalities for Hybrid Operators

NCW we establish upper and lower bounds for inducer norm of the hybrid operator.

A noxm of operator G is defined as [2]

$$
\begin{equation*}
\left|\mid G \|=\sup _{u} \frac{\| G u| |}{\|u\|}\right. \tag{3.1}
\end{equation*}
$$

where $||u||$ is a Euclidean norm of a vector function

$$
\begin{equation*}
\|u\|^{2}=\int_{0}^{\infty} u^{T}(\theta) u(\theta) d \theta \tag{3,2}
\end{equation*}
$$

In the case of our hybrid operator we have

$$
\begin{equation*}
(G u)(t)=g_{k}(t) \sum_{l=1}^{k} 0_{k l} \xi_{l} \tag{3.3}
\end{equation*}
$$

where

$$
\xi_{\ell}=\int_{(l-1) \tau}^{\ell \tau} f_{\ell}(\theta) u(\theta) d \theta
$$

with $g_{k}(t), D_{k \ell}, f_{\ell}(\theta)$ are matrices and ξ_{θ} is $L, u(\theta)$ is M dimensional vectors.
For such operators we can write

$$
\begin{align*}
\|\mathrm{G}\|^{2} & =\sup _{u} \frac{\|\mathrm{Gu}\|^{2}}{\|\left. u\right|^{2}}= \tag{3.4}\\
& =\sup _{u} \frac{1}{\|\left. u\right|^{2}} \int_{u}^{m}(G u)^{T h}(G u) d t
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{\infty}(G u)^{T}(G u) d t=\sum_{k=0}^{\infty} \int_{k T}^{(k+1) \tau}(G u)^{T}(G u) d t= \\
& =\sum_{k=0}^{\infty} \int_{k \tau}^{(k+1) T} \operatorname{tr}\left[g_{k}(t) \sum_{\ell=1}^{k} D_{k \ell^{\xi} \xi_{\ell}} \quad \cdot \sum_{m=1}^{k} \xi_{m}^{T} D_{k m^{T}}^{T} g_{k}^{T}(t)\right] d t \tag{3.5}
\end{align*}
$$

Define

$$
\begin{equation*}
\Delta_{k} \Delta \int_{k \tau}^{(k+1) \tau} g_{k}^{m}(t) g_{k}(t) d t \tag{3.6}
\end{equation*}
$$

Then,

$$
\begin{align*}
\|G u\|^{2} & =\sum_{k=0}^{\infty} \operatorname{tr}\left[\Delta_{k} \sum_{l=1}^{k} \sum_{m=1}^{k} D_{k m} \xi_{m} \xi_{l}^{T} D_{k l}^{T} \leq\right. \\
& \leq \sum_{k=0}^{\infty} \operatorname{tr}\left[\Delta_{k}\right] \cdot \sum_{l=1}^{k} \sum_{m=1}^{k} \operatorname{tr}\left[D_{k m} \xi_{m} \xi_{l}^{T} D_{k l}^{T}\right] \leq \\
& \leq \sum_{k=0}^{\infty} \operatorname{tr}\left[\Delta_{k}\right] \cdot \sum_{l=1}^{k} \sum_{m=1}^{k} \operatorname{tr}\left[D_{k \ell}^{T} D_{k m}\right] \cdot \operatorname{tr}\left[\xi_{m} \xi_{l}^{T}\right] \tag{3.7}
\end{align*}
$$

Due to properties of a trace, we have

$$
\begin{equation*}
\left(\operatorname{tr}\left[\xi_{\mathrm{m}} \xi_{\ell}^{\mathrm{T}}\right]\right)^{2} \leq\left\|\xi_{\mathrm{m}}\right\|^{2} \cdot\left\|\xi_{\ell}\right\|^{2} \tag{3,8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left[\xi_{\mathrm{m}} \xi_{\ell}^{\mathrm{T}}\right] \leq\left\|\xi_{\mathrm{m}}\right\| \cdot\left\|\xi_{\ell}\right\| \tag{3.9}
\end{equation*}
$$

So,
properties of matrix traces used in (3.7)-(3.10) are glven in Appendix II. Quantities $t r\left[\Delta_{k}\right]$ and $\operatorname{tr}\left[D_{k \ell}^{T} D_{k m}\right]$ are independent of $u(\theta)$. Further in this section we will restrict ourselves to the sampling function

$$
f_{0}(\lambda)= \begin{cases}\frac{1}{\varepsilon} \rho & -\varepsilon \leq \lambda<0 \tag{3,11}\\ 0 & \text { otherwisa }\end{cases}
$$

where ρ ig a congtant LxM matrix in order to obtain n simple result, However, as $\varepsilon \rightarrow 0$ the result is still true no matter what the shape of the function $f_{0}(\lambda)$ is inside the interral $[-\varepsilon, 0)$.

Under these assumptions, we get

$$
\begin{aligned}
& \sup _{u} \frac{\left\|\xi_{l}\right\|^{2}}{\|u\|^{2}}=\sup _{u} \frac{1}{\|u\|^{2}}\left\|\int_{\tau(l-1)}^{\tau \ell} f_{0}(\theta-\tau \ell) u(\theta) d\right\|^{2}= \\
& =\sup _{u} \frac{1}{\|u\|^{2}} \sum_{i=1}^{L}\left(\int_{\tau-E}^{T l} \sum_{j=1}^{M} \frac{1}{\varepsilon} \rho_{i, j} u_{j}(\theta) d \theta\right)^{2}= \\
& =\sup _{u} \frac{1}{\|u\|} \sum_{i=1}^{L}\left(\frac{1}{\varepsilon} \sum_{j=1}^{M} \rho_{i j} \int_{\tau \ell-E}^{\tau \ell} u_{j}(\theta) d \theta\right)^{2} \leq \\
& \leq \sup _{u} \frac{1}{\|u\|^{2}} \cdot \frac{M}{E} \sum_{i=1}^{L} \sum_{j=1}^{M} \rho_{i j}^{2}\left(\int_{\tau \ell-E}^{\tau \ell} u_{j}(\theta) d \theta\right)^{2} \leq
\end{aligned}
$$

$$
\begin{align*}
& \leq \operatorname{mup}_{u} \frac{1}{\|u\|^{2}} \cdot \frac{M}{e^{2}} \cdot \sum_{i=1}^{L} \sum_{j=1}^{M} \rho_{i j}^{2} \int_{i \ell-\varepsilon}^{T \ell} u_{j}^{2}(\theta) d \theta= \\
& =\frac{x^{2} u M}{\varepsilon} \sup _{u} \frac{1}{\|u\|} \sum_{j=1}^{M} \int_{T \ell-\varepsilon}^{T \ell} u_{j}^{2}(\theta) d \theta \tag{3.12}
\end{align*}
$$

whana $x \stackrel{\Delta}{\Delta} \max _{i}^{\max } \rho_{i, j}$,
The exprossion (3.12) may be simpififod beoause

$$
\begin{align*}
& \sum_{j=1}^{M} \int_{\tau \ell-E}^{\tau \ell} u_{j}^{2}(\theta) d \theta=\sum_{j=1}^{M} \int_{-E}^{0} u_{j}^{2}(\theta-\tau l) d \theta= \\
& \quad=\int_{-E}^{0} u^{T}(\theta-\tau \ell) u(\theta-\tau l) d \theta \tag{3.13}
\end{align*}
$$

Then,

$$
\begin{equation*}
\sup \frac{\int_{u}^{0} u^{T^{T^{2}}}(\theta-T h) u(\theta-\tau h) d \theta}{\int_{0}^{\infty} u^{T}(\theta) u(\theta) d(\theta)}=1 \tag{3.14}
\end{equation*}
$$

for $l=1,2, \ldots$. Therefore, for the hybrid operator norm we have from (3.10)

$$
\begin{equation*}
\|G\|^{2} \leq \sum_{k=0}^{\infty} \operatorname{tr}\left[\Delta_{k}\right] \cdot \sum_{\ell=1}^{k} \sum_{m=1}^{k} \operatorname{tr}_{m}\left[D_{\left.k l^{\prime} D_{k m}\right]}^{T} \frac{r^{2} L M}{\varepsilon} \leq \frac{A_{1}^{2}}{\varepsilon}\right. \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\sigma\| \leq \frac{A_{1}}{\sqrt{\varepsilon}} \tag{3,16}
\end{equation*}
$$

We nota that

$$
A_{1}=\sum_{k=0}^{\infty} \operatorname{tr}\left[\Delta_{k}\right] \sum_{\ell=1}^{k} \sum_{m=1}^{k} \operatorname{tr}\left[D_{k \ell}^{T} D_{k m}\right]
$$

is not necessarily finite. One could conceive sequences Δ_{k} and $D_{k \ell}$ so that the upper bound of the hybrid operator is infinite

In order to obtain a lower bound for the induced norm of the hybrid operator we nay select any particular input $u(\theta)$ and consider the corresponding value of

$$
\frac{\|G u\|}{\|u\|}
$$

as a lower bound of the operator norm.

We select
$u(\theta)= \begin{cases}\beta & \tau-\varepsilon \leq \theta<\tau \\ 0, & \text { otherwise }\end{cases}$
where 8 is a constant M-vector.
Then, for (Gu) (t) we obtain
$(G u)(t)=g_{k}(t) \sum_{\ell=1}^{k} D_{k \ell} \xi_{l}$
wherc

$$
\xi_{\ell}=\int_{\tau \ell-\varepsilon}^{\tau \ell} f_{\ell}(\theta) u(\theta) d \theta= \begin{cases}\rho \beta, \quad \ell=1 \\ 0, & \text { otherwise }\end{cases}
$$

and therefore,

$$
\begin{align*}
& (G u)(t)=\left[g_{k}(t) \sum_{\ell=1}^{k} p_{k 2}\right]^{\prime} \rho \beta=g_{k}(t) D_{k 0} \rho \beta \tag{3.18}\\
& \|G u\|^{2}=\sum_{k=0}^{\infty} t x\left[\Delta_{k}\right] \cdot t x\left[D_{k 0}^{T} D_{k 0}\right] \cdot\|\rho \beta\|^{2} \tag{3.19}\\
& \|u\|^{2}=\int_{0}^{\infty} u^{T}(\theta) u(\theta) d \theta=\varepsilon\|\beta\|^{2} \tag{3.20}
\end{align*}
$$

Then,

$$
\begin{equation*}
\frac{\|G u\|^{2}}{\|u\|^{2}}=\frac{A_{2}^{2}}{\varepsilon}, \quad\|G\| \geq \frac{A_{2}}{\sqrt{\varepsilon}} \tag{3.21}
\end{equation*}
$$

The conclusion bi this analysis is that the norm of a hybrid operator with interval sampling bacomes unbounced as the interval sampling becomes unbounded as the interval vanishes (tends toward impulsive sampling). This means that the impulsive sampling has this specific norm property in spite of the fact it is widely used as a simplest model of the sampling operation [1].

Fig. 10. Norm Bounds for the Hybrid Operator

SECTION 4

Hybrid Approximation of Continuous Oparators

As we have shown in section 2 the hybrid operator in ganeral, may be reprosented in a form
$G(t, \theta)=g_{0}(t-k r) \sum_{\ell=1}^{k} D_{k \ell} t_{0}(\theta-\tau \ell)$
where k is the intoger part of $\frac{t}{\tau}$, and
$(G u)(t)=\int_{0}^{t} G(t, \theta) u(\theta) d \theta=$
$=\int_{0}^{t} g_{0}(t-k r) \sum_{\ell=1}^{k} D_{k l} f_{0}(\theta-t \hat{\gamma}) u(\theta) d \theta=$
$=g_{0}(t-k \tau) \sum_{\ell=1}^{k} D_{k l} \int_{T(l-1)}^{T \ell} f_{0}(\theta-\tau \ell) u(\theta) d \theta=$
$=g_{0}(t-k T) \sum_{l=1}^{k} D_{k l}{ }^{\xi} l$

The problem of optimal approximation of a continuous time linear operator $\bar{G}(t, \theta)$ by the hybrid operator $G(t, \theta)$ may be formulated as follows:

Find the structure of a hybrid system, i.e. matrices $g_{0}(\lambda), D_{k \ell^{\prime}} f_{0}(\lambda)$ such that

$$
\begin{equation*}
J=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \operatorname{tr}\left[(G(t, \theta)-\bar{G}(t, \theta))^{T}(G(t, \theta)-\bar{G}(t, \theta))\right] d \theta \tag{4.3}
\end{equation*}
$$

Phyeizally wo can intaxprat the cxiterion am mean square daviation of eignale $v(t)$ and $v_{k}(t)$ produced by the nominal and hybrid symtome, provided that both axe driven by the same white noise procese.

To prove thit wo note that the two gyetem romponset are:

$$
\begin{aligned}
& v(t)=\int_{0}^{t} G(t, \theta) u(\theta) d \theta \\
& v_{k}(t)=\int_{0}^{t} G(t, \theta) u(\theta) d \theta
\end{aligned}
$$

Thon,

$$
\begin{align*}
& v_{k}(t)-v(t)=\int_{0}^{t}[G(t, \theta)-\bar{G}(t, \theta)] u(\theta) d \theta \tag{4,4}\\
& E\left[\left(v_{k}(t)-v(t)\right)\left(v_{k}(t)-v(t)\right)^{T}\right]= \\
& \left.=E \int_{0}^{t}(G(t, \theta)-\bar{G}(t, \theta)) u(\theta) d \theta \quad \int_{0}^{t} d \theta d \omega\left[(G(t, \theta)-\bar{G}(t, \theta))(G(t, \omega)-\bar{G}(t, \omega))^{T}\right] u(\theta) u^{T}(\omega)(G(t, \omega)-G(t, \omega))^{T} d \omega\right]= \\
& \\
& =\int_{0}^{t} \int_{0}^{t} d \theta d \omega\left[(G(t, \theta)-\bar{G}(t, \theta))(G(t, \omega)-\bar{G}(t, \omega)) E\left[v(\theta) u^{T}(\omega)\right]=\right. \\
& =\int_{0}^{t}(G(t, \theta)-\bar{G}(t, \theta))(G(t, \theta)-\bar{G}(t, \theta))^{T} d \theta \tag{4,5}
\end{align*}
$$

A natural measure of total deviation between two time variant random vectors is

$$
\begin{equation*}
J=E\left[\lim _{T \rightarrow \infty} \frac{]}{T} \int_{0}^{T} \operatorname{tr}\left[\left(v_{k}(t)-v(t)\right)\left\langle v_{k}(t)-v(t)\right)^{T}\right] d t\right. \tag{4.6}
\end{equation*}
$$

Subsituting (4.5) into (4.6) we obtain the criterion (4.3)

Perfectly matched hold

Suppose now that the nominal continuous opexator is such that

$$
\begin{equation*}
\bar{G}(t, \theta)=\bar{H}(t) \bar{S}(\theta) \tag{4,7}
\end{equation*}
$$

where $\bar{H}(t)$ satisfies a functional equation

$$
\begin{equation*}
\bar{H}\left(t_{1}+t_{2}\right)=\bar{H}\left(t_{1}\right) \cdot \bar{M}\left(t_{2}\right) \tag{4.8}
\end{equation*}
$$

for some matrix $\bar{M}(t)$ of dimension $K x K$. We can then look for optimal anproximation matrices in the form

$$
D_{k \ell}=M_{k} \cdot a_{\ell}
$$

where the $M_{k}{ }^{\prime} s$ are $K x K$ and d_{ℓ} 's are $K x L$ matrices.
The hybrid operator (4.1) then takes the form
$G(t, \theta)=g_{0}(t-k \tau) M_{k} \sum_{\ell=1}^{k} d_{\ell} f(\theta-\tau \ell)$
and we can identify $g_{0}(t-k T)$ and M_{k} as

$$
\begin{align*}
g_{0}(t-k \tau) & =\bar{H}(t-k \tau) \tag{4.9}\\
M_{k} & =\bar{M}(k \tau)
\end{align*}
$$

This identification means that the t-dependent factor of the neminal operator may be duplicated exactily by the hybrid system for all t. Now call Now call,

$$
S(\theta)= \begin{cases}0, & \theta>k \tau \\ \sum_{\ell=1}^{k} a_{\ell} f_{0}(\theta-\tau \ell), & \theta \leq k \tau\end{cases}
$$

and substitute into the criterion (4,3).

$$
\begin{align*}
& J=\lim _{\mathrm{m}_{\mathrm{h}} \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \operatorname{tr}\left[(s(\theta)-\bar{s}(\theta))^{T} H^{T}(t) H(t)(s(\theta)-\bar{s}(\theta))\right] d \theta= \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \operatorname{tr}\left[\vec{H}^{T}(t) H(t)(s(\theta)-\bar{s}(\theta))(S(\theta)-\bar{s}(\theta))^{T}\right] d \theta= \\
& =\operatorname{tr}_{\mathrm{T}\left[\lim ^{2} \rightarrow \infty\right.} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} H^{\mathrm{T}}(t) H(t) d t \int_{0}^{k \tau}(s \theta-\bar{s}(\theta))(s(\theta)-\bar{s}(\theta))^{T} d \bar{\theta}+ \\
& \left.\left.+\int_{k T}^{t} \bar{s}(\theta) \bar{s}^{T}(\theta) d \theta\right\}\right)= \\
& =\operatorname{tr}\left[\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N} \int_{k \tau}^{(k+1) T} \bar{H}^{T}(t) H(t) d t \cdot \sum_{l=1}^{k} \int_{(l-1) \tau}^{l i}\left(S(\theta)-\bar{s}(\theta)(S(\theta)-\bar{S}(\theta))^{T} d \theta\right]+i\right. \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N} \operatorname{tr}\left[\int_{k \tau}^{(k+1) \tau} H^{T}(t) H(t) d t \cdot\right. \\
& \left.\sum_{l=1}^{k} \int_{(\ell-1) \tau}^{l \tau}(s(\theta)-\bar{s}(\theta))(\bar{s}(\theta)-\bar{s}(\theta))^{T} d \theta\right]+\tilde{T} \tag{4.11}
\end{align*}
$$

where

$$
\tilde{J}=\operatorname{tr}\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N} \int_{k \tau}^{(k+1) T} \bar{H}^{T}(t) \bar{H}(t) d t \cdot \int_{k \tau}^{t} \bar{S}(\theta) \bar{S}(\theta)^{T N} d \theta\right]
$$

$$
J-J=\lim _{N^{\rightarrow m}} \frac{1}{N} \sum_{k=0}^{N} \operatorname{tr}\left[B_{k} \sum_{\ell=1}^{k} \int_{(\ell-1) t}^{\ell \tau}(S(0)-\bar{s}(\theta))(S(\theta)-\bar{S}(\theta))^{q} d \theta\right)
$$

where

$$
\begin{equation*}
\mathrm{B}_{\mathrm{k}} \triangleq \int_{\mathrm{k} \mathrm{t}}^{(k+i) T} \Pi^{N}(t) \tilde{H}(t) d t \tag{4.12}
\end{equation*}
$$

since each term of this double sum

$$
\begin{equation*}
v_{k l}=\operatorname{trc}\left[B_{k} \int_{(\ell-1) \tau}^{\ell \tau}(S(\theta)-s(\theta))(\bar{S}(\theta)-\bar{S}(\theta))^{T} d \theta\right] \tag{4.13}
\end{equation*}
$$

depends only on its own matrix of coefficients d_{l} and not on other $d_{m}\left(m \neq P_{e}\right)$, it can be minimized independently over d_{ℓ}. It corresponds to a single square optimization shown on Fig. 11.

$$
\begin{gathered}
J_{k \ell}=\operatorname{tr}\left[B_{k} \int_{(\ell-1) \tau}^{\ell \tau}\left(s(\theta) s^{T}(\theta)-2 s(\theta) \bar{s}^{T r}(\theta)+\bar{s}(\theta) \bar{s}^{T}(\theta)\right) d \theta\right. \\
s(\theta)=a_{\ell} \mathbb{F}_{0}(0-\tau \ell) \quad \text { for } \tau(\ell-1) \leq \theta \leq \tau \ell
\end{gathered}
$$

pig. 11. Optimization Square

So,

$$
\begin{align*}
J_{k \ell} & =\operatorname{trg}\left[B _ { k } \int _ { (\ell - 1) \tau } ^ { \ell \tau } \left(d_{\ell} f_{0}(\theta-\tau \ell) f_{0}^{T}(\theta-\tau \ell) d_{\ell}^{T}-\right.\right. \tag{4.14}\\
& \left.\left.-2 d_{\ell} f_{0}(\theta-\tau \ell) \bar{S}^{T}(\theta)+\bar{S}(\theta) \bar{S}^{T}(\theta)\right) d \theta\right]
\end{align*}
$$

Introduce following notations

$$
\begin{equation*}
F_{\ell} \triangleq \int_{(\ell-1) \tau}^{\ell \tau} f_{0}(\theta-\tau \ell) f_{0}^{T}(\theta-\tau \ell) d \theta \equiv F_{0} \tag{4.15}
\end{equation*}
$$

$\phi_{\ell} \triangleq \int_{(\ell-1) \tau}^{\ell \tau} \bar{S}(\theta) f^{T}(\theta-\tau \ell) d \theta$

Then,

$$
J_{k \ell}=\operatorname{tr}\left[B_{k}\left(d_{\ell}{ }_{l} d_{\ell}^{T}-2 d_{\ell} \phi_{\ell}^{T}+\int_{\tau(\ell-1)}^{\tau \ell} \bar{s}(\theta) \bar{S}^{T}(\theta) d \theta\right]\right.
$$

Using formulas IA and IB of Appendix, we come to the equation

$$
\begin{equation*}
\frac{\partial J_{k \ell}}{\partial d_{\ell}}=B_{k}\left(d_{\ell} F_{0}-\psi_{\ell}\right)=0 \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{\ell}=\phi_{\ell} F_{0}^{-1} \tag{4,1,7}
\end{equation*}
$$

if F_{0} and B_{k} are invertible. This implies that the optimal hybrid operator approximation is

$$
\begin{equation*}
G(t, \theta)=g_{0}(t-k \tau) M_{k} \int_{\ell=1}^{k} \phi_{\ell} F_{0}^{-1} f_{0}(\theta-\tau \ell) \tag{4.18}
\end{equation*}
$$

where

$$
g_{0}(t-k \tau) \cdot M_{k}=\bar{H}(t)
$$

Consider now the special case

$$
\begin{equation*}
\bar{G}(t, \theta)=C e^{A(t-\theta)} B \tag{array}
\end{equation*}
$$

where A is NxN matrix. Then (4.7)-(4.8) imply that

$$
\begin{align*}
& \bar{H}(t)=C e^{A t} \\
& \bar{S}(\theta)=e^{-A \theta} B \tag{4,20}
\end{align*}
$$

and from (4.9):

$$
\begin{align*}
& M_{k}=e^{A k T} \tag{4.21}\\
& g_{0}(t-k T)=C e^{A(t-k \tau)} \tag{4.22}
\end{align*}
$$

Suppose, we also define

$$
\begin{equation*}
f_{0}(\theta)=e^{-A \theta} B \tag{4.23}
\end{equation*}
$$

Then, for F_{0} and ψ_{ℓ} we obtain by definition (4.15)

$$
\begin{align*}
& F_{0}=\int_{-\tau}^{0} f_{0}(\theta) f_{0}^{T}(\theta) d \theta=\int_{-\tau}^{0} e^{-A \theta} B B^{T} e^{-A^{T} \theta} d \theta \\
& \phi_{\ell}=\int_{(l-1) \tau}^{\ell \tau} \bar{S}(\theta) f_{0}^{\tau}(\theta-\tau \ell) d \theta=\int_{-\tau}^{0} \bar{S}(\theta+\tau \ell) f_{0}^{T}(\theta) d \theta= \tag{4.24}\\
& =e^{-A \tau \ell} \int_{-\tau}^{0} e^{-A \theta} B B^{T} e^{-A^{T} \theta} d \theta=e^{-A \tau l_{F}} F_{0}
\end{align*}
$$

F_{0} is full rank if (A, B) is controllable [1]. The formula (4.17) yields:

$$
\begin{equation*}
d_{\ell}=\phi_{\ell} F_{n}^{-\lambda}=e^{-A T \ell} \tag{4.25}
\end{equation*}
$$

and the corresponding value of ${ }_{k \ell}$ and, consequently $J-\tilde{J}$, is zexo.
For the hybrid operator we then have

$$
\begin{align*}
G(t, \theta) & =g_{0}\left(t-k, M_{k} \sum_{l=1}^{k} d_{\ell} f_{0}(\theta-\tau l)=\right. \\
& =C e^{A t} e^{-A \tau k} e^{A k \tau} \sum_{l=1}^{k} e^{-A \tau l_{e}-A \theta} e^{A \tau \ell} B= \tag{4.26}\\
& =C e^{A t} \sum_{l=1}^{k} e^{-A \theta} B I_{\ell}(\theta)= \begin{cases}C e^{A(t-\theta)} B, & \theta \leq k \tau \\
0 & \text { otherwi.se }\end{cases} \tag{4.27}
\end{align*}
$$

The function $l_{\ell}(\theta)$ is defined as

$$
1_{\ell}(\theta)= \begin{cases}1 & (\ell-1) \tau<\theta \leq \tau \ell \\ 0, & \text { otherwise }\end{cases}
$$

The output of the hybrid system is

$$
\begin{aligned}
(G u)(t) & =\int_{0}^{t} G(t, \theta) u(\theta) d \theta= \\
& =\int_{0}^{k \tau} c e^{A(t-\theta)} B u(\theta) d \theta= \\
& =\int_{0}^{k \tau} \bar{G}(t, \theta) u(\theta) d \theta
\end{aligned}
$$

This result means that a continuous time linear time invariant nominal operator may be exactly approximated by choosing appropriate sampling and hold structures, except for an inherent sampling error in the "triangle strip". This is illustrated in Fig. 12.

Fig. 12. The "triangle strip"

Note that the optimal sampling and hold circuits required by (4.22) and (4.23) are themselves multivariable linear systems of order N. The sampler takes the form

$$
\xi_{\ell}=\int_{(\ell-1) \tau}^{\ell \tau} e^{A(\ell \tau-\theta)} B u(\theta) d \theta
$$

which has the block diagram in Fig. 13.
The hold circuit has the block diagram in the Fig. 14.

Fig. 13. Optimal Sampler

Fig. 14. Optimal Hold

Those circuits can be simplified by fixing the matrices $f_{0}(\lambda)$ and $g_{0}(\lambda)$ and using formula (4.15) to provide optimal value of matrices d_{ℓ} given the fixed analog structures.

Example

a) nominal system:

$$
\bar{G}(t, \theta)=e^{A(t-\theta)}
$$

b) exact match of hold, i.e.

$$
\begin{align*}
g_{0}(t) & =\bar{H}(t)=e^{A t} \tag{4.29}\\
M_{k} & =e^{A k T}
\end{align*}
$$

c) $\quad u(\theta)=\operatorname{fi}_{\gamma}(\theta)$
where $\gamma(\theta)$ is a scalar function of time. f is a constant L-vector.
d) $f_{0}(\theta)= \begin{cases}\frac{1}{\varepsilon} I & -\varepsilon \leq \theta<0 \\ 0 & \text { otherwise }\end{cases}$
where I is an LxL identity matrix. How we can apply formula (4.17) to obtain an optimal but not exact approximation of the nominal continuous operator.

$$
\begin{align*}
& F_{0}=\int_{-\tau}^{0} f_{0}(\theta) f_{0}^{T}(\theta) d \theta=\frac{1}{\varepsilon} I \tag{4.31}\\
& \phi_{\ell}=\int_{-\tau}^{0} \bar{S}(\theta+\tau \ell) f_{0}^{T}(\theta) d \theta= \\
& =e^{-A \tau \ell} \int_{-\varepsilon}^{0} e^{-A \theta} \frac{1}{\varepsilon} d \theta \tag{4.32}\\
& d_{\ell}=\phi_{\ell} F_{0}^{-1}=e^{-A \tau \ell} \int_{-\varepsilon}^{0} e^{-A \theta} d \theta \tag{4,33}
\end{align*}
$$

Fig. 15. Simplified Sampler

This is equivalent to the structure on Fig. 16.

Fig. 16. Sampler of Reduced Dimension

Note that if E goes to zero with finite $\tau \eta_{k} \rightarrow 0$, which means that the impulsive sampling produces signals which should be neglected under the optimal hybrid approximation. This result is natural since the optimal approximation 30
approximation was designad to match outputs of two systems subject to the same white noise. But the impulsive sampling leads to an infinite mean square deviation between the two samples, so the output should be supporessed by choosing d_{ℓ} so that $\lim _{\varepsilon \rightarrow 0} d_{\ell}=0$ in the optimal hybrid approximation.

Instead of the N-dimensional sampling circuit in Fig. 13 wo now have a one-ãimensional integrator in Fig .16.

The formula (4.17) provides an "optimal" computational procedure (convolution) given an optimal hold circuit structure perfeetly matched outside the "triangle strip".

Perfectiy matched sampler
Consider now the dual case when the sampling operation is perfectly matched outside the "triangle strip" but the hold structure is unknown and to be determined.

Similar to the above case we suppose $\bar{S}(\theta)$ is such that

$$
\begin{equation*}
\bar{S}\left(\theta_{1}+\theta_{2}\right)=\bar{a}\left(\theta_{1}\right) \cdot \bar{s}\left(\theta_{2}\right) \tag{4.36}
\end{equation*}
$$

where $\bar{S}(\theta)$ is a KxM matrix.
Then,

$$
\begin{equation*}
\bar{S}(\theta)=\bar{S}(\theta-\tau l+\tau l)=\bar{d}(k l) \bar{S}(\theta-\tau l) \tag{4.37}
\end{equation*}
$$

Since the functions $f_{0}(\theta-\tau l)$ of the surn

$$
S(\theta)=\sum_{\ell=1}^{k} \alpha_{\ell} f_{0}(\theta-\tau \ell)
$$

do not overlap (by definition), we can make the following identifications

$$
\begin{align*}
& d_{\ell}=\bar{d}(k l) \\
& f_{0}(\theta-\tau \ell)=\bar{S}(\theta-\tau l) 1_{\ell}(\theta) \tag{4.38}
\end{align*}
$$

Then, $s(\theta)=\bar{S}(\theta)$ for all $\theta \leq k T$. Now wo oan go back to the general criterion (4.3):

$$
\begin{align*}
& J=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} t x\left[(H(t) \bar{S}(\theta)-\bar{H}(t) \bar{S}(\theta))^{T}(H(t) \bar{S}(\theta)-\bar{H}(t) \bar{S}(\theta))\right] d \theta= \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \operatorname{tr}\left[\bar{S}^{T}(\theta)(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t)) \bar{S}(\theta)\right] d \theta= \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{U}^{t} \operatorname{tr}\left(\bar{S}(\theta) \bar{S}^{T P}(\theta)(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t))\right] d \theta= \tag{4,39}\\
& =1=\frac{1}{T+\infty} \frac{1}{T} \int_{0}^{T} d t \operatorname{tr}\left[\sum_{l=1}^{k} \int_{\tau(l-1)}^{\tau \ell} \bar{s}(\hat{\theta}) \bar{s}^{T}(\theta) d \theta\right. \text {. } \\
& \text { - } \left.(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t))\right]+\tilde{J} \text {, } \\
& \tilde{J}=\lim _{T \rightarrow \infty} \frac{1}{\bar{T}} \int_{0}^{T} d t \operatorname{tr}\left[\int_{K T}^{t} \bar{S}(\theta) \bar{S}^{T}(\theta)(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t))\right] d \theta \\
& J-\tilde{J}=1 \lim _{\mathrm{a} \rightarrow \infty} \frac{1}{T} \sum_{j=0}^{\infty} \int_{k \tau}^{(k+1) \tau} d t \sum_{\lambda=1}^{k} t r\left[C_{\ell}^{\left.(H(t)-H(t))^{T} \cdot(H(t)-H(t))\right]}\right.
\end{align*}
$$

$c_{l} \triangleq \int_{l(l-1)}^{\tau \ell} \bar{s}(\theta) \bar{s}^{-7}(\theta) d \theta$ is a Kxk matrix. As before, each component of the sum over k depends only on value of $(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t))$ on interval $k \tau<t \leq(k+1) \tau$. So, we can minimize each term separately.

$$
\begin{align*}
J_{k} & =\int_{k T}^{(k+1) \tau} d t \sum_{\ell=1}^{k} t r\left[c_{\ell}(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t))\right]= \\
& =\operatorname{tr}\left[\sum_{l=1}^{k} c_{l} \int_{k T}^{(k+1) \tau}(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t)) d t\right]= \\
& =\sum_{\ell=1}^{k} t r\left[c_{\ell} \int_{k \tau}^{(k+1) \tau}(H(t)-\bar{H}(t))^{T}(\bar{H}(t)-H(t) d t]\right. \tag{4,41}\\
& =\sum_{\ell=1}^{k} J_{k \ell}
\end{align*}
$$

This implies that quantity

$$
\begin{equation*}
J_{k \ell}=\operatorname{tr}\left[c_{\ell} \int_{k \tau}^{(k+1) \tau}(H(t)-\bar{H}(t))^{T}(H(t)-\bar{H}(t)) d t\right] \tag{4,42}
\end{equation*}
$$

is to be minimized by choosing $H(t)$.
Suppose we look for $H(t)$ in the form

$$
\begin{equation*}
H(t-k \tau)=g_{0}(t-k \tau) e_{k} \tag{3}
\end{equation*}
$$

where $g_{0}(t-k \tau)$ and e_{k} are $N \times I_{1}$ and $L_{1} \times K$ matrices, respectively. Then,

$$
\begin{align*}
J_{k \ell} & =\operatorname{tr}\left[C _ { \ell } \int _ { k \tau } ^ { (k + 1) \tau } \left(e_{k}^{T} g^{T}(t-k \tau) g(t-k \tau) e_{k}-\right.\right. \\
& \left.\left.-2 e_{k}^{T} g^{T}(t-k \tau) \bar{H}(t)+\bar{H}^{T}(t) \bar{H}(t)\right) d t\right] \tag{4.44}
\end{align*}
$$

Introduce two matrices

$$
\begin{align*}
& T_{0} \triangleq \int_{k T}^{(k+1) \tau} g_{0}^{T}(t-k) g_{0}(c-k) d t=\int_{0}^{T} g_{0}^{T}(t) g_{0}(t) d t \tag{4.45}\\
& \psi_{k} \triangleq \int_{k \tau}^{(k+1) \tau} g_{0}^{T}(t-k t) \bar{H}(t) d t=\int_{0}^{T} g_{0}^{T}(t) H(t+k) d t
\end{align*}
$$

Now,

$$
\begin{gather*}
J_{k \ell}=\operatorname{tr}\left[c\left(a_{k}^{T_{0} e_{k}}=2 e_{k k}^{T}+{ }_{k \tau}^{(k+1) \tau} \bar{H}^{T}(t) \bar{H}(t) d t\right)\right] \\
\frac{\partial J_{k \ell}}{\partial e_{k}}=2 T_{0} e_{k} c_{\ell}-2 \psi_{k} c_{\ell}-0 \tag{4.47}
\end{gather*}
$$

(see formulas $I A$ and $I B$ of Appendix). Since C_{ℓ} is arbitrary, i.e. independent of hold device characteristias, we conclude

$$
e_{k}=n_{0}^{-1} \psi_{k}
$$

if $\mathrm{T}^{=1}$ exists.
For the specific case where

$$
\begin{align*}
& g_{0}(t)=c e^{A t} \\
& \bar{H}(t)=c_{e}^{\lambda t} \tag{4.49}
\end{align*}
$$

we have be definition (4.45)

$$
\begin{align*}
& T_{0}=\int_{0}^{\tau} e^{A^{T} t} c^{T} C e^{A t} d t \\
& \Psi_{k}=\int_{0}^{\tau} e^{A^{T} t} c^{T} c e^{A t} e^{\lambda k \tau} d t=T_{0} e^{A k \tau} \tag{4.50}
\end{align*}
$$

The matrix T_{0} is full rank if (A, C) is observable 11$]$. Formula (4.48) then yields

$$
\begin{equation*}
e_{k}=e^{A k T} \tag{4.51}
\end{equation*}
$$

This result is expected; it corresponds to the case of exact approximation of hold device and has been derived before using simpler considerations (formula 4.21).

The general cise

In general, both the sampling ind the hold dervices may not be matched perfectly outside the "triang'le strip".

Given a desired structure for these circuits, i.e. functions $f_{0}(\theta-\tau \ell)$ and $g_{0}(t-k)$, we might then be interested in determining a computational procedure (matrices a_{ℓ} and e_{k}) which provides an optimal (in the above sense) hybrid approximation of a nominal system.

So, we have for the sampler and hold, respectively
$S(\theta)=\sum_{\ell=1}^{k}{\underset{l}{l} f_{0}(\theta-\tau \ell)}^{f}$

$$
\begin{equation*}
H(t-k \tau)=g_{0}(t-k \tau) e_{k} \tag{4.52}
\end{equation*}
$$

The criterion (4.3) is

$$
\begin{aligned}
& J=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \operatorname{tr}\left[\left(g_{0}(t-k \tau) e_{k} \sum_{l=1}^{k} d_{l} f_{0}(\theta-k l)-\bar{H}(t) \bar{S}(\theta)\right)^{T} .\right. \\
& \text { - } \left.\left.g_{0}(t-k \tau) e_{k} \sum_{m=1}^{k} d_{m} f_{0}(\theta-\tau l)-\vec{H}(t) \bar{S}(\theta)\right)\right] d \theta= \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} \operatorname{tr}\left[\left(\sum_{\ell=1}^{k} f_{0}^{T}(\theta-\tau \ell) d_{\ell}^{T} e_{k}^{T} g_{0}^{T}(t-k \tau)-\right.\right. \\
& \left.\left.\left.-\bar{S}^{T}(\theta) \bar{H}^{T}(t)\right) \cdot g(t-k \tau) e_{k} \sum_{m=1}^{k}{\underset{m}{f}}_{0}(\theta-\tau m)-\bar{H}(t) \bar{S}(\theta)\right)\right] d \theta=
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{0}^{t} t \sum_{l=1}^{k} \sum_{0=1}^{k}(\theta-T l) \cdot d_{l}^{T} e_{k}^{T} g_{0}^{T}(t-k T) g_{0}(t-k T) e_{k} \\
& \text { - } d_{m} f_{0}(\theta-\tau m)-2 S^{T}(\theta) H^{-T}(t) g_{0}(t-k \tau) e_{k} \sum_{m=1}^{k} d_{m} f_{0}(\theta-\tau m)+ \\
& \left.+\vec{S}^{T}(\theta) \overline{S I}^{T}(t) \bar{H}(t) \bar{S}(\theta)\right) d \theta
\end{aligned}
$$

Considex the sum

$$
\begin{align*}
& \sum_{m=1}^{k} \sum_{l=1}^{k} \operatorname{tr}\left[E_{0}^{T}(\theta-T \ell) d_{l}^{T} e_{k}^{T} g_{0}^{T}(t-k T) g_{0}(t-k T) \cdot e_{k} d_{m} f_{0}(\theta-\tau m)\right. \\
& \quad=\sum_{m=1}^{k} \sum_{l=1}^{k} \operatorname{tr}\left[f_{0}(\theta-\tau m) \cdot f_{0}^{T}(\theta-T \ell) d_{\ell}^{T} e_{k}^{T} g_{0}^{T}(t-k T) g_{0}(t-k \ell) e_{k} d_{m}\right] \tag{4.54}
\end{align*}
$$

Due to the definition (Fig. 3) of functions $f_{0}(\theta)$ we can write

$$
\begin{equation*}
f_{0}(\theta-\tau m) f_{0}^{T}(\theta-\tau \ell)=f_{0}(\theta-\tau \ell) f_{0}^{T}(\theta-\tau \ell) \delta_{m \ell} \tag{4.55}
\end{equation*}
$$

Then (4.54) takes the form

$$
\sum_{l=1}^{k} \operatorname{tr}\left[f_{0}(\theta-\tau l) f_{0}^{T}(\theta-\tau l) d_{l}^{T} e_{k}^{T} g_{0}^{T}(t-k \tau) g_{0}(t-k \tau) e_{k} d_{l}\right]
$$

and for J we have

$$
J=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N} \sum_{\ell=1}^{k} \operatorname{tr}\left[F_{0} d_{\ell}^{T} e_{k}^{T_{0}} T_{0} e_{k} d_{\ell}\right.
$$

$$
\begin{equation*}
\left.-2 \phi_{l} d_{l}^{T} k^{W} k^{W}+\int_{0}^{\infty} d t \int_{U}^{k} \sum_{l=1}^{k} \bar{s}^{q}(0) \bar{n}^{\prime \prime}(t) \cdot \pi(t) \bar{s}(0) d \theta\right]+\bar{\pi} \tag{4.56}
\end{equation*}
$$

where as bofore, is

$$
\tilde{J}=\lim _{\square \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \int_{k T}^{t} \operatorname{tr}\left[(H(t) S(\theta)-\bar{H}(t) \bar{S}(\theta))^{T H}(H(t) S(\theta)-\bar{H}(t) \bar{S}(\theta))\right] d \theta^{(4.57)}
$$

Whe quantity $J-\tilde{J}$ is to be minimized by choosing matrices e_{k} and d_{ℓ}. We can now introduce a new matrix of computer coefficients

$$
\begin{equation*}
D_{k \ell}=e_{k} d_{\ell} \tag{4.58}
\end{equation*}
$$

Its dimension is L_{1} xL. With this definition, J . ${ }_{\mathrm{J}}^{\mathrm{J}}$ again bxeaks down into independent optimization squares with costs

$$
\begin{align*}
& J_{k l}=\operatorname{tr}\left[F_{0} D_{k l}^{T M} D_{0} D_{k l}-2 \psi_{k}^{D} D_{k l} \phi_{\ell}\right] \tag{4.59}\\
& \frac{\partial J_{k l}}{\partial D_{k l}}=2!L_{0} D_{k} F_{0}-2 \psi_{k} \phi_{l}=0 \tag{4.60}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{D}_{k \ell}=\mathrm{I}_{0}^{-1 /} \psi_{k} \phi_{\ell^{\mathrm{F}}}^{-1} \tag{4.0.1}
\end{equation*}
$$

The overall optimal hybrid operator now is

$$
\begin{equation*}
G(t, \theta)=g_{0}(t-k T) \sum_{l=1}^{k} \mathrm{D}_{k} f_{0}(0-\tau l) \tag{4.62}
\end{equation*}
$$

where $g_{0}(t-k)$ and $f_{0}(0-\tau Q)$ represent simplified sampling and hold structures. Whe simplification means either lower dimension of analoy circuits or simplified feedback loops or hoth.

The optimal hybrid system is shown in Fig. 17.

Fig. 17. Optimal Hybrid Approximation.
General Case.

Example.

$$
\begin{align*}
& \text { Single input-single output system. Suppose, } \\
& \overline{\mathbf{G}}(t, \theta)=C e^{A(t-\theta)} \mathbf{f} \tag{4.63}
\end{align*}
$$

where A is NxN matrix, f and C^{T} and N-vectors. Let $f_{0}(\lambda)$ and $g_{0}(\lambda)$ be chosen in the form

$$
\begin{align*}
& f_{0}(\lambda)= \begin{cases}x(\lambda) \cdot I, & -\tau \leq \lambda<0 \\
0 & \text { otherwise }\end{cases} \tag{4.64}\\
& g_{0}(\lambda)= \begin{cases}1 & 0 \leq \lambda<\tau \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

where $x(\theta)$ is a scalar function.

Then,

$$
\begin{aligned}
\bar{H}(t) & =C e^{A t}, S(\theta)=e^{-A \theta} \cdot f \\
F_{0} & =\int_{-\tau}^{0} x^{2}(\theta) d \theta \cdot I \\
T_{0} & =\tau \\
\phi_{\ell} & =e^{-A \tau \ell} \int_{0}^{\tau} e^{-A \theta} f x(\theta) d \theta \\
\psi_{k} & =C \int_{0}^{\tau} e^{A t} d t \cdot e^{A \tau k}=-C A^{-1}\left(I-e^{A \tau}\right) e^{A \tau}
\end{aligned}
$$

$$
\begin{align*}
D_{k \ell} & =T^{-1} \psi_{k} \phi_{\ell} F^{-1}= \\
& =\frac{1}{\tau} \frac{1}{\int_{0}^{T} x^{2}(\theta) d \theta} C A^{-1}\left(I-e^{-A T}\right) \cdot e^{-A T(k-\ell)} \cdot \int_{0}^{T} e^{A \theta} x(\theta) d \cdot f \tag{4.66}
\end{align*}
$$

The expression (4.66) of optimal scalar sequence of coefficients is to be used in the digital computer of Fig. 17.

In Section 4 we have shown how continuous time linear operators may be approximated by a hybrid system. If this approximation takes place in a feedback loop of a closed lcop control system, the stability and performance properties will degrade somewhat due to errors of approximation.

The extent to which such errors effect stability has been investigated in general by Safonov [3]. Sufficient stability conditions for continuous and sampled data systems have been established. In reference [4], simpler frequency domain conditions have been derived for linear time invariant systems subject to additive errors of various kinds. A block diagram of these nystems is shown on Fig. 16. $\overline{\mathrm{L}}$ is a nominal time invariant operator, and $\Delta \mathrm{L}$ is a perturbation or error, time invariant as well.

Then, according to [4], the system remains stable if

$$
\begin{equation*}
\underline{\sigma}(I+\bar{L}(j \omega))>\bar{\sigma}(\Delta L(j \omega)) \tag{5.1}
\end{equation*}
$$

Here $L(J \omega)$ and $\Delta L(j(\omega)$ are transfer functions of \bar{L} and ΔL, and $\bar{\sigma}(A), \underline{\sigma}(A)$ denote maximum and minimum singular values of A.

Fig. 18. Feedback Loop with perturbations.

Figure 18 may be viewed as a general diagran for the sperence control system shown in Fig. 19.

Fig. 19. Control System
Here P and \bar{G} are time invariant continuous matrix convolution operators. That is

$$
\begin{equation*}
y(t)=(P z)(t)=\int_{0}^{t} P(t-\lambda) z(\lambda) d \lambda \tag{5.2}
\end{equation*}
$$

and

$$
v(t)=\int_{0}^{t} \bar{G}(t-\lambda) y(\lambda) d \lambda
$$

P usually represents the "plant" to be coritrolled, and \bar{G} is the ideal continuous time controller designed to regulate P. This system can also be drawn as in Fig. 20.

It has overall operator PG :
$(\mathrm{P} \bar{G} z)(t)=\int_{0}^{t} P \bar{G}(t-\theta) z(\theta) d \theta$

Fig. 20. Control System

$$
\begin{equation*}
P G(t)=\int_{0}^{t} \bar{G}(t-\theta) P(\theta) d \theta \tag{5.4}
\end{equation*}
$$

is again a time invariant matrix convolution operator. Our objective in this section will be to examine the effect on stability caused by approximating the operator \bar{G} with a hybrid system, i.e. what happens if we use a digitally implemented controller? The tool firs this anaxysis will be the stability robustness condition (5.1). Infortunately, the condition (5.1) cannot be applied directly to the approximated system because a hybrid system is inherently time-variant in nature. This follows, for example, from errors in the "triangle strip", as discussed in section 2.

However, if we construct a time-invarjant "bounding operator" w with property

$$
\begin{equation*}
\left\|w_{u}\right\| \geq\|\Delta G u\| \tag{5.5}
\end{equation*}
$$

where $\Delta G=\bar{G}-G$, then stability condition (5.1) may be applied in a form

$$
\begin{equation*}
\underline{\sigma}(I+P \bar{G}(j \omega))>\bar{\sigma}(W(j \omega)) \bar{\sigma}(P(j \omega)) \tag{5.6}
\end{equation*}
$$

for all $\omega>0$, where $W(J \omega)$ denotes a matrix of fourier transfe ; of $W(\theta)$.
We note from Fig. 10 that an optimal unconstrained hybrid approximation of a linear time-invariant operator satisfies

$$
G(t, \theta)=\bar{G}(t, \theta) \quad \text { for ald } t>0 \text { and } \theta \leq \theta<k T
$$

and

$$
G(t, \theta)=0 \quad \text { for } k T<\theta \leq t
$$

Therefore,
$\Delta G=\left\{\begin{array}{lll}0 & \text { if } & 0<\theta<k T \\ \bar{G}(t, \theta) & \text { if } & k T<\theta \leq t\end{array}\right.$
i. e. $\Delta G \neq 0$ only inside the"triangle strip".

The approach may be suggested to coistruct the operator W for general multivariable systems. This approach provides a rather conservative upper bound for $||\Delta G||$.

For $(\Delta G u)(t)$ we have

$$
\begin{equation*}
(\Delta G u)(t)=\int_{k \tau}^{t} \bar{G}(t-\lambda) u(\lambda) d \lambda \tag{5,9}
\end{equation*}
$$

$\|(\Delta G u)(t)\| \leq \int_{k \tau}^{t}| | \bar{G}(t-\lambda) u(\lambda)| | d \lambda \leq$
$\leq \int_{k \tau}^{t} \bar{\sigma}[\bar{G}(t-\lambda)]| | u(\lambda)| | d \lambda$
$\leq c \int_{k \tau}^{t}\|u(\lambda)\| d \lambda$
where $c \triangleq \max _{0<\theta<\tau} \bar{\sigma}[\vec{G}(\theta)]$,
i (A) it maximum singular value of A . Then,

$$
\begin{align*}
& \|\Delta G u\|^{2}=\int_{0}^{\infty}\|(\Delta G u)(t)\|^{2} d t= \\
& \\
& =\sum_{k=0}^{\infty} \int_{k \tau}^{(k+1) \tau}\left\|\left(\Delta u_{n}\right)(t)\right\|^{2} d t \leq \tag{5.11}\\
& \\
& \leq \sum_{k=0}^{\infty} k \tau c^{(k+1) \tau} c^{2} \int_{k \tau}^{t}\|u(\lambda)\| d \lambda{ }^{2} d t \leq \\
& \\
& \leq \sum_{k=0}^{\infty} c^{2} \tau\left(\int_{k \tau}^{(k+1) \tau} u(\lambda) d \lambda\right)^{2} \leq \\
& \leq c^{2} \tau^{2}\|u\|^{2}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\|\Delta G u\| \leq c \tau\|u\| \tag{5.12}
\end{equation*}
$$

This approach provides general but conservative stability condition

$$
\begin{equation*}
\underline{\sigma}(x+p \bar{G}(j \omega)) \geq \tau \bar{\sigma}(P(j \omega)) \tag{5,13}
\end{equation*}
$$

where constant C is defined by (5,12). This means that the curve $\sigma(x+p \bar{G}(j \omega))$ is to be compared with a certain level troop (j ω), as long as it is strictly above that level the system's stability with G replacing \bar{G} is assured,

In the next section we shall explore a particular three-dimensional single input-single output control system and this approach to the robustness problem will be applied.

SECTION 6

A Hybrid Control system Example

In this section we consider a three dimensional single input - single output control system

$$
\dot{x}(t)=\left(\begin{array}{lll}
0 & 1 & 0 \tag{6,1}\\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) x(t)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u(t)
$$

with feedback control law

$$
\begin{equation*}
u(t)=-\left(\omega_{0}^{3} \quad 2 \omega_{0}^{2} \quad 2 \omega_{0}\right) x(t) \tag{6.2}
\end{equation*}
$$

with $\omega_{0}=1 \mathrm{sec}^{-1}$. The system may be drawn as shown in Fig. 2.1

Fig. 21. Control System Example
where A and B are given in (6.1) and

$$
K=-\left(\begin{array}{lll}
1 & 2 & 2 \tag{6.3}
\end{array}\right)
$$

The control law (6.2) for system (6.1) minimizes a cost function

$$
\begin{equation*}
\int_{\infty}^{\infty}\left(x^{T} \varphi x+u^{2}\right) d t \tag{6.4}
\end{equation*}
$$

where

$$
Q=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Lot this system represent the nominal design operator \bar{G} digcumad in previous sections with $p=1$. Then

$$
\begin{aligned}
\ddot{G}(\theta) & =\left(\begin{array}{lll}
1 & 2 & 2
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \theta\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)= \\
& =K e^{A \theta} B
\end{aligned}
$$

For $e^{A \theta}$ we can get a closed form expression (since $A^{3}=0$):

$$
e^{A \theta}=\left|\begin{array}{lll}
1 & \theta & \frac{\theta^{2}}{2} \tag{6.6}\\
0 & 1 & \theta \\
0 & 0 & 1
\end{array}\right|
$$

Therefore

$$
\begin{align*}
\bar{G}(\theta) & =\left(\begin{array}{lll}
1 & 2 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & \theta & \frac{\theta^{2}}{2} \\
1 & 0 & \theta \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)= \tag{6,7}\\
& =\frac{\theta^{2}}{2}+2 \theta+2
\end{align*}
$$

For the loft hand part of the stability inequality (5.1) we have

$$
\begin{align*}
G(j \omega) & =K(I j \omega-A)^{-1} B= \\
& =\left(\begin{array}{lll}
1 & 2 & 2
\end{array}\right)\left(\begin{array}{rrr}
j \omega & -1 & 0 \\
0 & j \omega & -1 \\
0 & 0 & j \omega
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \tag{6.8}
\end{align*}
$$

so,

$$
\begin{equation*}
\bar{G}(j \omega)=\left(1+2 j \omega-2 \omega^{2}\right) \frac{j}{\omega} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{align*}
& \underline{\sigma}(1+\bar{G}(j \omega))=|1+\bar{G}(j \omega)| \\
& |1+G(j \omega)|^{2}=\left(1-\frac{2}{\omega^{2}}\right)^{2}+\left(\frac{1}{\omega^{3}}-\frac{2}{\omega}\right)^{2} \tag{6.11}
\end{align*}
$$

The Fig, 22 shows the $\underline{\sigma}(\omega)$

Fig. 22. Dependence $\underline{\sigma}(\omega)$.

Since $p=1$, the right hand part of the criterion (5.1) for this example is independent of ω. We can rewrite the condition (5.1) in a form

$$
\min _{\omega}|1+\bar{G}(j \omega)|>\bar{\sigma}
$$

with, as can be seen from the expression (6.11),

$$
\begin{equation*}
\min _{\omega}|1+\bar{G}(j \omega)|=1 \tag{6.13}
\end{equation*}
$$

According to (5.13), therefore, we have

$$
1>\bar{\sigma}=\tau \max _{0 \leqslant \theta \leq \tau} \bar{\sigma}(\theta) m
$$

$$
\begin{equation*}
=\tau \max _{0<\theta \leq \tau}\left(\frac{\theta^{2}}{2}+2 \theta \mathrm{R} 2\right)=\tau\left(\frac{\tau^{2}}{2}+2 \tau+2\right) \tag{6,14}
\end{equation*}
$$

so, the stability condition is

$$
\begin{equation*}
1>\tau\left(\frac{\tau^{2}}{2}+2 \tau+2\right) \tag{6.15}
\end{equation*}
$$

The critical value for T than is

$$
\begin{gather*}
\tau_{c r}\left(\frac{\tau_{c r}^{2}}{2}+2 \tau_{c r}+2\right)=1 \tag{6.16}\\
\tau_{c r}=0.36 \text { gmo }
\end{gather*}
$$

This number should be interpreted as a sample time τ cr which is sufficient. mall to guarantee stability of the control system when the continuous operator $\overline{\mathrm{G}}$ is replaced by an optimal hybrid approximation G.

An implementation of the resulting closed loop control system is shown in Fig. 23.

It is clear from this figure that

$$
\begin{equation*}
y(t)=K e^{A(t-k \tau)} \eta_{k} \tag{6.27}
\end{equation*}
$$

where

$$
\begin{align*}
\eta_{k} & =e^{A k} \sum_{\ell=1}^{k} e^{-A l t} \xi_{\ell} \tag{6.18}\\
& =\sum_{\ell=1}^{k} e^{A T(k-\ell)} \xi_{\ell}
\end{align*}
$$

and

Fig. 23. Feedback Control System with Hybrid Operator

$$
\begin{equation*}
\xi_{l}=\int_{(l-1) \tau}^{\ell \tau} e^{A(\tau l-\theta)} B u(\theta) d \theta \tag{6.19}
\end{equation*}
$$

Hence we can rewrite (6.17) as

$$
\begin{equation*}
y(t)=K e^{A\left(t-t_{k}\right)} \int_{0}^{k \tau} e^{(k \tau-\lambda)} B u(\lambda) d \lambda= \tag{6.20}
\end{equation*}
$$

$=k \int_{0}^{k T} e^{A(t-\lambda)} B u(\lambda) d \lambda$

The only difference between this expression and the continuous operator \bar{G} is in integration limit. This indicates that G and \bar{G} coincide exactiy outside the "triangle strip" within which they hybrid operator equals to zero. This property has been discussed in Section 4.

A discrete time equation for the closed loop belruvior of the approximated system in Fig. 23 can be written as follows:

$$
\begin{align*}
& \eta_{k}=e^{A \tau} \eta_{k-1}+\xi_{k} \\
& \xi_{k}=\int_{\tau(k-1)}^{\tau k} e^{A(\tau k-0)} B y(\theta) d \theta \tag{6,21}\\
& y(\theta)=K e^{A(0-(k-1) \tau)} \eta_{k-1}
\end{align*}
$$

Hence

$$
\begin{equation*}
\eta_{k}=\left[e^{A \tau}-\int_{\tau(k-1)}^{\tau k} e^{A(\tau k-\theta)} B K e^{A(\theta-(k-1) \tau)} d \theta\right] \cdot \eta_{k-1} \tag{6.22}
\end{equation*}
$$

Therefore, the evolution of η_{k} corresponds to discrote system with transition matrix

$$
\begin{equation*}
\phi_{1}(\tau)=e^{A \tau}-\int_{0}^{\tau} e^{A(t-\lambda)} B K e^{A \lambda} d \lambda \tag{6.23}
\end{equation*}
$$

This matrix can be evaluated analyticaily in order to obtain its characteristic equation

$$
\phi_{1}(\tau)=\left|\begin{array}{lrr}
1-\frac{\tau^{3}}{6} & \tau-\frac{\tau^{3}}{3}-\frac{\tau^{4}}{24} & \frac{\tau^{2}}{2}-\frac{\tau^{3}}{3}-\frac{\tau^{4}}{12} \tag{6.24}\\
-\frac{\tau^{2}}{2} & 1-\tau^{2}-\frac{\tau^{3}}{6} & \tau-\tau^{2}-\frac{\tau^{3}}{3}-\frac{\tau^{4}}{24} \\
-\tau & -2 \tau-\frac{\tau^{2}}{2} & 1-2 \tau-\tau^{2}-\frac{\tau^{3}}{3}
\end{array}\right|
$$

Eigenvalues of the matrix (6.24) have been computed for different τ. Its values indicate that the system looses its stability when $\tau=0.54$ sec. This compares quite favorably with the sufficient tability sound,

From the viewpoint of closed loop atability, the hybrid approximation $\bar{G}=G$ is not neecesarily a good one. This is evident when we examine an alternate hybrid approximation which duplicatos closed loop rather than open Loop behavior outside the "triangle strip". This can be done by ohanging tho hold device as follows:

Fig. 24. Hold Device To Approximnte Closed Loop System.

Note that this "hold" generates exactily the same output signal $y(t)$ as the continuous closed loop system under deterministic assumptions. This output is

$$
\begin{equation*}
y(t)=k e^{(A-B K)(t-k T)} x(k T) \tag{6.25}
\end{equation*}
$$

In order to find a transition matrix of the corresponding discrete system, wo write

$$
\eta_{k}=e^{A \tau} \eta_{k-1}+\xi_{k}
$$

$$
\begin{align*}
& \xi_{k}=\int_{\tau(k-1)}^{\tau k} e^{A(\tau k-\lambda)_{B K e^{(A-B K)} \lambda_{\eta_{k-1}} d \lambda}} \tag{6.26}\\
& n_{k}=\phi_{2}(\tau) \eta_{k-1}
\end{align*}
$$

This leads to the transition matrix

$$
\begin{equation*}
\phi_{2}(\tau)=e^{A \tau}-\int_{0}^{\tau} e^{A(\tau-\lambda)} B K e^{(A-B K) \lambda} d \lambda \tag{6.27}
\end{equation*}
$$

Using the identity IY A in the Appendix, (6.27) may be simplified to

$$
\begin{equation*}
\phi_{2}(\tau)=e^{(A-B K) \tau} \tag{6.28}
\end{equation*}
$$

This result is natural because the system (6.25) was constructed to exhibit exactly the same closed loop behavior as the continuous one under deterministic assumptions. Therefore, this system must remain stable for all τ.

In order to compare performances of systems (6.17) and (6.25) in noisy situations, both approximations were examined for white noise inputs $\nu(t)$ with intensity matrix

$$
I_{V}=\left(\begin{array}{lll}
0 & 0 & 0 \tag{6.29}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

inserted at point ξ_{ℓ} in Fig. 23.
Convariance matrices of discrete systems (6.22) and (6.26) propogate according to the Lyapunov equation

$$
\begin{equation*}
P_{k+1}^{(1)}=\phi_{1}(\tau) p_{k}^{(1)} \phi_{1}(\tau)+\bar{I}_{V}(\tau) \tag{6.30}
\end{equation*}
$$

$$
52 P_{k+1}^{(2)}=\phi_{2}(\tau) P_{k}^{(2)} \phi_{2}(\tau)+\bar{I}_{v}(\tau)
$$

where $\bar{I}_{V}(\tau)$ is intensity matrix of noise accumulated on the sample interval т.

$$
\begin{align*}
& \vec{I}_{V}=\int_{0}^{T} e^{A \lambda} I_{\nu} e^{A T} d \lambda= \\
& =\int_{0}^{T}\left(\begin{array}{lll}
1 & \lambda & \frac{\lambda^{2}}{2} \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 4 \\
\lambda & 1 & 0 \\
\frac{\lambda^{2}}{2} & \lambda & 1
\end{array}\right) d \lambda \\
& \left(\begin{array}{ccc}
\frac{\tau^{5}}{20} & \frac{\tau^{4}}{8} & \frac{\tau^{3}}{6} \\
\frac{\tau^{4}}{8} & \frac{\tau^{3}}{3} & \frac{\tau^{2}}{2} \\
\frac{\tau^{3}}{6} & \frac{\tau^{2}}{2} & \tau
\end{array}\right) \tag{6.31.}
\end{align*}
$$

and where $p_{k}^{(i)}$ denote the state covariance of the two systems

$$
\begin{equation*}
P_{k}^{(i)}=E\left[\eta_{k}^{(i)} \eta_{k}^{(i) T}\right], \quad i=1,2 \tag{6.32}
\end{equation*}
$$

Then, assuming steady state behavior of both systems we can solve matrix equation (6.30) to obtain $p^{(1)}$ and $p^{(2)}$.

$$
\begin{align*}
& p^{(1)}=\phi_{1}(\tau) p^{(1)} \phi_{1}^{T}(\tau)+\bar{I}_{v}(\tau) \tag{6.33}\\
& p^{(2)}=\phi_{2}(\tau) p^{(2)} \phi_{2}^{T}(\tau)+\bar{I}_{v}(\tau)
\end{align*}
$$

We used diagonal terms of the matrices $p^{(i)}$ to compare systems performance. The results indicate that the first system (6.22) has a bottor performance (smaller variance of state variables). It is shown in Fig. 25 , for values of $p_{j j}^{(1)}$ and $p_{j 1}^{(2)}$.

${ }^{P} 11$		P_{22}		P_{33}		
I	II	I	II	I	II	
0.2251	0.3292	7:124.10 ${ }^{-2}$	$9.101 .10^{-2}$	0.3025	0.3327	$\tau=0.2 \mathrm{sec}$
0.3237	0.8633	$5.062 .10^{-2}$	$3.425 .10^{-2}$	0.3759	0.4579	$\tau=0.4 \mathrm{sec}$

Fig. 25. Comparison of Two Discrete Systems Performance

This result may be interpreted in the following way. As we know from Section 4 the approximation used for the first system minimizes the cost
criterion (4.1) which minimizes mean square deviation between a outputs of the nominal and the hybrid system when they subjected to the same white noise process. Therefore, all other hybrid systems yield a greater value of cost function against this criterion.

LIST OF USED SYMBOLS AND THEIR DIMENSIONS

T,t, θ som	scalars
$k, \ell \quad i$	integer variables
$G(t, \theta), G(t, \theta)$	- NxM matrices
$\bar{H}(t)-N x X \quad m$	matrix
$H(t)-N \times K$ m	matrix
$\bar{S}(\theta), S(\theta)-K \times M$	M matrices
$M(t), M_{K} \quad-\mathrm{KxK}$	K matrices
$V(t), V_{k}(t)-N$	vectors
$u(\theta)-M \quad v$	vector
$f(\theta)-L \times N$ m	matrix
$\xi_{\underline{Q}}-L \quad v$	vector
$\mathrm{d}_{\ell}-\mathrm{KxL}$	matrix
$e_{k}-L_{1} \times K \quad$ m	matrix
$g(t)-\mathrm{NXI}_{1}{ }_{1} \quad \mathrm{~m}$	matrix
$F-L x L \quad m$	matrix
$\phi_{\ell}-\mathrm{KxL} \quad \mathrm{m}$	matrix
$\eta_{k}-L_{1} \quad$ ver	vector
$\mathrm{T}-\mathrm{L}_{1} \mathrm{XL}_{1} \quad \mathrm{~m}$	matrix
$\psi_{k}-L_{1} \times \mathrm{KK}$	matrix
$\mathrm{D}_{\mathrm{k} \ell}-\mathrm{L}_{1} \times \mathrm{L}_{1} \quad \mathrm{~m}$	matrix
$\mathrm{B}_{\mathrm{k}}-\mathrm{KxK}$	matrix
$\mathrm{c}_{\ell}-\mathrm{KxK}$	matrix
$\alpha, E, \Delta_{k}, A_{1}, A_{2}, r$	- scalar parameters

$\alpha_{1}, \varepsilon_{1} \Delta_{k}, A_{2}, A_{2}, \dot{m}$ scalar parameters
$\gamma(\theta)$ - scalar function

A - NxN matrix
$\rho-$ LxM matrix
B - M vector

Conclusions

The general representation of the hybrid operator in a continuous tine form is obtained in the first section of the thesis.

Both lower and upper for the hybrid operator axe established and their depandence on sampling interval ε is clarified. Different types of sampling are discussed,

A general approach for hybrid approximation of a continuous time invariarit multivariable systems is suggested with particular type of minimization oriterion. This critericin is physically irterpreted. Also some examples are considered in details. Tho formula for optimal computer coefficients is derived to provide a minimum value of criterion given fixed sampler and hold structures. This may lead to simplified analog circuits. Schemes for implementation are drawn.

A robustness problem for hybrid systems is formulated and investigated. A robustness condition for continuous systems is applied to the hybrid operator and the critical sampling interval value is found. This value guarantees the robustness of the hybric approximating system.

All these concepts and methods are illustrated on the three-dimensional. control system. A numerical simulation has been performed and results interpreted. They indicate a consistency of the found critical value of sampling interval with its exact value.

Directions for Further Investigations

1. In order to get a better understanding of processes in hybrid systems one would investigate how does the fixation of functions $f_{0}(\lambda)$ and $g_{0}(\lambda)$ affect the quality of hybrid approximation and the robustness of the approximated systern.
2. As mentioned in section 4, the bounding operator for provides a rather consorvative mufficient stability condition and, consequantly, relatively mall value of $r_{\text {cr }}$. A better, less restrictive time invariant operator could be possibly found in order to obtain more precise value for ${ }^{T}{ }_{c r}$.

APPENDIX

This Appendix bringe togethor somo mathematical fomulas and their derivations which are used in various sections of the thesis. The inolude dentities for matrix trsces and thair derivativas, trace inequalities, inequalities for integrals and sume, one matrix identity used in the example.
I. Differentiation of Traces.

Identity:

$$
\begin{equation*}
\frac{\partial}{\partial E} \operatorname{tr}\left[C E^{T} T E\right]=2 \mathrm{TEC} \tag{A}
\end{equation*}
$$

where C and I are square symetric matrices.

Proof:

$$
\operatorname{tr}\left(C E^{\mathrm{M}} \mathrm{TE}\right]=\sum_{i} \sum_{j}\left(C E^{\mathrm{P}}\right)_{i j}(\mathrm{TE})_{j i}
$$

$$
=\sum_{i} \sum_{j} \sum_{k} \sum_{m} c_{j k} E_{j k^{T}}{ }_{j m} E_{m i}
$$

$$
\frac{\partial}{\partial E_{p q}} \operatorname{tr}\left[C E^{T} T E\right]=\sum_{i} \sum_{j} \sum_{k} \sum_{m} c_{i k^{T} j m}\left(E_{j k} \delta_{m p} \delta_{i q}+\right.
$$

$$
\left.+E_{m i} \delta_{j p} \delta_{k q}\right)=\sum_{i} \sum_{j}\left(\sum_{k} c_{i k}{ }^{T} j p^{E} j k^{\delta} q^{+}+\right.
$$

$$
+\sum_{m} c_{i q^{T} j m}{ }^{\mathrm{m}} \mathrm{i}^{\delta} j p
$$

$$
=\sum_{j} T_{j p} \sum_{k} c_{q k} E_{j k}+\sum_{i}^{c} c_{i q} \sum_{m}^{T} T_{m} E_{m i}=
$$

$-\sum_{j} \mathrm{~m}_{i p}\left(\mathrm{CE}^{\mathrm{T}}\right)_{q j}+\sum_{i} c_{i q}{ }^{(T E)}{ }_{p i}=$
$=\left(\right.$ CE $^{\mathrm{q}} \mathrm{T}_{\mathrm{qp}}+$ (TEC $_{\mathrm{pq}}=$ (ETEC $_{\mathrm{pq}}$

Corollary:

$$
\frac{\partial}{\partial E} \operatorname{tr}\left[\operatorname{ETE}^{\mathrm{M}}\right]=2 \mathrm{EH}
$$

Proof: put C=I and transpose both parts of the idenity (A):

$$
\begin{gathered}
\frac{\partial}{\partial E^{T}} \operatorname{tr}\left[E^{T} T E\right]=2 E^{T} T \\
\text { Call now } E^{T}=E^{\prime}, \\
\frac{\partial}{\partial E^{\prime}}, \operatorname{tr}\left[E^{\prime} T E^{T}\right]=2 E^{\prime} T
\end{gathered}
$$

which proves (b).

Identity:

$$
\begin{equation*}
\frac{\partial}{\partial E} \operatorname{tr}\left[C E^{T} \psi\right]=\psi C \tag{C}
\end{equation*}
$$

Proof:

$\operatorname{tr}\left[\operatorname{CE}^{T} \psi\right]=\sum_{i} \sum_{j} C_{i j} \sum_{k} E_{k j} \psi_{k i}=$
$=\sum_{i} \sum_{j} \sum_{k} c_{i j j} \psi_{k i} E_{k j}$

$$
\begin{aligned}
& \frac{\partial}{\partial B_{p q}} t x\left[c \varepsilon^{T} \psi\right]=\sum_{i} \sum_{j} \sum_{k i j}{ }_{i k i} \psi_{k p} \delta_{i q}= \\
& =\sum_{i} c_{i q} \psi_{p i}=(\psi C)_{p q}
\end{aligned}
$$

II. properties of traces.
A) $\quad \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
B) $\operatorname{tr}\left\{\int x(t) d t\right]=\int \operatorname{tr}[A(t)] d t$
c) $\operatorname{tx}(\mathrm{A})=\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}}\right)$
D) $\operatorname{tr}(A \cdot B) \leq \operatorname{tr}(A) \cdot \operatorname{tr}(B)$
E) $\operatorname{tr}(A \cdot B)=\operatorname{tr}(B \cdot A)$

Here A and B are square matrices.
III. Inequalities [6]

$$
\begin{align*}
& \left|\sum_{i=1}^{n} \alpha_{i}\right|^{2} \leq n \sum_{i=1}^{n} \alpha_{i}^{2} \tag{A}\\
& \left(\int_{a}^{f} f(s) d x\right)^{2} \leq(f-a) \int_{a}^{f} f^{2}(x) d x \tag{B}
\end{align*}
$$

IV. Matrix Identity

$$
\begin{equation*}
\phi(\tau)=e^{A T}-\int_{0}^{\tau} e^{A(\tau-\lambda)} B K e^{(A-B K) \lambda} d \lambda=e^{(A-B K) \tau} \tag{A}
\end{equation*}
$$

proof: differentiate both parts with respect to $T:$
a) left hand part

$$
\begin{aligned}
& A e^{A T}-\int_{0}^{\tau} A e^{A(\tau-\lambda)} B K e^{(A-B K) \lambda} d \lambda- \\
& -B K e^{(A-B K) \tau}=A \phi(\tau)-B K e^{(A-B K) \tau}
\end{aligned}
$$

b) right hand part

$$
(A-B K) e^{(A-B K) \tau}
$$

If we now suppose

$$
\phi(\tau)=e^{(\hbar-B K) \tau}
$$

then we come to the crue equality $I=I$. So, the formula (A) is proved.

1. Kwakernaak, II., sivan R,, Linoax Optimal Control Systems, N. Y. Academic Pross, 1972.
2. Dasocx, C.A., Foedhack Systems: Input-Output Droperties, N.Y. Academic press, 1975.
3. Safonov, M., Robustness and Stability nspects of stochastic Multivariable Systom Design, M.I.ll., 1977.
4. Sandeld, N.R., Jr., Robust Stability of Lincar pynamic systems with Application to Singular porturbation theory, M.I.q., 1978.
5. Dwoight, H. B., Tables of Integrals and Other Mathematical Data, N.Y. MacMillan, 1961.
