

NASA-CR-159842 19800016919 NASA-CR-159842 IITRI-M6001-82

THERMAL FATIGUE AND OXIDATION DATA OF OXIDE DISPERSION-STRENGTHENED ALLOYS

Ъy

K. E. Hofer, V. L. Hill, and V. E. Humphreys Materials Technology Division

> IIT RESEARCH INSTITUTE 10 West 35th Street Chicago, Illinois 60616

> > Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

March 1980

CONTRACT NAS3-17787

Carry a conjunt or state

7.53

L....

NASA-Lewis Research Center Cleveland, Ohio

Peter T. Bizon, Project Manager

•

-

1. Report No. NASA CR-159842	2. Government Accession	No.	3. Recipient's Catalog	No.					
4. Title and Subtitle	I		5. Report Date						
THERMAL FATCHE AND OVIDAT	TON DATA OF OXID	F	March 1980						
DISPERSION-STRENGTHENED AL	LOYS	6. Performing Organization Code							
7. Author(s)	and U E Humphroy		8. Performing Organization Report No.						
K. E. HOIER, V. L. HIII, a	and v. E. numphre	y 3	IITRI-M6001-82						
9. Performing Organization Name and Address			10. Work Unit No.						
IIT Research Institute	·	11 Contract or Grant	No.						
Chicago, Illinois 60616			NAS3-17787						
	<u> </u>		13. Type of Report an	d Period Covered					
12. Sponsoring Agency Name and Address			Contractor R	eport					
National Aeronautics and S Washington, D.C. 20546	Space Administrat	ion	14. Sponsoring Agency	Code					
15. Supplementary Notes Project Manager, Peter T. NASA-Lewis Research Center	Bizon, Structure r, Cleveland, Ohi	s and Mechanica o 44135	al Technologie	s Division,					
techniques. Double-edge of system, were cycled betwee a three minute immersion 262 in hardness of HRC 38; of HRC 37 and 40; 754; and and 266 HRC 37 survived 66 double-edge wedge specime 266 HRC40 also survived 66 specimen of 262 HRC 38 al the alloys showed little grams.	wedge specimens, en fluidized beds in each bed. The 264 in hardness d 956. Specimens 000 cycles withou n. A coated spec 000 cycles withou loy survived 5250 weight change com	both bare metal maintained at systems inclue of HRC 38, 40 a in the bare co t cracking on t imen of 262 HRC t cracking. A cycles before mpared to alloy:	l and coated f 1130°C and 35 led alloys ide and 43; 265 HR ondition of 26 the small radi C 38, 266 HRC duplicate coa cracks appear s tested in pr	or each 57°C with entified as 65 HRC 39 55 HRC 39 55 JRC 39 50 of the 37, and ated 50 A11					
				ior pro-					
				cior pro-					
				ior pro-					
				ior pro-					
				ior pro-					
				ior pro-					
				ior pro-					
				ior pro-					
				ior pro-					
				ior pro-					
17 Kay Words (Successed by Author/11)				ior pro-					
17. Key Words (Suggested by Author(s)) Oxide dispersion strength Thermal fatigue Heat r Nickel alloys allo Coatings Therma Oxidation Fluidized bed	ening esistance ys 1 resistance	3. Distribution Statement Unclassif	ied - unlirit	erl					
 17. Key Words (Suggested by Author(s)) Oxide dispersion strength Thermal fatigue Heat r Nickel alloys allo Coatings Therma Oxidation Fluidized bed 19. Security Classif. (of this report) 	lening esistance bys 1 resistance 20. Security Classif. (of t	3. Distribution Statement Unclassif	ied - unlimite	erl 22. Price*					

* For sale by the National Technical Information Service, Springfield, Virginia 22161

N80-25415#

FOREWORD

This report describes the results of thermal fatigue and oxidation testing of Series 6 test specimens on NASA Contract NAS3-17787. The report covers part of the work conducted on this contract during the period 1 March 1977 to 15 June 1979. Other IITRI work on fluidized bed thermal fatigue testing has been reported in NASA CR-72738, CR-121211, CR-121212, CR-134775, CR-135272, CR-135299, and CR-159798.

Peter T. Bizon was the NASA-Lewis Research Center Project Manager. IJTRI personnel assigned to this program included V. L. Hill (Science Advisor, Materials Technology Division), K. E. Hofer (Project Manager), V. E. Humphreys (Project Engineer), M. Yerman and J. Anderson (Contract Specialists), M. Scroll, D. Brown, and V. Johnson.

The IITRI internal designation for this report is IITRI-M6001-82. Thermal fatigue and oxidation data contained in this report are recorded in Logbooks Nos. C23103 and C24427.

TABLE OF CONTENTS

	•	Page
SUMMARY	••	1
1. INTRODUCTION	••	2
2. EXPERIMENTAL PROCEDURE	• •	3
2.1 Materials	• •	3
2.2 Test Facility and Procedure	• •	3
3. RESULTS	•••	5
3.1 Oxidation Behavior	•••	5
3.2 Thermal Fatigue Resistance	••	6
4. SUMMARY OF RESULTS	•••	7
REFERENCES	••	8

LIST OF TABLES

<u>Table</u>		Pages
1	Summary of Alloy Compositions	9
2	Tensile Properties of Test Materials at 760°C (1400°F)	10
3	Summary of 982°C (1800°F) Stress-Rupture Properties	11
4	Dimensions and Identification of Test Specimens	s 12
5	Weight Change Data for ODS Specimens	13
6	Accumulated Thermal Cycles to First Crack Initiation for ODS Specimens	14
7	Summary of Crack Propagation for ODS Specimens.	15-20

ν

LIST OF FIGURES

.

Figure	Ē	ages
1	Fluidized Bed Thermal Fatigue Facility	21
2	Double-Edge Wedge Test Specimen and Holding Fixture	22
- 3	Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 262 (HRC 38)	23
4	Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 264 at Various Hardnesses	24
5	Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 265 (HRC 39)	25
6	Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 266 at Various Hardnesses	26
7	Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 754	27
8	Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 956	28
9	Typical Appearance of Experimentally Fabricated 262 and 264 Alloy Double-Edge Wedge Specimens As-Received	29
10	Typical Appearance of Experimentally Fabricated 265 and 266 Alloy Double-Edge Wedge Specimens As-Received	30
11	Typical Appearance of Experimentally Fabricated 754 and 956 Alloy Double-Edge Wedge Specimens As-Received	31
12	Appearance of Selected Specimens After Indicated	1 32-36

SUMMARY

Thermal fatigue and oxidation testing described in this report are part of a general study of thermal fatigue being conducted by the NASA-Lewis Research Center. Earlier work in the study has been reported in NASA CR-72738, CR-121211, CR-121212, CR-134775, CR-135272, CR-135299, and CR-159798. All testing on this contract has been conducted employing fluidized bed heating and cooling. Testing in this program was over the temperature range 1130°/357°C employing double-edge wedge specimens.

Thermal fatigue and oxidation data were obtained on 24 specimens representing six different experimental oxide dispersion-strengthened (ODS) systems. One of the alloys contained three levels of hardness. All systems were investigated in both bare and coated conditions.

Specimens in the bare condition of 265 HRC 39 and 266 HRC 37 survived 6000 cycles without cracking on the small radius of the double-edge wedge specimen. A coated specimen of 262 HRC 38, 266 HRC 37, and 266 HRC 40 also survived 6000 cycles without cracking. Another coated specimen of the 262 HRC 38 alloy and a coated specimen of the 264 HRC 43 alloy survived 5250 cycles before the appearance of cracks. Alloy 956 developed transverse cracks prior to 50 thermal cycles in both the bare and coated conditions. Compared to alloys previously examined, these alloys exhibited little weight change. Substantial separation of the coating from the base metal on the 754 specimen occurred after 2500 thermal cycles. Similarly the 265 HRC 39 specimen exhibited coating separation after 3000 cycles. Some slight separation of the coating from the base metal on the 264 HRC 40 specimen appeared upon completion of 5000 thermal cycles. This slight separation was near the sample ends and hence the specimen was retained and completed 6000 thermal cycles.

1. INTRODUCTION

This report, NASA CR-159842, on Contract NAS3-17787 summarizes thermal fatigue and oxidation data for 24 specimens of oxide dispersion-strengthened (ODS) alloys. A coating on each of the nine investigated alloy compositions or fabricating techniques was also evaluated in this program. The specimens of double-edge wedge cross-section were cycled in a fluidized bed facility over the temperature range 1130°/357°C (2065°/675°F) for periods up to 6000 cycles. Heating and cooling times were 180 seconds each, for a total thermal cycle duration of 360 seconds. Weight changes, as well as cycles crack initiation and crack propagation, were obtained in the program.

Thermal fatigue data obtained previously have been reported on this contract. (1-2) Additional thermal fatigue data obtained in the IITRI fluidized bed have been reported on Contracts NAS3-14311(3-5), NAS3-18942, (6) and NAS3-19696. (7) This effort comprises part of the general study of thermal fatigue being conducted by the NASA-Lewis Research Center. Further details of the study have been reported by Spera et al., (8,9) Bizon et al., (10-12) and Howes.(13)

Any material exposed to repeated rapid thermal transients is subjected to tensile failure by thermal fatigue, also sometimes defined as thermal shock. The thermal fatigue degradation mechanism involves accumulation of damage during multiple thermal cycles. Thermal shock on the other hand, generally involves failure in relatively few cycles. The difference generally lies in the tensile ductility of the material within the temperature range of the imposed thermal cycle. Ductile materials tend to fail by thermal fatigue, whereas brittle materials fracture by thermal shock.

Material properties, other than ductility, important in thermal fatigue are hot tensile strength, elastic modulus, thermal conductivity, and thermal expansion. Oxidation resistance apparently also plays a role in thermal fatigue. The interrelationship of material properties, the imposed thermal cycle, and component geometry defines the ability of a structure to resist thermal fatigue. However, the synergistic effects of these variables are quite complex and prediction of thermal fatigue behavior from basic properties is difficult. A major objective of the current NASA fatigue program is to develop and verify a usable model for thermal fatigue by comparing experimental data with computer-derived predictions of thermal fatigue life.

Thermal fatigue data in this report was generated using a multiple retort fluidized bed test facility consisting of one heating bed and two cooling beds. Glenny and coworkers reported the first use of fluidized beds to study thermal fatigue. (14) Fluidized bed heating and cooling provides very rapid heat transfer for both portions of the thermal cycle. An additional advantage of fluidized bed testing is that it provides a ready means of exposing a number of samples under identical test conditions. In this program, 18 test specimens were exposed simultaneously.

The objective of the thermal fatigue test program was threefold:

- 1) Determine the number of imposed thermal cycles to initiation of the first trans-verse crack.
- 2) Obtain data on the rate of propagation of the three largest cracks.
- 3) Generate qualitative oxidation data for the various materials.

Cycling of test specimens was generally continued until the three largest cracks reached a length of about 10 mm (0.4 in.). This corresponds to the approximate width of the tapered section of the test specimen. In some cases, exposure of specimens was continued in order to obtain oxidation data for specific alloys.

2. EXPERIMENTAL PROCEDURE

2.1 Materials

Thermal fatigue testing in this program was performed on 24 specimens of bare and coated oxide-dispersion strengthened alloys consisting of six alloys, one of which had three different hardness levels. All test specimens were supplied by the NASA-Lewis Research Center.

A summary of the compositions of the experimental alloys is shown in Table 1. The compositional data was supplied by NASA-Lewis Research Center. The coating was a commercial NiCrAlY electron-beam vapor-deposited overlay coating.

Tensile properties at 760°C (1400°F) and stress-rupture properties at 982°C (1800°F) of the test alloys are summarized in Tables 2 and 3, respectively. These data were generated at the NASA-Lewis Research Center on the same heats of the alloys used to fabricate the thermal fatigue specimens.

2.2 <u>Test Facility and Procedure</u>

The fluidized bed thermal fatigue test facility is shown schematically in Figure 1. This equipment includes one hot bed mounted between two cold, or intermediate, temperature beds. Although the facility contains two cooling beds, only one

cooling bed was employed in this program. The lower bed temperature is maintained by a water-cooled heat exchanger for testing near ambient temperatures. For testing at the 357°C (675°F) intermediate bed temperature in this program, the heat exchanger was removed and the desired intermediate bed temperature was maintained by the heating elements. Heat transfer media in both hot and cold beds was 28-48 mesh tabular alumina.

During testing in this program, 18 test specimens were cycled simultaneously in a single holding fixture. At any time during testing, the holding fixture was either in the hot bed or the intermediate bed. The transfer carriage, operated by air cylinders, can be programmed for any combination of heating and cooling time. Transfer time between beds was about 5 s, and the heating and cooling time 180 s each in the current test program.

Thermal fatigue data in this program was obtained using the nominal 102 mm long double-edge wedge simulated blade shape and the holding fixture, shown in Fig. 2. Test specimens were supported by 6.3 mm wide notches machined 7 mm deep in the ends of the specimen. The notched specimens provided ease of fabrication and specimen removal from the fixture for examination. In addition, the potential for superimposition of mechanical stresses due to the fixture was minimized.

The holding fixture, shown in Fig. 2, capable of retaining 18 test specimens, was fabricated from austenite stainless steel (310). End plates were 12.7 mm thick 310 stainless steel with a radius 0.25 mm less than the specimen notches. The side supports were fabricated from 304 stainless steel channel. During testing, the test fixture also generated thermal fatigue cracks and required frequent replacement.

Thermal fatigue testing was conducted by cycling a holder of up to 18 test specimens for a total of 6000 cycles. In addition, a dummy sample was mounted at each end of the holder to eliminate end effects. Of the original 18 specimens, only 12 completed the full 6000 thermal cycles. The remaining 6 samples were removed earlier because of excessive cracking or coating separation. In addition, six samples were added to the group at the 3000 thermal cycle milestone. Four (4) of these samples did not develop cracks, although they had accumulated 3000 thermal cycles at the termination of the testing. Thus these 24 test specimens comprised test Series 6 of Contract NAS3-17787.

During testing at 1130°/357°C (2065°/675°F), specimens were removed at selected intervals for gravimetric analysis and crack length measurements. The nominal removal times were 25, 50, 100, 200, 300, 500, 700, and 1000 cycles, followed by examination every 500 cycles for exposures greater than 1000 cycles. Lengths of the three longest cracks were determined visually using a microscope at 30X. The number of cycles to crack initiation was taken as the average of the number of cycles at the last inspection without cracks and the number of cycles at the first inspection with a crack. However, specimens were generally retained in the test program after crack initiation to obtain additional oxidation data.

Table 4 summarizes the dimensions and identification of the 24 test specimens evaluated in the program. Both the as-received and final dimensions are shown. Data on total thermal cycles imposed on each specimen are included for reference.

3. RESULTS

3.1 Oxidation Behavior

Weight change data for the 24 test specimens are contained in Table 5. Figures 3 to 8 are plots of the oxidation data for these same specimens.

Oxidation data in Table 5 and Figures 3 to 8 are expressed in percent of the original weight, since oxidation was not uniform over the test specimen. In general, the majority of the oxidation occurred on the wedge areas of the specimen. This is because these areas were exposed to the maximum temperature of the thermal cycle for longer periods than the thicker center section of the specimen. Thermocouple calibration tests reported in NASA CR-121211(4) indicated that for double-edge wedge specimens, the center section of the specimen is nominally 17°-30°C (31°-54°F) less than the maximum temperature of the wedge section at the end of a 180 s heating cycle. Thermocouple calibration data also indicate that the wedge sections of the specimen were within 25°C of the 1130°C maximum temperature for the average time of about 75 s, at the end of the 180 s. Qualitatively, therefore, the cumulative exposure was equivalent to about 20 hr at 1105° ± 25°C (2020° ± 45°F) for each 1000 cycles of testing. This corresponds to 120 hr for 6000 cycle exposure. Rapid thermal cycling, however, accelerates oxidation significantly in comparison to isothermal exposure.

Overall, the oxidation behavior of all of the oxidedispersion hardened alloys was considerably less than most alloys previously studied (1-5) during the course of this program. In general, the coated samples lost weight steadily, while the bare samples initially gained weight and then lost weight. For example, Fig. 3 shows that after 6000 thermal cycles, the uncoated 262 HRC 38 samples were at the original weight. This occurred after they had first gained approximately 0.1% weight after 3000 cycles. On the other hand the coated 262 HRC 38 samples steadily lost weight to the 0.1% level at 6000 cycles. Similar behavior was noted for the 264 alloy (Fig. 4). The 754 alloy showed the reversed to be true (see Fig. 7).

Both the 265 and 266 alloys (Figs. 5 and 6, respectively) show a slow and very small weigh: loss for the coated specimens and sporadic, moderate weight losses for the uncoated specimens.

Since all weight losses (or gains) were small compared to that shown in previous thermal fatigue tests, the comparisons above should be made only with the overall thermal cycling data taken into consideration (i.e., thermal crack growth).

3.2 Thermal Fatigue Resistance

Accumulated thermal cycles to first crack initiation for the ODS specimens are summarized in Table 6. In this table, the cycles to first crack initiation on both the 0.64 mm small radius and on the 1.02 mm large radius are included for comparison. Generally, cracking of the large radius is of lesser importance, particularly if preceded by cracking of the small radius . The emergence of thermal cracks on the small radius influences the stress distribution in the specimen. This can increase the cycle time to initiation of cracks on the large radius.

Cycles to first crack in Table 6 is based on the mean between the last inspection period without a crack and the inspection period when a crack was first visible. For example, if no cracks were observed at 100 cycles but became visible at 200 cycles, origination of the first crack is considered to be 150 cycles. Accordingly, thermal fatigue data in Table 6 have an inherent potential error varying from ±12 cycles to ±150 cycles for exposure less than 1000 cycles. The error is ±250 cycles for exposures above 1000 cycles, based on the inspection periods described previously.

Table 7 contains optically measured crack lengths for the three longest cracks on each ODS specimen as a function of accumulated cycles. Crack lengths shown are measured on both top and bottom surfaces and averaged to obtain the mean crack length. Each of the cracks is located from the bottom (numbered end) of the test specimen. Also identified in these tables is the total number of observable cracks on both the small (0.64 mm) and large (1.02 mm) radii.

Figures 9 through 11 show the as-received appearance of typical experimental oxide-dispersion strengthened alloys. Figure 12 shows the appearance of typical materials after thermal cycling. In all photographs, the small radius is at the right.

Fatigue data in Tables 6 and 7 indicate that the lowest fatigue resistance was exhibited by the 956 bare and coated alloy, with cracking of the small radius occurring prior to the accumulation of 50 thermal cycles. The highest thermal fatigue cracking resistance appeared to be for the 265 HRC 39

and the 266 HRC 37 alloys, since none of these alloys exhibited cracking during the tests in either the bare or coated conditions. Following closely after these alloys was 266 HRC 40 with no cracking observed to 6000 cycles when coated, and to 4250 cycles in the bare condition.

Ranking the uncoated alloys in terms of small radius crack initiation results in the following order of increasing fatigue resistance: 956, 264 HRC 40, 262 HRC 38 (with one exception), 264 HRC 43, 754, 264 HRC 38, 266 HRC 40, 265 HRC 39, and 266 HRC 37.

4. SUMMARY OF RESULTS

Thermal fatigue crack propagation and oxidation data on the 24 ODS test specimens at 1130°/357°C indicate the following conclusions:

- The oxidation resistance for all of the ODS alloys tested was very high. The poorest oxidation resistance was obtained for alloys 265 HRC 39 and 266 HRC 37; however, this oxidation was still relatively small compared to other alloys previously studied.
- The highest resistance to thermal fatigue cracking for materials in the bare condition was exhibited by 265 HRC 39 and 266 HRC 37 which survived 6000 cycles without cracking.
- 3) The highest resistance to thermal fatigue cracking for coated materials was exhibited by alloys 262 HRC 38, 266 HRC 37, and 266 HRC 40 which survived 6000 cycles without cracking. Also coated alloys 265 HRC 39 and 754 had not cracked after a limit of 3000 cycles was imposed. One coated sample each of the 262 HRC 38 and 264 HRC 43 alloys survived 5250 cycles before crack initiation.

REFERENCES

- 1. Howes, M.A.H., "Thermal Fatigue and Oxidation Data on TAZ-8, MAR-M 200, and Udimet 700 Superalloys," NASA CR-134775, 1975.
- 2. Hill, V.L., and Humphreys, V.E., "Thermal Fatigue and Oxidation Data of Superalloys Including Directionally Solidified Eutectics," NASA CR-135272, June 1977.
- 3. Howes, M.A.H., "Thermal Fatigue Data on 15 Nickel- and Cobalt-Base Alloys," NASA CR-72738, 1970
- 4. Howes, M.A.H., "Additional Thermal Fatigue Data on Nickel- and Cobalt-Base Superalloys," Part 1, NASA CR-121212, 1973.
- 5. Howes, M.A.H., "Additional Thermal Fatigue Data on Nickel- and Cobalt-Base Superalloys," Part 2, NASA CR-121212, 1973.
- 6. Hill, V.L., and Humphreys, V.E., "Thermal Fatigue and Oxidation Data for Alloy/Braze Combinations," NASA CR-135299, 1977.
- Hill, V.L., and Humphreys, V.E., "Thermal Fatigue and Oxidation Data for Directionally Solidified Mar-M 246 Turbine Blades," NAS CR-159798, 1980.
- Spera, D.A., and Grisaffe, S.J., "Life Prediction of Turbine Components: On-Going Studies at the NASA-Lewis Research Center," NASA TM X-2664, 1973.
- 9. Spera, D.A., Howes, M.A.H., and Bizon, P.T., "Thermal Fatigue Resistance of 15 High-Temperature Alloys Determined by the Fluidized-Bed Technique," NASA TM X-52975, March 1971.
- 10. Bizon, P.T., and Oldrieve, R.E., "Thermal Fatigue Resistance of NASA WAZ-20 Alloy with Three Commercial Coatings," NASA TM X-3168, 1975.
- Bizon, P.T., and Spera, D.A., "Thermal-Stress Fatigue Behavior of Twenty-Six Superalloys," ASTM Special Technical Publication 612, pp. 106-122, 1976.
- 12. Bizon, P.T., and Spera, D.A., "Comparative Thermal Fatigue Resistances of Twenty-Six Nickel- and Cobalt-Base Alloys," NASA TN D-8071, 1975.
- Howes, M.A.H., "Evaluation of Thermal Fatigue Resistanceof Metals Using the Fluidized Bed Technique," ASTM Special Technical Publication 520, 1973, pp. 242-254.
- Glenny, E., Northwood, J.E., Shaw, S.W.K., and Taylor, T.A., "A Technique for Thermal-Shock and Thermal-Fatigue Testing Based on the Use of Fluidized Solids," J. Inst. Metals, Vol. 87, 1958-1959, pp. 294-302.

	Heat				Analyze	ed Comp	osition,	wt. %	, N			Total	
Alloy	<u>No.</u>	<u>A1</u>	C	Cr	Fe	Ni	Ta	<u> </u>	S	N	<u>Y₂O₃</u>	<u>O (ppm)</u>	Heat Treatment
ODS NiCrAl	262*	4.61	.05	15.78	.28	Bal	<.01		<.002	.032	1.93	5345	slow heat treat ^a
ODS NiCrAl	264 [*]	4.61	.05	15.65	.64	Bal	<.01		<.002	.032	1.93	5507	fast heat treat ^b
ODS NiCrAlTa	265*	4.69	.05	15.80	.24	Bal	1.76		<.002	.032	1.90	5165	slow heat treat ^a
ODS NiCrAlTa	266*	4.77	.05	15.90	.23	Bal	1.25		<.002	.031	1.93	5270	slow heat treat ^a
MA 754	DT0065B	.30	.07	20.24	1.34	Bal		.44			. 59		vendor heat treat
MA 956	DH0001F3	9.09	.02	20.60	Bal			.32	.017		.76		vendor heat treat

^aslow heat treat: into furnace set at 1204°C (2200°F); raise temp to 1260°C (2300°F) in 4 hrs; hold 1 hr, raise temp to 1316°C (2400°C) in 2 hrs; hold 1 hr; air cool.

^bfast heat treat: into furnace set at 1204°C (2200°F); raise temp to 1343°C (2450°F) in 2 hrs; hold 1 hr; air cool.

*Heat of material produced by Stellite Division of Cabot Corporation under NASA Contract NAS3-17806. Additional informationmay be found in NASA CR-134901.

Table 1

COMPOSITION AND HEAT TREATMENT

Table 2 TENSILE PROPERTIES OF TEST MATERIALS AT 760°C (1400°F)

		FENSILE	PROPERTIE	ES	 De Jaco	
	Propo L:	ctional imit	Ultimate Str	Tensile ength	tion of	
<u>Alloy/Heat</u>	MN/m^2	ksi	MN/m^2	<u>ksi</u>	Area, <u>%</u>	<u>Ductivity^a</u>
262 HRC 38	729.5	105.8	777.7	112.8	17.1	.188
264 HRC 38	734.3	106.5	775.7	112.5	16.8	.184
264 HRC 40	739.1	107.2	770.8	111.8	17.0	.186
264 HRC 43	718.4	104.2	768.8	111.5	18.8	.209
265 HRC 39	794.3	115.2	835.6	121.2	10.6	.112
266 HRC 37	817.0	118.5	854.9	124.0	11.3	.120
266 HRC 40	803.2	116.5	834.3	121.0	7.7	.080
MA 754	317.2	46.0	366.8	53.2	68.4	1.151
MA956	144.8	21.0	151.7	22.0	>98	

All results are average of duplicate tests except for 266 HRC 40 which is a single test.

Crosshead speed = 2.5 mm (0.1 in.)/min.

^aDuctility =
$$\ln \left(\frac{100}{100 - \text{Reduction of Area in Percent}} \right)$$

	Stress-	Rupture	Properties	Reduc-	2
	Str	ess	Rupture.	tion of Area.	7'
<u>Alloy/Heat</u>	MN/m^2	<u>ksi</u>	hrs	%	Ductivity
262 HRC 38	103	15.0	2.8	25.2	.290
	100	14.5	9.6,35.6	19.4	.218
	97	14.0	52.3	17.1	.188
	93	13.5	78.1,375.0	13.3	.143
264 HRC 38	100	14.5	179.7,250.3	16.4	.179
264 HRC 40	100	14.5	32.5	27.1	.316
	97	14.0	342.7	20.3	. 227
264 HRC 43	103	15.0	38.1	16.7	.183
	, 100	14.5	123.8	22.4	.254
265 HRC 39	103	15.0	67.8,262.1	13.3	.143
266 HRC 37	103	15.0	59.5	8.4	.088
	100	14.5	136.6,200.6	10.5	.112
266 HRC 40	100	14.5	201.0	16.1	.175
MA 754	110	16.0	>5757, >5613		
	124	18.0	>4211		
MA 956	90	13.0	0.1	61.5	.955
	83	12.0	0.6	50.3	.700
	76	11.0	3.0	44.6	.590
······································					

			TA	BLE	3	÷	
			-				

SUMMARY OF 982°C (1800°F) STRESS-RUPTURE PROPERTIES

^aDuctility = $\ln \left(\frac{100}{100 - \text{Reduction of Area in Percent}} \right)$

Table 4

	Specimen	Measured	Initią	1 Dímensio	on, mm	Total	Final	Dimensi	on, mm
A11 ow	fightion	Radius, mm	T	TT- J-1	Thick-	Test			Thick-
AIIOy	11Cal 1011	<u>Small Large</u>	Length	Width	ness	Cycles	Length	Width	ness
262 HRC 38	11	0.69 .89/.81	102.46	31.55	6.43	6000	102.57	31.93	6.50
262 HRC 38	8	0.66 .79/.89	102.43	31.55	6.69	4500	102.62	31.75	6.51
262 HRC 38	6	.38/.58 .74/.81	102.44	31.55	6.44	3000	102.49	31.60	6.48
262 HRC 38 coated	7	0.69 .97/.99	102.39	31.80	6.72	6000	102.49	31.88	6.75
262 HRC 38 coated	3	0.71 0.94	102.39	31.72	6.69	4500	102.39	31.88	6.72
264 HRC 38	3	.51/.48 .81/.89	102.39	31.50	6.47	6000	102.49	31.88	6.56
264 HRC 38 coated	4	.64/.69 .94/.89	102.41	31.78	6.71	6000	102.41	31.85	6.75
264 HRC 40	2	0.64 .74/.71	102.41	31.52	6.46	3000	102.59	31.83	6.55
264 HRC 40 coated	1	0.71 .84/.91	102.41	31.80	6.69	6000	102.38	31.93	6.72
264 HRC 43	2	0.66 .76/.79	102.36	31.55	5.51	3000	102.57	31.83	5.58
264 HRC 43 coated	4	0.66 .84/.66	102.49	31.81	5.76	6000	102.69	31.93	6.44
265 HRC 39	6	0.61 1.14	102.36	31.55	6.41	6000	102.57	31.65	6.39
265 HRC 39 coated	1	.66/.74 0.89	102.54	31.95	6.27	3000	102.41	31.93	6.40
265 HRC 39 coated	2	.64/.86 .94/.46	102.46	31.78	6.33	3000	102.44	31.83	6.36
266 HRC 37	1	0.71 .79/.94	102.39	31.52	6.51	6000	102.54	31.67	6.63
266 HRC 37 coated	3	0.66 1.09	102.74	31.80	6.72	6000	102.49	31.88	6.74
266 HRC 40	2	0.64 .74/.71	102.26	31.55	6.34	6000	102.41	31.80	6.42
266 HRC 40 coated	1	0.74 .97/.71	102.44	31.76	6.62	6000	102.23	31.93	6.64
754	8	0.69 .84/.79	102.41	31.24	6.48	6000	102.67	31.55	6.55
754	3	0.66 00 ^a	102.41	31.32	6.49	3000	102.57	31.39	6.53
754 coated	1	.58/.69 .86/.89	102.51	31.60	6.59	2500	102.49	b	b
754 coated	2	0.74 .71/.86	102.64	31.62	6.49	3000	102.44	31.83	6.36
956	1	0.70 .91/.89	102.13	31.39	5.54	1500	102.13	31.39	5.54
956 coated	4	0.53 .86/.81	102.11	31.67	6.72	1500	102.08	31.65	6.74

^aThe radius was comprised of two curved segments, separated by a flat segment (curved segment radii were 0.61 and 0.56 mm).

^bCoating peeled off specimen (see Fig. 12(h)).

Table 5									
WEIGHT	CHANGE	DATA	FOR	ODS	SPECIMENS				

	Sample Identi-	Starting Weight		-				Weig	ht Chan	ge at G	iven Cv	cles. 2						
Material	fication	g	100	200		500	. 700	1000	1500	2000	2500	3000	3500	4000	4500	5000	.5500	6000
262 HRC 38 262 HRC 38 (coated)	11 7	119.8454 124.4353	.013 .001	.014 .001	.014 .002	.017	.022	.031 .003	.054	.092 013	.136 036	.138 092	.118 099	.032 088	0 105	.003 108	.007 111	.011 114
262 HRC 38 262 HRC 38 (coated 262 HRC 38	8 3 6	119.7063 125.9527 120.1453		- - -		.021 .001 .014		.036 0 .017	.067 016 .013	.067 019 .009	.086 022 010	.078 032 011	.075 040	.074 046	.075 049			
264 HRC 38 264 HRC 38 (coated)	3 4	120.2908 124.4566	.019 .001	.017 .002	.018 .002	.026	.034	.046 .001	.063 002	.088 004	.118 003	.140 026	.130 032	.106 027	.080 039	.076 040	.080 042	.064 042
264 HRC 40 264 HRC 40 (coated)	2 1	120.3697 125.3003	.016 .004	.015	.016 .004	.020 .003	.028	.039 .004	.063 001	.094 005	.130 011	.155 046	_ 075	_ 067	_ 077	078	080	_ 084
264 HRC 43 264 HRC 43 (coated)	2 4	109.3924 115.7103	.016	.016 .001	.017 .002	.021 .001	.028 .002	.039 001	.051 007	.088 026	.125 045	.164 079	088	_ 090	093	093	094	107
265 HRC 39 265 HRC 39 (coated) 265 HRC 39 (coated)	6 1 2	119.7075 122.8130 121.6602	.016 .002 -	.012 .002	.012 .003	.015 .003 .001	.020 .004	.031 .004 .005	.059 .002 .005	.100 006 .001	.106 003 001	241 006 011	68	75 -	77 -	77 -	77 	78 -
266 HRC 37 266 HRC 37 (coated	1 3	118.6671 123.8250	.014 0	.012 0	.011 0	.003 .001	003 .002	.005 .002	.012 001	057 003	129 003	52 014	56 024	63 037	65 046	65 048	65 049	65 087
266 HRC 40 266 HRC 40 (coated)	2 1	119.6235 124.5271	.013 0	.012 0	.012 0	.012 .001	.014	.019 .001	.036 0	.062 007	.093 009	010 026	035 032	089 041	111 054	110 069	106 071	108 090
754 754 (coated) 754 (coated) 754	8 1 2 3	126.3525 129.9261 130.2482 126.0427	.002 0 - -	009 0 - -	018 0 - -	034 0 .002 .005	051 0 - -	069 .006 .003 020	087 .006 001 054	101 .016 003 063	116 .021 006 074	143 - 014 087	153 -	150	168	171	175 -	180 -
956 956 (coated)	1 4	98.9587 113.2309	.025 .007	.027 .013	.033 .018	.036 .024	.044	.050	.047 ^a .039 ^a	. – –	-	· _	-		-	-	-	-

^aSpalling of material from base of thermal fatigue cracks.

Table 6

A11oy	Condition	Specimen Identi- fication	Cycles to F Small Radius 0.64 mm (0.025 in.)	irst Crack Large Radius 1.02 mm (0.040 in.)
262 HRC 38	Bare Bare Bare Coated Coated	11 8 6 7 3	1750 1250 >3000ª >6000 5250	>3000ª >6000
264 HRC 38	Bare Coated	3 4	3750 1750	4750
264 HRC 40	Bare Coated	2 1	850 1750	5750
264 HRC 43	Bare Coated	2 4	1750 5250	
265 HRC 39	Bare Coated Coated	6 1 2	>6000 >3000a >3000a	>6000 >3000ª >3000ª
266 HRC 37	Bare Coated	1 3	>6000 >6000	>6000 >6000
266 HRC 40	Bare Coated	2 1	4250 >6000	>6000
754	Bare Bare Coated Coated	8 3 1 2	1750 >3000a >3000a >3000 ^a	>3000ª >3000ª >3000ª
956	Bare Coated	1 4	12 37	400 75

ACCUMULATED THERMAL CYCLES TO FIRST CRACK INITIATION FOR ODS SPECIMENS

^aDid not develop cracks during 3000 applied cycles (most of these samples were added after others had been removed).

Т	a	Ь]	.e	7

SUMMARY OF CRACK PROPAGATION FOR ODS SPECIMENS

Edge Radius, mm	Cycles	I Front	st Cra Back	ck Avg	Crack 2 Front	Length nd Cra Back	, mm <u>ck</u> Avg	3 Front	rd Cra Back	ck Avg	Total Cracks Observed
	·	······		 Speci	 men 262	-11 HR	C 38				
Distance	from bo	ttom, m	m:	69.9	· · · · · · · · · · · · · · · · · · ·		31.8			60.3	4
. 69	$ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 $	No cra 2.0 5.1 6.4 6.4 7.6 7.6 7.6 7.6 8.1	acks 2.3 5.3 5.8 6.4 7.4 7.9 8.1 8.1 8.1	2.2 5.2 6.1 6.4 7.5 7.8 7.9 7.9 8.1	$1.0 \\ 1.0 \\ 2.8 \\ 2.8 \\ 4.3 \\ 5.6 \\ 6.1$	1.0 1.0 1.8 3.3 4.1 5.6 6.9	1.0 1.0 2.3 3.1 4.2 5.6 6.5	$1.3 \\ 1.3 \\ 1.3 \\ 1.8 \\ 3.1$.76 1.3 1.8 1.8 2.8	1.0 1.3 1.6 1.8 3.0	0 1 2 6 6 13 13 14
		•	•	Spec	imen 26	2-8 HR	<u>C 38</u>				
Distance	from bo	ottom, m	m:	41.3	r	•	50.8			55.5	
.66	$ \begin{array}{r} 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ \end{array} $	No cra .76 .76 1.5 1.5 2.3 3.8 4.6	1.8 25 25 51 1.8 2.5 4.3	.51 .51 .88 1.0 2.1 3.1 4.5	.76 .76 1.3 1.3 1.3 1.3 1.3 1.3	.51 .76 .76 .76 1.0 1.0 1.0	.64 .76 1.0 1.0 1.2 1.2 1.2	.25 .25 1.5 1.5 2.5 4.3 4.6	.76 1.0 1.0 2.8 3.6 4.1	.51 .63 1.3 1.3 2.7 4.0 4.4	0 3 11 11 11 14 14

Table 7 (cont.)

Edge		Crack Length, mm									
Radius,	0	1 Exert	<u>.st Cra</u>	CK	2	nd Cra	ick	Theorem	Srd Cra	<u>ck</u>	Cracks
	cycles	Front	back	<u>Avg</u>	Front	васк	_Avg_	Front	Back	Avg	Observed
			Sp	ecimen	264-3 H	RC 38	(coated)	<u>)</u>			
Distance	from bo	ttom, m	m:	60.3			41.3			27.0	
.48/.51	3500 4000 4500 5000 5500 6000	No cra .76 1.5 1.8 2.0 2.0	icks .76 1.0 1.5 1.5 1.5	.76 1.3 1.7 1.8 1.8	1.5 2.3 2.5 3.6	1.5 2.0 3.1 3.6	1.5 2.2 2.8 3.6	2.0 2.5 3.8 4.6	1.5 2.3 2.8 5.1	1.8 2.4 3.3 4,9	0 1 4 7 7 12
			Sp	ecimen	264-4 H	RC 38	(coated)) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Distance	from bo	ttom, m	m:	47.6	· ·		38.1			68.2	
.64/.69	$ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 $	No cra 1.0 3.8 6.1 6.4 6.6 7.6 8.1 8.6 9.4	acks 1.0 4.1 6.9 7.1 8.1 8.6 9.1 9.9	1.0 4.0 6.6 6.7 6.9 7.9 8.4 8.9 9.7	1.8 4.6 4.8 5.6 6.4 6,4 7.9 9.1	2.5 5.1 5.6 5.8 7.1 7.9 8.4 9.1	2.3 4.8 5.2 5.7 6.8 7.2 8.2 9.1	4.6 6.9 7.1 7.6 8.4 8.4 8.8 9.7	5.1 7.6 7.6 8.1 8.4 9.4 9.4 10.1	4.8 7.4 7.9 8.9 9.1 9.9	0 1 4 4 4 6 6 6 6
Distance	from bo	ttom, m	ım:	25.4			30.1			68.2	
.89/.94	4500 5000 5500 6000	No cra .25 .25 .76	icks .25 .25 .25	.25 .25 .51	.25 .25 .25	- - .25	.13 .13 .25	.76 .76 .76	.25 .25 .25	.51 .51 .51	0 3 9 13

Table 7(cont.)

Edge			et Cra	ock	Crack 7	Length	i, mm		rd Cra	ck	Total
	Cycles	Front	Back	_Avg_	Front	Back	_Avg_	Front	Back	Avg	Observed
				Speci	.men 264	-2 HRC	40				
Distance	from bo	ottom, m	m :	74.6			25.4			50.8	
.64	700 1000 2500 2500 3000 Remove	No cra 2.3 5.6 7.6 8.6 9.4 ed at 30	ncks 1.8 5.6 5.8 7.1 7.6	2.0 5.6 6.7 7.9 8.6 cles	3.6 5.8 7.1 7.9	3.1 5.1 6.1 6.9	3.3 5.5 6.6 7.4	1.5 4.8 6.4 8.1	2.0 4.3 5.8 6.9	1.8 4.6 6.1 7.5	0 1 4 5 6 6
			Sp	ecimen	264 - 1 H	IRC 40	(coated	<u>1)</u>		· .	
Distance	from bo	ottom, m	m:	60.3			46.0			42.8	
.71	$ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 $	No cra .25 .25 .25 .25 .25 .25 .25 .25 4.8 5.8	acks 1.5 2.0 2.5 2.8 2.8 2.8 2.8 5.8 6.9	1.0 1.3 1.4 1.6 1.6 1.6 1.6 5.3 6.4	.25 1.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.5 2.3 2.3 3.1 3,1 3.6 3.6 3.6 3.6	1.0 1.8 2.2 2.6 2.6 2.8 2.8 2.8 2.8	1.5 2.0 2.0 2.3 2.5 6.4 7.9	2.0 2.0 2.5 5.1 5.1 7.1 7.9	1.8 2.0 2.3 3.7 3.8 6.8 7.9	0 1 2 3 4 4 4 4 9 9
Distance	from bo	ottom, r	nm:	41.3			54.0			65.1	
.84/.91	5500 6000	No cra .25	acks -	.13	.25	.51	. 38	.25	.25	.25	0 5

Table 7 (cont.)

Edge			lat Cr		Crack Length, mm						
mm	Cvcles	Front	- Back	<u>Avo</u>	Front	Znu Ur Back		Front	Back	AVG	Obcorred
	0/0100	110110		<u></u>	<u>110110</u>		<u> </u>	11011	Dack	_Avg_	Observeu
				Speci	men 26	4-2 HR	<u>C 43</u>				·
Distance	from bo	ottom,	mm :	28.6			50.8			71.4	
.66	1500 2000 2500 3000 Remove	No cr 4.6 6.9 8.1 ed at 3	acks 3.8 6.1 7.9 3000 cyc	4.2 6.5 8.0	5.6 6.9 7.9	4.8 6.4 7.9	5.2 6.6 7.9	5.6 7.6 8.4	4.8 6.6 7.9	5.3 7.1 8.1	0 4 7 7
				<u>S</u>	pecime	n 754-	8	•			
Distance	from bo	ottom,	mm:	22.2			33.3			76.2	
. 69	$ \begin{array}{r} 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \\ \end{array} $	No cr .25 1.0 3.6 4.3 4.6 4.6 5.8 5.8	acks .76 1.0 3.6 3.8 3.8 3.8 3.8 3.8 4.6 4.6	$\begin{array}{c} .51 \\ 1.0 \\ 3.6 \\ 3.7 \\ 4.1 \\ 4.2 \\ 4.2 \\ 5.2 \\ 5.2 \\ 5.2 \end{array}$	2.3 2.3 3.1 3.8 3.8 3.8 4.1	2.02.03.13.83.84.64.6	2.2 2.2 3.1 3.8 3.8 4.2 4.4	$ \begin{array}{r} 1.3 \\ 2.0 \\ 3.6 \\ 4.3 \\ 4.8 \\ 5.6 \\ 6.1 \\ \end{array} $	1.3 2.0 2.8 3.8 3.8 5.1 5.3	$ \begin{array}{r} 1.3 \\ 2.0 \\ 3.2 \\ 4.1 \\ 4.3 \\ 5.4 \\ 5.7 \\ \end{array} $	0 1 4 5 5 7 7 8 9
				S	pecime	n 956-	1_				
Distance	from bo	ottom,	mm :	74.6			61.9			44.5	
.69	25 50 100 200 300 500 700 1000 1500 Remove	6.4 6.4 8.6 9.4 9.7 9.9 10.4 10.4 2d at 1	6.4 6.4 8.4 9.4 9.4 9.4 10.7 10.7 500 cyc	6.4 6.4 8.5 9.4 9.6 9.7 10.6 10.6 1es	3.3 6.6 7.9 8.4 9.4 9.9 9.9	3.3 6.1 8.1 8.4 9.4 10.4 10.4	3.3 6.4 8.0 8.4 9.4 10.2 10.2	2.0 5.1 6.4 6.4 9.4 9.9 10.2	2.0 5.3 6.6 7.1 8.4 9.4 9.4	2.0 5.2 6.5 6.9 8.9 9.7 9.9	1 10 12 12 13 13 13 13

Table	7	(cont.)
TUDIC	'	(00000.)

Edge					Crack	Length	, mm		1.0	Total	
Radius,	<u>Cycles</u>	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	Observed
Distance	from bo	ottom, r	mm:	22.2	• •		71.4			34.9	
.91/.89	300 500 700 1000 1500 Remove	No cra 2.5 3.8 4.6 4.6 ed at 1	acks 2.8 6.9 7.6 7.9 500 cyc	2.6 5.3 6.1 6.4 eles	.25 3.1 4.3 4.3	.25 6.9 7.6 9.4	.25 5.1 6.0 6.9	3.8 4.3 4.3	6.6 7.6 8.9	5.2 6.0 6.6	0 2 5 6 7
				Spec:	imen 95	6-4 (co	ated)	. · `			
Distance	from bo	ottom, 1	m :	30.1	•		42.8			52.3	, ,
.53	25 50 100 200 300 500 700 1000 1500 Remove	No cra 6.4 7.9 7.9 8.9 9.9 9.9 10.4 10.7 ed at 1	acks 6.4 6.9 6.9 9.9 10.2 10.4 10.7 500 cyc	6.4 7.4 7.4 8.9 9.9 10.1 10.4 10.7 21es	6.4 7.6 8.4 9.1 9.4 9.7 9.9	6.4 6.9 6.9 8.4 8.9 8.9 9.7 10.2	6.4 7.3 7.3 8.4 9.0 9.1 9.7 10.1	5.1 6.6 6.6 7.4 7.4 8.4 8.4 8.9	5.1 5.6 6.9 7.4 7.6 8.1 8.4	5.1 6.6 7.1 7.4 8.1 8.3 8.6	0 6 7 7 7 7 7 7 7 7
Distance	from bo	ottom, m	mm :	69.9			60.3			52.3	
.86/.81	50 100 200 300 500 700 1000 1500	No cr 2.5 5.6 6.4 6.6 6.9 6.9	acks 3.1 5.3 5.6 5.8 5.8 5.8 5.8	2.8 5.4 6.0 6.2 6.4 6.4	2.5 3.1 4.1 4.6 6.1	2.3 3.1 3.8 4.6 5.8	2.4 3.1 4.0 4.6 6.0	4.6 5.8 6.4 6.9 7.1	4.6 5.6 6.1 6.9 6.9	4.6 5.7 6.3 6.9 7.0	0 1 3 6 7 7 7

Table 7 (cont.)

Edge			Crack Length, mm									
Radius,		1	st Cra	ck	2	nd Cra	ck	3r	Cracks			
mm	<u>Cycles</u>	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	<u>Observed</u>	
				Spe	ecimen 2	66-2 н	<u>RC 40</u>					
Distance	from bo	ttom, m	m :	27.0								
.71	4000 4500 5000 5500 6000	No cra 1.3 1.3 1.5 3.3	cks 1.3 1.3 1.5 3.1	1.3 1.3 1.5 3.2		. ·			•	• • • •	0 1 1 1 1	
			Sp	ecimen	262-3 F	IRC 38	(coated	<u>)</u>				
Distance	from bo	ttom, m	m:	73.0							24 	
.71	5000 5500 6000	No cra 1.5 1.5	cks 1.3 1.3	1.4 1.4							0 1 1	
			Spe	ecimen	264-4 H	RC 43	(coated	<u>)</u>				
Distance	from bo	ttom, m	m:	38.1			50.8	· · .		57.2		
.66	5000 5500 6000	No cra 1.0	cks .25 1.0	.13 1.0	.51	.25 .51	.13 .51	.51 1.0	. 25	. 38	0 4 7	

Figure 1 Fluidized Bed Thermal Fatigue Facility

X 1/12

Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 262 (HRC 38)

Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloy 266 at Various Hardnesses

Percent Weight Change vs. Accumulated Cycles for Coated and Uncoated Alloys 956

Typical Appearance of Experimentally Fabricated 262 and 264 Alloy Double-Edge Wedge Specimens As-Received. (The small radius is at the right.)

Typical Appearance of Experimentally Fabricated 265 and 266 Alloy Double-Edge Wedge Specimens As-Received

Neg. Nos. 51490 & 51492 1X 8 3 bare coated (a) 262 HRC 38, 4,500 cycles Neg. Nos. 51489 & 51491 1X 3 4 bare coated (b) 264 HRC 38, 6,000 cycles

Appearance of Selected Specimens After Indicated Thermal Cycles (The small radius is at the right)

Neg. Nos. 51495 & 51491 1X (c) 264 HRC 40

Neg. Nos. 51495 & 51492 1X 2 1 bare, 3,000 cycles/coated, 6,000 cycles 2 4 bare, 3,000 cycles/coated, 6,000 cycles (d) 264 HRC 43

Figure 12 (Continued)

Neg. Nos. 51488 & 51494 1X 6 1 bare, 6,000 cycles/coated, 3,000 cycles (e) 265 HRC 39 Neg. Nos. 51489 & 51493 1X 1 3 bare coated (f) 266 HRC 37, 6,000 cycles

Figure 12 (Continued)

Figure 12 (Continued)

1X

Neg. No. 5194 1X 1 4 bare coated (i) 956, 1,500 cycles

Figure 12 (Concluded)

.

.

.

.

`4.