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ABSTRACT

_,_ssesand compositions of Cepheids are essential to map the

places in the Hertzsprung-Russell diagram where various radial pulsa-

tion modes occur. Luminosity observations and stellar evolution theory

give masses for Cepheids which range from I0 percent to a factor of

four more than those given by pulsation theory. Combining the evolu-

tion _Ld pulsation theories, a theoretical mass can be determined

using only the period and an approximate surface effective temperature,

T e. The ratio of the theoretical to evolutionary masses averages

0.99 ± 0.07 for 16 Cepheids with good data. A pulsation mass can be

calculated using an observed period, luminosity, and Te. The ratio

of pulsation to evolutionary masses averages 0.70 with the old distance

scale for the Hyades cluster and the older Te values, 0.84 = 0.17 with

the accepted 13 percent distance increase of the Hyades cluster and

presumably all the clusters with Cepheids, 0.97 ± 0.25 with the new

distance scale and improved interstellar reddening corrections giving

cooler T values, end 1.07 ± 0.27 using in addition surface helium
e

enrichedenvelope models. These inhomogeneous models allow theoretical

predictions of the correct phase of light and velocity curve bumps for

evolutionary theory mass Cepheids with periods between 5.5 and 13 days.

They also give the proper observed period ratios for double-mode

Cephelds with evolution theory masses. Using radii measured by the

Wesselink method, the ratio of this mass to the evolutionary mass is
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O.93 with homogeneousand 1.02with inhomogeneousmodels. Aboveabout

10-20daysa mass lossof 20-30percentis indicatedfor starsin

theirearlyB star evolutionwith originally15 or more solarmasses.

Six Cepheidswith at leastfourdifferentmass determinationsshow that

forperiodsbelowi0 days thereare no longerany Cepheidmass anomalies.

A long termgoalin understandingthe pulsationof the classi-

cal Cepheldsis to theoreticallymap theirpulsationinstability

stripin theHertzsprung-Russelldiagram. Severalpreviousattempts

have been made startingwith J. P. Cox (1963)and includingChristy

(1966),Stobie(1969ab),Iben(1971),Iben and Tuggle(1972ab,1975),

and Stellingwerf(1975),and the Los Alamoscenteredgroupwho have

publishedthe papersCox,et al. (1966),King,Cox, and Eilers(1966),

King,et al. (1973),Cox,King,and Tabor(1973),and King,at al.

(1975). It has been shownthat instabilitystripblue edgesare well

understood,and now Deupreeis completinga discussionof the Cepheid

red edge. _at remainsto learnis what pulsationmodesoccurand

where theyare in the instabilitystrip.

The massesand compositionsof the Cepheidsare essentialif

thisfurthermappingin theH-R diagramis attempted.Even theblue

and red edgesdependon the mass and composition,but theirlesser

dependencehas resultedin the curren_reasonablysatisfactoryagree-

ment betweentheoryand observation.See Cox and Hodson(1978). The

persistentuncertainCepheidmassesand compositionshas led Christy

(1966)to what I considera very misleadingrelationbetweenlumino-

sity and transltionperiodfor the fundamentalmode:
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_tr " 0.057(L/Le)0"6days.

Stobie(1969b) in discussing modal behavior proposedan incorrect

rule that if the pulsation periodwas between2 and 7 days, it was

a first overtone pulsator, and if less than 2 days a second overtone

pulsator. Stellingwerf (1975), searching for double-mode conditions

got it (wronglywe now think)at the red side of the instability strip

or maybe beyond the red edge. All these studies used atrociousmasses

and compositions,obliviousof the resultsof stellarevolutiontheory.

Startingwith Cogan(1970)severalotherslike Rodgers(1970),

Fricke,Stobie,and Strittmatter(1973),and Petersen(1973),found

thatmassesbasedon observationsand pulsationtheorywere anywhere

fromi0 percentto a factorof fourlowerthan thoseinferedfrom

observedluminositiesand evolutiontheory.

Iben and severalofhis collaboratorshave triedto reconcile

pulsationand evolutiontheoriesandboth of thesewith observations.

Variousschemesfor solvingthe Cepheidmass anomalieshavebeen pro-

posed. Iben and Tuggle(1972a)wantedto move theperiod-luminosity

calibratingCepheidsfurtherawayby 15 percentmakingthemintrinsi-

callybrighter,biggerand morenearlythe mass givenby evolution

theory. King,et el. (1975)proposedtheywere reallycoolerand

largerthan the current(B-V)0 - log Te relationgives. Both these

effectshave now been realizedwith thebest distancescaleto the

galacticclusterscontainingCepheidsincreasedby 13 percentand a

new conceptthat the interstellarreddeningwas overestimatedmaking

Cepheldsurfacetemperaturesnow I00 K or so coolerwith the same

(B-V)0- log Te scale.
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However, the phase of the bumps in Cepheidsbetween 5.5 and 13

days and the period ratio of the dozen or two double-modeCepheids

still indicate low masses. These bump and beat masses are independent

of the distance and temperaturescales. Simon and Schmldt (1976)

have now showed that the bump phase was relatedto the ratio _2/_0,

making both these classesdouble-modeCephelds.

Our proposal after considerablediscussion,much of it already

publishedby Cox, et al (1977) and Cox, lllchaud,and Hodson (1978),

is that the Cepheidshave helium enriched envelopes,caused by a

helium deficientCepheidwind, which changes their internal structure

enough to change _/E 0 and H2/E 0 without appreciably changing 50•

I now believe that the masses of all Cepheids are given correctly

by evolution theory. Most are in blue loops, but at the shortest

periods, as for the only triple-modeCepheidAC And, and for the

masses above 13 M_, the star is having its first instabilitystrip

crossing. Can we prove that evolution and pulsation masses are now

equal?

Let me first disposeof a very poor way to get Cepheidmasses -

use of photometric multicolor measurements interpreted in terms of

log g and Te. If

M
g = G--

R2
2

= __%

and ql " Q1 (M'R'L'Te composition) (i)

using the Faulkner (1977)form for QI' then
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5.6
or M- g forCephelds.

Thusa factorof twoerrorin g, whichapparentlycanbe improved

for earlier type stars, is neverthelessdisastrousfor getting Cepheid

masses.

The latest evolutionarytracks for Cepheids are given by Becket,

Iben, and Tuggle (1977). As noted many times before, the rather tight

relationbetween mass and blue loop luminosityallows a determination

of the evolutionarymass for Cepheldswith Pmown luminosities. The

reiation

log L/L8 - 0.46 - 41(Z - 0.02) + 6.6(Y - 0.28) (2)

+ [3.68+ 21(Z - 0.02) - 4.5(Y - 0.28)] log M/M@

suggested by Becker, Iben, and Tuggle applying to an evolution time

weighted mean of the first, second, and third crossing is used here.

Let me describe the method of determining what I call theoretical

masses. We use the four equations

L = 4TrR2 O"T4 (3)
e

M/Me
qo " _o,v'(R--_)3 (4)

togetherwith Equations (I) and (2) above to relate four unknowns

M, R, L, and QO" Here we know _0' the fundamentalpulsationperiod,

very well, and we know Te to usuallybetter than 10 percent. If we

assume Y = 0.28 and Z = 0.02, an iteratlvemethod of solution gives
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a theoreticalmass,radius,luminosity,and a QO"

Tablei gives20 Cepheidevolutionary,theoretical,and pulsa-

tionmasses,wherethe pulsationmasses,discussedfirstby Cogan

(1970),need an observedperiod,luminosity,and color. For these

pulsationmassesthe colorgivesTe whichtogetherwith the luminosity

givesa radius,whichfurther,with theperiod,givesa mass. The

QO for this tablecomesfromthe Cox,King,and Stellingwerf(1972).

TABLE1

CALIBRATIONCEPHEIDS
 WSEDHYADESD ST  CE

SANDAGE'ANDTA_ANN OR VAN DLN BERGH PERIODS AND COLORS

Cepheid II0(d) log L/L@ Mev/M@ Te(K___)R/R@ QQ(d) Hq/M@ QT(d) MT/H @

SU Cas 1.95 2.98 4.8 6599 23.8 .0355 4.5 .0353 4.9

EV Sct 3.09 3.06 5.1 6113 30.5 .0371 4.1 .0362 5.4

CEb Cas 4.48 3.30 5.9 6138 39.8 .0381 4.6 .0369 6.3

CF Cas 4.87 3.26 5.8 5895 41.3 .0386 4.4 .0372 6.2

CEa Cas 5.14 3.34 6.1 5943 44.5 .0384 4.9 .0373 6.4

UY Per 5.36 3.40 6.3 6088 45.4 .0386 4.8 .0373 6.8

CV Mon 5.38 3.37 6.2 5943 46.1 .0385 5.0 .0374 6.6

VY Per 5.53 3.45 6.5 6162 47.0 .0386 5.0 .0373 7.0

CS Vel 5.90 3.25 5.7 5895 40.8 .0410 3.3 .0377 6.7

V367 Sct 6.29 3.54 6.8 6313 49.7 .0394 4.8 .0375 7.6

U Sgr 6.74 3.59 7.1 6162 55.2 .0390 5.6 .0378 7.6

DL Cas 8.00 3.57 7.0 5801 60.9 .0398 5.6 .0385 7.3

S Nor 9.75 3.65 7.4 5731 68.4 .0409 5.6 .0391 8.0

TW Nor 10.79 3.46 6.5 5572 58.1 .0448 3.4 .0396 8.0

VX Per i0.89 3.77 7.9 5943 73.0 .0415 5.6 .0392 8.8

SZ Cas 13.62 3.93 8.8 6015 85.7 .0424 6.1 .0398 9.8

VY Car 18.93 4.05 9.5 5309 126.3 .0416 9.7 .0418 9.4

T Mon 27.02 4.27 i0.8 5224 168.1 .0426 ii.8 .0433 i0.6

RS Pup 41.38 4.35 11.4 5373 174.2 .0495 7.6 .0449 13.0

SV Vul 45.04 4'.48 12.4 5018 232.0 .0457 12.8 .0461 12.2
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All these Cepheids which are listed by Sandage and Tammann (1969) or

van den Bergh (1977) are in galactic clusters or have their distance

known by some other method. At least all the cluster Cepheids need

their distance modulus increased by 0.m26,and, not knowing what to

do for the other six, they also have been assumed more luminous.

The six not in galactic clusters are: SU Cas in front of a reflection

nebula, UY Per, VY Per, VX Per, SZ Cas, in the dubious h . X Perseus

association and RS Pup discussed recently by Eggen. While the h +

X Perseus cluster may not exist, Turner (1977) now proposes that at

least one of the questionable Cepheids, UY Per, may be in one of the

clusters King 4 or Czernik 8, A glance at the table shows that the

pulsation masses are still anomalously low even with most of the

rben suggested distance increase. Evolution and theoretical masses

always agree well.

But I don't want you to dwell much on this table, because there

is a further necessary change in the Te values. Dean, Warren and

Cousins(1978),in a stillunpublishedpaper,listnewlydetermined

colorexcessesfor 16 of these20 Cephelds.Unfortunately,the four

not listedby DWC, CEb Cas_ CEa Cas_CS Vel, and V367 Sct_are all

in clusters. Anywaythesenew colorexcesses,basedon fittingtracks

in the B-V_ V-I_ and B-V_ R-I planesfor eachpulsatingvariableare

significantlyless thanthoseolderones determinedby Kraftbasedon

photometryof the G band. Therefore,the intrinsiccolorsare redder

and the Cepheidsare cooler. Figure1 givesthese16 Cepheidmass

ratios_/Mev with both the improveddistanceand Te values. Actually,

the Te used for U Sgr and S Nor is givenby Pel (1978)who obtained

themby hismulticolorphotometry.I havealsousedfortheQ0 values
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THEORETICAL ANO EVOLUTIONARY MASS COMPARISON
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Fig. 1. Theoretical to evolutionary mass ratio
versus fundamental period for 16 Cepheids.

The new distance, temperature, and Q0
values are used.

those from helium enriched models which l have advocated. One now

sees again that the theoretical masses are very close to the evolutionary

masses, the mean ratio being 0.99 ± 0.07.

An important point here is that one can get a theoretical mass,

based on only _0 and an approximate Te value, for any Cepheld if one

believes the theoretical evolution mass-lumlnosity law and the theoreti-

cal pulsation constants. Later we will use these theoretical masses for

Cepheids not in clusters to compare with masses from other methods.
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Figure 2 on the same scale plots the ratio of pulsation to evolu-

tion masses for 16 Cepheids with the new observational data, but with

homogeneous (not helium enriched) envelope Q0 values. The Cogan mass

anomaly has disappeared as predicted by Iben and Tuggle and Frlcke,

Stobie, and Strittmatter. The mean ratio MQ/Mev was 0.70 according

to Stobie (1974), and it becomes 0.84 ± 0.17 if the new distance scale

is used alone and here 0.97 ± 0.25 when both the new distances and T e

values are used.

PULSATION AND EVOLUTIONARY MASS COMPARISON
I °6 i I' "i i i I I _ I i l i l J , i I

0.6

0o_ ! I I . I t I t t I I I I , t i J i

0 o I01 0z

FUNOAMENTAL PER[OD (DAYS)

Fig.2. Pulsationto evolutionarYmass ratioversus
fundamentalperiodfor 16 Cepheids. The new
distancesand temperatures,but homogeneous

Q0 values are used.
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We must consider what happens if the inhomogeneous model QO values

are used, because if they solve the bump and beat mass anomalies they

must not be excluded for these 16 calibrating Cepheids. Indeed, 5

of these 16 Cephelds have bumps in their light and velocity curves.

The ratio MQ/Mev is given in Figure 3, and the mean ratio is 1.07 =

0.27. inclusion of the surface helium enriched model Q0 values here

actually reverses the pulsation mass anomaly, but maybe Schmidt's (1978)

new cluster distances, based on HB photometry of the B stars will

now decrease distances to these calibrating Cepheid clusters.

Let me briefly discuss the problem of converting mean colors

to Te. The latest word by Bell and Parsons (1974) seems to be that

the venerable Kraft relation

log Te = 3.886 - 0.175 (B-V)

is still to be used. Therefore,that is the origin of Te from un-

reddened DWC colors for the theoreticaland pulsationmasses. Note

in Figure 4, however, the problem is still not solved. We plot the

unreddenedDWC colors versus the Pel (1978)log Te for 44 Cepheids

where both values are known. The discrepancyhas been claimedby

DWC to indicate that Pel has determined too little reddening from

his multicolorwork and obtained temperaturestoo low by a few percent

or about 150 K. Cogan tells me that the points in this slide are

better fit with the Flower (1977) formula,but it really seems that Pel's

reddeningsare too small by 0.05- 0.08in B-V. I don'tworry too

much about this, though we still need refinement of Te values.

Bump masses, discussedmostly by Frlcke, Stobie_ and Strittmatter

(1972),are based on the phase of the light curve bump for those

Cepheidswith periods between 5.5 and 13 days. Christyj and patti-
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cularly Stohie, found that the bumps were at a phase way too late

and often invisible for a i0 day Cepheid unless the mass was only

1!ke 4-5 MO. This is about 70 percent of that given by evolution

theory, and is the basis for Stobie's (1969b) different, anomalous

mass luminosity law.

Fricke, Stobie, and Strittmatter (1972) related the period tires

the bump phase to the equilibrium radius by using Stobie's theoretl-

cal models. The radius can then be put into the period - mean density

formula to get the mass. Masses averaged 0.75 the evolution masses.

Simon and Schmldt (1976) discovered that the bump phase corre-

lated with _2/_0. If we use linear theory for _2/_0 and evaluate

the sound echo time for the models we get the lines in Figure 5.

Echo time is llke bump phase, because if the echo time is long (in

the equilibrium model) then the bump generated by nonlinear mechanis=m,

0.60 I I I I

PeriodRolio Versus Echo Tim" /

////__6C6d

7M o
L • 1.85x 1037 erg/s • ,
Llneor Theory

o 0.55-

" lid

5d

12df "
0.50 _ "

1.5 1.6 1.7 1.8 i.9 2.0

Sound Trov¢l "i'ln_/r[ o

Fig. 5. Period ratio _2/_o versus echo time from linear theory

for7 M8 withevolutiontheorylurdnosity.Both homo-
geneousand inhomogeneousmodelsare shown.

80-



atminimumradius,willalsobe lateina fullamplitudepulsating

model. This figureshowsthat.there is not a universalrelationbetween

echo time and_2/_0,but the relationis much as Simonand Schmidt

discoveredusingStoble'snonlinearmodels. Note that the inhomogeneous

modelsgive earlierecho timeseven thoughtheselineartheorytimes

are still too late.

Figure6 givessome resultsI spokeabout in IAU Symposium80.

Here _2/_0 is plottedagainst_0" Firstlook at the homogeneous

King IVa 7 M8 models at evolution luminosities. The region of _2/EO

between 0.46 and 0.53 is never reached for these linear theory models.

Note the blue B, and red R edges. If we retain the luminosity but reduce

the mass to 5 MS, then bumps appear nearer the correct phase, where the

_2/HO ratio equals 0.50 at i0 days with the bump near the velocity and

light curve peaks. The unpublished Carson C312 opacities give improve-

.58 I I I I

_ Ratios

.56- -

___ _"_, 7 "_ o

.50 " "" _-_..._..___...._, -

A_ I 1 f !
6 8 i0 I?_ 14

NO (days)

Fig. 6. The period ratio _._/En versus En for Cepheid models in the instability
strip. Approximat_ b_ue (B) an_ red (R) edges are indicated, l=-

homogeneous models at 6.0, 7.0, and 8.0 M0 show the appropriate
Hertzsprungrelation.
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meritfo_ homogeneouscompositions,but reallynot enough. These

opacitiesare consideredveryuncertain.Finally,Y = 0.75 surface

layersgive theproper_2/_0progression- thatis theHertzsprung

progression- with fundamentalmodeperiod.

Above8 or 9 MO thereis not enoughtime in Cepheldblue loop

evolutionto have a Cepheldwind enrichthe surfacelayers. Bumps

thenmightbe expectedat longperiodsfor thesehomogeneousvariables,

and someare actuallyseen. For example,bumpsare on lightcurves

for RU Sct (19,7d),UZ Pup (23.2d),and on X Pup (26.0d). If there

is mass lossway back when the staris a B star,we mighthave a case,

suchas studledbySreenlvasanandWilson(1977)of a luminosityfor

a 10-15MG Cepheidwith a mass of perhaps25 percentless. In that

case the H2/H0wouldalwaysbe lessthan0.46,and no bumpswould

occur.

Let me turnnow to the double-modeCepheldswhosemasseshave

been studiedtheoreticallyby Petersen(1973),King,at al. (1975)

andby Cox,King andHodson(1977)andmore observatlonallyby

Eodgers(1970),Fitchand Szeidl(1976),and Schmldt(1972,1974).

With only the ratioHI/HOjandwe are surethat theseperiodshave

been correctlyidentified,the massof a varlablellkeU Tr A can

be determined.

Figure7 has the wholestoryfor this Cepheldat HO " 2.568days.

ThehomogeneousKing IVa compositionmass is llke 1.2 M%, but the

severalways of gettingenrichedsurfacelayersgivelargermasses.

A thin layerwith Y - 0.75 down to 70,000K and the PopulationI

King IVa compositioninteriorgives4 M@. Thisslidehas been expanded
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Beat Cepheid Period Ratios

1"Io= 2.59 + 0.08 Days
6000 K, 6200 K, 6400 K YYc = 0.28 /
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=o
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0.70

0.6._ = 0.55, I00,000 K,0.42, 150,000K --
= 0.55, I00,000 K, 0.42, I I0,000 K
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Fig. 7. The periodratioEl/_ versusmass is shownfor U Tr A models
at Te of 6000K, 6200K, end 6400K. The dashedline gives

the observedperiodratiowhichindicatesmasseslike4 M@for surfaceY between0.55and 0.75.

sinceI showedit at the IAU Symposium80. I now believethat a

surfaceY of 0.55 is largeenoughif one allowsthe inverted

gradientinstabilityto mix someheliumdown to deeperlevelslike

I00,000K. Theseenrichmentsare all possibleaccordingto Cox,

Michaud,andHodson(1978)consideringthe age of the Cepheidand

the samewind endwind compositionper surfacearea as for the sun.

Our newestmass resultsare thosegivenby Wessellnkradius

measurements.Balona(1977)sentme his recenttabulation_and

thattogetherwith the Evans(1976)and Scarfe(1976)data,allow
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69 mass determinations. The idea is simple - plug the radius and

period into the period mean density relation with known Q0 to get

the mass.

Figure 8 gives the ratios of the Wesselink radius masses to theo-

retical masses for QO values applicable for homogeneous models. The

ratio is 0.93 for periods less than i0 days and 0.60 above• The tre-

mendous scatter was not expected by me because Balona advertises errors

of less than i0 percent in the radius. The Wesselink radius masses go

like R2"44 • Better radii, accurate to i0 or less percent, are needed

WESSLINK RADIUS AND THEORETICAL MASS COMPARISON
35 "• _ i i I | | I I | I i i I l | i i

3.0

Z.5

^Z.OI-- *
v

A •

.,I.5 .

t
IF

• . 41. •

0.5 , , *
N' t1._ .11. t1' t_

t I,

0 1 i I I I I I I1 1 ..... * '

I00 I01 I0Z

FUNOAMENTAL PERIOD (DAYS)

Fig. 8. The ratio of the Wessellnk radius mass to theoretlcal mass
is plotted versus period for 69 cases. Evolutionary masses

use X = 0.70 and Y - 0.28, and _ values are based on thehomogeneous composition X 0.602, Y = 0.354.

84



Figure 9 shows that the anomalous masses are partially cured

with the QO values for the inhomogeneous models. For these, Q0 is

up by 5-10 percent: For shorter periods, the ratio Df_ is 1.02.

The longer period Cephelds show a mass anomaly (ratio equal 0.70)

which is not new - see Schmldt (1976) for example. I speculate that

these Cepheids have had mass loss in the B star stage which does not

affect their luminosity as much as their mass.

WESSLINK RAOIUS ANO THEORETICAL MASS COMPARISON
3.5 , • , ' ' ' ''I ' ' ' ' ' ' ' '

3.0

Z.5

O. I | I I , I I II t I I | ! m l

I00. tO 1 lOz

FUNOAMENTAL PER[OD (DAYS)

Fig. 9. The ratioof the Wessellnkradiusmass to theoreticalmass
is plottedversusperiodfor69 cases. Evolutionarymasses
use X - O.70 and Y = 0.28,and =heQo valuescome fromthe
inhomogeneousmodels_-ithYS = 0.75.
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Earlier I pointed out that use of a photometrically measured

gravity cannot get an accurate mass. But the preceeding theoretical

and evolutionary masses can give good log g values which can be

compared to Pel's measurements. The difference

_(log gT + loglog

is + 0.02 = 0.20 for the homogeneous models and - 0.02 ± 0.20 for

the inhomogeneous models, where P, T, and W are the Pel, theoretical,

and Wesselink radius values of g. The very close agreement is not

unexpected since

_.44 _ TO'28e

 .O6 o

Evidently the comparison of log g values with theory cannot indicate

whether the inhomogeneous enriched helium envelopes are more realistic

than the homogeneous ones.

My Wesselink radius mass paper (Cox 1979) has more, for example

the possibility of overtone pulsation and the use of the Barnes et al.

radii, which I will not cover here.

As a final point let me compare the masses of U Sgr, S Nor, and

V367 Sct, all cluster Cepheids which are determlned by at least four

ways. Table 2 gives the usual low values for the Fricke, Stobie,

and Strittmatter bump, and Cox, et al. beat masses, using homogeneous

models. Also in the table I have masses for T Mon, P_BPup, and SV

Vul showing the Wesselink radius mass anomaly for all but RS Pup.

My conclusion is that all previous mass anomalies can be considered

solved by distance, temperature, and inhomogeneous model improvements.

Wesselink radii urgently need improvement. If there is no systematic

radius error due to strange limb darkening effects, etc., there is a
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TABLE 2

CEPHEIDMASSES

U Sgr 7.1 6.5 9.5 4,0 - 6.6
*

S Nor 7.4 7.2 8.2 3.8 - 3.6

V367Scn 6.9 7.3 5.6 - 2.3 -

T Hon 10.8 9.6 17.0 - - 5.3- 10.2

RS Pup 11.4 12.0 9.6 - - 10.3

SV Vul 12.4 11.5 16.0 - - 5.3

The bump masses are given by FSS.

TheV367So= theoreticala._dpulsationmassesarebasedon _he
vandenBerghTe andnot thenew Te fromDean,Warren;andCousins
unreddenedcolors. Thehomogeneousmodelbeatmassis fromCox,
•e_ al.
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persistent mass anomaly for the longer period Cephelds that may really

indicate early mass loss. More observations are suggested for galactic

cluster distances, to improve pulsation masses, for Wessellnk radii,

to improve Wesselink radius masses, and for Cepheld spectra and even

for the solar wind, to confirm if inhomogeneous models with surface

helium enrichment really exist.
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Discussion

Wesselink: Would there be any mass loss in the evolutionof a Cepheid, and

would this affect your conclusions?

A. Cox: The standard answer to that question as given by stellar evolution

people is that there may be mass loss while the star is a B star, but if it

loses more than 10% of its mass in the yellow giant and red giant stage, it

will not go through a blue loop. This was a very amazing result that came

out about 1970 by Refsdal, Roth and Weigart, and they stick to it. Even

recent results for a 15 M star by Sreenivasan and Wilson indicate the samee

thing. You might have a little bit of mass loss from the red giant as it

comes back through the blue loop, but not enough to explain any of these

anomalies. You can get 10%, but that's all.

Hillendahl: On the basis of believing in models (cf. PASP 82, 123i, 1970)

you would predict that any time a star evolves across any instability strip

in the H-R diagram -- not just the Cepheid instability strip -- there would

be mass loss and helium enrichment in the atmosphere. I wonder if there is

any possibility of testingthat with the data?

A. Cox: There are two or three ways. You don't see the mass loss itself

because it is very low, about i0-I0 M /yr, and there is no way of easily@

measuring that low a mass loss. But there is a possibility of looking at

the spectra to see if this enriched helium really exists. But it turns out

that it's very hard to find helium in a yellow star, like the Sun or a

Cepheid. The other thing to do is to study the solar wind to see if we
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understand what is happening. The solar wind is deficient in helium, so the

solar atmosphere is probably being enriched. But you don't notice it because

the solar atmosphere is very deep, comprising about 1% of the mass of the Sun.

So it mixes in and you never notice the enrichment. For the Cepheids, we

need to enrich about 10-4 or 10-5 of the mass, which is the mass of the

convection zone.

J. Cox: Do you know if there is any observational evidence for a Cepheld

wind?

A. Cox: • No. The only reason you know about the solar wind is that you are

sitting here in it. But if you take the relative size of the Cepheid and the

Sun and let the solar wind blow from the Cepheid (which we call a Cepheid

wind), you can enrich that very thin layer in the lifetime of the blue loops.

Scuflaire: If the external layers of the star are enriched with helium, do

#ou get an instability?

A. Cox: Yes. Unfortunately, there is a problem, because if you have an

inverted _ -gradient it is very likely to be unstable. We are working on

that problem also in a two-dimensional hydrodynamical calculation to see

what will happen. We fully expect that at first the layer will mix and not

persist. If that is really true, there will be no explanation for the bump

and the beat Cepheids. So at the moment we are trying to see if there is

some way of stabilizing that layer, perhaps by pulsation or by the flow of

hydrogen through that layer. Your question could be unanswered for the next

50 years. It is a question of whether you believe the period of Cepheids,

indicating a helium enriched layer, or whether you believe from linear

theory that the layer will mix.
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Keller: You showed a diagram that put beat Cepheids and bump Cepheids in the

same class by looking at the period ratio, and that all you had to do was get

below a certain period ratio to get bumps. There are several ways of doing

this. One is mass loss, another enrichment. It seems to me that something

we should do if we don't like these two is to look for any other means for

adjusting the structure of the star to get below that period ratio. Have you

thought of any other scheme that might be done?

A. Cox: There are two or three points on that. Faulkner in his article in

1977 proposed that when these stars have two modes at once, the period ratio

is not correctly given by linear theory. In other words, what we measure is

not what we think we measure. But there hasn't been any further pursuit of

that. Cogan proposed that a very deep helium convection zone changes the

period. But that doesn't seem to work. In a recent letter from Cogan, he

stated that he doesn't believe it will work now. Castor, in a private

conversation, suggested that the opacities are wrong. After all, you can

always change your opacities in astrophysics to solve your problems. That

seems out of the question, because we have two widely disparate chemical

compositions giving opacities which give similar results. (Dave King will

talk about that.) It seems that the only thing that will significantly

change the structure is a change in the equation of state.

Connoli¥: You said higher mass stars could experience mass loss. Could you

give a range in Cepheid periods over which this might occur?

A. Cox: Sreenivasan and Wilson have done a study that shows that higher

mass stars can lose 25-30% of their mass as B stars; and when they become

yellow and red giants, they are undermassive. If they were to lose another
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i0%, then they would not blue loop. The same lack of blue loops holds for

the lower mass stars that do not experience the early mass loss. The answer

to your question is that there might be 25% undermasslve stars for masses

> i0 or 12 Me, periods above i0 or 15 days.
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