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Summary 
The steady-state and transient performance of the 

YF-102 turbofan  engine with core airbleed was 
measured on  an  outdoor  static test stand.  The test 
configuration included a  bellmouth inlet and  a 
confluent-flow  exhaust system similar in  size to the 
Quiet  Short-Haul Research Aircraft (QSRA) exhaust 
system. For the steady-state tests the engine operated 
satisfactorily with core bleed up to 14 percent of the 
core inlet flow. For the transient tests the engine ac- 
celerated and decelerated satisfactorily with no core 
bleed and with core bleed  up to 11 percent of the core 
inlet flow (maximum tested). For  some of the tests 
the  core bleed  flow rate was scheduled to vary with 
fan discharge pressure to simulate the QSRA bleed 
requirements. No stability, surge, stall, overtem- 
perature,  combustor  flameout, or other operating 
problems were encountered in any of the tests. 
Steady-state and transient engine  performance data 
are presented in graphs,  and fuel control trajectories 
for typical transient tests are shown. 

Introduction 
As part of the  NASA  Quiet  Short-Haul Research 

Aircraft (QSRA)  Project,  an  airplane using the 
upper-surface-blowing (USB) propulsive lift concept 
has been built. The  airplane is shown in figure 1. Its 
purpose is to conduct flight research into  takeoff,  ap- 
proach,  and  landing  modes  of vertical- or short- 
takeoff and landing (V/STOL)  operation.  The 
airplane  and  its  preliminary  performance 
characteristics are described in references 1 and 2. 

One  of the important features of  the  QSRA 
airplane is the use of  engine bleed air in a wing 
boundary-layer-control  (BLC)  system  (shown 
schematically in fig. 2(a)). Air bled from each  of the 
outboard engines  is  blown over  the aileron on  the  op- 

blown  over  the leading edge on  the  opposite wing. 
For each engine, air is taken  from  both  the  bypass 
(fan discharge) duct  and  from  the gas generator (core 
engine). These  flows are mixed in an  ejector,  as 
shown in figure 2(b), to provide a “constant  momen- 
tum” supply to the BLC system. This  method re- 
quires a large quantity  of core airbleed (about 10 per- 
cent of the core inlet flow) at low power settings 
because  the fandischarge pressure is low, and  no 
core bleed at high power settings because  the fan- 
discharge pressure is high enough  for  the BLC system 

1 posite wing, and air bled from  each  inboard  engine is 
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Fiqure 1. - Artist’s  sketch of QSRA airplane in  approach configuration. 

without pressure boost  from the ejector. The  fan 
bleed  is about 3 percent of the bypass airflow and is 
obtained  from  a fixed-area scoop in the bypass  duct 
(ref. 3). The core bleed is obtained  from  a  manifold 
on the engine  combustor housing. The  quantity of 
core bleed  is controlled by the ejector valve  (as shown 
in fig. 2(b)). The valve  senses pressure in the  ejector- 
exit duct  and  meters the core bleed air to provide  the 
desired duct pressure. 

As described previously, about 10 percent of the 
core airflow is  bled from  the  engine  at low power set- 
tings. This  reduces  engine  thrust and, because of 
lower acceleration fuel flow margin,  can lessen the 
ability of the engine to accelerate to high  power. The 
reduced  thrust is not  a  problem for the QSRA, but 
quick reliable engine acceleration is  needed for flight 
safety. 

The QSRA is powered by four YF-102 engines 
manufactured by the Avco Corporation, Lycoming 
Division, of Stratford, Connecticut, originally for 
use on  the  Northrup A-9A aircraft. At the conclu- 
sion of  the A-9A program at Edwards  Air  Force 
Base, the YF-102  engines  were obtained by NASA. 
Five of  the engines were refurbished at the  factory 
for  use  on  QSRA.  At the same  time  some  configura- 
tion  changes, including the  addition  of  the  core 
airbleed manifold, were made (ref. 4). One  of these 
engines was sent to NASA Lewis Research  Center to 



Core airbleed, 

1 

Core airbleed, 

1 

(a)  Schematic  layout.  The two ducts  indicated  by  dashed  lines  only  connect  leading-  and 
trail ing-edge  systems in t h e  event of engine  failure. 

,r Sense  l ine 

I) To BLC 
system 

Ejector  centerbody 

Ib)  Schematic of ejector  to  mix  core  and  fan  airbleeds. 

Figure 2 - QSRA boundary-layer-control  (BLC) system. 

obtain test data  for use  in design of  the  QSRA  pro- 
pulsion system and noise-suppression  treatment. 
Results  of some of the tests  are  reported  in references 
3 and 5 to 7. The  tests  that assess the  steady-state  and 
dynamic  performances  of  the  engine with only  core 
bleed (no fan bleed) are  reported  herein. These tests 
were performed to demonstrate that  the YF-102 
engine can meet the  QSRA  core bleed and engine  ac- 
celeration  requirements.  The  report describes perti- 
nent  engine and  fuelcontrol characteristics and 
presents  results of steady-state  tests with core bleed 
up  to 14 percent of the  core  inlet  flow. Also, results 
are given for engine acceleration and deceleration 
tests,  both  without  core bleed and with core bleed 
ratios  (defined  here as core bleed flow rate divided by 
core  inlet flow rate)  up to 1 1  percent.  For  some of the 
tests the core bleed ratio was approximately  constant 
during  the  transient, while for  other  tests  the  core 

bleed ratio  varied to simulate QSRA operation. All in 
all,  the  tests exercised the  engine at  or beyond the  ap- 
plicable QSRA requirements. All tests were con- 
ducted on  an  outdoor static test stand with a 
bellmouth inlet and a confluent-flow  exhaust system 
similar  in  area to  the QSRA exhaust system. 

Apparatus 
Engine 

The Lycoming YF-102 engine (complete designa- 
tion YF102-LD-100 (QSRA updated), Lycoming 
Model No. ALF 502A), is a twin-spool  turbofan 
powerplant.  Illustrative  drawings of the engine are 
shown in figure 3. The  core  engine  consists of a com- 
bination seven-stage axial, single-stage centrifugal 
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compressor driven by a two-stage axial turbine  and 
external atomizing  combustor. An interstage bleed 
valve (ISBV) vents air from  the sixth axial stage as re- 
quired to prevent  compressor stall. The valve consists 
of slots in the compressor case, covered by a tight- 
fitting circumferential metal  band. The  band is  fixed 
at  one  end,  and held  in place by a  pneumatic actuator 
at  the  other end. To  open  the valve, the  actuator is 
stroked to loosen  the  band,  and air pressure forces 
the  band more-or-less uniformly  away from  the slots. 
The ISBV is open at low power settings and  during 

C-76-781 

"4 
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(b) Side envelope. 

Figure 3. - Lycoming  YF-102 turbofan  engine. 

rapid thrust  transients  and is automatically closed  by 
a mechanical  computer in the fuel control.  The  front 
fan  and  one  supercharging stage are driven by a two- 
stage, free-type, coaxial, power  turbine  through  a 2.3 
to 1 speed-reducing  gear system. Maximum rating 
performance  at sea-level-static conditions, with ideal 
inlet and exhaust systems and with no airbleed or 
power  extraction, is 33 360 newtons (7500 lb)  thrust 
(minimum), 7600 rpm  fan speed (maximum),  and 6 .2  
(nominal)  bypass  ratio.  Maximum rating is defined 
by the  manufacturer as the  performance at  a 

3 



Station 

Core cowling with  skirt- 
Bleed-flow 

Section A-A 
showing  piping 
connection to 
core  airbleed 

I 

(a1 Configuration - sketch  and  dimensions. 

(b) Bleed piping i n  bypass  duct. (c) Engine  ready for testing. 

Figure 4. - Engine configuration for  core  airbleed tests. 
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measured gas  temperature (MGT) of 1194 K 
(2150" R) or at any of several other defined 
mechanical limits during off-design operation.  The 
MGT is the average temperature sensed  by 10 ther- 
mocouples spaced throughout  the flow passage at  the 
power turbine inlet. 

Test Configuration 

The engine configuration  for these tests is shown in 
figure 4. The  air inlet  system  (fig. 4(a)) consisted of a 
bellmouth and  transition section supported  from the 
test stand and connected to  the engine by a flexible 
joint.  The bellmouth, previously  used on  another test 
program, was  193 centimeters (76  in.)  in diameter at 
the inlet and  had a straight exit section 112 cen- 
timeters (44.0 in.) in diameter. The transition section 
reduced the airflow passage to 101.6 centimeters 
(40.0 in.),  the diameter of the engine inlet. The flexi- 
ble joint included a soft Neoprene seal, and 
prevented transfer of large inlet system loads to the 
engine. 

The exhaust system  was the same as the Basic 
Confluent-Flow  Exhaust System (C-1) reported in 
reference 7.  The nozzle and flow passage areas  and 
lengths are similar to the  QSRA exhaust system. The 
exhaust system  consisted of a core cowling, a core 
engine nozzle, and a bypass-flow duct ending in an 
exhaust nozzle for  the combined core  and bypass 
flows. The  core cowling  was the same as used on  the 
A-9A airplane, except that small scoops were in- 
stalled over the existing ventilation ports at  the  for- 
ward end to force air  into the engine space. Also, a 
33-centimeter  (13-in.) aft  skirt was added to  the cowl- 
ing to  smooth  the flow passage over the core nozzle. 

The core nozzle  is intended to diffuse  the core flow 
to produce a satisfactory static-pressure match with 
the bypass flow at  the mixing plane. To this end the 
nozzle consisted of a divergent cone attached to the 
shell of an A-9A core nozzle downstream of the 
straightening vanes. The exit diameter was  46.35 cen- 
timeters (18.25 in.). 

The bypass-flow duct was made  up of steel exten- 
sions and  adapter spools and included a flexible joint 
near the engine fan frame  mounting flange. The ex- 
haust nozzle  was  78.20 centimeters (30.79 in.) in  exit 
diameter, providing 4803 square centimeters (744.4 
in2) geometric flow area.  The geometric area in the 
bypass duct at the mixing plane was  4451 square cen- 
timeters (689.9  in2). 

The  core  bleed  was  taken  from  the  two 
5 .  l-centimeter (2.0-in.) diameter  ports  on  the 
horizontal centerline of the engine  bleed manifold. 
The flow piping was enlarged to 7.6 centimeters (3.0 
in.) in diameter as it crossed the bypass flow duct and 
joined the test stand airbleed flow  system through 
corrugated flexible pipe. A photograph of the piping 

in the bypass duct is shown in figure 4@), and  one  of 
the engine ready for testing is shown in figure 4(c). 

Fuel Control 

The YF-102 engine  fuel  control  is  the 
hydromechanical  Hamilton-Standard  Model 
JFC31-19. It is mounted on the accessory gearbox 
beneath the engine and is driven by gears from  the 
core compressor shaft.  The  control components im- 
portant  for  the core bleed tests (shown  schematically 
in fig. 5(a)) are the  governor  and  the mechanical 
computer.  The governor sets core speed according to 
the power-lever position.  The  computer determines 
the fuel flow rate.  The computer  also limits fuel flow 
at extreme operating  conditions and varies the limits 
slightly  with changing engine inlet air  temperature. In 
addition,  the computer  controls  operation of the in- 
terstage bleed  valve (ISBV) to prevent compressor 
stall at low  power settings and  during rapid tran- 
sients. The fuel control  also  performs  other necessary 
functions  not discussed  herein because they are not 
relevant to the  core airbleed tests. 

The limits and  functions of interest here are shown 
in figure 5 ( b ) ,  wherein fuel-control-ratio units 
(FCRU's) are plotted as a function of core engine 
mechanical speed. Fuel-control-ratio units are de- 
fined as the ratio of fuel flow rate Wf to core  com- 
pressor discharge pressure P n .  On  the YF-102 
engine a wall pressure PFC3 from  the centrifugal- 
compressor diffuser casing is used instead of P n .  
(For the engine tested at NASA, a calibration showed 
that PFC3 was 0.93 PT3 over the whole operating 
range.) Also in figure 5 ( b )  fuel-control limits and 
functions, set  by mechanical devices  in the computer, 
are shown by dot-dashed lines. Engine operating 
lines, which are the variation of FCRU's with  speed 
for  any  particular set of conditions, are shown by 
dashed lines. Several fuel flow limits are shown in the 
figure. The acceleration fuel limit line is adjusted to 
make  the engine responsive to rapid power-lever 
changes but to avoid the potential stall region. The 
maximum fuel flow  line  limits  flow to a safe value 
and is the limit  usually encountered at low altitude. 
The maximum FCRU line  is the limit  usually en- 
countered in high-altitude flight. The maximum 
speed droop line  limits core speed. The deceleration 
fuel limit  line prevents combustor  flameout  during 
rapid deceleration. 

Regions marked in figure 5(b )  show  where the 
ISBV  is open or closed. If the engine operating line 
crosses one of the trigger lines, the fuel control com- 
mands the ISBV to change state.  The change of  state 
is not sudden;  the action  occurs in a modulation 
range of 2 to 3 percent of  the core speed around  the 
trigger line. The locations of the trigger  lines are  ad- 
justable.  For  the tests reported herein, both trigger 
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Figure 5. - YF-102 engine  fuel  control. 
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lines  were  set  within specification,.but the diagonal 
trigger line  was  moved to the left as far as possible SO 
that the ISBV  would close at  the lowest permissable 
core speed. 

Typical engine steady-state (or very  slow transient) 
operating lines are shown in the figure. For no  core 
bleed the line is  in the “ISBV open” region at low 
power settings, dips to a lower FCRU value as it 
crosses the  diagonal trigger line, and rises to its 
highest value  at maximum power.  The dip in the 
operating line as it crosses the diagonal trigger line 
occurs because Pm increases as the ISBV closes, thus 
causing the  numerical  FCRU  value to decrease. For 
significant core bleed, the operating line has the same 
shape as the no-bleed line but is displaced toward 
higher FCRU. 

Engine  dynamic operating lines, called trajec- 
tories,  trace the ideal FCRU  path  during  a rapid 
(throttle-burst) acceleration from point 1 to point 2, 
and  a rapid (throttle-chop) deceleration from point 2 
to point 1. At point 1 the ISBV  is closed. For  the 
rapid acceleration the power-lever advance calls for 
higher  core  speed, so fuel  flow  increases. 
Simultaneously,  the fuel control causes the ISBV to 
open. As the engine accelerates, the  trajectory 
follows the acceleration fuel  limit line and the max- 
imum FCRU line. The ISBV  closes again as the 
diagonal trigger line is crossed. The  trajectory 
follows the  maximum speed droop line down to the 
core speed associated with the new  power  lever posi- 
tion.  For  the rapid deceleration, fuel flow drops  to 
the deceleration fuel limit  line as soon as the power 
lever  is retarded.  The ISBV opens when the  horizon- 
tal trigger line  is crossed. When the core engine 
reaches the speed associated with the new power- 
lever position, fuel flow returns to the steady-state 
value, and the ISBV closes. 

t 

Test Stand Bleed  Flow  System 

A  schematic  diagram of the core bleed  flow  system 
is shown in figure 6(a). As indicated in this figure and 
in figure 4(b), air was drawn from two of the  ports  on 
the engine core airbleed manifold.  The bleed flow 
went to a 10.2-centimeter (4-in.) diameter  header 
located above  the engine. Core bleed flow was con- 
trolled by two  pneumatically  operated valves 
mounted  from  the header. Either of these valves 
could  be controlled manually. In addition,  the larger 
valve, a  7.6centimeter (3-in.) quick-acting tapered 
plug valve, could  be driven from  an  open-loop  con- 
trol system. The  measured valve characteristics were 
0.9-hertz natural frequency and 1 .I-second full- 
stroke  actuation time. The core bleed flow  rate was 
measured by vertical conical exhaust nozzles 
downstream of the valves. Forces  produced by these 

nozzles  were normal  to  the engine centerline, and 
therefore  did  not  contribute to the measured  engine 
thrust. 

The  open-loop  control system  was  used to  control 
core bleed during all transient tests. The system 
sensed fan discharge pressure and  converted that 
signal to a position command  according to a 
predetermined  program set in the  analog  computer. 
Fan pressure was chosen as  the input variable 
because it was judged to provide the best available 
simulation of the QSRA ejector-mixer bleed demand. 
(Neither fan bleed nor  the ejector-mixer were  used in 
the present tests.)  Fan pressure was obtained  from 
one  tube of an  instrumentation  rake  at  station 13.2. 
The particular tube was  selected to provide a pressure 
typical of  the  average fan discharge pressure through 
the whole operating range. 

Figure 6(b) is a  photograph  showing  the test stand 
setup. 

Instrumentation  and  Data  Processing 

The instrumentation used during these tests is sum- 
marized in table I .  For the steady-state tests (table 
I(a)), the  instrumentation is basically the same used 
for the tests reported in reference 7. The raw data for 
each  test reading consisted of two scans of the com- 
plete instrument list. Most of the instrumentation 
was sampled  once  per  scan (scan duration was ap- 
proximately 15 sec), but net thrust  and  fan speed 
were sampled  many  times to  obtain better average 
values. The raw data were recorded on  the Lewis cen- 
tral  data system and processed on  a digital computer 
with a  program specially written for these tests. The 
program  averaged and listed the  data, corrected 
results to  standard  temperature  and pressure, and 
computed  airflows  and  other  performance 
parameters.  Parameters  and  symbols used in this 
report are defined in appendix  A. 

For the transient tests (table I(b)) selected 
measurements were recorded  on an eight-track strip 
chart  at 2.5 centimeters per second (1 .O in. /sec) paper 
speed. Data were read directly from the chart using 
the steady-state recorded data  to calibrate each  track. 
Performance  parameters were computed  manually 
from these data. 

Test Facility 

All tests were conducted at the Vertical Lift Fan 
Facility (VLF) at  the NASA Lewis Research Center. 
This facility is an  outdoor engine  static test stand 
sheltered by a service building which  is moved away 
on tracks  before testing. The engine is shown  ready 
for testing in figures 4(c) and 6(b). The engine was 
suspended  beneath the  thrust measuring system, 
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F igure 6. - Core  bleed  flow  system. 

which can  be  pivoted around  a vertical axis for Procedure 
operational convenience. Frameworks extending 
from  the  thrust  measuring system were used to  For the tests reported  herein,  the  day-to-day  am- 
mount inlet and  exhaust  ducts  and  other  hardware bient temperature TO varied between 14" and 29" C 
separately  from the engine. The engine  centerline was (57" and 85 " F).  Most of the  transient data were ob- 
2.9 meters (9.5 €t)  above the ground. The  control  tained when the  ambient  temperature was between 
room was about 150 meters (500 ft)  from  the engine. 18" and 28" C (65 " and 83" F). 

8 



TABLE I. - ENGINE  PERFORMANCE 
INSTRUMENTATION 

- 

ISBV flow 
Inlet to test- 
stand  bleed- 
system  piping 
(pbp) 

system exhausl 
nozzles 

Inlet to bleed 

Station 

0 
1 

2.1 
3 

4.1 
5 
6 

13.2 
16 

(a)  Steady-state  testsa 

Number of sensing  points 

6 

2 

c1 
2 

6 

20 

1 

2 

(b) Transient  tests 

The  following  measurements were recorded on a  strip 
"- " " ~~- - 

chart at 2.5 cm/sec (1 in/sec)  paper  speed: 
Power lever position 
Core  speed 
Net thrust 
Core  bleed flowcontrol valve position 
Combustor  housing wall pressure, Pw3 
Fan-discharge  total  pressuree 
ISBV flowd 
Measured  gas  temperature (MGT) 

aMiscellaneous  measurements: Net thrust;  fan  Geed; core-speed; 
fuel  flow  rate;  (core)  inlet  guide  vane  position;  ambient  at- 
mospheric and wind  conditions;  engine  health  measurements. 

bTwo  integrating  rakes;  each was a  single  pressure  measurement 
from 10 sampling  ports  spaced  across  the  flow  passage. 

CSingle output  from 10 thermocouples  spaced  throughout  flow 
passage, all wired  in parallel.  This  measurement is also  called 
measured  gas  temperature  (MGT). 

dTube  located to sense  flow  pressure at bleed  band;  pressure 
greater  than  under-cowling  ambient  pressure  indicates ISBV is 

eOne tube  from  station 13.2 rake,  chosen to be  typical  of  average 
open. 

fan-discharge  pressure  over  whole  operating  range. 

Steady-state Tests 

Data were obtained  for  the steady-state tests over a 
range  of  core  speeds  from  near idle to maximum 
rating.  Maximum rating always occurred when MGT 
reached 1194 K (2150" R). For each reading  the bleed 
flow control valves  were adusted  manually to the 
desired position. The  engine  throttle was set to  pro- 
vide the  desired' core speed. After the engine  had 
"settled out"  for 2 minutes,  a  performance data 

reading was recorded and processed as described in 
the "Instrumentation and  Data  Processing" section 
of this report. 

In presenting the test results, it is  necessary to refer 
to "corrected  maximum MGT". Corrected  MGT is 
MGT/t91.022, as  recommended by the  engine 
manufacturer.  For  the  ambient  temperatures  at  the 
time  the tests were performed,  the corrected MGT  at 
maximum  rating was approximately 1139 K (2050" 
R). This value is  used herein to describe performance 
at maximum  rating.  Where necessary, the  data have 
been interpolated or  extrapolated to determine the 
performance  at 1139 K. 

Bleed  Flow  System Calibration  for  Transient Tests 

Using the larger bleed-flow-control valve only, 
performance  data were obtained  for several different 
valve positions as described in  the  procedure for 
steady-state tests. From  the resultant data,  the  core 
bleed ratio WB/ W2.1 was  plotted against the  fan- 
discharge pressure ratio, PT]3 .2 /Pm for  each valve 
position. The  data  from these graphs were cross- 
plotted to show valve position as a function of core 
bleed ratio  for several values of the fan discharge 
pressure ratio, as shown in figure 7. On the test day, 
the desired  bleed schedule was superimposed on  the 
crossplot, and  appropriate intersections were deter- 
mined  to set up  the  diode function generators in the 
analog  computer. 

Transient Tests 

When the desired core bleed  schedule was set in the 
diode function generators, the engine  was run with 
the  computer controlling the bleed flow. In  a similar 
manner to  the procedure  for steady-state tests,  the 
engine  throttle was adjusted to provide the desired 

Fan-discharge / / I / l  
pressure  ratio, 

I I I 
4 6 8 10  12  14  16 

Core  bleed  ratio, WBlWz 1, percent 

Figure 7. - Open-loop  bleed-air control system  calibration data. 
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beginning  and  end core engine  speeds for the tran- 
sient, and throttle  stops were  set at each of these 
speeds. For  the transient the  throttle was snapped 
between the  stops.  Each transient test was performed 
at least twice. Acceleration and deceleration times 
from all applicable test data were averaged to provide 
final results. 

Transient tests were performed for  no core bleed 
and  for each of the  core bleed schedules shown in 
figure 8. In this figure the  dashed lines indicate the 
desired schedules. The  symbols  show the core bleed 
ratio measured when setting the  throttle  stops  for  the 
transient tests. For  the QSRA bleed schedules 1 and 
2, a  1 percent additional bleed above that allocated 
for the BLC system has been included  at low  power 
settings. This was done to simulate the power extrac- 
tion expected  during flight by hydraulic pumps, 
generators, etc.,  which could  not  be  included in these 
tests. No allowance  has been made at high  power set- 
tings because  the  expected  power extraction will not 
affect  engine  behavior significantly. 

Results and Discussion 
Steady-State Performance 

The relation between corrected core bleed flow  rate 
and core bleed ratio,  at several corrected core speeds 
and  at corrected maximum  MGT, is shown in figure 
9. The solid symbols in this and following figures in- 
dicate that  the ISBV  is open, as determined by the 
total-pressure tube sensing  flow at the bleed band 
(see table I). For all power settings from  approx- 
imately flight idle (defined by the manufacturer as 
13  300 rpm corrected core speed) to corrected rnax- 
imum  MGT  (maximum  rating),  more  than 11 percent 
core bleed ratio was obtained. At corrected max- 
imum  MGT,  over 14 percent (corresponding to 1.88 
kilograms per second (4.15 lb/sec)), corrected core 
bleed  flow rate was obtained.  The figure also shows 
that  the  range of satisfactory engine operation with 
core bleed  is limited; operation is  not permissable in 
region I  because  maximum  MGT would be exceeded. 

0 Experimental  steady-state  data 
Desired bleed schedule 

~-0"0"-0"" 

la) 5-Percent bleed. (bl 8-Percent bleed. 

P -  

A (c) 9.5-Percent bleed. (d) 11-Percent bleed. 

b 
\ 

6 \ 
L \ 

\ 

\ 
\ 

\ 
n 

0 1 2 3 -  5 0 1 2 3 4 5  
Fan-disch:ge total pressure, PT13. 2, N/cm2 fgage) 

I I 
I .  I I n L - . l -  -I_ J " I  \ 

0 1 2 3 -  5 0 1 2 3 4 5  
Fan-disch:ge total pressure, P~13. 2, N/cm2 fgage) 

I ~~ 
I I " 1 " " L - J  

0 2 4 6 8 0  2 4 6 8 
Fan-discharge  total pressure, Pn3. 2, psig 

( e )  QSRA  bleed schedule 1. If) QSRA  bleed schedule 2. 

Figure 8. - Bleed  schedules  for transient tests. 
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Figure 9. - core bleed ratio  for several  corrected core speeds. 

In the  untested region 11, problems such as  unaccept- 
ably slow transient  acceleration  and  compressor 
surge would  be encountered. 

Performance over a  large  range  of  core speed is 
presented in figure 10. Data  are shown for  the bleed- 
flow-control valve  set at  a fixed position,  and  for  no 
core bleed  (valve closed). At low speed the ISBV is 
open;  for  the data with core bleed the ISBV begins to 
close at  about 14 250 rpm. As it closes, many of the 
performance  parameters  undergo  conspicuous 
changes  from  their  smooth  trends.  For  example,  core 
bleed ratio  jumps  up because core bleed flow rate 
increases as  the  compressor-discharge  pressure  in- 
creases. Thrust increases when the ISBV closes 
mainly because fan speed increases due  to  resulting 
greater  turbine  flow. 

A comparison of the  performance with core bleed 
with the  performance with no bleed in  figure 10 

shows that  the  core inlet flow rate i s  practically  the 
same whether there is  bleed or  not.  This  indicates 
that  for  moderate  core bleed ratios,  represented by 
these data, turbine flow is reduced by an  amount 
nearly  equal to the bleed flow.  The  turbine  flow,  as in 
most engines, is controlled by choke  conditions at  the 
inlet stators;  for  this case flow is reduced by  lower 
pressure and increased  temperature. 

Other  comparisons  of  interest in figure 10 include 
MGT, fan speed, thrust, compressor-discharge 
pressure,  FCRU's, and thrust  specific  fuel  consump- 
tion.  For  core bleed MGT is  significantly  greater  than 
without bleed in  order  to  provide energy to drive  the 
engine at  the  same  core  speed.  However,  at high core 
speeds  the  fan speed and, consequently,  thrust are a 
little less for  bleed;  this  may be related to a change in 
power-turbine  characteristics because of  off-design 
operation.  Compressor-discharge  pressure decreases 
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for  core bleed because the  compressor  operating  line 
is lowered.  The FCRU's increase for core bleed 
because compressor-discharge  pressure  decreases. 
The  thrust specific-fuel consumption  improved 
significantly for core bleed after  the ISBV closes, but 
is always worse than without bleed because power (in 
the  form of highly compressed  air) is extracted  from 
the engine. 

Condition of core  bleed air. -The maximum 
available  core bleed pressure is shown  in  figure 11 as 
a  function of corrected bleed flow rate  for several 
corrected  core  speeds,  corrected  maximum MGT, 
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and core bleed ratios  up to 12 percent.  The maximum 
available  pressure is the measured  compressor- 
discharge  total  pressure Pn. It  depends mainly on 
core  speed, as expected, and falls  off slightly as core 
bleed flow  rate is inereased. Bleed flow at  this 
pressure  could  be  obtained  from a specially installed 
total-pressure  scoop  in the combustor  housing.  But, 
when flow is taken  from  the existing ports on  the core 
airbleed  manifold,  the  pressure is less. This  effect is 
shown in figure 12, which gives the  ratio  of  pressure 
in  the external  piping Pbp to Pm as  a function of the 
core bleed flow rate  corrected to station 3 conditions. 

Corrected 
core speed, 

NG/t'% 
rPm 

0 13 550 
0 14 550 

Solid symbols indicate open ISBV 

0 15 380 
A 16 890 

100 
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Figure 11. - Maximum available core bleed pressure. 
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Corrected For  the case of  no bleed flow, the  maximum Pbp is 
core speed, the combustor  housing wall pressure Pw3, which  is 

NG/f% . about 0.985 Pm. With core bleed, Pbp is reduced still 
rPm 

0 13  550 
further  because  of pressure drop in the  manifold. 

0 14 550 The maximum  core bleed temperature is shown in 
0 15  380 figure 13 in the  same  format as figure 11. This 

temperature is the  measured  compressor-discharge 
c" 1.0 total  temperature Tm. Although  not  included in the 
a2 figure,  the  data showed that  the  core bleed 
g: '&  2 temperature  in  the bleed piping Tbp was about 6" C 
u V ?  (10" F) less than Tm because  of heat loss in the - 1 2  P .9 

A 16  890 
V 18 070 

.E? al 

.- T a  

f a" manifold and the NASA supplied bleed  flow piping 
.- m w- 
cT= 
2 2 2  crossing the bypass flow duct. 

.- :: requirements  can be calculated easily using Pm and 
2 . 7  1 - - I a Tm from  the  manufacturer's estimated engine per- 

z s z  .8 From  the results presented in this section, the 
z . 5  k engine  operation necessary to meet  given core bleed .=s 
" 

Core bleed  flow rate  corrected to station 3 e 4  formance  computer  program. 
conditions, WBfi/$. kglsec Effects of core  bleed  on  engine 

L A  u .n 
performance. -The effects of core bleed  flow rate  on 
fan discharge pressure ratio, corrected thrust,  and 
corrected MGT  are presented in figures 14 to 16, 

conditions, WB&/$, lblsec respectively. The fan-discharge pressure ratio is here 
Figure 12 - Usable core  air bleed pressure.  pbP  is defined as Pn3.2/&~, where, as indicated in figure 

pressure  in test stand bleed-flow piping,  about 4(a), P773.2 is the  average pressure in the  bypass  duct 
3 cm (1 f t )  downstream of engine bleed flow  Port. just ahead of the fan nozzle mounting flange. As 

0 . 2  .4 .6 
Core bleed  flow rate  corrected to station 3 

shown in figure 14, for  any given corrected core 
speed, the fan-discharge pressure ratio  drops  off 
slightly as core bleed  flow rate is increased, until the 

Solid symbols indicate  open I S B V  

760 L 4201 I I I I  I I I J 
0 

. Core bleed flow rate  corrected  to  engine  inlet  conditions, W ~ f i / t + ,  kglsec 
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Figure 13. - Core  airbleed  temperature. 
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Figure 14. -Effect of core  a i r  bleed on fan  discharge  pressure  ratio. 
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Figure 16. - Effect  of core   a i r  bleed on  corrected  measured gas temperature. 

ISBV opens. When the ISBV opens, the pressure 
ratio falls to a new lower value. Corrected thrust (fig. 
15) varies in a similar manner, as expected, because 
the fan moves toward lower  speed on the fan  map 
operating line as bleed  flow rate is increased. At zero 
bleed and corrected maximum MGT,  the corrected 
thrust was reduced about 900 newtons (200 lb) when 
compared with the data in reference 7. This reduction 
is caused by pressure loss due  to the  round (NASA 
supplied) bleed  flow piping crossing the bypass duct. 
The corrected MGT (fig. 16) increases as  core bleed 
flow rate is increased for  a given corrected core speed 
in order to provide sufficient energy to keep the 
speed constant. 

The effect of core bleed flow rate on thrust 
specific-fuel consumption is shown in figure 17. The 
data show that even a small amount  of  core bleed  is 
costly in terms of fuel consumption, especially  when 
the ISBV  is open. 

Transient Performance 

Before transient data were taken, two fuel-control 
adjustments were made to optimize engine accelera- 
tion response for the QSRA airplane. The  ad- 
justments were made to the acceleration fuel limit 
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line and to the ISBV diagonal trigger line. These lines 
are shown in figure 5(b) .  The acceleration fuel limit 
line  was set to meet the QSRA requirement that  the 
engine accelerate from 15 600 rpm corrected core 
speed (QSRA flight idle speed) to maximum rating in 
3.0 seconds using the QSRA bleed schedule 1. This 
adjustment required making engine acceleration tests 
until the desired setting was found by trial-and-error. 
During some of these preliminary tests,  the engine ac- 
celerated very  slowly (20 or 30 sec to maximum 
rating), or not  at  all,  due to combinations of large 
core bleed at low power settings and low acceleration 
fuel limit. The final setting was higher than  the  fac- 
tory setting, but was judged to be safely away from 
the potential stall region. The second fuel-control ad- 
justment made was to move the ISBV diagonal trig- 
ger line to the left edge of the factory tolerance. This 
was done so the ISBV would close at the lowest per- 
missable core speed, and  thus  tend to improve engine 
acceleration performance. 

No other fuel-control adjustments were made. The 
two  adjustments  just described do not affect overall 
engine steady-state performance. 

Throttle-burst accelerations. -For the  throttle- 
burst accelerations performed,  the power lever  was 
advanced to its new position in about 0.6 second. The 
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Figure 17. - Effect of core  air bleed on thrust specific fuel consumption. 

engine acceleration time from  a given starting  cor- 
rected core speed is shown in figure 18 for all the core 
bleed schedules tested. This figure summarizes  the 
results of 109 tests. Engine acceleration time is de- 
fined here  as the time  required for  the engine to  ac- 
celerate to 95 percent of thrust  at  the corrected max- 
imum MGT  for  the bleed schedule used. All tests 
were performed  at  ambient  temperatures of 18" to 
29" C (64" to 85" F). The effect of changing ambient 
temperature  on acceleration time was not  measured, 
but the  effect should be small for  the range of 
temperatures existing during the tests. 

Acceleration time (fig. 18) is always least for  no 
core bleed. With core bleed, acceleration  time  in- 
creases significantly for core bleed ratios  greater than 
9.5 percent, and  for  starting corrected  core speeds 
less than  about 15 OOO rpm. For all tests  the YF-102 
engine  performed  without  surge,  stall,  over- 
temperature, or other  indication  of  unsatisfactory 
behavior. 

A typical strip-chart  recording  from a throttle- 
burst  acceleration  test with the QSRA bleed sched- 
ule 1 is shown in figure 19. Each  of the eight channels 
is labeled. Power-lever position is used only  as an in- 
dication  of the transient "start". The  other measured 
quantities  change  smoothly  during  the  transient  time, 
except the ISBV flow-indicator  measurement (see 
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Figure 18. - Engine  response  time  for  throttle- 
burst  accelerations.  Acceleration  time  is 
time  for  engine to accelerate to 95 percent of 
maximum rating  thrust  for  that bleed sche- 
dule. 

table I). The ISBV is open  at  the  start  of  the  tran- 
sient, and  the measurement  indicates flow. The flow 
increases as core speed and compressor discharge 
pressure (as indicated by Pw3) increase,  then varies in 
response to a combination  of increasing compressor- 
discharge pressure and valve modulation,  then finally 
closes as  the diagonal trigger line is crossed. 
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Figure  19. - Strip-chart data for  throttle-burst  ac- 
celeration  with QSRA bleed  schedule 1. 

Throttle-burst trajectories constructed from  strip- 
chart  data  are shown in figure 20 for several core 
bleed schedules. The  fuel-control  limits, ISBV 
diagonal trigger line, and steady-state operating lines 
have the same meaning as described previously. The 
ordinate scale shows FCRU's expressed in terms of 
Pw3, since that pressure was measured in the tests. 
(This is acceptable, because Pw3 is proportional to 
P F ~  and P n . )  The values shown for  the fuel control 

limits are the best  values determined from factory 
setup data (adjusted to Pw3) and  the test data. In 
general, the trajectories are consistent with the ideal 
performance shown in figure 50).  For  the 11 percent 
schedule and  the QSRA bleed schedule 1, the steady- 
state  operating line lies nearly on  the acceleration fuel 
flow  limit line at the starting core speed shown. Con- 
sequently, not much fuel margin is available to ac- 
celerate the engine, resulting in the long acceleration 
times shown in figure 18. At the beginning of the 
no-bleed (fig. 20(a)) and 11 percent bleed (fig. 20(c)) 
trajectories, the measured FCRU overshoots the ac- 
celeration fuel limit line. This may be due  to the in- 
strumentation, which  was intended originally only 
for steady-state measurements. The fuel flowmeter 
was not close coupled to the engine, and  the over- 
shoot may  be caused by flow phenomena in the long 
connecting line. Also, the Pw3 transducer was located 
at the end of a relatively long sense line, and, 
therefore,  the measured Pw3 may  lag the  actual Pw3 
for rapid pressure changes. Another difficulty ap- 
pears in the no-bleed trajectory (fig. 20(a)): The  tra- 
jectory lies  below the acceleration fuel limit line, 
whereas the other trajectories accurately adhere to 
the line. The reason for this discrepancy is not 
known. 

The corrected thrust  buildup associated with 
throttle-burst accelerations is shown in figure 21. 
These data were also obtained  from  strip  charts.  The 
high core bleed schedules are slow to accelerate at the 
beginning of the  transient, but acceleration improves 
at  about 8800 newtons (2000 lb) corrected thrust 
(about 16 000 rpm corrected core engine speed). This 
is the speed range at which the ISBV begins to 
modulate  toward  the closed position. 

Throttle-chop decelerations. - For the throttle- 
chop decelerations performed,  the power lever  was 
retarded to its new position in about 0.2 second. The 
engine deceleration time from a given starting cor- 
rected core speed is shown in figure 22 for all of the 
core bleed schedules tested. Engine deceleration time 
is defined here as the  time required for  the engine to 
decelerate to 105 percent of the  thrust produced at 
14 600 rpm corrected core speed for  that  core bleed 
schedule. Deceleration time is generally less than  ac- 
celeration time and is more dependent ,on the  core 
bleed than on  starting speed. The fastest deceleration 
time is for  no core bleed; longer times are measured 
when there is large core bleed, and consequent open- 
ing of the ISBV at the diagonal trigger line, at lower 
core speed. The longest time was about 2.5 seconds 
for the QSRA bleed schedules 1  and  2  and  the 11 per- 
cent bleed schedule. 

A typical strip-chart recording for a throttle-chop 
deceleration with QSRA bleed schedule 1 is shown in 
figure 23. All parameters except thrust  and fuel flow 
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Figure 21. -Thrust  bui ldup  durin  thrott le-burst  accelerat ions  for  several  bleed  schedules.  Accelerat ion  from 14 100-rpm  cor- 
rected  core speed to 1139 K ( 2 0 5 0  R)  corrected  maximum MGT. If 
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Figure 22. - Engine  response  t ime  for  thrott le-chop  de- 
celerations.  Deceleration  t ime  is  t ime  for  engine to 
decelerate to 105 percent  of  thrust  produced  at 
NG& = 14 600 rpm. 
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Figure 23. - Strip-chart data for throttle-chop deceleration 
with OSRA bleed schedule 1. 
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Figure 25. - T h r u s t  decay during  thrott le-chop  decelerat ions.  Deceleration  from 
1139 K (M50° R )  corrected  maximum MGT to 14 600 rpm  corrected  core speed. 

respond in the expected manner.  The  3-hertz oscilla- 
tion  superimposed on  the  thrust  measurement is the 
response  of  the test stand  structure  to a sudden 
reduction in thrust  load,  and  has been observed in 
other  engine  tests on this  stand.  The oscillation  does 
not  affect  any  of  the  other  measurements.  The  fuel 
flow quickly drops  to a low value, then  makes several 
oscillations  before  settling out  at  the new steady-state 
flow  rate. It was not  determined if this  result is 
characteristic  of  the  fuel control  or  the  test-stand fuel 
system. In either  case, no  combustor  flameout was 
encountered  during  any of the  transient  tests. 

A  deceleration  trajectory for  the  same test as  the 
previous  figure is shown in figure 24. The  trajectory 
is generally  consistent with the ideal performance 
discussed with figure 5 ( b ) ;  the  fuel flow  oscillations 
noted  in  the previous paragraph  are reflected as  tra- 
jectory  oscillations about  the deceleration fuel flow 
limit line. 

The  thrust decay for typical  throttle-chop  decelera- 
tions are shown in figure 25. Corrected  thrust falls 
off very quickly at  the  start  of  the  transient,  then  not 
as  rapidly  as the final  core  speed is approached.  The 
less rapid  decay  near the end of  the  transient is the 
main  reason  for longer  deceleration  times for  the 
large  core bleed schedules  shown  previously. 

Summary of Results 
As part  of  the QSRA  propulsion system develop- 

ment,  the YF-102 engine  was  tested to  determine 
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steady-state  and  transient  performance with core 
airbleed.  Tests were performed on  an  outdoor  static 
test stand at ambient  temperatures between 14" and 
29" C (57" and 85" F), and with a confluent  exhaust 
system similar in size to  the QSRA  exhaust  system. 
The  tests exercised the engine at  or beyond  the ap- 
plicable QSRA  requirements.  The  most  important 
results of  the tests are as follows: 

1 .  The engine  operated  satisfactorily with steady- 
state  core bleed up  to 14 percent  of the  core inlet air 
flow. As a result of  this  bleed,  engine  thrust was 
reduced  significantly,  but no stability or mechanical 
engine  operating  problems were encountered. 

2. After  setting the engine fuel control to meet 
QSRA acceleration  requirements at  the  QSRA flight 
idle power  setting,  the  engine was tested to determine 
its  transient  performance characteristics. For some  of 
the  tests,  the  core bleed was scheduled to vary with 
fan  discharge pressure, to  simulate  the  QSRA bleed 
requirements.  The  engine  accelerated  and  decelerated 
satisfactorily  over  the  whole  operating  range with no 
core bleed and with core bleed up  to 1 1  percent  of the 
core inlet airflow  (maximum  tested). No surge,  stall, 
overtemperature,  combustor  flameout,  or  other 
operating  problems were encountered. 

Lewis Research  Center, 

\ 

National  Aeronautics and Space Administration, 
Cleveland,  Ohio, November 16, 1979, 

769-02. 



Appendix - Symbols 
A geometric flow area,  cm2 (in2) 
D diameter, cm (in.) 
F measured thrust,  N Ob) 
N rotational speed, rpm 
P pressure, N/cm2 Ob/in2) 
T temperature, K (OR) 
W flow rate, kg/sec (lb/sec); for fuel flow rate 

only,  g/sec  Ob/hr) 
6 ratio of pressure to standard-day pressure, 

10.132 N/cm2 (14.696 lb/in2) 
8 ratio of temperature to standard-day temper- 

ature, 288.2 K (518.7" R) 
Subscripts: 
B bleed flow 
bp bleed piping 
F fan 
f fuel 
FC fuel control 
G gas generator (core engine) 
T total 
w wall 
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