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ABSTRACT

This report summarizes research accomplishments achieved under NASA
Grant NSG-~1312. Robustness properties of sample-data IQ requlators arc de-
rived which show that these regulators have fundamentally inferior uncertainty
tolerances when compared to their continuous-time counterparts. New results
are also presented in stability theory, multivariable frequency domain

analysis, IQG robustness, and mathematical representations of hybrid systems.
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1. INTRODUCTION

Ovexr the past several years, MIT's Laboratory foxr Information and Decision
Systems (LIDS) has been conducting resecaxch for NASA on the properties of mul-
tivariable digital control systems. These typaes of systems are becoming in-
creasingly impoxtant as small, powerful, flight-qualified digital computers
take over the burden of control law implementation in various NASA vehicles
and other control system applications. Examples include the shuttle orbiter,
the HIMAT and F-8C DFBW aircraft, satellites such as ATS~6, various proposed
large space systems, and many more.

The overall goal of the research program has been to evolve improved de-
sign methods for multivariable digital control laws. Research effort was
conéentratcd initially on the primary available synthesis tool -~ namely the
sample-data (discrete~time) Linear-Quadratic (LQ) regulator problem [Athans,
1]. vVarious properties of this problem formulation were studied, and key
features of its solution were investigated. In the latter category, the basic
robustness properties of sample~data LQ solutions were studied under the spe-
cific NASA research grant NSG-1312. Research findings attributable to this
grant are summarized in this report.

We will use the term "robustness" cqualitatively to describe the ability
of control system designs to maintain stability and performance in the face
of plant uncertainties. The larger the level of uncertainties which can be
tolerated, the more robust a design is considered to be. In real~life appli~
cations, robustness properties are among the most important features of control
designs. This is true whether the designs are achieved with classical ox

modern synthesis methods, and whether they are implemented in analog or




digital fashion. In cach c¢asge, the actual plant being controlled will invari-
ably differ from the design model, thug necessitating a healthy measure of
uncertainty tolerance. Further discussion of engineering motivations for
robustness can be found in a tutorial papexr by Stein, proepared in part undex
the NSG~1312 grant ([2].

The report summarizes our rxobustness research in the form of seven
short toplcal sections, Fach section dessribes a major reseaxrch area, briefly
summarizes the principal findings and their significance, and cites published
papers and/or appendices for further details, The major areas are the fol=-
lowing:

Saction 2 = Generalized Stability Theory

Section 3 ~ Robustness Guarantees for Sample Data Regulators

Section 4 - Frequency Domain Interpretations

Section 5 ~ System Specific Robustness Properties

Section 6 - Compensated Sample-Data Filters

Section 7 =~ LQG Robusthess Propertilcs

Section 8 - Hybrid System Descriptions
Three appendices are included to provide supporting details and derivations

for topics where published manuscripts are not yet available.
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2, GENERALIZED STABILITY THEORY

Since stability is the forcomost essential feature of feedback systems,
its robustness properties with respect to plant uncertainties received
primary rescarch investigation. The major theoretical tools used for these
investigations include the classical Nyquist and Lyapunov stability theoxics
as well as a more abstract and general interpretation of stability due to

Safonov. The latter was developed in part under the present grant.

Stability as Topological Separation

In Safonov's interpretation, the stability property of a feedback system
is viewed in an abstract yet clegantly simple way. The system is stable if
its feedback and feedforward clements are appropriately separated in the func-
tion spaces on which they are defined. This notion is illustrated conceptually
in Figure 1, Part A of this figure shows a standard feedback system with
feedforward element G and feedback element fi. These elements are viewed quite
abstractly as "relations" between their respective input functions and output
function. This simply means that if we let X and Y denote the function spaces
to which the points (functions) x and y belong, then é,and E,axe subsets of
the Cartesian product X x VY. Part B of Figure 1 shows this interpretation
schematically. X is represented as the real line (one axis), Y is anothex
real line (the second axis), and X x ¥ is the plane. g and H are then two
subsets of the plane.

It follows from this abstract view of §'and Eﬂ that all solutions of
their feedback interconnection in Part A must be common points of the two
subsets in Part B. Moreover, if it is known that these two subsets are

separated such that (in the absence of disturbances and initial conditions)
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they only have zexc functions in common, as represented by the point
(0,0) £ X 8 Y, then the feedback system must be stable.

This simple statement of separation is the essonce of Safonov's stability
theory. Formally, of course, the theory requires much more elaboration and
mathematical machinery. The function spaces X and Y must be extended
inner product spaces, relations G and ji must account for disturbances and
initial conditions through functional dependences of thelr own, and the notion
of separation mugt be properly quantified, These formal developments are car-
ried out in Safonov's Ph,D. thesis (3, Part 2] and in reference [4). Only

the major ideas needed to quantify separation are further discugsed helow,

Separating Functionals, Sectors, and the Multivariable Circle Criterion

The key idea which makes the above stability interpretation useful as a
stability analysis tool is the concept of "scparating functionals." These
allow us to test whether the feedback system's elements indeed have only the
origin in common. Very simply, a separating functional is any scalar valued
function-of-functions d(x,y) defined on the Cartesian product space XxVY,
whose sign separates this space into two regions. One region consists of

all the points (pairs of functions) for which

aix,y) <0 (1)
and the other reglon consists of points

dlx,y) > 0, (2)

with d(x,y) = 0 obviously forming the boundary. In terms of such separating

functionals, a feedback system is stable if its two elements G and H satisfy




(1)  da{x,y) > nlxy) 2 u

; (3)
for all (x,y) corresponding to G, i

(i) Ax,y) = 0
- (4)
for all (¢,y) =oxrassponding to 1,
Here n(x,y) ie a positive definite radially unbound=d scalar functional which
is imposed to arsuro o technical requirement that the subgets in FPlgure 1 grow
"snfficlently far apart" as x and/or y get large.

Safonov has shown in [3] and [4] that the notion of stability as topologi~
cal scparation and established via soparating functionals ig quite general
indeed, For axample, the clasuical stability theory of Lyapunov can be darived
hy appropriate choices of Q, ﬁ,und d[4]. Similarly, the SISO conic sector
stability result of Yamos [5], and hence its corollaries -~ the Popov, circle,
pagsivity, and smallegain stability criteria == can also be derived from this
perspective. In fart, Safonov has invented spocific kinds of separating
functionals which generalize Zame's concept of conic sectors and lead to a
general multivariiable version of the circle criterion,

Safonov's goneralized conle sectors, simply called "sectors," are defined
to be regions of the space X x V which are based on the following specific

separating functionals:

A
o F B + P g + iig
g(x.y) = E(x,y) Epxt L% szx 222“' )

Hore «Elland ,quarg operators mapping Y into a third function spawe Z,

lglzand E,,are operators mapping X into Z, and <¢,+> denotes an inner product

defined on Z. Then the "Scctor of E" is the set of points (x,y) for which

A
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It follows from our previous interpretation of stability that the feedback system
of Flgure 1 will be stable if the subset of points correspending to E,is inside
the sector of some functional ¥ while the subsct of points corresponding to §
is strictly outside that nector., Here the words "strictly outside" are used
to imply the same kind in incyeasing scparation with inereasing x and/or y as
was used in Condition (i) above,

In terms of this definition, the SISO conic sectors of Zames are simply

the sectors of special functionals F in the form

E (7)

E.

where ¢ and r are scalars called the "center" and "xradius" of the cenic sector,
regpectively. These types of regions ware used by Zames [5) to establish
stability conditions which include the cirele criterion [6) as a specilal case.
The moxe general sectors were uged by Safonov in [4] and [7] to prove a more
general multivariable version of the circle criterion.

Without going into the derivations or formality in detail, the multivariable
circle criterion was developed for a linear dynamic operator as the feedforward
element, G, and a nonlinear dynamic operator as the feedback element, H. Sup-

pose H lies inside the generalized conic sector defiined by

Ex,y) =<y - &x - Bx, y - Gx + Bx> (8)




$:80:) zll . 121 - I, 512 = =C <R and :22 = =C + R, where the multivariable

center and radius, C and B, are themselves linear dynamic operators, and where

<e ,¢> denotes the standard inn~v product on extended L, function space (i.e.,

2
T

<g.g?t 4 [ aT(t)b(t)dt, vi). Then, according to the topological separation
0

concept, the feedback system will be stable if all points corresponding to g

fall outside the sector of F, or equivalently, if for all points x = Cy we have

0 Fix.y) = <y - Oy - 2Cy, ¥ -~ CGv + 2Oy

2 2 (9)
= |l - coyll® - |legyl]

Using Parseval's theorem, the last expression can be transformed into the

frequency domain to get the following sufficient stability criterion:
s ‘4 =T T
0 < [T = CG(=Jw)] [T = CG(3w)]) - RG(=jw) "RG(jw) for all w (10)

As a technical detail, it should be noted that the application of Parseval's
theorem in the last step requires that the systems defined by transfer functions
G(I - CG)-1 and R must be themselves stable. This can be established by a
separate Nyquist encirclement count or by explicit calculation of roots. For
the sector radius, R, stability is usually imposed by assumption. Further
details and other equivalent forms of (10) can be found in Safonov's thesis

[3] and in the Safonov/Athans paper (7). It is particularly interesting to
note that (10) can be expressed in terms of singular values to get the stability

robustness conditions of Doyle [13].

Some Comments on Significance

Aside from the obvious significance of the above results as a "global"

theory encompassing various previous stability results as special cases, the

8




topological separatlon and scector concepts of Safonov have two specific fea-
tures which make them invaluable for the rescarch objectives of the current
study. First, the abstract treatment of the two clements §'and E'makes no
assumption about the underlying nature of these xelations, e.g., whether they
represant continuwous or discrete devices. Hence, the stability results apply
equally well to analog and digital control system analysis. Second, by their
very nature, the results face up to the robustness equations. Stability is
not assessed for specific system elements §'and E'but for a whole class of
elements covered by the possible points within a sector. A feedback system
which is stable for nominal elements §6 € Secter (g), §¢ € Sector (g)l’will
remain stable for all perturbed clements E'within that sector. Hence, the
"size" of the sector, as measured, for example, by the magnitude of its

radius, R, becomes an immediate indicator of the degree of robustness of the

system. The utility of both of these features becomes evident below.




3. ROBUSTNESS CIARANTEES FOR SAMPLE DATA REGULATORS

For the research objectives of the NSG-1312 grant, we are specifically

interested in discrete time or sample data representations of linear dynamic

systems in the following form:

xk+l = Axk + Buk (11)

v = —ka (12)

Here X, denotes the usual n-dimensional state vector corresponding to continuous
system states sampled at discrete instants of time, uy is an m~-vector of controls
which is constant ovexr each sample interval, and A, B, G are matrices of appro-
priate dimension. We assume that the feedback gain G is obtained by solving

a sample-data linear-quadratic regulator problem, and that it therefore satis-

fies the well known discrete time Riccati equations [1]:

(R + BTKB) “1Tka (13)

]
1

~
i

(A - BG)TK(A - BG) +Q + GTRG . (14)

Under mild assumptions on A, B, Q and R, the resulting closed loop system is,
of course, stable and can be made to exhibit desirable dynamic properties through
appropriate manipulations of Q and R. The research question at hand is to quan-
! tify the extent to which these properties -- sgtability in particular -- will
be maintained as the true system description in (11l) - (12) deviates from the
design model used to compute G in (13) -~ (14).

The stability theory summarized in Section 2 proves ideally suited to this

research task. We note first that equations (11) - (12) provide very specific

- ' 11
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forms for the general input-output relations G, il considered earlicr. The
feedforward relation, G, for instance, can he taken to be the (nominally) -

algebralc map

X = Gy
v (15)
= (A - BG)y
and I can be taken as a multivariable delay oporator
Y = Hx

= {yk+l = xk; k = Olll'uyf With yo = 0}

Both are operators on the (extended) function space of n-dimensional sequences
with inner product

vy D Ky v
Es.’x.’[‘—'kz;lxkyk VT (17)

Using (17) in Safonov's definition of scctorsg, it is then a simple matter to
show that the points (pairs of sequences) corresponding to H fall into sectors

defined by

Fix,y) = <p'/? l/2§, Pl/zx_+ 91/25? (18)

y-F

‘s - \ . 1/2 N
for any positive definite symmetric matrix P~/ . This is true because (18)

evaluated at points satisfying (16) becomes

(‘t T QL" T
n g g ] . '
Plam) = D0 xp gPxy ) = D
A=l im]l
To 0 1
m=owN < N .
X Px, < v 1 (19)

Lt then follows immediately that the Leadback system (11) - (12) will bhe stable




| whenever the sequences (x,y) corresponding to (15) fall strictly outside the
sector defined by (18). The entire complement of Sector (g) thus forms the

permissible range of plant variations which do not compromise stability.

Robustness of State Feedback

The above obscrvations lead to the following fundamental result on the

R~

inherent robustness of sample-data state feodhack:

Let G be an arbitrary state feedback gain matrix which stabilizes
the nominal design model (i.e., A - BG is stable). Define P to be
the solution of the following steady state Lyapunov equation

‘» P= (A~ BG R(a-BG +8§ , s =58>0 (20)

. Then the feedback system (11l) - (12) remains stable for all perturbed
systems A - BG, where A and B are perturbed matrices or even non-
linear dynamic operators, provided that the points (v,w) corresponding
to

2o L

W= P2 - BG)vV. (21)
fall strictly inside the conic sector

1/2

Pww = <w - 22y, w20 (22)

More simgly, the system remains stable wheneviyzthe perturbed system
, matrix P /z(g - BG) lies within the bounds #P™ ", This is illustrated
schematically in Figure 2.
To prove this result, it is only necessary to show that the sector conditions
(21) - (22) imply that all points (x,y) corresponding to A - BG are strictly
outside some sector of the form (18). To do this, we note that in the feedback

interconnection of G and H, the input of G corresponds to y £ v and the output

of G corresponds to x E P—l/zg, Then
| W - Pl/22, w o+ Pl/2v> <0
| My BV, M 2 <
= <Pl/2z.— pt/ 2y, Pl/:a-x‘+ VRN >0 Q.E.D.

f X
l ‘ 13
kﬁ&. o o e A e o . . 5 a . s
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Figure 2. Sector of Stable State TFeedback Systems
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This is strictly a formal development, of course. A rigorous proof again re-
quires the mathematics of extended function spaces, operators which are func-
tionally dependent on disturbances, etc. Such proofs are developed in detail

in safonov's thesis [3, Part IV].

Robugtness of Optimal Regulators

The above robustness result for sample-data state feedback applies directly
to optimal regulators as well because these are known to satisfy the Riccati
equation (14j. Note that with G fixed, this equation is a Lyapunov equation
like (20) with a specific choice of S§. Hence, we can conclude directly that
the LO-regulator (11) - (12) remains stable for all perturbed operators A - BG

such that

Y2, 4w k% < o

F(ﬂ,y_) = <w = K
(23)
. e 1/2
for all points (w,v) such that w = K/ “(A - BG)v

Here again, the perturbed system A -~ BG can consist of perturbed matrices A and
B,\or'the matrices may themselves be nonlinear dynamic operators. This is

evideritly a very general robustness condition with various special applications.

Gain and Phase Margins

Two particulaxly meaningful applications concern the regulator's robust-~
ness with respect to specific perturbations such as gain changes, phase changer,
or nonlinearities in the control channels. These manifest themselves as per-

turbed operators of the form

A—BG“—'“-A-BKSG (24)

-~ ~

where N is a m x m nonlinear dynamic system nominally equal to identity. If we

15
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assume that N and the weighting matrix, R in (13) are both diagonal, then it
is shown in (3] that the robustness condition (23) is satisfied whenever all

diagonal elements of N satisfy

- (e, + - > <
Blogryg) =Sy = 0y + vy - e +ryy> 20 |
for c:i = -—--L—~2-
i - a;
r, = ai
i L - a%
1

T 1
ay ”JRii/[Rii * A ax (BKB)]

and all (w,,v,) such that w, = Nogvy (25) ‘
This condition requires that the points of each Nii must lie in a conie

sector with centerxr ¢y and radius Ly both defined by the weighting matrix

elements Rii and by the Riccati matrix K. If Nii is a pure algebraic gain or

algebraic nonlinearity, for example, this requires that

Nii(vk)
c, -~ r, « ——<K ¢, * r,
i i— v — T4 i
k
1 Nty 1 (26)
1+ ai - Vk l -8

for all k = 1,2,... Likewise, if Nii is a stable linear dynamic system, say

Li' then we must have

16
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by mooglyy - oEpgs (By - oegdyy hxgy 20
2 2
=> ‘I(Ei = Ci)Xill < llriii”
> [I(Li(eij) - ciH2 5_ni v uw (27)

where I, (z) is the z-transform of the operator L,. This constraint confines

Jwh

Li(z), whan evaluated at z = ¢ , to lie within a circle with centex ey and ra-

dius r,. Given that Li(z) is nominally unity, it can therefore be perturbed

in pure gain from c, - % = l/(l+ai) to e, + x, = L/ (iea and is pure phase

ik
by

o] < 2 sin"a/2) (26)

These then are the guaranteed gain and phase margins of the sample~data regu-
lator. Note that they apply individually or in any combination to the m con-

trol channels.

Significance

The significance of the above margins can be be appreciated by noting that
the scalars a; in (25) ~ (27) are approximately unity. Thedir deviation from
1.0 is controlled by the quantity Amax(BTKB) in (26) which is known to tend
to zexo as sample intervals A tend to zero (B -+ 0 while K - const). Hence

the ai's approach unity from below and

Gain Margins = 1/2 to 4

Phase Marging - 260 deq.

17
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These limits axe precisely the stabllity margins enjoyed by the continuous time
lincar~quadratic regulator (8]. The sample-data regulatox, however, achieves
these margins only asympintically as sample rates get large, Fox all finite
rates, it has Ffundamentally poorer margins.

A second important distinction between sample~data and continuous~time maxy~
gins is that the latter are independent of plant and cost matrices. They are
a consaequence of optimality alony., In the sample data case, the parameters ay
depend on plant data (through R and BTKB) and hence the margins are no longer
global plant-independent guarantees.

Similar results as these apply to sample-~data Kalman filters and to non-
linear systems linearized about various operating points (x,y) as well. These

additicnal results of the NS8G-1312 grant are fully developed in Reference [3].

18
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4, FREQUENCY DOMAIN INTERPRETATIONS

Both the continuous time marging in [B] and the sample data margins ahovae

were developedwith relatively sophisticated mathematical machinexy. This tende

to make the results less accessible to practicing engineers than desirable.

To overcome this problem, we have attempted under NSG-1312 to develop simple

frequency domain explanations, These have proven quite useful in communicating

the results and are briefly summarized below.

The Continuous-Time Case

The robustness properties of LQ~regulators can be viewed as multivariable
generalizations of single-input freguency domain results dating back to Kalman.
For the single-input case, Kalman proved that the return difference

T(s) é 1+ gT(sI - A)"lb of an optimal controller satisfies [9]

lm(gwy |2 > 2 (29)

at all frequencies, w, Hence, the loop transfer function Go(s)‘w gT(sI - A)nlb

lies outside of a unit circle centered at (~1,j0) in the complex plane. This

is illustrated in Pigure 3 below:

Im G(jw)

Unit circle 8

Typical Nyquist ’
diagram of Gofs) (-20) (-1/0)

G Re Gljw)

Pigure 3., Optimal Nyquist Diagram

19
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The (=6 to + ® db)-gain and +60 dcqree phase tolorances then follow from the

Nyquist Stability Theorsm applied to this geometry. Recall that the nominal

system is stablae. Hence, its encirclement count of the (~1,0) point is correct

and will remain corraect for all parturbations G = Go + €66 which do not cause
the new Nyquist diagram to pass thyough (-1,0) for some 0 < e <« , If wa
congider perturbations which are pure gain changes only, for example, then
G = gGo and it i clear that the mystem remaing stakle for all €, except when
GO falls on the real axis for some @, i.a., Go = -0, + 30, In that case, the
tolerabla g range is é’i.ﬂ n ®, Since ¢ is guaranteed to be greater than or
equal to 2.0 (Point A), the gain margin result follows. Similarly, if we
consider pure phase changes such that G = ajaao it follows that the system re-
mains stable for all £ unless |G| = 1. In that case, the Points B and B' are
the worst locations for Go and the %60 deg. phasc margin property follows,

In terms of the multivariable generalization, it can be shown that the

nmatrix version of the optimal return difference also satisfies an inequality,

namely
[+ G' (=507 [T + 6" (jw)] > I (30)

This inequality implies that the loop transfer matrix G'(s) é Rl/ze(s)R-l/2
lies outside of a unit ball centered at (-I,j0) in the m-dimensional space of
complex numbers. The (-6 to + ® db)-gain or %60 degree phase tolerances for
each control channel then follow from the geometry of this ball., We again in-
voke Nyguist's Stability Theorem which now requirxes that the function

det [T + G'(jw)] ercircle the origin a requisite number of times. This number
is correct for the nominal system and will remain correct as long as I + G'(jw)

remaing nonsingular. This is assured as long as

20
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(I+G')v#O0 (31)

for all unit vectors v. However, from (30), we have that

[(z +cyv] 2 |v] (32)

This means that G'v lies outside of a ball centerad at -v with radius |v|.
Projected onto any plane, the geometry of this ball looks just like Figure 3

and hence the allowable perturbations in G' follow from the same geometric

arguments,

The Discrete Tim@ Casa

The analogous property to (29) for optimal sample data systems is

A ——L (33)

]

2
1+ 6(2)|° > —¢
r+b Kb

where r is the (scalar) control weight, K is the Riccati

matrix and A is sample time,

This condition implies that G(z), like G(s), lies outside of a circle centered
at (-1, j0), but with radius | & [r/(r+bTKb)]l/2 less than unity. Hence, from
the Nyquist “tability Theorem and the geometry of this smaller circle, it is
clear that gain increases by factors greatexr than 1/(l-1), gain decreases by
factors greater than 1/(14+4), or phase changes less than %60 degrees could
produce instability. Moreover, the radius parameter )i, and hence the margins,
are plant-specific because they depend on K and b.

This same argument carries over to multivariable problems where the return

difference can be shown to satisfy

21
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with R = R + B KB

and G'(z) = 1/26(5} ~1/2

— s

Here the loop transfer function G'(z) is seen to lie outside of an "ellipsoidal

ball" with minimum radius

Wom A (B 2R 22

lass than unity. As above, the margin properties follow from the geometry of
this ball.

As in Saection 3, the radius of the ball above is seen to approach unity
as BYKB approaches zero. Hence, the continuous time margins and plant inde-
pendent robustness guarantecs are recovered asymptotically as sample rates

tend to infinity.

22
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5, SYSTEM SPECIFIC ROBUSTNESS PROPERTIES

As woe observed above, the robustness properties of continuous time IQ~
regulators are quite profound theoretically. They hold with no mention of
the actual plant bseing controlled or its performance index. ‘The margins are
a consequence of optimality alone! All that is neoded are the usual existence
and uniquensss nssumptions for LQ controls. Moreoover, we have shown by counter
examples that the margins are the broadest which can be achieved without
further reference to particular system characteristics [10].

These observations do not mean, of course, that it is useless to look for
broader plant~-specific tolerance boundz. In many design problems, for example,
it may well be important to increase the 50% gain reduction tolerance (-6 db)
all the way to 100% (i.e. open loop) in order to achieve system reliability,
Results which indicate that this is possible for specific problems have been
dexived by Wong, Athans and Stein {10) in part under tlie NSG-1312 grant., A

particular result from [1l0] is that tolexable gain reductions can be bounded by

A 17201 - RY 2% 6RY2)7 (9 invertible) (35)

where A = diag (Yl""’Ym) is a diagonal pure gain perturbation in the control
channels.

In specific examples, these lower bounds have been shown to be equal to
the system's linear critical gain, which means that they achieve the broadest
tolerance region possible for the example. Note that the hounds also provide,
for the first time, an explicit relationship between gain margins and quadratic

welghts.

Analogous plant-gpecific robustness properties for discrete-time systems
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ware developed wholly under NSG-1312 and are documented in detail in a draft

manugcript included Appendix A.
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6. COMPENSATED SAMPLE-~DATA FILTERS

We remarked in Section 3 that the robustness results achieved via Safonov
stability theory apply to Kalman f£ilter designs as well as to regulators. This
connection is explored fully in [3]). Under NSG-~1312 we also explored ways to
enhance the resulting inherent filter robustness by dynamically compensating
the filters so as to remove estimation biases. The details of this worxk are
reported in a paper by Lee and Athans [11].

The basic premise of this paper is that the residual process of a discrete-
time £ilter will exhibit low frequency biases whencver modeling errors and
slowly varying inputs are present simultaneously. These biases can be mﬁdeled
approximately as random walk processes. They can be observed by monitoring the
residuals, and hence, they can be estimated by an auxiliary filter which uses
the residuals as its "measurement" sequence. When the auxiliary and original
filters are combined, they generate a 2n + m dimensional composite system which
is effectively immune to unmodeled low frequency crror mechanisms. Derivations

and examples of this compensation procedure are given in [1l].
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7. LOG ROBUSTNESS PROPERTIES

; As discussed in Sections 3 and 4, our robustness results for sample-data
I1Q regulators show that the very act of sampling seems to impose a loss of

uncertainty tolerance (less gain margin, less phase margin, etc.) when compared

R £

with continuous time LQ-regulators. This "loss of robustness" in discrete
regulators is also exhibited by continuous time regulators with state estima~-
tion. Hence, the possibility that there may exist common underlying reasons
or at least usgful interrelations between these two phenomena motivated
further studies of the LQG continuous time case.

Regults of these further studies are described in detail in a draft manu-
script included in Appendix B. Highlights of these results are briefly reviewed

here. First, the most basic discovery is that LQG-regulators have no guaranteed

oW T s T

uncertainty tolerances whatsoever. This was established directly by a small

design example due to Doyle [12]) which produces a technically legitimate LQG-

regulator with arbitrarily small tolerance for gain uncertainty (gain perturba-
tion of * g, with € arbitrarily small, cause instability). The main signifi-
cance of this example is that it shows LQG robustness to be a design-specific
property. For the research effort, it meant that instead of looking for

global guarantees, we should seek out generic design situations in which
tolerances are likely to be good or poor. For the latter, we should devise
adjustment procedures to improve robustness. The following results along

these lines have been developed.

1. Margin recovery with "adapted Kalman filters"

| If the Kalman filter in an LQG-implementation receives the
. correct control signal (e.g., as altered by gain uncertainties)
the LQG controller has gain margins equivalent to the full

27
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state case. This result is stated and proven as Propositior
1 in Appendix B. It is also proven in a more abstract setting
in [3].

2, Asymptotie Margin Recovexry T

Full-state gain margins can be recovered asymptotically as
the following ratio tends to infinity:

min —xT(A+HOCT)x
T _
X x=1 (36)

max -xT(A+BGg)x

xTx=l
Here, A,B,C are the system dynamics, input and output matrices,
and Gj and H, are the controller and filter gain matrices re-
spectively.

3. Asymptotic Margin Recover IIX

Full-state gain margins can be recovered asymptotically if
the process noise covariance, ¢, in the Kalman filter design
tends to infinity in the following special manner:

o - ¢2BBT, <p2 + oo (37)

Here ¢2 denotes a scalar.

The two asymptotic recovery results are stated and proven as
Propositions 2 and 4 in the appendix. They serve the important
function of providing ways to adjust LQG design parameters in
design situations where nominal model-motivated parameters pro-
duce excessively sensitive controllers.

4, General Gain Margin Bounds

IQG systems are stable for the following range of control
gain variations:

¢t = Gg | (38)

with A I <A<A I

A
A, =1+ 1//55
A é max[l-l/xo, l/l+] (39)

Here [ is a diagonal matrix, W > (0 is a scalar which can be




made small by proper sclection of design parameters, x, > 0
is a scalar which can be brought close to unity. Hence, this
result also provides a systematic way to improve gain margins
of an ILQG~-design. It is stated and pr~'en as Proposition 3,
More detailed statements, proofs, and discussions of these results are

provided in Appendix B. In addition, further rescarch directions are also

outlined there which are worthy of continued research effort.
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8. HYBRID SYSTEM DESCRIPTIONS

We have now seen that sample data LQ-regulators are fundamentally inferior
to their continuous~time counterparts in the sense that their robustness
properties are not as good. They share this inferiority to some extent with
continuous LQG regulators, but the latter can recover their robustness losses
at least asymptotically by appropriate filter redesign. The only way that
sample~data regulators can recover these losses is apparently to increase the
sample rate arbitrarily.

Motivated by these apparent limitations of the existing sample data LQ
synthesis methodology, the research effort under NSG-1312 was re-directed
toward more fundamental issues of digitally-implemented control systems. The
first task of the redirected effort was to find a mathematical representation
which properly captures both the continuous-time (analog) and the discrete-
time (digital) processes which occur side by side in a digital control system.
Such a representation was developed in what we call the "hybrid operator
model" of the control process. This model provides an analog input-output
view of the control process which explicitly includes sampling operations,
digital calculations, hold operations, and continuous plant evolutions. The
structure of this operator is summarized briefly below and in more detail in
Appendix C. The latter is a draft manuscript of A. Kostovetsky's Mastexr's
thesis prepared under the research grant.

An immediate application of the hybrid operator is to explain the common
use of prefilters in practical digital control systems. Simple norm calcula-
tions in Appendix C show that the hybrid operator will have unbounded gain (in

an appropriate function space sense) as the sampling process tends toward the
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ideal impulsive sampling normally assumed in sample-data theory. Physically,
this means that it provides arbitrary amplification for certain inputs (e.g.,
noise). Non-impulsive sampling, as obtained with pre-filters, bounds this
amplification.

The second task of the redirected research made use of the hybrid opera-
tor model to answer the following very basic approximation question: How well
can digitally-implemented control laws mimic analog ones? More specifically,
if samplers, holds and digital algorithms are all selected to best approximate
a given linear, time-invariant analog system, how good can the approximation
be? The answer to this question is elegantly simple and profound. The digitally-
implemented system can exactly duplicate the impulse response matrix, G(t-0),
of the analog system at all points in the t, 6-plane except on a strip of width
T (sample time) along the main diagonal (t=0). 1Inside this strip, the hybrid
system's impulse response must be zero on various triangular segments. We have
accordingly named this region of approximation the "triangle strip." Details
of the optimal sampling, hold, and digital function for this approximation are
again summarized below and derived in detail in Appendix C.

The significance of the above approximation result is that it provides a
simple and clear picture of the basic limitations inherent in digitally-
implemented controls. Such controls are fundamentally inferior to their
analog counterparts because they cannot utilize all the input data in the
triangle strip. This limits bandwidth, restricts performance, and precludes
robustness guarqgtees such as those enjoyed by the continuous-time L) regqulator.
The precise quantitative way in which these limitations manifest themselves,
however, is not yet understood and provides basic motivation for continued

research efforts.
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Hybrid Systems

We will consider digital control systems which can be represented by the
block diagram of Figure 4. The three main functions associated with the con~-
troller block in this diagram are:

1. The sampling operation which converts M~dimensional analog

inputs u(t) on the interval (&~1)T<t<&T into N-dimensional
discrete samples Ez, =1,2,.44y

2. the digital algorithm which converts the N~dimensional se-
quences gz into L-dimensional secquences Ny k=0,1,..., and

3. the hold operation which converts the L-dimensional sequences
N into k-dimensional analog functions v(t) on the interval
krgt (k+l) T,

The gystem's sample time will be designated by the symbol T. These three

functions will be assumed to have the forms

2 fM £,(0)u(9)do fm £,(8-27)u(0)d8 (40)
= ) = =XT)u
oyt (8-1) °

k.
Ny = ;?::1 D oe (41)
vit) = g, (£)n, = g, (t=kT)ny | (42)

The first of these equations is a simple analog convolution operation with
weighting function (impulse response) fO(A). This could be the weighting
function of an analog prefilter, an approximate impulsive sample, or various
other vector valued input averaging operations. Some examples are given in
Appendix C. The second equation is a standard digital convolution with coef-
ficients D

kg The third is a generalized output hold operation with weighting

function gO(A). This could be a simple constant to represent the common
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"zero-order-hold,” but in general it will be selected to achieve broadex goals,
Some examples are again given in the appendix. Note that the contrxoller is
completely characterized by the two matrix-valued functions fo(X), go(X) and

by the coefficient matricus Dyq,*

Hybrid Operatoy Representation

Given the above description of a digitally-implemented controller, it is
straightvforward (Appendix C, Section 2) to write its input-output operator

representation, G, in the terms of an impulse response matrix, G(t,0). That is,

v = Qu (43)

— —

e

where v and u denotes functions on [0,®) related by the convolution

£
vie) = [ a(e,8)u0)as (44)
0
with
k
G(t,8) = gy(e-kt) 25 D, £ (8-21) (45)
=1

Here k is understood to be the largest integer less than or equal to t/t. We
will refer to this input~output description of the controller as "the hybrid
operator model" or simply as the "hybrid controller." Note that it is a time-~

varying linear dynamic system characterized by 9o fo, and Dkz'

Optimal Hybrid Approximation

Consider now the problem of finding a hybrid operator model G(go’fO'Dkl)

to approximate a continuous~time linear dynamic control law with impulse response

matrix
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A(t-0)p

G(t,0) = Ce ' (46)

where A,B, and C are given system matrices,
Let the approximation criterion be to minimize
T = E}lim%; fT] [v(t) - x’?(t)llzdtl (47)
e T i
where v(t) and v(t) are the outputs of the hybrid and pure analog controllers
respectively, when excited by the same white noise input. Then it is shown in
Appendix C, Section 4, that the optimal approximating hybrid controller has

the following sampling function:

£,0) = oMy (48)

Its corresponding hold function is
go0) = ce™ (49)

and the digital algorithm is

Dy = M d, = ATR-R) (50)

Moreoverx, these parameters cause (40) to duplicate (46) exactly everywhere ex-
cept on the "triangle strip" of Figure 5. Note that the sampling and hold
functions (48) - (49) of this optimal hybrid approximation are themselves
n-th order dynamic systems, where n is the dimension of A. Hence, the overall
hybrid controller can be visualized as shown in Figure 6.

As indicated earliex, the significance of the above result is not the op-
timal structure in Figure 6 itself (after all, the sampling and hold functions

are quite complex, each literally duplicating the analog system), but rather
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the fact that the inhoront hybrid system limitations are so simply and clearly
displayed by the triangle strip in Pigure 5. It follows from this figure that

the minimum approximation error is given by the error operator
g = (G-G)a (51)
where G-G has the impulse response representation

t L
a(t) = [ G(t~0)u(0)ad (52)
kT

Qualitatively thereforae, the hybrid system suffers an inherent time varying
"data lapse” with a maximum duration of T meconds (average T/2), and with data
waighting propoertional to the desired impulse xesponsa, G. Hence, both the
nominal function G and the sample time T contribute to the significance of
the error. Small errors are assured if G(\) is small over the whole intexrval

0<t<t and u(0) is relatively "smooth." These observations are given further

interpretation later.

Extensions and Applications

Two additional research results are developed in Appendix € which demon=~
strate the utility of the hybrid operator model. One result deals with con~
strained optimization of criterion (47), subject to fixed sample and hold struc-

tures, and the second deals with crror bounds for expression (51).

Constrained Optimization

This result provides optimal approximating hybrid operators which best
match a given analog system when the sampling and/or hold circuits are pre-
specified to take certain (simple) fixed forms. The major results are as

follows:
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G(t,0) = H(t)S(6) ‘ (53)
with either (1) H(tl+t2) = ﬁ(tl)M(tz) or
(ii) s(t1+t2) = d(tl)s(tz) (54)

Fixed Sampler Result (using property (i)):

fO(A) given, yields

900\) = H(\) and

1 - -

0 -1
0 = ™ ' ™
4= [ smw)fo(x)ax]U_T £,0) £5004)] (55)
-7

Fixed Hold Result (using property ii):

QO(A) given, yields

£,00) = S(\) and
Dyg = Mkc'i('rz) with

T =1r r1
| [o gg(Mgoo\)ax] [f a5 () ﬁ(um)ax] (56)
' 0

Fixed Sampler and Fixed Hold Result:

fo(A), go(k) both given, yields

Dy = Mde, with M and dﬂ, as defined in (1l6) and (17) (57)

These expressions define optimal digital algorithms and sample or hold functions
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under various fixed structure assumptions. In genexral, theixr approximation
errors will no longer be zero outside the triangle strip. The nature and
significance of these added crrors remain to be evaluated,

An interesting application of formulas (55) is carried out in Appendix A

for the desired nominal system

G(t,0) = (0 o (PT) (7RO (58)

wlth a fixed, nearly impulsive sampling operation

%1 -£<AL0
fo(x) = (59)
0 elsewhere

The optimal hold is found to be

go(K) = Pt (60)

and the corresponding digital algorithm is
ak( -2) (O -m
D, =e Jf e T dA (el)
k& -

The fact to note here is that Dkz tends to zero as € becomes small. This is
counterintuitive, at first, until we recall that impulsive sampling yields in-
finite function space norms. Dkl must tend to zero in order to preserve a
finits-gain hybrid approximation of G. This again highlights the weaknesses

associated with pure sample data system representation and with impulsive

sampling assumptions.

Error Bounds

The second additional line of research in Appendix C deals with bounds

for the inherent approximation errors of the optimal hybrid operator in Figure 6.
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Thig research is motivated by the practical desire to include hybrid operators
within the class of systems which can be handled by the stability robustness
theory of Safonov, Doyle, Sandell, and Stein (3,13,14,15]. One of the basic
results of this theoxry is the follawing:‘n nominally stable feedback system
with nominal return difference operator I + g remaing ~table under additive

perturbations 9 +~A§ if the perturbations satisfy [14)
@)™ | |1a6]] <2 (62)

This is a special version of equation (9) in Section 2. If G and AG are time
invariant linear systems with transfer functions G(s) and AG(s), condition (62)

is also often written in the form [16]
olI+G (Jw) ) < OIAG(jw)) for all w (63)

where g and 0 denote maximum and minimum singular values of their respective
matrices.

These stability-robustness results are relevant to our present study of
hybrid systems because they provide a way to assess the consequences of hybrid
approximation errors. Specifically, if We.thinkwof 9 as g (the nominal analog
system being approximated) and Ag as the approximation error operator due to
digi.al implementation, (equation (51)) then (62) and (63) provide a way to
assess the impact of hybrid approximations on the stability property. In this
sense, hybrid errors play exactly the same role as other uncertainties which
are associated with the nominal analog system. In fact, if other uncertainties
are "large" compared with Ag of (51), then the internal digital nature of the

hybrid controller becomes inconsequential. Moreover, it should then be pos-

sible to relax (simplify) some of its parameters (samplers, holds, sample rates,

42
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etc.) at the expense of increasing Ag. Clearly, simple tight bounds for |lA§|l
will play a critical role in making these analyses and simplifications possible.

To date, only the following conservative bound is available for AG
(Appendix C, Section 5):

|]1AG]| & max G[G(0)]T (64)
- 0<0<T
This bound is merely the maximum singular value of G(t-0) on the intexrval

kt<0<t, scaled by T. The T-dependence makes it immediately useful as a cearse

selection criterion for maximum tolerable sample periods. It tends to he con-

servative, however, A third order hybrid controller illustration in Appendix C,

for example, violates (62) with (64) at T=0.36 sec. Actual instability does not
occur until T reaches 0.54 sec. Another limitation of (64) is that it does not

provide frequency dependent bounds for use in (63). Much tighter bounds should

be possible if the frequency content of signals ig taken into account. This

question forms an important area for future research.
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9.  CONCLUSIONS

This report has summarized research accomplishments achieved undexr NASA
Research Grant NSG-1312. The overall objectives of this reseaxrch were to
analyze the basic robustness properties of linear-quadratic sample-data regu-
lators and to explore the suitability of these regulators as tools for digital
control system design.

The major ¢onclusion of the research is that sample-data LQ regulators
are fundamentally inferior to their continuous time counterparts in the sense
that their robustness properties are not as good. They share this limitation
with continuous LQG designs. In both cases, however, the continuocus time
properties can he recovered asymptotically by increasing sample rates and by
filter redesign, respectively. The research also accomplished important new
developments in stability theory, multivariable frequency domain analysis, and

mathematical representation of digitally implemented (hybrid) control systems.
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APPENDIX A

ROBUSTNESS OF LQ-OPTIMAL SAMPLED-DATA CONTROL SYSTEM:
A SUMMARY OF NEW RESULTS

P. K. Wong
M. Athans

This appendix presents the discrete time version of the continuous-time
feedback robustness results for IQ-design reported in [10] (Theorems 1 and 2)
and documents a new result for robustness of sampled-data control systems

under L{)-design to changes in the sampling rate (Theorem 3).

A. Samppled~data System n
. X € R
Given the system x = Ax + Bu se ® (A1)
We have the following sampled-data model (see Fig. 1):
- 2
*ke1)d T A%kt Batia (a2)
{
where
A A )
AA = e
B, 2 M
AT A . (a3)
A
MA é(f eATd't)
(o]
= A—l(eAA- I) if A—l exists J
A = sampling period ‘ (Ad)
1

/A = sampling rate

——




1

x(t) x xkA

> X = AX + Bu >-

zeroth order < digital
hold Wep computer
Figure 1

pefinition

AA is discrete-time-sense (DT) ntable if

|Ai(AA)| <1 V eigenvalues Ai of A, (n5)
y
The foilowing (Lyapunov) results will be of use in deriving the results

for the rest of the report:

Discrete-time Stability Theorem (Lyapunov):

Suppose @ K > 0 and Q > 0 such that
K=ATKA+Q

Then A is (DT)-stable.

For the rest of Section A of this report, the notation AA and BA shall
be used to denote general discrete~time system parameters i.e., they need
not satisfy.(AB); the results of Theorems 1 and 2 are valid for any linear

discrete~time system, not just those which are sampled~data system models.




T R ———

Lp~-design (DT) - Summary of known results

Problem
>
iy T
min Q +u_ R = J (9 >0, R> 0) (n6)
Gin & (B 2 B * 5 )
S.t. £ X .4 % Ay o+ M,B U (A, B,) stabilizable
e 1
B, (Q%, A A) detectable (n7)
Result
* T
= A8
u GA %, (n8)
T . T "l T (Ag
Gy (R+BAK BA) BAKAAA )
T T -1 T
e —— Alo
K, AA{KA K\Bp(R + ByK,B,) BAKA} A+ 0 (aA10)
T,.T By by
. ‘ All
> K, = (AA + BAGA) Ky (AA + BAGA) + Q + GARAGA (All)
<=> K =ATKA +Q-G(R+BTKB)GT (AL2)
A AAA A ATATATTA
ORI, AT To T ‘
Q> Ky = BK\B, o+ Q) = MGy (R + BAKAB)GA My (A13)
where f(A = M'gKAMA (Al4)
'QA = MZ‘QAMA (AL5)
<> R, = (A, + BG-M)T K (A, + BGIM,) + 0. + M G,RGM (A16)
a = By BGMA)T Ky (B b BGAM, ) 4 Qp 4 MyGARGYM)
In what follows we shall assume that Q > 0 (a17)
Theorem 1 (Discrete-time LQ-gain margin property)
sj
(ay + BAAGZ’> is stable (DT) if:
T -1, -1 T T T ‘
(GAQ GA) + A"RA > (A7 - I)(R + BAKABA) (A - 1) (A18) |




T

or equivalently,
Pl .~1 . _,.T -1
((GAQ 6™t + R(ByK,B,) IR + n) >

T -1
(A -I- R(BA 4By ) BAKABA) (A (BA KyB,)” ) (9)
Remark
From equation (Al9), in Theorem 1 it is obvious that there is both an

upper bound as well as a lower bound on the values of the admissible A.

This is most transparently demonstrated in the case when there is only a

single control=-input, so that A becomes a scalar in this cases

Corollary 1.1

(for the case of a single-control input 10-design)

' T
[AA + bAo. 313] is (DT)~-stable if

(a+5 -\[-E(;l,wr (1+§)) <as< @+ +{l%;(%+ z(1+§)) (A20)

AT
where m = bAKAbA

w® gy tg
V4
Theorem 1 can be re-stated in a different way which shows explicitly
the range of admissible A, by simply generalizing the abéve 'square~rooting!

procedure used for the single=input case to the multi-input situation:

Corollary 1.2

(AA + BAA GZ) is (DT)-stable ¥




.

- r—— — ———

e

&% v

.

~1 Yo'6 0 %
A= (2 + Wy R) (Ml) L (Wy)

for all £ = I° gk, 0S¢ T <1

where
A P ) N X -1 '
_Ml [(GAQ GA) + R WA R + RJ
A T
Wy ®= (B K\B,)
A ATATA >
Theorem 2 (General Discrete-time LQ Gain Robustness)
(B + B, (#G, + 6¢7)) is Dr-stable ¥ 86 € R(Q™'G,)" and ¥ & R
such that
s6TQ Yo6 < [WA + (W (I=F) + R) z'l"((x-FT)wA + R)]"l (a21)
where
28 (@ e ™ + FRe - (z-rT) (y 4 R (I-P) > O
and
W 8 3Tk 5 (a22)
A ATATA )
%
Remaxrk

Theorem 2 is the discrete-time wersion of Corellary 2.1 in Wong, Stein
and Athans for the continuous casge. Unlike the continuous~time result, the

discrete-time version is much more complicated and is probably of little

computational usefulness.

B. Sampling-time Robustness of LO-design

Given the system x = Ax + Bu (B1)

o




Supposa we sample the system state at xate (1/A). The oquivalent
gampled~data model of the system is:

X (k+1) A ™ Ap¥ep * BA“RA (B2)

Al
AA - @

By = M,B m(fAemd'r) B
[o]

If wa choose a discrate-time LQ-design to stabilize the sampled data

model (B2), then the closed-loop system (AA + BAqg) is stable, where qz is

the optimal gain computed for the sampled-data modael when the sampling rate

is l/A and for the cost-weightings Q and R.

Suppose now we change the sampling rate to (Kikjéz the corresponding

sampled-data model bocomos

Xierl) (A1) ™ Pashr Fra+hry * Basar Yk(asav) (83)

If we do not change the gajins Gx computed previously, the new closed-

loop system at the new sampling rate becomes
m

which of course is not hecessarily stable. The problem we want to pose is:
for what range of A' would (B4) remain stable?

We have the following sufficiency result:

Theorem 3 (Sampling-rate robustness of LQ-design)

Ty . .
(AA+A‘ t Byaa GA) is stable if

el




e

TR

iy
' M )T GARGX(QAA'

AN Al -1,
KA - (KA'Q)Q + (o o, MA'MA

-1

> (MA.M;l)T GA(R 4 ngABA)GX (M ,M&l) (BS)
%

Remaxk

MA,M;l w (T = GAA')(I - mAA)"l ig A-l oxists

Remark

It is not obviocus what physical inteorpretation can be made of the
expression (B5); some numerical examples will be worked out to gain insight

into the meaning of (B5) in future reseaxch,

Bemark

The case when A' = A (i.e. doubling of sampling period) is a particu~-

larly simple special casc of Theorem 3:

Coxollary (Robustness to doubling of sampling period)
T
(A2A + BzAGA) is (DT)~-stable if
My > 26+ BKBIG  (36)
g@

T T
R

o+ o®Bg o™y (A I)GyRG (e

APPENDIX

Proof of Theorem 1

The proof of Theorem 1 follows immediately from Theorem 2, as (A2l) is
automatically satisfied for 6G £ 0, and we need only to ensure that (A22)
holds, but (Al8) is just (A22) Ly substituting A = FT. To show that (AL8)

is equivalent to (Al9), we just have to "complete square! by appropriately

factoring A.




T A T
(algebraic details: let GAQGA = wo, BAKABA = M

Then (Al8) ¢=> W' + ATRA = [AT(RHM)A - (R#MIA = AT(R#M) + (R#M)] > O

> w;l + AT(R#M) + (REDA - (R#M) - ATMA > O

<ml> w';l ~ (R¥M) - (i*;TMA - AT(R-D-M) + (RHDA) > O
-1 -1 T -1
@> W - (R4M) 4 (RHM)M T(R4M) = [A'M - (R#M)IM © [MA - (R#M)] > O
-1 -1 - T -1 -1
<> WU - (RHM) + RM R+ 2R+ M- [AT - (T + RMO)IMIA ~ (I4M "R)) > 0
-1 =1 T -1 -1
<> W "+ R+RM R> [A” - (I + RM MIA - (I v
o { ( ) IM] (I+M "R)] %
Proof of Corollary 1.3
The proof utilizes the following lemma:
Lemma O
T, T .
{H|H"M)H < M, where M, > 0, M, > 0}
? Y - '
= {HTIHT = in’f)\!é(m'g) Loy 0<Ac<1}
Proof
T _ i % oy L
HY =2 MA" (M)
) 1 1
=  HM.H = MAM? < MiMT = M
2 171 171 1 >
%
Proof of tlorollary 2,1:
o _
Let H’1 = A=(I + WA1R) in the above lemma and substituting appropriately
for M, M2.

%.




Proof of Thoorem 2

(Assume without loss of generality that [GAGG] ig of full rank in what

follows)
We have
z quTx,AJr G(R+BT )G (2.1)
- A= BaKpPp Q- Gy A¥ABA .
S50
xAx(z\ !-B(I‘G +GG))K(}\ +B(I‘G +6G))+Q (2.2)
where
§QQ~G(R+W)G [(GFT+6G)BKA +I\TKB(I‘G +6G)]
' A"TA ATAA A°A A
]
‘ﬁ - i
‘ (GI‘ +6G)BAI\ABA(I‘G +6G)
]
E | = Q - GA[R o+ wA S ) WAFJGA
» ; T T T T 1 T
; (G Ry BAKAAA-G F WASG] + [AAKABAI‘ + GGWAI‘]GA)
- (SG[BAKAAA] + [AA B A ]6G )
- 86 wAaG
, - O - B V"
o} GA[R+WA+PWI]GA
T L
+ @G [r (R+WA)G - I‘WAGG] + [GA(R+WA)I‘ §G WAI‘]GA
U\
+ §G(R +WA)GA+G (R + w )6G - GGAWASG
- iy . R . |
-—Q+GA[I‘ (R+WA) + (p.+wA)r (R+WA) F WAI‘]GA
T i X _ _ et )
+GA.[R+WA'-FWA]6G + SGIR + wA WAI‘]GA
T
- 8§G WA
- - I . g R T
Q+[GAauJ F'RF - (F I)(R+WA)(I'I): R - (F l)WA GA
Tl e e e . i e e e e e e = -
. . '1*
[ R - W (F-I) - G
(2.3)
L . v J
by
9

) B e me eeme B cabte v . T . N - .
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Since Q > 0, we have

-1

g>0e> ot Q"licA 861 M G§ 9 >0

sGT

-1 -1, T -1
A ( Q7 +0Q [GA Gl M Gy 9 )[G% GGA] >0
T

e]

(see Lemma 1 in Appendix of Wong, Stein, Athans)

<>

(2.8)<=>

<>

X, 0 %, 0 X. 0

1 ! nl*1 s 0

o x, o x, 0 x,

A -1
x, £ 6,06,
X, 4 56T lse ana  dc e R(Q-IGA)
X, txmx, XMX

>0

X Ma% XM Xy + X,

X, +XMX > Y

2

Xt emM >0

1 1

A, T~1
z = (GAQ GA) + F

X, + x2 {M2 - 1‘121}(1(lelxl + xl)

T

-1

X1M12} X2 >0

RF - (F - I)(R + Wy (F-1) > 0

S

(2.4)

(2.5)

(2.6)

(2.7)

(2,8)

(2.9)

(2.10)

e



e

(2.9) and (2.10)

, -1
<> X, kX, Z "M ,1%, >0

2 =M

<> X' 4 {m, - m

-1
>
: gl >

21
) -1 -1 T . ,
«> X, 4 {--wA = (R+ Wy (I-F)Z ~ (R + (I-F )WA)} >0

-1 ) ) d T
& X,” > {wA + (R + WA(I F))Z2 7 (R + (I-F )WA)] >0

-1, T
x2 < [wA + (R + WA(I~F))Z (R + (I-P )WA)] (2.11)

Thus we have shown that
(2.10) and (2.11) <> Q > 0 => (AA + B, (F GZ + 8GT)) is stable (DT)
from (2.2)

Q'E.D.

Proof of Theorem 3

The proof of Theorem 3 is facilitated by the following lemmas:

. -1
Lemma 1 B, commutes with M,, and M, ¥ A and At %
Proof A A
GAV PATar = f PTar oAb
o o
ropd -1 Y A | Al !
GAA \ f eATd’r) = (e~M) {[ emd'r) = (/ e lar e M}
) o ()
A -1
= ( f GATdT) GM
)
%
11




Proof
(AA + BAGT) stable
<> M.Y(A, + B,GT)M, stable
A ‘UA A A ‘
-] T
BMA AAMA*'BG”A
= M. IM,A, + B GM ( *A,M, =MA,)
A TATA A * TATA A”A
T
=Ay +BGM,
Lemma 3
Mppe = My + BMy, = My, 4 Ay My
Proof
M B ar A+ AT
M - e dr =f e dr + e dr
A+A!
(o) o A
A+A?
A
= MA + e MA'
12

N
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Proof of Theorem 3

T
We have (A, ., *+ BA+A'GA) stable (DT)

<> (“A+A' + B GA A+A') stable (DT) from Lemma 2 (3.1)

-1

=yt B Gy My, M

Al

-1
= (B, +B GA(M +MBOR A, fron Lemma 3

, -1
= (AA+BG (M T MLPA )):r\ (3.2)
Now
At Q= G, (R * Brl )G
A A A I A A A A TA
ﬁ 2 H 2
<P KA AAKAAA+ QA A A(R + 13 B)GA A ? from (Al2)
where ﬁ = MmK M
AT TATATA ) to (Al5)
A T
O = MaQpMp
sO
ﬁ:[u FBGM, +M AT Tﬁ N+ BG(M, +M AT+ O
AT 1%t B G Myt My ] a[% + B Gyl Ay ] “
=P
where
~ A T m
QA = Q + P GA A A (P" - M )GA AGA(P - A) (3.4)
(after some algebraic manipulation)
) = oTa
with WA EB KAB
(3.3) => A A = AT (A, + 8B GTP)T E (A + B, G P)A + A Q
A'TATA! AYTA A" ATA AN AYTATA
T T
= (e + B Gy 0T Ky (Bygay + B G )
I ——
T A
By OpPA = A, (3.5)

13
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L

~ T A ”~ T A ~

L6
since K > 0, we have

o T & ;
Ky = A KA >0 =R is (DT) stable (3.7)

Thus (3.6) and (3.7) together =>

A

T 4 - T
Ky = Ay, (xA - QA)AA, >0 => (AMA, + B GAMA+A.) stable

T ;
<S> (AA+A' + BA+A‘GA’ stable
™ & ~
Now Ky = Ao (Ky = Q))B,, >0
T T=lr =l
> Ky - Ay (K - My QM IR, > O
- T T T-1_T T -1

T T-1, T T -1

=2
1

Ay, (Ky = DBy, + (B, + 1, DT GiR Gy (R, + My )

> (MA,M’Z]’)'D Gp (R + BZ‘KABA)GX (MA,Mz\l)

14




g C mbatp g SR T e TR
3

APPENDIX B

ATTACHMENT 1 (of FSL~SR~-835)

GAIN-MARGINS AND STABILITY ROBUSINESS OF LOG RFEGULATOR

by

Poh Kam Wong
Gunter Stein
Michael Athans

ABSTRACT

New sufficiency characterizations oZ the gain-margins of the
standard full LQG (Linear-Quadratic~Gaussian) regulator design (which
incorporates a Kalman filter in the fecedback loop) are presented.
These results show that full recovery of LQSF-gain margins can be
achieved either through non-divergent filter structure adaptation,
or when plant-driving noise that enters through the same channels as
the control inputs greatly dominate other noise terms. An explicit
sufficiency bound on the gain-margins of 1LQG-~design that varies with
a ratio of quadratic forms of the filter error dynamics & the plant
dynamics is also presentcd. These results further clarify the recent
work of Deyle, and suggest potential new directions of research.
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1. Introduction

As has been demonstrated in recent research (e.g. [1],(2) and (3]
and references cited therein), the standard multivariable Linear=
Quadratic-state-Feedback regulator design (LOSF) is known to have rather
robust stability properties. In particular, as has been shown in (3),
the LQSF control design has the following gain-margin property.

If gf(t) is the optimal LQSF control gain-vector, then the closed-
loop system plant under the control of gf(t) remains stable for all

gain perturbations:

u(t) —e A(t)u’(t)

where
o, (t) )
A(t) = . is such that
0 o (t)
- n
« -1
Ae) > 5 (1-X7)
A, 1/2 7 -1 _1/2 , \ .
where 50 = (R"6GQ GR"T), @ > 0, R = diagonal matrix > 0 being

the 1O cost weightings, and Q: is the

optimal gain matrix.
That is, LQSF guarantees strictly greater than - 6db. gain reduction
& infinite gain margin, regardless of the choice of cost criteria

Q > 0 and R diagonal > 0.

-



Becauge of this and other stability robustness properties of the
LOSF (see [2]),[3] for further details), there has been great interest
in the question as to whether the full Linear-Quadratic-Gaussian regu-
lator design, which employs output feedback using a Kalman filtex;
raetains any of these stability robustness properties in general and
the gain margin property (i3M) stated above in particular. In a short
paper entitled "Guaranteed margins for IQG regulators," and carrying
an abstract with the single sentence "There aren't any," J.C. Doyle

has shown through a simple counter-example that there exists no guar-

anteed gain maxgins independent of the choice of cost-criteria & noise

characteristics specification. In other words, design-parameter-de-

pendent characterizations of the gain-margins of full LQG-system need
to be investigated before one can evaluate the stability robustness of
the LQG-methodology.

It is the aim of this report to present preliminary res;lts of
our research in investigat.ng the design-parameter-dependent charac-
terization of the gain margins of LQG regulator.

The organizatior of this paper is as follows. In Section 2, we
state our formulation of the full 1LQG gain margin characterization

problem. In Section 3, some useful sufficiency results which we have

obtained are reported and their significance discussed. Finally, in,

Section 4, we present discussion on potential future research directions.

T T T
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Notations and Definitions

}_\_'r donotes the transpose of A
R(H) denotes the range space of H

Rt

denotes the orthogonal complement of R(H)

1I£Q € RN 4 positive definite (positive semidefinite), we
will writes 9 > 0 (Q > 0)

Ifgg_g_andgmg_:£> 0 for all x € R(H), x ¥ 0, we write

2”0
R(H)

(i.e. the positive semidefinite matrix Q is positive in the range

space of H).

2. Problem Formulation

Given the linear time~invariant dynamic system (A, B, Q_T) such that

(A,B) is a stabilizable pair (1)
(c”,B) is a detaectable pair (2)
Let G denote the optimal 1QSF-control gain for some Q > O and
diagonal R > 0, where
KA + A'K - KBR B'K+Q =0 (3)
and
G'r é—‘ - R 1BTK (4)
-0 — —
4 -




D

Further, let gO denote the optimal Kalman filter gain for some

E> 0 and Q> 0, whexe

Iatwnl-Jc@c [+Emp (5)
and
A -1,
H,=-lco (e)
Then the closed~loop, full T.QG-system becomes:
x A BGL %
- - — PR e ] - .
A 'r 7 . |+ (noise texms) (7)
x -H_C A+ HC +BG ||X
where

x(+) = plant state vector
g(-) w filter state vector
(we shall ignore the external noise terms in what follows as they are
not relevant in subsequent discussion on closed-loop stability).

Suppose now that the optimal feedback _g*(t) L GTx(t) is perturbed:

' () = A(t)u” (t) (8)

where A(t) is a diagonal matrix for all t £[0,»),

The perturbed closed~loop system becomes

° «T
x(e) | 2 B AL)3 X :
A T T P A (9)
x(t) ~H C A+BG +HC x
C— A-uO—t. — — —-Q Es

5
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i {————

Problez: For what range otlﬁ(c), t €[0,%) can we guarantee that the

purturbed system (9) is stable in the sense that

x(t)

—b12 as t - ® ?
Fal
x(t)
Remark:

The class of perturbation (8) includes the class of all non-dynamic,

nonlinear functions:

" "
ui(t) > fi(ui(t),t) i=1,...,m
provided

(10)
£,(0,t) =0

This follows from the simple observation that, given (10), we can define

[}
A fi(ui(t)'t)

A (b)) = e, U*(t)# 0
i u, (t) 4
1 i = l,...,m (11)
A *
= arbitrary , ui(t) a0
and |
A, (t) [¢]
CEN B

0 A (t)

Note that the restriction of diagonality on A(t) was made in (8)

because of the natural interpretation of A(t) that follows from (10)

and (11).
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Remn:k:

We shall first oxamine the case

A(t) = A constant matrix (12)

in what follows. The general time-varying case of N(t) will be covered

by a trivial generalization of tha time-constant case in a later section.

This procedure of presentation not only simplifies the proofs, but also

helps to make the methodology of analysis (simple application of Lyapunov

theory) more transparent. With the assumption (12) given, the stability

of (9) can be investigated by examining the stability of the system matrix

A BAGE

(13)
-He A+BG +HC
~o =T =2 T o

(in the sense that (13) is stable if all its eigenvalues have negative

real parts).

Remaxk

In the above formulation we have assumed that the Kalman filter
structure remains fixed at the nominal design values in the face of the
control feedback perturbations., For greater generality, we can assume
that some kiowledge of the control perturbations may be 'communicated'’
to the Kalman filter design, or that the Kalman f£ilter structure can be
adjusted to 'track' the control perturbations in some manner to be

specified. 'This can be incorporated into our problem formulation by




Mg

assuring that the filter structure is of the following form:

;\ NI (. T A
x(€) = (A +BAG)x(t) + HC (x(t) - x(t))

(14)

(=]

A+BLAG T % o
= 0 -
(A+B LG +HC)x(t) - HCx(t)

where A = (adjustable') filter structure parameter

= I nominally

By incorporating the assumptions in Remark 2 and 3, we therefore arrive

at the following modified problem formulation:

10G Stability Robustness Problem

Al 0 n Al )
For what A = . and A

0 A 0 A
fanad m —

is the closed-loop system matrix

i
]
>
6%

(*)

o
Q
>
+
j=
[=>
3%
+
o
T

stable?

Results
The main results we have obtained in the direction of sufficiency

solutions to the 1QG Stability Robustness Problem as formulated in the

previous section will be presented in this section in the form of four




propositions. A fifth proposition generalizes the previous rasults to thea
moxe general time-varying gain-perturbation case. In arriving at these
results we have utilizoed nothing more than simple applications of standard
Lyapunov theory. The basic results from which all the Propositions in
this section are derived has been stated as a Tomma (Lemma 4) in the
Appendix.

our first resulk pexrtains to the specinl case when we have perfect
'tracking' of the gain perturbation, i.e. when we have 'communicated’
to the filter structure the exact perturbation values A, so that

A=z

Proposition Ll:

A
I£ A 2 A then (») is stable for all

X, -1
A>=(L-x")
Where
X é (B}/2GT QflG R_1/2)
-0 “0 —0—

i.e. The LRSF~ gain margin is completely recovered.

Remaxk:
B B N
The condition A & A in Proposition 1 ensures that the filter error
dynamies are 'non-divergent'. This is best seen by examinig the error

equation in detail:




-

]
x>

1

. 'l‘ A T ~ T'

g= (@ +HC +B(A-MNG)e+ D -A)sx (16)
if ﬂ‘a A then the 'feedback' drivingterm £rom the plant-state drops

out, and the extra term in the system matrix of the error dynamics

disappears.

Remark:

Since ILQSF- gain margin way be wide enough to tolerate some channel
failures (see (3]), Proposition 1 guarantees that such reliability of LQSF
design remains with TQG provided corresponding change in the filter

structure is made.

Proposition 1 assures us that full recovery of LQSF gain-margins
is guaranteed with perfect knowledge of gain perturbations incorporated
within the filter structure ('non-divergent' estimation, see [1],[5])
for more details). There is another special situation under which
sittilarly full recovery of LQSF gain margin can be guaranteed; this is

the substance of our next proposition:

P.opesition 2

If
min P i
v 5@ x .
X _X - +> ® (17)
e X (-(awBE )x]
X x=




.

Then (x) is stable for all

A>E@-x?

2——0’

i.e. the LQSF~gain margin is recovered in the limit as the ratio
(17) tends to infinity.

While Proposition 2 demonstrates that full LOSF-gain marginé are
recovered in a specific limit, it does not tell us anything about the
‘rate of convergence' to gain-margin recovery, i.e. the explicit
dependence of gain margins on the ratio (17): The following Propo-
sition provides a partial answer to this question by giving an explicit

sufficient bounds on the gain margins.

Proposition 3

~

Suppose A = I. Then (%) is stable for all A > O s.t.

L]

AL <A< AT (18)
where
A
A, =1+ VG, (19)
A
Ao = max{1-(1/x), 172} (20)
with
A 4
W = max }\(W ) (213)
Q -0
o A R 2" k.0 1y ppm1/2 (21b)
~o = Sf—
T, T T _
Ef(_?_\‘+i_tog)-+(§+§og)__f+_g+_c_;0ggo_g (21c)
X 4 max X(X ) ‘ (214)
x A 1/2 T Q G R1/2 (21e)
e —o—
1l




; Moreover, W, satisfies the following bound:

Mo (246, EGD TR 1" (- (G x)

| 1/"‘ ; max < "o o R E=l
W < A (K) VATl : *
T o min Amin{g+G RGY) nin [xT(—(A+H CT)x]
: T — pubeiicr’, i i
i X x=l

(22)

Remark

The bounds on A obtained in Proposition 3 are only sufficient, and

F are in general rather conservative. Moreover, they are not the tightest
' possible bounds that can be derived from our approach (they have been

essentially dexived from Lemma 4 by choosing the parameter o to simplify

the solution of the bounds rather than to optimize them, which entail

much more tedious algebraic manipulations). The actual numerical compu-

tation of the paraneter mo is straightforward although a bit tedious
(requiring the solution of a Lyapuno? equation (21)), but perhaps of
greater theoretical significance is the simple bound on mo given in
Equation (22). Taken together, Equation (18) and Eguation {22) show
that the upper bound on the gain-margin increment increases at least
linearly with the ratio

T b (- (i C)x)

x x=1
max

T T, .
[x" (- (ptBG ) x]
xx=1" |

12 .




In the results presented so far, no use has actually been made of
the fact that the filter incorporated in the feedback loop is a Kalman
filter; the only information of the filter we have utilized is the filter
error dynamics matrix (A + goq?) which could well have been designed
by any other methods. More generally, therefore, the above results
actually apply to any full-state filter design incorporated in the control
feedback loop, and we can conjecture that similar versions of Proposition
2 and 3 apply in the case of any estimator dynamic compensator incorporated

in the feedback loop.

Remark: Note that Q > 0 is crucial for Proposition 3 to hold.

The next proposition, unlike the previous ones, explicitly make use
of the assumption that the filter design incorporated in the control
feedback loop is a Kalman f£ilter. fThe basic question of interest is, for
what choice of the noise specification ¢, @ will it be possible for the
LOSF~gain margins to be fully recovered? Proposition 4 provides one

hnswer.

13
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Proposition 4

A Al
Let A_E I and suppose that P = 91 ot Q2§ g g? for some ¥ > 0 and
scalar ¢2 > 0, and where Ql >0,
Then as ¢2 >
The gain margins of A approaches
1 -1 ]
> o -
A>3 E-x%0

i.e. full LOSP~gain margins are recovered as the plant driving
noise-terms entering directly through the control input channels becomes
greatly dominant (i.e. if §_gf is the control term, the noise termm ¥,
that gives rise to the varianca ¢, §.§‘§T enters as gjgf + 32)).

Remark

Proposition 4 is essentially the same as Doyle's result in Doyle
[6) (where his assumptions are slightly different, and unnecessary,
from ours) but our proof technique is completely different from his
(which is a 'frequency domain' computation) and moreover our initial
motivation has been independent from his work.

The most natural interpretation of Proposition 4 is that, for those

systems whose plant driving noise-texms enter primarily through the same

channel as the control inputs (hence the form of the noise-variance term
¢2§_§_§?) themselves, recovery of LQSF~gain margins tends to be facili-

tated, with recoverry complete if these plant driving~noise terms




= T .

e

becomes greatly dominant over the observation ehannel noisc, This makes
sense intuitively, as Doyle pointed out, because the noise that enters

the plant through the same ¢hannels as the control inputs can be inter~
preted as perturbations on the control inputs themselves, and this will
get communicated through the mathematics into the filter design in such

a way as to provide 'hedges' for the uncertainties in the control inputs,

Remark

Although we have assumed ﬁ_E I in in Proposition 4 {as this is the
case of interest), this assumptions is actually not necessary - any
Finite & will do, as is obvious from the proof. Of course, this can
only be true in the case as ¢2 -+ @, For larxge but finite ¢2, thexre can

~N
be great differences on the gain-margins depending on what value A takes.

Example 1
To illustrate the above propositions, consider the following single

state, single control and single output system:

A=a>0, B=b C =c
Q = 4q, R=1
—'(I-)'.:_.“(t)' 9:1

The regulator design is:

k = % [1 + \1 + (l/ni‘ (Riccati matrix)
b
g = - i?—[l +\fl +(1/nﬁ (Optimal gains)

o]

15



= [ﬁ’. "l.’.n]‘? 1/2 G'I’Ql .3./2)

a + bgo =~ (4J1 + 1/n)a (closed loop dynamics),

where 1N é az/qb2

. Also, by duality, the f£ilter design is
g = 55‘ P+ /J1+ l/nf ] (covariance matrix)
c

hoa-%[1+V1+1/n£]
a+ hoc = - (Vl.évl/nf ja

where ng = a /¢>c2 . Then the K . matrix of equation (21) is given by

(filter gains)

(exxor dynamics)

R (o

and wo of (19) is

2
1

o (1 + xb)
2a l+

(% )

e e~ T

.




o B - ————— -

If we let g, ¢ to be such that

2
,
Do [
4 (b)

and we have

max{0, A} <A <1+ b
4 2
gb

——~17-_2 <A< L1+ 5
1 ge_

‘ ¢
! V qbz

oxr

The following reprosentative values of ) +

dc>
g are illustrative:
ab
2
(925,) = << 17100 1/16
ab
)\+ wl 11/10  5/4
A ~ L lo/11 4/5

(i,e. a wide band regulator)

T A

(i.c. a wide band regulatox)

/4 1 4 16

3/2 2 3 5

2/3 172 1/3 1/5

and }\__ as a function of

100 >>1
1l o
1711 0 .

17



The results prasented so far have been restricted to the case

of control perturbations of the form: %

* * ,;
u (t) = Au (L) for all t £[0,%) (24)

where A is a constant matxix. We now censider the more general case

when the perturbations are given as time-varying:

wE) = At (t) £ €10, (25)

A% it turng out, the extension of our results in the previous

section to the more general case (25) is trivially simple:

Proposition 5

~
If for each t £[0,%) point-wise, the functions ﬁjt) and A(t)

»
satigfles the conditions on A and A in any of the previous Propositions, then

that proposition holds for the time-varying perturbations {A(t) » £ £(0,0)},
~
and {J(t), t efu,»)}.

i‘.—_——



Remagk
Recall that, in generxal, if {é(t) , b »;:[tl,tzl} is such that for each
t elt,,t,] pointwing, Alt) has all its eigenvalues with negative real

parts, it still nced NOT be true that

R(b) = A()x(t)
is stable (in the sonse that X(t) > 0 as t = )., Thus one cannot

‘prove’ Proposition 5 by arguing that, if

i
A B Mbg,
~ A is a stable matrix
Alt) = o n p p
e a+mhwg e ¢

(all eigenvalues have negative real parts) for each t £([0,%) pointwise, then

_D::(‘(t) £ E\_(t)g(t) ’ t e[0,®)

ig stable (%(t) > 0 as t - =), The fact that Proposition 5 neverthelecss

does hold is because of the guaranteed existence of a single Lyapunov

matrix for all t £[0,%).

Remaxk
The perturbation class {”I_\_(t) , t e[0,%)} can be trivially extended
* ] .
to the more gencral one of {A{(x(t), u (1), 1e(0,£)},8), t £({0,%)} which

, *
incorporates dependence on x(+) and u (+).

19
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Future Research Dirsctions

Sevaral araas of potentially fruitful research are readily sug-
gested by the praeliminary rxesults ws have obtalned so far., We shall
briefly list some of these below, not necaessarily in any oxder of

suggested priority.

1. Detexrmining the 'rate of convergence' to LQSF~gain margin
recovery by the noise specification
"

D - @l + ¢2B E as ¢2 varies

Although Proposition 4 [and Doyle] has suggested the
desirability of using noise specification of the above
form for gain-margin consideration, that rxesult, like
Proposition 2, is a limit characterization that provides
no clues as to the behavior of the gain-margins as ¢2
varies. An explicit sufficiency bounding solution si-
milay in form to that of Proposition 3 which can
demonstrate the dependence of gome sufficient gain-

margins bhounding on ¢2 will be highly useful in prac-
tical design. Since the proof of Proposition 4 uses

a procedure closely similar to that of Proposition 2
and 3, it appears that such a sufficiency bounding can
be similarly derived for Proposition 4. We have not
had sufficient time to investigate this.

2. As noted, the sufficiency bounds in Proposition 3 are
not the tightest possible that can be dexived from
Temma 4. A more careful effort in optimizing the
bounds by exhausting all the free variables provided
by temma 4 may lead to significantly tighter bounds. ,

20




3,

«I

Proposition 2 and 3 have pointed out that, purely from
the gain-margin maximization point of view, those filters
that have large ratlos

min l~,>s'r (mn o(ir):s.]

L4
max[—a?(h+ﬁﬁor)x]
tend to be better. The following guestion therefore
arises: Is thexe a simple way to classify the set of
all possible design parameters

Q/R2,0
into those combinations that have the property (P)
and those that tend to be otherwise?

We have introduced the paramcter ﬁ into our formulation
ag it provides a natural interpretation of how a filtexr
might adapts its structure to minimize 'divergence’.

The actual implementational consideration of this'gain-
perturbation tracking! concept may lead to practical
design significance (e.g. how to modify filter struc-
ture when there is control channel failure to

gaarantee stability of 1QG system. Theo parameter
ﬁ.tells us what needs to be changed).

Extension to discrxete~time system, similar to what
has been done for the UQSF case [5].

(®)

21
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6. Application of results (espacially Proposition 3 and 4)
to some real physical systems (e.g. aircraft) to study
the actual behavior of gain-margin bounds as ;'12 or

(g_\_wog_'r) are varied.




APPENDIX

The following lemmas will be useful in the proofs of the propositions

in this paper.

Lemma 1
If ﬁl £ Rpxn, EQ e RO are symmetric and H € R s arbitrary,
then
M. >0
T > M LHM >0
= +
™ B PRALEM 2D
(M, + MEMH M) > 0
R(H)
Proof .
See [2]), Lemma 1 proof.
Lemma 2
-1
> >
T 2 2and g, 7008 &
Then
2
>89
21 &
Proof
See any standard Linear Algebra text.

23
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Lemma 3

o T, -1 I T T
B B T = Y

— ver

where M, > 0 and the inverses defined in the equation exist.

2

Proof e
T NS PR N N, RN . NN, N i
HO(My o+ BMOHD) TH = BO{M) - MOTHOMGT 4 M T MR

N SRR N M. R JN, NS, W
= (M) TH)-(HM "H) (M7 + H'M,TH) “ (M, "H)
= (M, + il
4 ——] = .

Lemma_4
A
(¥) is stable for R > 0 A and A diagonal if there exists a matrix L > 0

and a matrix Q > 0 for which the following conditions hold:

(1) A~ (I 4+R+XT>0 <=>A>3 (@ - x Y

- = (o) - =" 2 ‘= ()

. A 1/2 ~1.-1_1/2 T
(il) Q@ >G R [__+35o] R7G
. A 2 -] -

(iii) 0> 6 {xR + ( -L)Rl/ [2A - (I+L) + X J‘] 3 Rl/z(A—L )}GT

Gl e R - =l - = —0 - o

+ Re-B? ™t ek

where

~ A T A A

_IS(...”'EOE) + (_‘E*_*EOQ) K+9=0

[ ]
Proof of lLemma 4
We have X A BAGE; % .
- ~ (Al)
x -H e’ A+ HOC - BAGY %
—0= - —o- —0
N
Let e = X-X
24
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‘ |
]
1
k

: s et J
Then (A1) <=> A+ BAG BAG X
= ll\ ~ )
B(A-AN)G At H ¢’ o+ B(A- )G e

The matrix A can be rewritten as

5 " u . \
A+ BG'  BGE B(A-T) G> B(A-I)G-
~ =~ —0 -0 o el iinaliending <)
ﬁ, = T * ~ T " T
0 A+ HC B{A-M G B(A-A)G
- il TR DD

- V~

A A

2 iy

Sinca éb is a stable matrix, for every Q > 0 there exists ak>o0

such that

»\;~ NT': m-“
KA, +AK+Q=0
by Lyapunov Theorcm.
If we choose Q4+ G RGT G RGT
= =) ~A X
gm T "~ >-9s
G _RG Q
»--‘i)-—-o-o odw

(whexe §‘> 0 is to be specified s.t. (A6) holds)

Then (AS) =» K= N
0 K
B2 4
o . - .
e -‘é _ BT T R U T o T T T T WU

(n3)

(ad)

(n5)

(A6)

(A7)

25




where g » 0 is the unique solution to the Riccati equation:
KA+ AK~- KR 'BK+Qx=0 (AB)
Fa
and K > 0 is the unique solution to the TLyapunov equation:
o T ™T S A
KA+HE) + B+HC) K+Q=0 (A9)

Further, from (A5), we have

~o™ -~ ~ "~ '1\ ~ ~

K(A_ +68) + (A +6A)" K+ 80 =0 (A10)
where

6~, A ~ ~ ~e

Q = Q = (K6A + SA'K) (All)

so from Lyapunov theorem, we know that (Qo + 8A) is stable if

P ~

; s >0 (p12)

Given the choice of é_ as in (A6) and the corresponding form of l}_as

in (A7), we get (with R diagonal)

, Q + G_(2A-I)RG" 6 Ri¢” + G (A-M)B"R
. = o' "= == o—o o — ===
89 = . A R T A (Al3)
G RAG  + KB(A-M)G_ Q + 6 (A-MB'K + KBA-N G

Q + G RG_ >0 (which is true from definition of Q)
(Al4)
N T T, =1 T
>
0 > 6 RA(0 + 6 RG)) T R
é

26 .
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et

Since (Ald) <= Qv goggl/ 2 (L x;l)"l Y/ 2QT (fxom Lemma 3)
where A 1/2 o =), 1/2
X, = (BTG 0 76 R

(Al6)

what xemaing to be proved is that the conditions in Lemma 4 are sufficient

for _§§3 > 0. Now, from (al3), we have for any diagonal L

~ Uy ~ T
5 - Q + G, (2A-(r+p) RS G R(A-T )G
T A T ~ ~ 2

_QD&(A Lig, 0 =~ G RIG KB (A-R) % (IR)
= P U\ -] o ma

G, LRIG , G + L "R IA-MBTK)

.|‘
~ P -] =1

G + KB(A-M)R 1,

L._O P SN W ——

(Al7)

If L > 0, then the sccond terxrm of (Al7) is positive semidefinite, so if

the first term of (AL7) is > 0, then it will follow that 80 > O.

But

sufficient conditions for the first term of (Al7) to be > 0 are as follows

(fFrom Lemma 2):

Q + G (20 (1+1) RS, > 0
0> g (- LRG-IQ + 6, (2A-(1+) RGLIT' g R(AL )G,
+ gﬂgggg + Re-B? e ek
and (Al8) <=> A > %—«gﬁgﬁ ~ §;l) (after applying Lemma 1)

while (Al9) <=>

1/2 -1 1/2

- T
9> g (IR + (A-L )R 120~ (1+rm)  + X 4 (A-L) Yo

v Re-h? r) etk

(after applying Lemma 3)

(Al8)

(Al9)

(A20)

(a21)
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Lemna 5

Let A be a stable matrix, Q > 0, and.g > 0 be the unique solution

to the Lyapunov equation

RT

-

!§s
7:2
ot

+ Q=0

I

then

()

max —

2 min [x (~A)x]
x#o -

<
o ) 2

xszl

A Q)

()> min =

mln e

2 max [x (wA)x]
x%o

i
X x=1

Prgof

We have

E-m) + -0k =

FRED 4+ D Rx = 270k V %740,
X (K(-B) + (-B)TR)x < A (Q) ¥ x40
—— — ot - e — = Aax Q i

Now chose x=X # 0 such that

K% = A__(K) %, % =1




Then
2 (R IX-RE) <A (O
max () [E(RIX] < max (2 !

F Now |
‘ﬁ min X (-Dx <X (-BF

X0

" xml
f S0

X
: %#0
| x'xe1
: . or
' ‘ A Q)
’ ~
g A (K) < o
' max -~ =~ , s T, ~

2 min  [x" (~A)x)
%70
x'x=l *

Similarly, we can write

* ~ ~ ~ -~ ~
xT (K(-R) + (~A)"K)x > A, (Q) X#0
—_at ~ 2= Tpin = 0
X x=1
* *p ok
and choose X #0, x "x =1 s.t.
Kx = A . (K)x .
— min - -

~

| oy LK
Then  2A . (K) [x (-B)x) > Apin ‘@
and o
~ AL Q)
AL (k) > DT = .
L, = 2 max [x” (~-A)x]

: xo T
| x 5=l
|

B e e e U S S bl . . N . oA



T8

Lemma 6
T,ot
Ay A ~1/2. %, =L, o.=1/2
We ™ Apaye ) = A (R BKO R BR )
with

K.(A + H CT)+(A'P H CT)TF *Q'}-(‘RGT“O
—f - - v o w2 Zotle T

Then
max
+G
W < A N (K) m‘gx(.g -O§G ) . 25 &"l [25 {~ (A*’BG )x]
O = MLN ‘= .
%un@%%§%> Qﬁ;l@ (- (s ™) x1

We have
T 7,7 D
- : ) o ~ { Ao "
Ko [-(aH CT)) 4 [=(AHC))" K. = O + G RG

T o, LT
K[-(a+BG )] + [-(A+BG )]1'K = Q *+ G_RG

s0 from T.emma 5

Amax (g +G RG )

A (k) <
max —f 2 min [x'(—(A+H CT))x]
— .-.-u-o- —
%40
xTxr-l

- -

i @550

2 max  [x (- (a+BG.))x)
s ,_

xTx==l

ot .

>
Apin &) 2
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il et
¢

and hence

(916,

mdx

m&\x [x {~ (A+BG ))x]

('
RG ) wha) =0

A (K £

max ;mle

Anin (QGRE,

We also have

1/2 T

won?\ (R KQ

A RO h)i\ma

-1
SA_(KDA (9™

max ~£

<A (KD [A

max —£

l ) m,i,n l.gg.T (= (A+H QT))x]
U.:r W
X x=l

K -

L1 ()

Henee,

A (R

1- B"B)

WA (RN .
'/'o max —f A in(g)

This and the bound on A
max

Proof of Proposition 1

~
If A E A then by letting L = oI, o> 0 the conditions in TLemma 4 becomes

(Kp) establish the Lemna.

A

min

(K)

(1) A > 32‘- ((1+0) I ~ x"l)
(ii)’ §>§O§l/ (Iixl)lwl/?o
(141)' 8> 6 {or + R % (Ao [2h- (LT + X017 (A or) Y/

By choosing a sufficiently large (positive definite) and by letting

o = 0, conditions (ii)' & (iii)' are always satisfied while condition

Sy 1 e
(W > A> g (@-xX.

B S

T
s,

31
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Proof of Proposition 2

Tet §_ 2 R(Q + Gy BQT) where B > 0 is chosen such that condition
(11) of vemma 4 is satisfied, i.e,

-1
Bl + 6 Re)> 6 R AL e X7 gL (n23)

Thangneﬁf?«*g

where _lgf is the unique Lyapunov solution of

T T, T Ky
K+ B G + (a ki) K + 0+ g ReT = 0 (a24)

Let L = oL, & > 0. Condition (iii) in TLemma 4 then becomes

Blg - & xau-h? &k )
- a smwlh o woaw  oew L] Lot -"'E
+ 6 (B0 R = B % (heo1) (20= (2400 T + X H ™ h-any /2}96 >0
(A25)
A sufficient conditions for (A25) to hold is therefore:
9> By B(A-R) 2 Rk (A26)
— a JUTRR S Pl “"“f A
(B-0)L = (A-om) [2A- (o) T + X117 (A-om)> 0 (r27)
The condition g » 0 and Lemma 1 can now be used to show that
(A26) <=> _ . R
(R 1/2"'1; K O l§££§ 1/2 l g_ (ﬁ:ﬂ)z (A28)
oxr
-l B ~ 2
W)~ > o (A=A (A29)
A sufficient condition for (aA29) is
1 B ~ 2
e PA -
o g Wb (A30)




B |

A
where w, ® A If we now takoe

max (ﬁn) '
4

R = 4/&0 ;s 1/B (A31)
then (A30) bacomes

1
Y

I > (b2 (A32)
)

But from Lamma 6,

B0 T (s 0T x]
Vi, g}ax [-x" (A+BGD) %]
R =l e

i

-3

so if this ratio tends to infinity then (A-Zi)z may become arbitrarily

large.

Moreover, from (A3l), o - 0 and B = @, so the conditions (A23)

L=l

and (A27) ars satisfied for all A s.t., [2A-(L+o)L -+ ) 7 is finite.

X
=0
The only remaining condition of Lemma 4 is Condition (i), which tends
to:s

A>3 (g - 1 ——> - x5

L e
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Proof of Proposition 3

From the proof of Proposition 2, the following conditions are

sufficiont for (x) to be stables

1 =1
(a) A> 5 (o)X ~ X ™)

(A~ 2

o

i

=1
>
(b) W

(@) (B-a)% > (h-od) 2 ~ (W)L + X117 (heom)

1/ -*l]'-l }31/2 g'ﬂ

T 2 .
(4) BQ + GRE) > G RII + X :

To simplify tho proof consider first the case A=A, ). > 0, and
A
A= I, If we chooss 0o = A, then conditions (a)=(e) become

r - XY

~

(a)' Ax>

(b) ! H, A
(e)' B>

sufficient conditions for (a)'=(b)' to hold are:

1 A Ca
P xo) whera X, = max A(xo)
R < w~A@-h whera W, Q max A(wq)
B{A~1)

To find the upper bound A+ of given (A40),(A41),(A42) and (A37), set

B=A,

Then (A42) yiedds

(n34)

(A35)

(A36)

(A37)

(A38)

(A39)

(n40)

(n41)

(n42)

(A43)




S D i

wo 11 mm?g; ‘t'ﬂg (A44)
(A,=1)
o
A, 7Lk e > (n45)
w‘é)

We still need to check that (A37) is satisfied, i.e.

0 1/2 4
O+ G RG> G
A+ GRS )= 6 RV X )T RS G (A46)

It can be ghown, abbeit with some amount of algebraic manipulations

by applying Temma 1 and 3, that a sufficient condition fox (A46) is:

2
*o
> _ _
A+ (L4x )2 a7
(o]
2
. *o . ,
Since (?EI;;T‘) < 1 and A+ > 1, (n47) is satisfied,

To £ind a lower bound A_of A, we first find the lower bound A'

given by equation (p42). We have

A
. (n48)

A, (AL -1

»

!
It can be shown, after some algebraic manipulation, that A_ = 1/A+ 1849},

e e ,

B s s ik b e



Since A must also satigfias the lower bound given by (A4l), we therefore
have
]
» & pax [(1 - 2,0 } (A50)
»e x -
o
Ia have thus shown that (x) is stable for all A = AI(and A'E I) such

that

A< A<SA (A51)

where A+ is defined by (R45) and A_ by (AS0). The generalization to

the case
AT <A<AT (A52)
for general diagonal A is obtained by replacing choice of L = aI by

a general L > 0 as provided by Lemma 4. We shall omit the details of

the proof of this as it is straightforward (albeit tedious).

-

Proof of Proposition 4

Consider the Kalman filter Riccati equation:

J -1 T

Ja+uch™ + arnchHf+Jcetcl+o=0 (a53)

Qe g
TT -1 el T SO R N

(g+_t_1°_c_)z .rZ_ A+ HC) +CQ " C +§ cb_z_ =0 (A54)
If we let 6 A B(CQ—lCT + z“l ¢ Z"l) in Lemma 4 (such that Condition (ii) holds)
then

X = B}_<"1 (a55)

—

and Condition (iii) in Lemma 4 becomes
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T

e

2
- ) g 3 -]
TS e S R PRI A A S panh /ety "L (ns6)
where , by lotting T - tl, w > 0
A ‘ IS S |
Mol b (A=) [2A- (1) T ¥ ) A1) 0 (n57)

i o8 Bk, BE B (A58)

Then (AHG) <>

— o oy - e
o™t v i e Iy g 1P )

B3 (% g2 b “) I (n59)
S {=> Q@ o)

Tf we take o = 1/R, and let qnz +®, R w in such a way that

¢2/‘1§2 < @, then in the Llwmit (AS9) is satisfled for all (_1}—__@)2 and A

finite and Condition (4.1) of Temma (4) tends to: A > %— (r - ___; ).
|
Proof of Proposition 5
By Lyapunov theorem, the dynamic system
{AGO)

X = g\a(/t:);fé('t:), t e[0,%), X(0) given, finite

is stable (X(t) > 0 as t > ®) if there exists a positive function s.t.

v ovE>0 k7o (aex)
2) (:\i L(”)s 0 t [0, and ,\(L) satisfying (AGO) (n62)

If we now consider the function
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i,

n: 9:' o S ﬁ:T K & where 5 ig the Lyapunov matrix (A63)
as defined in (A5 ).
then ~
(1) n>0 XA0 since K > 0
@ n - RE RS (nsa)
- % (§"‘"j§ + KM% (vhere A = 50 + 8% as defined in
equation (Ad4))
. =% 80 % (from (AL2)) (AG5)
<o x# 0 since Sé is guaranteed to be > 0
in each of the propositions 1 to 5,
according to Lemma 4.
Hence, 1) satisfies the stability theorem. .

Proposition 5 is proved.

e L e e i caana + and



APPENDIX C

SOME INVESTIGATIONS
OF HYBRID SYSTEMS

by

Alex Kostovoebtsky

Sulmitted to the Department of Mechanical
Engincering on May 11, 1979 in partial
fulfillment of the requirements for the
Degree of Master of Scienca,

ABSTRACT

The purpose of this thesis was to investigate some inherent properties

of hybrid systems. These systans include both continuous in time and discrete
parts and have a particular importance in design and implementation of various
digital control algorithms. In particular, problems of hybrid approximation
for continuous "nominal" system and robustness of hybrid systems are studied.

The robustness problem for general control systems has been studied by
M. safonov but his results cannot be applied directly to hybrid system: in
oxder to determine a critical value of the sampling interval which assuves
the system robustness. The problem is investigated in the thesis as well.

The practical three-dimensional control system is shown in order to
illustrate the general relationships obtained for hybrid systems.

Thesis Supervisor: Professor Gunter Stein,

Department of Electrical Engineexing
and Computer Science
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INTRODUCTION

The subject of this theeis is investigation of some properties of hybrid
systams. Such systems include both continuous (plant) and discrete (digital
comput:ex) parts. Inherent properties of hybrid structures are of particular
interest when designing digital and analog devices to be used in closed-loop
systems (control systems, for instance).

The first section provides a general description of hybrid systems, their
components and introduces some notations,

In the second section a continuous time representation is shown for the
hybrid system. Examples given in the section explain general features of a
hybrid structure.

The third section of the thesis deals with propertics of the induced
norm of the hybrid operator. Both lower and upper bounds for that norm are
derived. Their dependence on the sampling averaging interval is clarified as
well as their impulse~like behavior.

A hybrid approximation of continuous operators is considered in the
fourth section. An optimal approximation ¢riterion is discussed and inter-
preted., The optimal coefficients of the hybrid approximation are derived foxr
a sufficiently large class of linear continuous operators, Possible structural
simplifications both in sampler and hold circuits are discuszed and the opti-
mal approximation for these situations are derived. Some examples are shown
in the end of the section.

The f£ifth section of the thesis deals with the robustness problem for
hybrid systems. Thig problem has been solved in general for various control
systems but either for continuous or for discrete case. Those results are

used to develop an appropriate sufficient stability conditions for hybrid
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systems, The approach sugyested for this purpose provides the value of
sampling rate which preserves stability of a nominal continuous time system.
The last section describes an example of the concepts and methods de-
veloped in previous sections. A three-dimensional single input-single output
closed loop control system is considered. A sampling rate which assuxes
gstabllity of the corresponded hybrid system is found by the suggested maethod.
The optimal approximation hybrid system is constructed and compared with
alternate hybrid system. To compare their performance when subject to noise,
both systems have been simulated on a computer. Results of the simulation

are discusged.
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SECTION 1

HYBRID SYBTEMS

congider two general lineay operators

£
vit) = fG(t,B)u(O)dO (1.1)
0
k
vy (e = D Gy (B, (L.2)
fml

where u(0), vit), §£, vk(t) are vectors of dimensions M, N, L, N, respectively,
G(t,0) is an NxM matrix and sz(t) is an LxM matrix.

The operator (1,1) represents a physical continuous time system, while
(1.2) is a system which includes both digital and analog components, Systems
of this type will be called "hybrid systems". Usually, they have the follow-

ing structure.

u(8) _|ANALOGDIG 3 ,
AL ITAL | Se DiGITAL [
CONVERSION COMPUTER k mggﬁt@gglﬁc -——bvkm

Fig. 1 Hybrid Systew

As scen in the Fig, 1, both input and output of a hybrid system are
continous time signals. Such systems may be connected directly with various

continuous time plants for diffexent purposes.
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A hybrid system consists of three party: samplexr, computer and hold
circuit,

a) Sampler is a device which converts analog signals to a sequence

of numbers (vector-valued) gatting to a computer.

u(e) b "Ik
w—t|  SAMPLER  famee”cmtp] COMPUTER [t

L4

Fig. 2, Sampling Operation

The input signal % (0) is averaged in some way over time interval T so
that each T seconds & new value of Ep gets to the computer. This opera~

tion over a single time interval from (2-1)T to 2T may be represented as

2
E, = f £,(0)u(0)ad (1.3)
% (A=1)T %

where fl(e) is a cartain matrix valued function, u(9) and Ez are vectors.,

we define fx(e) so that

fQ(O) = 0 if 6 @ [T(2~1), TR).

b) Digital Computer.

This block performs transformation of input

sequence {ER}’ % =1,2,... into output sequence {nK}, kK =0,l... . In case

of linear realizable system it may be written as

i . A b

i e senassediarval



Ei

¥

VT *6

Fig, 3, Sampling

k
n, = Z kaﬁz (1.4)
fml

where gg is an L-vector, nk is an Ll-vectox, and Dkk is an leL matyix

sequence.

¢) Hold Circuit. The input of this device is the sequence {nk} which

can be multiplied by some continuous fuwiction gk(t) over each interval

[kt, (k+1)T) to produce the ultimate output of the hybrid system vk(t),

vk(t) = gk(t) . nk

where gk(t) is a NxLl matrix and is also defined to be zero outside the

intexval [kt, (k+1)T).

Finally, the overall hybrid system which transforms u(f) to vk(t) may

be pregented in the form
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v, (8) = g, (8) Enkﬁgﬁ' K% 0,1...

Lm)

whaere

Ao

Ey ™ £,()u(9)ad
" (2‘-4)1: 2

nkb‘*-“-“-‘t-

g n— —

Vi)

Fig.
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(k+)T

4, Hold Operation.

(1.5)




SECTION 2

Hybrid Operator Representatior

In this section we show how the hybrid system may bhe presented in a
continuous time operator form. This representation allows us to investigate
some specific norm properties of general hybrid operators and also is help-
ful in applying methods of continuous time systems to hybrid controllers,

The transformation (1.5) may be written in a continuous time form

vit) = G(t,0)u(B)ad (2.1)

if we introduce the function

k
=1

and let k ﬂ[%] be in the integer part of %-. This ig verified by using ex-

pression (2.2) in the formula (2.1). We have

t k

v(t) = fgk-‘.t) E Dszg(ﬂ)u(ﬁ)de =
d =1

k kT
- 5 0)u(0)ad =
= gk(t) Al-?kl fl( Ju( =

=1 0

k & (2.3)
= g, (t) ZDRSL f £,(0)u(@)ad =

=1 (L-1)T

k
= g, (£) Enkxé;g = vk(t), k=0,1...

=1,

”




The result shows that any hybrid operator (1.5) may be presented in a

form (2.1) with a weighting function(2.2).

Also, one can see from the expres~

sion (2.2) that the hybrid operator is inherently factorized into two factors:

one depends only on t, the other only on 6,

Usually, shifted versions of the same function are used both ja sampling

and hold davices, i.e.
Y Y v
gm(t; = go(t mT)

fz(e) = fo(e-m)

(2.4)

where m and £ are arbitrary integers, and go(A) and fo(k) are given sample

and hold functions.

Example.

Consider the following example of a scalar hybrid system

1y
(4
Sampler: fo(l) =

0
Computer: D, = uk~£
Hold: gO(A) = 1,

Formula (1.5) yields for

k
G (t;e) = Zuk_&'gg

A=l

-
|

- <A <0

W

otherwise

0<A<T

G(t,0):

(2.5)

(2.6)
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Fig. B,

Dpaxator G(t,0)

Mig. 5 shows a structure of the funetion G(t,0).

case functions qO(A) and £0(A) are shown in Fig. 6.

In this particular

They reprosent so ¢allad

‘moro order hold" and approximate “impulsive sampling®, respectively [{].

Anothor possible cxample of a sampling function is

1 -0
fﬂ(}‘) - E‘Q

where
1 0T
¢ =2 ( - 1)
&

PYT L

(2.7)

a

et




~

1/€

0 T 0

Fig. 6. Example of Sampling and Hold Functions

This is called exponentially weighted sampling and also approximates impulsive

sampl ing for o sufficiently large.

“O(X)

— >\
-T 0
Pig. 7. Exponentially Weighted Sampling

In more general situation functions fO(A) and go(X) are not necessarily

scalars. For example, the samples might be

flo(k)

10




whore Elo(k) and fzc(k) are scalar functions shown on Fig. B,

f 1'0( A\) + '20( \)

Fig. 8, Bxample of Multivariable Sampling

‘1 ~T < A 20
. flO(K) -
0 otherwise
T
R(O -{*';;-) -'C<7\§_0
£ (A) = °
20 l Q othorwise

In this case £, . samples the average value and samples the average slopu

10
of the input function. Similarly, the hold circuit may have the forxm

90(>\) = (glo(k). 920()\))

where glo(K) and gzO(A) arc, for example

11
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{1, 0<A<T
g, aA) = .
10 0, otherwise
(2.9)
YA, 0<A<T
9200\) - {
0, otherwise
$9,5( M) $9,55(N)
1
0 T A ) §

Fig. 9. Example of Multivariable Hold

Here, 910 is a zero order hold and 990 is an ideal first order hold. The

comput.er can then command both the level and the slope of the output function.

12




BECTION 3

Norm Inequalities for Hybrid Operators

Now we establish upper and lower bounds for induced norm of the hybrid
oparator,
A noxm of operator G isg defined as (2]
Heul|

lle]| = sgv**rm"l“ (3.1)

where ||ul| is a Buclidean noxrm of a vector function

fo]
al]? = fuT(Q)u(Q)de (3.2)
0

In the case of our hybrid opcrator we have

1
(Gu) (t) = g, (t) ;Dkggg (3.3)
=1

where

g;r
5“/ £,(0)u(0)d0
(2-1)T

with gk(t), Dkk' fx(ﬁ) are matrices and E@ is L,u(0) is M dimensional vectors.

For such operators wec can write

2
| fal|? = SUPUﬂu—z- = (3.4)
u |l
oA
= sup —= 2’_[ (aw) T (Gu)at
u ull® &
13
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- e

o, ©  (kEL)T
f(Gu)T(Gu)dt = z f (Gu)m(Gu)dt =
0 k=0 KT
o (k+l)T
- 2 [ g ; D, (5 E DYy (E1]at
k=0 Kkt m=}
pefine
(k+l)T
A m
b, = gk(t)gk(t)dt
kt
Then,
00 k
2 , T,
[leul | = E erla, E E Dy EnEgPrg S
k=0 =1 m=1

) k kK

< E eria,] - ? E £x(p, £ EVDI] <
k=0 =1 m=1 '
® Xk
:E :’ ;?:::E:: oy T
< tr[Ak] . tr[Dka ka] . tr[Emﬁgl
=1 m=1

k=0
Due to properties of a trace, we have
2 2 2
erte By * < [1E 117 - 11E,|]

and

14

(3.5)

(3.6)

(3.7)

(3.8)
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eetf £90 < [1E 1]+ gl (3.9)

50,
HGullzﬁ,E tria,] z E wetopn 1[5 L 11g,l] (3.10)
k=0 Am]  m=]

Properties of matrix traces used in (3.7) - (3.10) are given in Appendix II.
Quantities tr[Akl and tx‘[D;I';z ka] are independent of u(d), Further in
this section we will restrict ourselves to the sampling function

- 5_% <0
fo A) = (3..1)

¢] otherwise

Ml
©

where p is a constant LxM matrix in oxder to obtain a simple result., However,
as £ 0 the result is still true no matter what the shape of the function
fo(k) is inside the interwval [-£,0).

Under these assumptions, we get

|
|
|
|
i;

2 L
e, Lo 2
sup , 5~ = Sup fo(e ~Tu(@)d =
L T M 2
= sup f 1
2 u, (G)de =
o fu Zi.l g, ZM =
L M i 2
= sup = E 'ﬁl:- E pij uj (6)ae <
w flull 4 J=1 Th-e
L M T 5
L - 2 (0raey <
TN i3 *
uoh i=l J=1 -
15
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1
TR 1,1?-:

M T (3.12)

2
r"LM 1 E : 2

HuH J-l TR. -

where r é max max p 13

i 3
The expression (3,12) may be simplified because

M ($ M 0

E f u§<e>a6 nz fu§<e-rz)ae =

j=l TL-E =l ~E

0
- fuT(G—TZ)u(@-’rﬂ.)dﬂ (3.13)
-

Then,

u'r (O~TLY 0 (O ~TR)A0

8 m\o

sup - = 1 (3.14) 1

u” (8)u(8)d(8)
0

for #=1,2,... . Therefore, for the hybrid operator norm we have from (3.10)

o0 ko oK ) A
2 2 : 2 : 2 : T r’LM 1
el < tr(4, ] - £r[Dy oDy 1 ¢ =7 A (3.15)

k=0 f=]  m=l

(3.158)
and

16
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We note that

ZLr[Ak] z Ztr[nkz km

k=0 Ll mwl,

(3.16)

is not necessarily finite. One could concelve sequencas Ak and Dkﬁ go that

the upper bound of the hybrid operator is infinite

In oxrder to obtain a lowaer bound for the induced norm of the hybrid

' operator wa may select any particular input u(9) and consider the corresponding

value of

.» Heull
| Hull

as a lower bound of the operator norm.

We select

B e B<T
u(f) =
0, otherwise

where B is a constant M~vector.

Then, for (Gu) (t) we obtain

(G3) (6) = g, (&) D Dyy by

Qe
wherc
TR ‘pB; =1
gl-.:f £, 0)u(®)a0 = .
s e 0, otherwise

i et el 03 e
ot L
- ve PN A L.

(3.17)

17
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and thereforae,

k
(Gu) (&) = [g, (t) an,)pg = g (£)D, 0B (3.18)
fm]
"
|| qu]| 2 uZtr[Akl . tr[n,'io Dol 1] o8] 2 (3.19)
k=0
o
Hul]? = / ul (B)u(0)ad = ¢ || 8|2 (3.20)
5
Then,
2
leull® _ P2 i
w2y le]] » = (3.21)
e el

The conclusion of this analysis is that the norm of a hybrid operator
with interval sampling becomes unbounded as the interval sampling becomes un-
bounded ag the interval vanishes (tends toward impulsive sampling). This
means that the impulsive sampling has this specific norm propexty in spite

of the fact it is widely uged as a simplest model of the sampling operation [1).

__,6

18 Fig. 10. Norm Bounds for the Hybrid Operator
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SECTION 4
Hybrid Approximation of Continuous Operators

As wea have shown in Baection 2 the hybrid operator in general, may be

rapresented in a form
3

G(t,8) = g, (t-kD) Dy g fq 0-T4) (4.1)
Im],

where Xk is the integer part of “%“, and

t
(Gu) (t) *d[G(t,B)u(e)dQ -

t k

- f 9o (E-KT) D Dy (B-T8)u(0)a0 =
0 w1

k T
" golt-kt) ) D £,0-T0u(@)d8 =
= e

k
- g, (E-kD) E«Dmﬁ 0 (4.2)
)

The problem of optimal approximation of a continuous time linear operator

G(t,0) by the hybrid operator G(t,0) may be formulated as follows:

Find the structure of a hybrid system, i.e. matrices go(k) ey fO(M

such that
T t
J = lim %—6/.dt G/ﬁ tr{ (G(t,0) ~ Ekt,@))m(s(t,e) - G(t,0))1ab (4.3)
Teyo0

19
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is minimized,

Physisally we can interpret the criterion as a mean square deviation of

signals v(t) and Vi (t) produced by the nominal and hybrid systems, provided
that both are driven by the same white noise procass.

To prove this we note that the two systom rosponses are:

&

vit) -f’d‘(t,ema)aa
Q

vk<t) n/G(n,S)u(e)da

Then,

vk(t:) - v(t) = jmct,e) - G(t,0)Ju(B)ad (4.4)

BL(v, () =v(£)) (v, (&) = v(£)T) =

t
- I j(cme) - &(t,0))u(@)de - Ju""(m) (G(t,m) = c(t,w)  au] =

wmzjjdedmuc:(t,e) - G(t,0)) (G(t,w) ~’é'(t.m))Tlu(6>uT<m> =
0

t
-[j A0dw[ (G (t,0) -~ G(&,0)) (G(t,w) —E(t,m))EIU(G)uT(w)J "

p _ o (4.5)
=® f(G(tre) - G(t:.@)) (G(t(e) - G(t'a)) dao
0

20
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A natural measure of total deviation hetween two time variant random

vectors is
T
7= Elin = [ triv, (&) - vie)) (v, (&) - v(e)) 1at (4.6)
o T k k

Subsituting (4.5) into (4.6) we obtain the criterion (4.3)
Perfectly matched hold

Suppose now that the nominal continuous operator is such that

G(t,8) = H(t)S(9) (4.7)
where H(t) satisfies a functional eguation

{4.8)

H(tl + t2) = H(tl) . M(tz)

for some matrix M(t) of dimension KxK. We can then look for optimal approxi-

mation matrices in the form

where the Mk's are KxK and 52'5 are KxL matrices.

The hybrid operator (4.1) then takes the form

k
G({t,0) = go(t—-kT)Mk E an(e—rm
=1
and we can identify go(t—kT) and Mk as

g, (E-kT) = H(t - k1)
(4.9)

= M(KT
Mk M (kT)

21




Thig identification means that the t-dependent factor of the neminal

operator may be duplicated exactly by the hybrid system for all t, New call

Now call, oq, 8 > kr

S(9) = Pdgf @-t8), 0 < xr

and substitute into the criterion (4.3).

T
J = l:i.m;%;fdt ftr[(S(G) - 5(6))Tf1'r(t)n(t) (5(0) - S(8))140 =
rp)oo
4] 0
T t
= lim,-i%/dt f e [H (E)H(E) (S(8) ~ §(0)) ((8) - 5(8))71a8 =
i a0
] 0
by KT
.1 m — —
= trllim = fﬂ (L) H(t)dt f (86 - 5(B)) (s(B) - 5(B)) ad +
0
] 3
t
+ ['é‘(e)'sTT (0)d0}1] =
T
N (k+1)T k L
- tx.[lim 2 7 Teynat - Z (5(8) -T(0) (s(8) -5(0)) a0 +,
k=0 T =1 (&~)T
N (k+1)1T
.l mo
= lin & 3 tx] H (L)H(t)dt *
N0
k=0 T
k
. Z f (s(®) - E(G)) (5(8) - g(e))TdO] + (4.11)
=1 (-1)7T
where
N (kt1)T t
¥ = tr(lnm—z f A at . f’é‘(e)“s‘(e)”ae]
22 k=0 KT kT
W;fl “ - 1
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N k

- . 1 n honld ~"" T

J =T = ;.‘LT, 5 2 mmk E f (8(0) - 8(0))(s(0) ~ 8(0)) as)
k»Q fue) (L-1)1

—

wheroe

(k)T
B, g T Y at

KT

Bince each term of this double sum
Qr
s — T,
“4 \ - L]
Tyq =tr(B, (5(8) - §(0)) (S(0)~-5(0)) " ad)
(L=-1)7T

(4.12)

(4.13)

depends only on its own matrix of coefficients do and not on other dm(m#&),

it can be minimized independently over dk‘ It corresponds to a single

square optimization shown on Fig. 1l.

LT
Tyq =Evln f (s(0)s* (0) - 28(0)ST () + E(0)E" (0))a0
(L-1)7
5{0) = df, (0-Tk) for T(2-1) £ 0 < T
30
0 7 4

N 6
\

kT V/\K

Pig. 11 Optimization Square

23




5o, fr
T T
sz -tr[nk f (dzfo(e-'m)ﬁc(o-'m)dx -
(&-1)7T
(4.14)
- 2d,£,(0-TR)E (8) + §(0)5" (6))a0)
Introduce following notationg
Lt
¥ é f £ (G-T,Q.)fT(O—TQ)dQ Ep (4.15)
"% 0 0 S ¢ *
(=1)T
T
%é f S(0) £ (9-T8) a0
(L-1)T
Then,
TS
T - “"1‘
Tpg = = tr(B (de g 2, 2d2¢»2 + f S(6)s” (0)ao}
T (4~1)
Using formulas IA and IB of Appendix, we come to the equation
3J
k& —_— -
'-5'5; = Bk(dzl‘o ‘”9) 0 (4.16)
and
q. = pt (4,17)
') ¥o '

if FO and Bk are invertible, This implies that the optima) hybrid operatox

approximation is

k

G(t,0) =go(t-k‘t)Mkf %0 0 (@-T) (4.18)
=1

24
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where
go(t-k'r) . Mk = H(t)

Consider now the special case

G(t,0) = cet(E0)p

where A is NxN matrix. Then (4.7) - (4.8) imply that

.ﬁ(t) = CeM

50y = e

and from (4.9):

g, (E-KT) = C P (E-KT)

suppose, we also define

_ -n9
fo(e) = e B

Then, for F_ and wl we obtain by definition (4.15)

0
0 0 -
- T _ -A0 T -A"0
FO = ffoce)fo(e)ae -fe BB e ae
-T ~T

' 0
%: f 'é(e)fg(e-m)de =f's'(6+m)£'g(e)de =
(2-1)T -T

0 T,
= o ATL fe—AB pefe® O4p = e-—AﬂLFO
~T

o - T

(4 19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

25
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P _is full rank if (A,B) is controllable [1].

0
- ~ATR
dg' .¢,94F0 = Q

and the corresponding value of Jk

For the hybrid operator we then have

k
G(E,8) = g (t=k Z%fo(e"*’*’ -

L=l

k

- eAt e—-mkaz\sz :e-mxa-meml B =

f=1

i

CeAtZe"Ae B 1, (0) =

=1 0

The function 12(0) iy defined as

1 (L-1)1 < 0 i'cl

1,(0) =

A
0, otherwise

The output of the hybrid system is

t

JG(t,@)u(e)de =

(Gu) (&)

i

i

G(t,0)u(0)an

26

% and, consequently J-vS, is zero.

k e eA(t—G)B'
otherwise

The formula (4.17) yields:

(4.25)

(4.26)

(4.27)

{4.28)




This result means that a continuous time linear time invariant nominal
operator may be exactly approximated by choosing appropriate sampling and
hold structures, except for an inherent sampling error in the "triangle strip".

This is illustrated in rig. 12.

N
=9

19
=N
2T §§
6-6:04 3(/ < "'riGo_v\glsecs'rip"

3t :'\5

Fig. 12. The "triangle strip"

Note that the optimal sampling and hold circuits required by (4.22)
and (4.23) are themselves multivariable linear systems of order N. The sampler

takes the form

I

£2=[ A0 6ya0
(=-1)T

which has the block diagram in Fig. 13.

The hold circuit has the block diagram in the Fig. 14.

27
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F‘—’ “abasets P
‘

IC.=0 at t=(£-1)7

o=
sampled
at t=vf
£=12...

l

Fig, 13. Optimal Sampler

IC.= M at t=kr

=0 > C => V(t)

Fig. 14. Optimal Hold

Those circuits can be simplified by fixing the matrices fo(l) and gO(X) and
using formula (4.15) to provide optimal value of matrices dz given the fixed

analog structures.

28
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Example
a) nominal system:

b) exact match of hold, i.e.

9o (t) = Hit) = &
(4.29)
Mk - eAk’C
¢)  u(d) = £y(8) (4.30)

where v(9) is a scalar function of time. £ is a constant L-vector.

1
e - £
Ex £ 8 <0

d) fo(e) =
0 otherwise

where I is an LxL identity matrix. How we can apply formula (4.17) to ob-

tain an optimal but not exact approximation of the nominal continuous operator.

0
= T = L
Fy ffo(e)fo(e)de =1 (4.31)
-T
0
_ = T
4, = f S(B+TR) £ (8) a0
=T
0
= e-ATz f e-Ae —i-ae (4.32)
€
0
— -l — “ATR’ "’Ae (4 33
dg = QF " = e fe ao 4.33)
-
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The simplified sampler structure for this cas» is shown in Fig. 15.

1C.=0 ct t=v/-¢€

(6) $ a8 K .are
Y -1 B "7k=2fe dé- e 'E, =00 Hold =
i ez
sampled
at t=1¢

FPig. 15, Simplified Sampler

This is equivalent to the structure on Fig. 16.

IC.z0 at t=7s-¢

y® -8 X -adt
—1 B 0= [e 48T, EOT] Hold =
) e:|
sampled g
at t=1/

Fig. 16. Sampler of Reduced Dimension g

Note that if € goes to zero with finite T Ny =+ 0, which means that the
impulsive sampling produces signals which should be neglected under the optimal

hybrid approximation. This result is natural since the optimal approximation
30
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approximation was designed to match outputs of two systems subject to the
same white noise., But the impulsgive sampling leads to an infinite mean
square daeviation between the two samples, 80 the output should be supporessed
by choosing dz s0 that éig dz = 0 in the optimal hybrid approximation.
Instead of the N-dimensional sampling circuit in Fig. 13 we now have a
one-dimensional integrator in Fig. 16,
The formula (4.17) provides an "optimal" computational procedure (con-

volution) given an optimal hold circuit structure perfectly matched outside

the "triangle strip".

Perfectly matched sampler

Consider now the dual case when the sampling operation is perfectly
matched outside the "triangle strip” but the hold gtructure is unknown and
to be determined.

similar to the above case we suppose S(0) is such that
S(el + 92) 3 d(ﬂl) ~kS(62) (4.36)

where S(0) is a KxM matrix.

Then,
S(0) = B(O-TL+TL) = A(kR)S(O-TL) (4.37)

Since the functions fo(B-Tﬁ) of the sum

k
s(®) = E dxfo(G-Tk)
=1
do not overlap {by definition), we can make the following identifications

a, = d(k)

%

fo(&)-‘rR,) = ‘s,‘(o-mlz(e) (4.38)
31
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Then, 5(0) = S(0) for all ® < kT. Now we can go back to the general criterion
(4.3):

I = mn [dt jtxt(n(t)sw) - W(t)50))T (H(£)5(0) -H()5(0)))a0 =

- J.im B/ jtr[s (0) (H(t) ~H(£)) T (H (L) ~i(£))S(0)1a8 =

m%‘fﬂt jtr['é‘(e)g'”cm(nm-ﬁ(t))"(mt)-'ﬁ(tmde .

]

(4,39)
T4
= ,um dt tr:( f 5(0 .
‘L-l T(4=1)
o (HE) =TT (HE) -~ T + T,
by t
J = 1im%-6/dt tr[/é‘(e)s (8) (H(t)=~H(t))" (H(t)-H(t)))do
fp-)oo
KT
%0 (k+tl)T k
J-J = lim % E f dt E tr[C, (H(t) =~ H(t)) * (H(t) = H(t))]
T =0 wr %=1
(4,40)
Th
é“(e)'s"”(e)de is a XxK matrix. As before, each component of
v (&~1)

the sum over k depends only on value of (H(t) -ﬁ(t))T(H(t) -H(t)) on interval

kT < t S (ktl)T. So, we can minimize each term separately.
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(ktl)7T k
g, - f at E tr[czm(c}-ﬁ(t))Tm(t)-ﬁ‘(t))l -
Xt Sl
k (k+1)7T
= tr[E cz f (H(c)-ﬁ'(t))T(H(t)"ﬁ(h))dt] -
=1  kr
k (k+l)T
u;tx(cg / (H(t)-ﬁ(t))""(‘ﬂ‘(t)—-n(t)&tzl (4.41)
im] :
X
”E’kz
Ll

This implies that quantity

(k+l)7T
3, = trlc, (1(e) = ()T (H (k) ~T(t) ) dt) (4.42)
T

is to be minimized by choosing H(t).

Suppose we look for H(t) in the foxm
H(t~kT) = go(t-m)ak (4.43)

XK matrices, respectively. Then,

where go(t-k't) and e 7

k are NxLl and L,
(k+1)T

sz ntr[cz/ (e'f(gT (t-k'r)g(t-k'r)ek -
KT

- 26',1;9'” (t~=kT)H(L) + i-i'”(t;)'xi(t))dt] (4.44)

Introduce two matrices

(k)T . i
p A f gqlt-k Jg (t-k yat = fgo(t)go(t)dt
0 Kt 0
(4.45)
A (KT _ T
Yy, = g. (t=kt)H(t)dt = g, (E)H(t+k )dt
ko 0 o © 33
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Now,
(k+L)7T
m T =T e
Jk& = tr(C (ek?oek - 2°k X + H (E)H{t)dt))
k1

BJH‘
's-é--- ZTQG)(C,Q, -Elllkcz = 0 (4.47)

4

(see formulas IA and IB of Appendix). SinceC 3 is arbitrary, i.e. independent

of hold device characteristics, we conclude

- m=Y
Ty ¥y

e 0

k

if T exists.

For the specific case whére
9q(t) = cet®
(4.49)

) = ¢ M

we have be definition (4.45)

T
T, = [ et ¢ ToeMat

T

T
v, = J Mt T MM Tar = m KT (4.50)

The matrix T. is full rank if (A,C) is observable [1}, Formula (4.48) then

0
yields
o w FF (4.51)
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This result is expected; it corresponds to the case of exact approximation of

hold device and has been derived before using simpler considerations (formula

4.21).

The general c.se

In general, both the sampling :nd the hold dervices may not be matched

perfectly outside the "triangle strip".

Given a desired structure for these circuits, i.e. functions fO(B-tz)

and go(t-k ), we might then be interested in determining a computational

procedure (matrices dz and ek) which provides an optimal (in the above sense)

hybrid approximation of a nominal system.
80, we have for the sampler and hold, respectively

k

s(0) = E dxfo(e-Tk)

L=1

H(t~kT) = go(t--kT)ek

The criterion (4.3) is

T t k
J = lim = dt / trl(g.(t-kT)e d,£_(0-kR) - ;{(t)'g(e))'l‘
T 0 kz :JL 0
] =1

k
. - - - H g d8q =
go(t k'r)ek E dmfo(e L) H(t)s(6))140
=1

T k.

£

=1im-l-/dtftr[( £ (0-T)a e g

An 5 E:o 25K
0 0

3

(t-kt) -

(o]

=1
k

SO T (&) - g(t-kT)e, z a £ (8-tm) - H(£)5(9))140 =
m=1

R "o
L SRR

(4.52)
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Cptontiacs AR YT oM e = e

3
TTT
= 1im ,-1,1—- dat j tr( E f'g(e-rn.). dgeigo(t-kﬂgo(t'kﬂek
Trre fm) mw

k
. - - -.T ”‘r - -
dmfo(e m) 25 (8)H (t)go(t kT)ek E deD(G ™) +
m=]
+ SL(0)AT (£)H(£)S(0) 140
consider the sum
k k
A P TTT, - .
E E tr[fo(G—Tz)dzekgo(t~kT)go(t kT) ekdmfo(O-Tm)
mel =]
k k

~ T T T T 5 3
= E E tr[fo(e—Tm) . fo(GnTﬂ)dkekgo(t-kT)go(t-kk)ekdm]
m=]  X=

bue to the definition (Fig. 3) of functions f0<e) we can write

T oy T a_
fo(e-rm)fo(e-TSL) = fo(()-Tz)fo(e TR) 5m2

Then (4.54) takes the form

\ T TOT, . _
tr[fo(e-rl)f0(6~12)dgekgo\c»kx)go(t kT)ekdz]
=1

and for J we have

N
1 TT
J = lim — tr(F d,eT e d, =
Nz: 0Lk 0K &

36
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i i e
f

kt k

00
Taly 4 . ;E : Tyt ey o MBI ¥ ; ;
- 2%%@)(\1;)( | f at f ST0YHT () H(t)s()do) + J (4.56) |
0 u =] |

where as before, I ig

: ook (4.57)
d ~ - - " . (—
Fetimp fae [ ectmes© - TN wErs@) - We)50)) 140
- ]
|
. |
The quantity J~J is to be minimized by choosing matrices e, and dR,' We can ]
l now introduce a new matrix of computer coefficients
F
; . 5
t Dkg‘ = deni (4-..)8)
i
; Its dimension is I.lxll.. with this definition, &~ J again breaks down into
independent optimization squares with costs %
n T L} - D s
g T
kL . |
n———— T2 T o [ \ 4.6
aDkR, 2,L‘0Dk ! 0 zll‘k(bg x {4.60)
: and
=}, -1
[ n N
Dkk = 1‘0 q’k(b&ro {4.61)
The overall optimal hybrid operator now is
k
. \ - Fod -t . ”
G{t,0) = go(t kT) E Dkg}fo(o L) (4.62)
=1
where go(t~k } and fO(Q~TQ) represent simplified sampling and hold structures.
The simplification mecans cither lower dimension of analoy civcuits ox simpli-
fied feedback loops or both. . g
]

o B A et - :
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The optimal hybrid system is shown in Fig. 17,

uio) Convolution k Vi)

=¢Tf°(9) 2 u(@+2) =O/O= 17k= Z Dklfl =O/O= go(t-kr) "f)k =
{} £:=1 M

» sampled output | a
ot t=vf at =1k
Fig. 17. Optimal Hybrid Approximation,
General Case.
Example.
Single input-single output system. Suppose,
T E,0) = PtV (4.63)

where A is NxN matrix, £ and C'r and N-vectors. Let fo(k) and go(k) be chosen

in the form
x()\) - I [}
£ (A) =
0 0
1
900\) =
0

where x(0) is a scalar function.

- 38

~-T<A<O0

(4.64)
othexrwise

0<A<T

i,

otherwise




Then,
W) =ce™ ; me) =e™ g
4]
r o= [x*©)a0 « 1
0 X
~
TO = T
T
¢y = oA f e x(0)a0

— L
P =T Wy $gF ~ =

T

L oahr- ey L TR e {/ez‘ex(e)d . £ (4.66)
x% (9) a0

i
Al

e

I The expression (4.66) of optimal scalar sequence of coefficients is to be

used in the digital computer of Fig. 17.
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SECTION 5

Robustness of Hybrid Systems

In Section 4 we have shown how continuous time linear operators may be
approximated by a hybrid system. If this approximation takes place in a
feedback loop of a closed lcop control system, the stability and performance
properties will degrade somewhat due to errors of approximation.

The extent to which such errors effect stability has been investigated
in general by Safonov [3]. Sufficient gtability conditions for continuous
and sampled data systems have been established. In reference [4), simpler
frequency domain conditions have been derived for linear time invariant systems
subject to additive errors of various kinds. A block diagram of these systems
is shown on Fig. 16. L is a nominal time invariant operator, and AL is a
perturbation or error, time invariant as well.

Then, according to [4], the system remains stable if

o(r+L(jw)) > o(AL(jw)) (5.1)

Here L(J0) and AL(jw) are transfer functions of L and AL, and O(A), o(A) denote

maximum and minimum singular values of A.

AL

——q}———J O

40 Fig. 18. PFeedback Loop with Perturbations.

£y




Figure 18 may be viewed az a general diagram for the spe....c control

system shown in Fig. 19,

x(1) 2(1) b Y(Q.

v(t)

ol

Fig. 19. Control System

Here P and G arc time invariant continuous matrix convolution operators. That
is
t
y{t) = (Pz)(t) = J/.P(t~k)z(k)dk (5.2)
o]
and
t
vit) =f5(t-‘>\)y(>\)d>\
0

P usually represents the "plant” to be controlled, and G is the ideal continuous

time controller designed %o regulate P. This system can also be drawn as in

Pig. 20.

It has overall operator PG:
t,

(PGz) (t) :/pat-e)z(e)ae
0

(5.3)

41




Fig. 20. Control System

t
PG (L) = fﬁ(t—e)P(e)de (5.4)
; 0
is ajain a time invariant matrix convolution operatoxr. Oux objective in
this section will be to examine the effect on shalility caused by approximating
the pperatoxr G with a hybrid system, i.e. what happens if we use a digitally
implemented controller? The tool i5r this analysis will be the stability
robustness condition (5.1). Unfortunately, the condition (5.l1) cannot be
applied directly to the approximated system because a hybrid system is inherently
time-variant in nature. This follows, for example, from errors in the "triangle
strip", as discussed in Section 2.
However, if we construct a time~invarjant "bounding operator" W with

property
Hw Il > || acul] ¥ u (5.5)

where AG = G-G , then stability condition (5.1) may be applied in a form

O(I+BG(30)) > 0 (W(I0))o (P (jw)) (5.6)

42
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for all & > 0, where W(jw) denotes & matrix of Fourier transfc . of W(0).
We note from Fig. 10 that an optimal unconstrained hybrid approximation

of a linear time-~invariant operator gatisfies

G(t,8) = G(t,0) for all t > 0 and 0 < 0 < kT
and
G(t,0) =0 for kt < B < ¢t (5.7)
Therefore,
0 if 0< 8 <kt
AG = (5.8)
G(t,0) if KT <8 <t

i.e. AG# 0 only inside the"triangle strip".

The approach may be suggested to coustruct the operator W for general
multivariable systems. This approach provides a rather conservative upper
bound for ||Ac|]|.

For (AGu) (t) we have
t

(AGu) (t) =[E<t-x)u(x)ax (5.9)
T

t
I (aew) () ] ik[ HEE-Duy]]ar <

t
if‘té‘(t~x>1ilu(x>|iax (5.10)
kr
t
f_Cf[lu(A)HdA
kt
A - —
where C = max O[G(0)], 43
0<0<T

et e . YL BRI 3 0 et oo S aoreoy
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.......

U(A) 1% 2 maximum singular value of A. Thah,

[ acu] |2 = fnmmm at =

0
m (K+1)T
f 1] taow (81 || %at <
k=0 KT
(k+l)T t 2
< ¢ [ Hum|lan at < (5.11)
k=0 k %t
o (k+1)T
<) c* amarff <
k=0 KT
< c®e?||ul|?
Hence,
[laeul| < cr]ful] (5.12)

This approach provides general but conservative stability condition

O(I+PG(iw)) > Tc O(P(jw)) (5.13)

where congtant C is defined by (5.12). This means that the curve 0(I+P51jm))
is to be compared with a certain level TcOP(jw), as long as it is strictly
above that level the system's stability with G replacing G is assured,

In the next section we shall explore a particular three-dimensicnal
single input-single output control system and this approach to the robustness

problem will be applied.
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SECTION 6

A Hybrid Control System Example

In this section we consider a three dimensional single input - gingle

output control system

n wrge

o 1 0 b
%ty o o 1 }xw) +fo Ju) (6.1)
f 0o 0 0 1

; with feedback control law

u( t) = -(wg 2&2

0 Zwo)x(t) (6.2)

with Wy = 1 sec"l. The system may be dxawn as shown in Fig., 2,1

A~ u{t) {x =Ax+Bu y(t)
Y "l y =Kx T

Fig. 21l. Control System Example

where A and B are given in (6.1) and

K==(1 2 2) (6.3)

- The control law (6.2) for system (6.1) minimizes a cost function

[+ ]

J(ngx + ul)dt (6.4)
J 45




whare

Q=g 0 0 O

0 0 0 |

Let this system represent the nominal design operator G discusmed in

previous soctions with P=1., Then

0 1 0
Ge) = (1 2 2¢elo o 1)ofo] =
¢ 0 0 1

- KQAGB
ror ep‘e we can get a closed form expression (since A3 = 0):
| 62
h] 8 *-é-
R P (6.6)
0 0 1
Therefora
62
1 8 -2~ 0
GO) = (1L 2 21 o 0 0] = (6.7)
0 0 ] 1

32
w-§~ + 20 + 2

For the left hand part of the stability inequality (5.1) we have

G(Jw) = K(Tjw -~ &) "Ip =

Jw -l o\ =1
= (1 2 21 0 dJu -1 0 (6.8)

16 0o 0w 1

e o Bompinss i
e L A s ~ - . . T



80,
Sy = (1250 - 22k (6.10)
[}
and
gl + G(w)) = |1 + G(iw) |
| L+ cgw|?=f1-2)2,fL.2)2 (6.11)
o S
The Pig, 22 shows tha O(w)
| \
o¥(w)
' -
®inw

Fig. 22. Dependence g().

since P= 1, the right hand part of the criterion (5.1) for this example

is independent of w. We can rewrite the condition (5.1) in a forxrm
min |1 + Guw | > 7
W
with, as can be seen from the expression (6.1l1),
. | min ]l + E(jw)l =1
w

According to (5.13), therefore, we have

(6.13)
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1>TwT max G(O) =
0<8<T

62 Tz
™ T max ?+zen2-r~5~+zx+2
0<8<T

Bo, the stability condition is

72
1> ?*2’1‘4‘2 (6.15)

The critical value for T then is

(6,141

2
Tcr v
Tcr (~§- + 2Tcr + 2) - ] {6.14)
ch w 0,36 goc

This number should be interpreted as a sample time Tcr which is sufficientl;
small to guarantee stability of the control system when the continuous opera-
tor G is replaced by an optimal hybrid approximation G.

An implementation of the resulting closed loop control system is shown
in Fig. 23.

It is clear from this figure that

y(t) = Ken‘t"kr)nk (6.17)
where
k
nk = QA k E a"]\vql'cgz
Q]
(6.18)
k
A
Lm],
and

el




- sw

l— LC.20 ot tzr(f-y) }
r(1)-0 k .
- B Y .,’h‘zeA“\l)e r. X | l
{ 1 .
sompled output
af isvs at izke
A
SAMPLER COMPUTER

Fig. 23. Feedback Control System with Hybkrid Operator

LT

Egs / eA(TR'-e)Bu(Q)dG
(L=1)T

Hence we can rewrite (6.17) as

kT
A(t-t,)
y(t) = Ke k / e(kT_MBu(Mdk

0

kT
=1</ eA(t"MBu(MdA
4

(6.19)

(6.20)

The only difference between this expression and the continuous operator

G is in integration limit. This indicates that G and G coincide exactly

outside the "triangle strip" within which they hybrid operator equals to

zero. This property has been discussed in Section 4.

A discrete time equation for the closed loop beli.vior of the approximated

system in Fig. 23 can be written as follows:

. vt § Y N

A AT " S o XA ENREHY N
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e

-

AT
Me ™ & My * By
T
g, P TR-0) o0y a0 (6,21)
T (k-1)
A(0=(k~1)T)
y(@) = Ke Nyt
Hence
Tk
w |AT A(Tk=8) __ A(0-(k~1)T)
nk o) | e BKe ae nk~l
T (k~1) (6.22)

Therefore, the evolution of N corresponds to discrete system with

transition matrix

T
¢, (x) = Pt u/ez‘(t"”nxemdk (6.23)
0

This matrix can be evaluated analyticzlly in orxder to obtain its character-

istic equation

LT Lt o
6 3 24 2 3 12
_'E..i l_fz..ﬁ T_Tzuﬁ_ﬂ
¢l(r) = 2 6 3 24 (6.24)
2 3
\ - T 2T - e L - 27 - Tz -1

2 3

Bigenvalues of the matrix (6.24) have been computed for different T.

Its values indicate that the systom looses its stability when T = 0.54 sec.

This compares guite favorably with the sufficient stability sound.
50
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Prom the viewpoint of c¢closed loop stability, the hybrid approximation
G * G is not necagsarily a good one, This is evident when we exarine an
alternate hybrid approximation which duplivates closed loop rather than open
loop behavior outside the “triangle strip". This can be done by changing the

hold device as follows:

IK:.=q7k
at t=tk

y(t)

A-BK

Fig. 24. Heold Device To Approximate Closed
Loop System.
Note that this "hold" generates exactly the same output signal y(t) as the
continuous closed loop system under deterministic assumptions. This out-

put is

In order to find a trangsition matrix of the corresponding discrete system,

we write

AT ,
M= @ M 8y




R
S

Tk
gk . ﬁA(Tk-—k)BKQ(A-BK))\nkkldk (6.26)
T (k~1)
N =4, 00mn,
This leads to the transition matrix
T
b, (1) = ST f P (TN e (A-BKIA 55 (6.27)
0

Using the identity IY A in the Appendix, (6.27) may be simplified to

e(A»BK)T

¢2(',r) = (6.28)

This result is natural because the system (6.25) was constructed to exhibit
exactly the same closed loop behavior as the continuous one under determi-
nistic assumptions. Therefore, this system must remain stable for all T.
In order to compare performances of systems (6.17) and (6.25) in noisy
situations, both approximations were examined for white noise inputs V(t)

with intensity matrix

0] 0 o
Iv = 0 0 0 (6.29)
0 o 1

inserted at point EE in Fig. 23.
Convariance matrices of discrete systems (6.22) and (6.26) propogate

according to the Lyapunov eguation

(L) _ (1) =
Pk&l = ¢1(T)Pk ¢1(T) + Iv(T)
{6.30)
(2) _ (2) -
52 Pk+1 = ¢2(T)Pk ¢2(T) + Iv(T)




where bf\) (T) is intensity matrix of noise accumulated on the sample interval

T.
T
T
= AN ATA
I\)-f@:tve d\ =
0
) kz
T 1 A 5 0 Q 0 1L 0 wu
= J/r 0 1 A 0o 0 0 A1 o dax
2
0 o o 1 o o 1 2‘—5—%1
[0 2
- 20 8 6
A (6.31)
3 2
SR
: 5ot
and where Péi) dencte the state covariance of the two systems
i i i)T .
péx) - E[nél)ﬂél) 1, i=1,2 (6.32)

Then, assuming steady state behavior of poth systems we can solve

matrix equation (6.30) to obtain P(l) and P(z).

(1) (1),T =
P = ¢1(T)P ¢1(T) + xv(r)
(6.33)

(2) (2), T —
P &= ¢2(T) P ¢2(T) + Iv(T)
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We used diagonal terms of the matrices P

(i) to compare systems per-

formance, The results indicate that the first system (6.22) has a better

pexformance (smaller variance of state variables). It is shown in Fig.

(1)

(2)

25, for values of ij and le .
}
11 Fo2 i3
T 1T T II I II
) 0.2251 0,3292 7:124.1072 9.101.1072 0.3025 0.3327 T=0.2 sec
i 0.3237 0.8633 5.062.10"7 3.425,107° 0.3759 0.4579 T=0.4 sec
1 : v -
)
: Pm pl2)
S XTIt ,
| ()
o8}t o - system I
X - system I
06
04t
o X
X
0.2
»T
0 0.2 04

Fig. 25. Comparison of Two Discrete Systems Performance

This result may be interpreted in the following way. As we know from

54
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Section 4 the approximation used for the first system minimizes the cost
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criterion (4.1) which minimizes mean square deviation between .e outputs of
the nominal and the hybrid system when they subjected to the same white
noise process. Therefore, all other hybrid systems yield a greater value of

cost function against this criterion.
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LIST OF USED SYMBOLS AND THEIR DIMENSIONS

T,t,9 scalars

k,% integer variables
G(t,0), G(t,0) - NxM matrices
ﬁ(t) = NXK matrix

? H(t) - NxK matrix
S(6), S(B) - KxM  matrices

M(t), M ~ KxK matrices

k
vit), Vk(t) - N vectors

| u({d) - M vaector
s
£(0) - LxN matrix
]
| 50 - L vector
| dy - KL matrix
~ L_xK i
ey 1 matrix
g(t) = NxLl matrix
: F - LxL matrix
¢k - RxL matrix
nk - Ll vector
T - LlXLl matrix
| wk - lex matrix
| , ,
| Dk2 - leL matrix
Bk - KxK matrix
Cl - RxK matyix

alalAklhllA?lr - scalaxr parameters
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e

u,e,Ak,Al,)\z,x - gcalar parameters
Y{0) - scalar function

A - NxN matrix

p - LxM matrix

B -~ M vector

e R K
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Conclusions

The general representation of the hybrid operator in a continuous time
form is obtained in the first section of the thesis.

Both lower and upper for the hybrid operator are established and their
dependence on sampling interval € is clarified. Different types of sampling
are discussed,

A general approach for hybrid approximation of a continuous time in=~
variant multivariable systems is suggested with particular type of minimization
‘criterion. This critericn is physically irterpreted. Also some examples are
considered in details., The formula for optimal computer coefficients is de-
rived to provide a minimum value of ¢riterion given fixed sampler and hold
structures, This may lead to simplified analog circuits. Schemes for imple-
mentation are drawn.

A robustness problem for hybrid systems is formulated and investigated.
A robustness condition for continuous systems is applied to the hybrid operator
and the critical sampling interval value is found. This value guarantees the
robustness of the hybrid approximating system,

All these conceptw and methods are illustrated on the three~dimensional
control system. A numerical simulation has been performed and results in=-

terpreted. They indicate a consistency of the found critical value of sampling

interval with its exact value.

Directions for Further Investigations

1. 1In order to get a better understanding of processes in hybrid
systems one would investigate how does the fixation of functions fo(k) and
gO(X) affect the quality of hybrid approximation and the robustness of the

approximated system.
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2, A=z mentioned in Section 4, the bounding operator for . pro=-
vides a rather conservative sufficient stability condition and, consequently,
relatively amall value of Top B better, less restrictive time invariant
operator could be possibly found in order to obtain more precise value for

Tcr’
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APPENDIX

This Appendix brings together some mathematical formulas and their

derivations which are used in various sections of the thesis. The include

identities for matrix traces and thair derivativaes, trace inequalities,

inequalities for integrals and sums, one matrix identity used in the example.

I, Differenitlation of Tracaes.

Idantity:

5"}3- tr{CETTE]) = 2TEC
where C and T are square symmetric matrices.

Proof:

tr(CETTE] = E Z (CET)ij (TE)ji -
i3

) Z Z E Z Cik®3k" n°mi
i J k

n

(p)

2525 30 28
5E tx [CETE] , :Lk jm I?'j]vcamz"siq *
i 3 k m

*agliptig) <D Z(Z “u3p"5ksa
i 3 k

Z iq m mi ip

m

- R R D D] T B o=
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k i m

+
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; T
Sty + Doy -

Ty +
= (CB 'J.)qp ('J‘.‘IL":‘.)Pq ot (E'I‘EC)pq

Corollary:

5

‘ T
5E tx (ETE") = 28T

. Proof: put C»I and transpose both parts of the idenity (A):

{ ~§5-tr[ETwEJ w 28T
' OB

call now EX = E',

lw

, tr(E'TE'T) = 2B'T

Q2

E

which proves (b).
Identity:

9 Tl
'a"'E" tr{cE Y] wC (©)

Proof:

T 2 :
tr[CE™Y) = Zcij anjq’ki
i 3 k

| =
= ZZL ©15¥54%;
F i 3 K

6l
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IX, Properties of traces,
A)  tr(a+B) = tr(A) + tx(B)
B) trifa(ar) = jurmmmt

c) tr(d) = tx(AT)
D) tr(AsB) < tx(a) . tx(p)
B) tr(AeB) = tx(B.A)

Here A and B are square matrices.

11X, Inequalities [6)

n

2
2
i n Edai

=1

n

Z“;t

i=l

£
2 2
jf(s)c‘lx < (£-a) ff(,x)dx
/ a

a

IV, Matrix Identity

b(1) = e - ] PN g B-BRA G, (A-BK)T

&
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Proof: differentiate both parts with respect to T:

a) left hand part

T
AMT - f Aed (T-MBKe (R-BK) Ad). -
0

- pReA-BKIT ke (B-BK)T

= Ad(T) - B

b) right hand part

(A-BK) e (A-BK) T

I1f we now suppose

then we come to the true equality I=I.

So, the formula (A) is proved.

i e
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