NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Quantum Theory and Chemistry: Two Propositions

S. Aronowitz

May 1980

Quantum Theory and Chemistry: Two Propositions

S. Aronowitz, Ames Research Center, Moffett Field, California

Mnsn

National Aeronautics and
Space Administration


```
8. Anomontyrel
MaA-1man Renearch Center
Yoffett Fleld, California 94035, USA
A neceatary condition for the applicability of quantur mechanica to chealatry is that an amecmblage of nuclei and electron can nover be partitioned to yield epacific molecules; interactions anong the componente gemarally also lead to a abtle fore of irreverability.
```

[^0]1. Introduction

The conventional wisdon ts chat in order to get somethiag out of the schrbdiager equation (such ae molecules) something mut be put in. The price for molecules is the adiabatic approximation in som forn it is a price cheerfully paid by quantum cheadete in order to move on to problens of intereat. Woolley [1, 2], monat othere, hat quantioned both the invocation and justification of the adiabatic approximation, alace it is an asyaptotic theory. Moreover, there are concerne at to loasea incurred when thinking in tern of apecific molacular shape and structure. Very recently, these problena have been aubjected to intence scrutiay [3]. It is the purpoee of this commaication to astablieb two important pointe. The firat is the proposition that the nonrelativietic Schrödinger equation, where the Remiltonian operator is associated with an ascemblage of nuclai and electrons, can never be arranged to yield apecific molecules in the chemists' sense. That is, no amount of manipulation or partitioning will yfeld the "bensene" molecule, for exnmple, from a Haniltonian operator associated with an asemblage of 6 carbon nucle1, 6 hydrogen nuclal and 42 electrone. Moreover, it will be argued that this result is a necessary condition if the Schrödinger equation hat relevancy to cheaiatry, as is commoaly anoumed.

The aecond proposition is a consequance of both the firat proposition and the fact that the schrödinger equation behavea in a peculiar fachion with respect to interactions. The proposition is that once a ayatem is in a particular etate with regard to interactions among ite componants (the assemblage of nuclei and electroms), it cannot
spontaneously allainate any of thone Interactionf. thio, in ture, levdr: to a subcle fore of irreveretblity.
2. Proposition 1

The proposition that the sehridinger equation muat be abiguous with reapect to any apecific molecular apeciea (for it to be applicable to chealetry) reaule from a euperaclection rule. 8uppose that the Hilbart apace ancociated with a monrelativiatic Hmalitonian (which in turn deacribee an aesmblage of fataracting nuclei and electrona) could be decomposed into orthogonal subspaces, where each aubapace could be associated with a apecific molecular apecies. We claim that it would than be imposaible to change one molecular apeciea into another molecular species even though they share the same Haniltonian. This followe from the fact that there can be no matrix elements (thus no opontaneous transitions) connecting two orthogonal subapaces, each of which is assumed to be associated with a phyaical entity (4). Cubane (empirical formula $\mathrm{C}_{0} \mathrm{H}_{8}$) could never rearrange by a ohift in electron denaity to yield cyclooctatetresie (empiricel formala $\mathrm{C}_{8} \mathrm{H}_{\mathrm{f}}$), for exmple. sinilarly, tautomeric species could exist as distinct entities with infinite ilfetimes as another consequase. Therefore, we conclude that the Hibert space associsted with a particular Hamiltonian cannot be decoaposed into a direct sum of orthogonal subspaces that can be associated with apacific molecular entities 1. . . ., n. That 1s, the Hilbert apace $\xrightarrow[+]{ }+\mathrm{H}_{2} \oplus \mathrm{H}_{2} \bullet \cdots \cdot \mathrm{H}_{n} \cdot$

This reault, as noted above, is indeed fortumate, because if auch direct ascociatione between nolecular entities and aubapaces were possible, then
quantum theory sould not addreas converalone (1.e., reactiona) eince they would be forbidden by a auparcelection rule. Thie reacoaty is in accord with previous argumate [5]. Quantu theory, bowever, is applicable but the price is that, at the mont fundmental level, isomere canot axiat as totally unique and distinct antitias.

3. Proposition 2

Conalder two moninteracting icolated ayateme, I and II, each an asecmblage of nuclei and electrons. Thair reapective Haniltonians are H_{I} and $H_{I I}$ since the eysting do not interact, the combined timilonian is given by
$\mathrm{H}_{\text {total,0 }}=\mathrm{H}_{\mathrm{I}}+\mathrm{B}_{\mathrm{II}}$.
On the other hand, the Healitonian for an assemblage compriaed of the
 bers and types of nuclei as those associated with I and II, will be given by
$H_{\text {total, } 1}-H_{I}+H_{I I}+H_{I, I I}$.
$H_{1, I I}$ are the appropriate additional interactions between electrona among themelves, nuclei among themselven, and electrons with nuclai. The labels I and II are complately artificial with reapect to Htotal,1' elnce electrons not oniy are identical and belong to the full asseablage but aleo cannot be constrained to subasamblages. Thus, though Htotal,0 and $H_{\text {total, }}$ euperficially can be made to rasemble each other, they are, in fact, describing entirely different and diatinct phyaical syateas. Purthermore, there ia no overlap between the two ance the phyaical ayaten
dascribed by Hetal,i cen only achieve a phyical stace daecribed by $H_{\text {total, } 0}$ through a unique linit process. There are motranaltion eleeants coupling the two system.

If it is asaumed that thare axiste a Hilbart space, Ho which is asaociatad with both $\mathrm{K}_{\text {total,0 }}$ and $\mathrm{K}_{\text {total, }}$, then the anociation mat be that $H_{\text {total,0 }}$ and $H_{\text {total,1 }}$ are ascoclated with orthoponal aubapaces of H_{G}, 1.e..

As an example, consider the possible physical syatems which can be realized for the set of an electron and a proton. They may not "see" each other at all, or they may interact. These two possibilities exhaust the phyeical syateme that may be realized with a proton and an electron. Thus,
 exactly. Here almo,
$\mathrm{H}_{\text {total, } 0}=\mathrm{H}_{\mathrm{e}} \cdot \mathrm{H}_{\mathrm{p}}$ 。
since the Hilbart apace associated with systens whose components are conpletely noninteracting can be represented as the direct product of the Hibert spaces associated with the respective Haniltonians for the componente. Htotal,1 is the Hilbert opece asiociated with the Hemiltonian that deacribes the aystea, wherain the proton and electron interact. The superselection rule is operative; there is no vector of H_{G} able to apan both subspacen, Htotal,0 and $H_{t o t a l, 1}$ and be associated with a phyaicel state. Ae une coneequence, the momentum eiganfunctions of the free electron and proton (noninteracting) cannot be used to describe the
hydrogen atom, because the set of vectorm belonging to feotal, 0 cannot be $1 n$ one-to-one correspondence with those which belons to ftotal. 1° This corroborates the observation made by Wayl [6] som tim ago that the B atom represented phenomenon that could not be deecribed with the "language" of a free electron and proton. By extension, no combinacion of the product of elgenvectore ansociated with two noninceracting aseeme blages of (proton + electron) can yield an eigenvactor asocleted with an assemblage of (two protone + two electrons). This analysis can be readily extended to any arbitrary assemblage of nuclei and electrons. It is not ourprising, from the above considerations, that the epecific propertiee and behavior of eodiun chloride, for exmaple, cannot be predicted Epriori from those of soditi and chlorine.

Anothar point is that the very atipulation of an asemblage of nuclei and electrons precludes differentiation between phases (a.g., solid. gaseous), because the phases would have to be assigned different orthogonal subspaces, and no equilibrium among the various phasea would be possible for a totally isolated system. Thus, quantum mechanics allows for the experimentel fact that solid is in equilibriun with its gas phase at any temperature. This is only offered at a crude correspondence, for no phase separation appeare poseible with finite aseablage of nuclad and electrome.

Independent of the aize of the leolated ayaten, it follow an a consequence of the arguments in this section that the eubspace associated with neutral systen of interacting nuclei and electrone does not include any totally ionizad forme, e.g., an electron totally removed and noninteractiva with the rest of the aystem. Thus, if we picture an aseablage
contained in a well with movesble but infinitely high walle, the ayaten cannot be ionized, using thit level of quantu mechanice, irrespective of how the voluge is changed. That is, presaure alome cannot cause ionisation, because this would represent a tranaition to new orthogonal subepace. It requires an external perturbation to move the satem from one orthogonal subepace asociated with a phyaical itate to another abapice. This has an interesting conequence. Ceseation of the external perturbation traps the eystem in the new orthogonal aubepace, since thate are no spontaneous transitions poseible between these orthogonal subapacea. Thus a form of irreversibility becomes manifeat. Allinformation on the history of a system resides with the perturbations it has been subjected to; therefu e, the history of aystem cannot be disclosed by examination of its present state. As an example, euppose we took a cryetal of anhydrous aluminum chloride and some water, enclosed them in a vessel of arbitrary size, and mixed them. The Hamiltonian for this syetem (1gnoring the vessel except for its imposition of boundary conditions) is comprised of aluminum, chlorine, hydrogen and oxygen nuciei with the appropriate numbers of electrons. This Hamiltonian is perfectly reversible With respect to time but no longar reflects nor containa information about the original state of the two components completely isolated from each other. Furthermore, we would conclude, from the consideration in this paragraph, that there is no way (without the introduction of very apecific and unique external perturbation) that this syatem could return to original conditions. One consequence is that all chamical reactions exhibit a type of irreversibility that, to our knowledge, has not been explicicly recognized previously.
4. Conciluaion

It was appreciated som time apo that, in quantin theory, the whole can be greater than the combination of ite parte [6]. This feature, in fact, permite quantum mechanice to be relevant to cheaiatry. Nolecular entitien, which we view as unique and dietinct, for example, are but very pood constructs belongiag to a greatar whole. Quantur theory deale with reality at a lovel aubtlar than the inetantancously rigd auclear atructuree pernitted by the adiabatic approximation [7, 8]. Moreover, it hat been shown that true uniquineas is imposeble for chenical entities that ohare the cam Rmalitonian (5). Uniqueness is introduced upon making certain approximations as to euiteble calf-conaletent (or variatiomal) wavefunctions. Thus, treating isomers as truly distinct and unique degradee information about the aytere.

Purthermore, a pure atate cannot be casigned to a particular atructure. The dealgation of a pure atate must be reserved for the whole syaten. Sansen, for exaple, is an lacmaric atruciure in a myotem composed of 6 carbon and 6 hydrogen nuclei along with 42 alectrons. The eigenfumetion of the tanilitoaian ansociated with this assemblage of muchal and electrone are the pure atates; in this context, benzene cannot have "pure" atates. Moreover, the introduction of apecific interactions Introduce a aubtle form of irrevaraibility whereby a ayaten's paet hietory is eradicated by the new interactiona; these interactions also destroy any apontanaous pathoay to that past that alght have existed. Thie reault implies that the kinentical espects of a aysen canoot be rigorounly separated from ite dymaical behnvior. Thie reault hat beep well knowa in relativiatic treatmente $[9,10$], but, now, on a
nunrelativiatic lovel, it emphasien that some complex akaine of interacting componente can never be fully diecatengled or reasembled, ualeas unique (and conceivably impenelble) axtermal perturbations are applied. It appears that the blurring feature inhereat in quantim theory, which ultimately affects all atructures, makes the theory relevant to physical reality while introducing a facet of irrovarablility in a fundemental fachion.

Acknowledgaent

I thank Dre. Hyman Hartman and Peter Pfeifar for illualnatiag and incleive conversations.

Daforcmeen

[1] R. G. worn ioy asd B. T. sutcliffe, Chen. Fhys. Lett. 45 (1977) 393.
[2] R. G. Woolloy, Iareel j. Chem. 18 (1979) Mc. 3.
[3] Proccedinge of the MAIO ASI, Cembridge, september 1979, to be publlahed.
[4] C. C. Wick, A. 8. Wicheana and E. P. Wigmer, Phys. Rev. 88 (1952) 101.
$[5]$ 8. Aronowits, Iat. J. of quantum Chem. 14 (1978) 253.
[6] H. Woyl, Philosophy of Mathematice and Matural scionce (Athesoun, Mew York, 1963).
[7] M. Sora and K. Iluang, Dymalcal Theory of Cryatel Lateicee (Oxford, Losden, 1954).
[8] 8. Aromowte, Fhys. Lev. A 14 (1976) 1319.
[9] R. Y. Streatar and A. B. Wightman, PCT, Spin ad Statiotica and All That (Ranjainia, Mew York, 1964).
[10] M. O. Farrukh, J. Math. Phye. 19 (1978) 2332.

[^0]: Wational Research Council Associate

