
NASA Technical Memorandum 80212

NASA-TM-8021219800017117

I

Theoretical Study of Nonadiabatic

Boundary-Layer Stabilization Times

in a Cryogenic Wind Tunne_O_ _EFE_gNCg

for Typical Stainless-Steel "------

Wing and Fuselage Models _'°"°_'_'_°_°°"

Charles B. Johnson

LIBRARYgBP¥

JULY 1980 JUL 3 '_3

LANGLEY RESEARCH CENTER

LIBRARY, NASA

I.tA ,,,.,ipT r2_N, VIRGINIA

I I/LA

https://ntrs.nasa.gov/search.jsp?R=19800017117 2020-03-21T18:48:36+00:00Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42864753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




NASA Technical Memorandum 80212

Theoretical Study of Nonadiabatic

Boundary-Layer Stabilization Times

in a Cryogenic Wind Tunnel

for Typical Stainless-Steel

Wing and Fuselage Models

Charles B. Johnson

Langley Research Center

Hampton, Virginia

NILSIX
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1980





SUMMARY

A theoretical study has been made of the effect of nonadiabatic wall con-

ditions on boundary-layer properties for 4 stainless-steel model configurations

at stagnation pressures of 2, 6, and 9 atm. The purpose of the analysis is to

determine the time required for typical models to reach an adiabatic wall con-

dition after a 50-K step change in total temperature. A transient-conduction

analysis is coupled with a boundary-layer analysis to give stabilization times

for various model configurations and tunnel conditions. The model configura-
tions include a solid NACA 0012-64 airfoil and three bodies of revolution (one

solid and two hollow with varying wall thicknesses). The models are representa-

tive of the wing root chord and fuselage of a typical transport model for the

National Transonic Facility. The results showed that the time to reach an adia-

batic wall condition following a 50-K step change in total temperature varies

from slightly more than 10 min to 1.5 min, depending on the configuration and

stagnation pressure. The maximum error in boundary-layer properties for a 50-K

step change in total temperature is between 12 and 13 percent for the local skin

friction and between 25 and 29 percent for the displacement thickness. The ini-

tial error in boundary-layer properties decreases very rapidly with time and the

maximum error is reduced to 50 percent of its initial value in a short period of

time; however, due to the nonlinearity of the cooling process the time to reach

an adiabatic condition is approximately 25 times longer than the time to reach

the 50-percent reduction in error condition. The time to reach an adiabatic

condition decreases significantly with an increase in stagnation pressure and,

as would be expected, reducing the mass of the model also significantly reduces

the time to reach an adiabatic condition.

INTRODUCTION

The most technologically advanced cryogenic wind tunnel is the National

Transonic Facility (NTF) which is now being constructed at the NASA Langley

Research Center (refs. ] to 3). By being able to vary total temperature

independently of total pressure, this cryogenic wind tunnel will offer the

advantage of testing over a greatly increased range of Reynolds numbers while

avoiding many of the practical problems that would be associated with testing

at high Reynolds numbers in conventional ambient-temperature--high-pressure
tunnels.

From the standpoint of operational flexibility and economy, it is desirable

to change the Reynolds number rapidly during a given test by a very rapid change

in total temperature. After a rapid change in total temperature the model will

not be in thermal equilibrium with respect to the free stream but will, over a

period of time, be cooling (or heating) toward its adiabatic wall condition. In

order to determine the usefulness of the ability to make the very rapid change

in total temperature for aerodynamic testing, a theoretical conduction analysis

has been made to determine the time it takes a typical NTF transport model to

reach an adiabatic wall condition following a large step change in total temper-



ature. In addition, the conduction analysis was combined with a boundary-layer

analysis to determine the effect of a nonadiabatic wall on the boundary-layer

properties. The results of this study are presented herein.

SYMBOLS

T

Cf local skin-friction coefficient,
]

PeUe2

p - p_
Cp pressure coefficient,

q_

c chord of NACA 00]2-64 airfoil, 25.4 cm

mean geometric chord, 25.0 cm

Cp specific heat

h heat-transfer coefficient

k thermal conductivity

L length of NASA body of revolution, ]2].92 om

M Mach number

p pressure

q dynamic pressure

R_ Reynolds number, based on

T temperature

t time

u velocity

x distance along chord of airfoil or center line of body of revolution

angle of attack

AT step change in total temperature

6* boundary-layer displacement thickness

p density
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T model skin thickness

Subscripts:

aw adiabatic wall conditions

e edge of boundary layer

i initial conditions

max maximum

min minimum

s surface conditions

t stagnation (or total) conditions

w wall condition

free-stream conditions

BAS IS FOR ANALYS IS

It is well known that one of the major testing advantages of cryogenic

wind tunnels is the expanded operating envelope resulting from the ability to

vary T t as well as Pt" This advantage is illustrated in figure ](a) which
shows a typical operating envelope for the NTF at a test section Mach number

of 0.8. The upper boundary of the operating envelope is set by a maximum

operating pressure of 9 atm (] arm = ]0].3 kPa) which is based on the struc-

tural limit of the pressure shell. The lower boundary of the operating envelope

is set by the need to operate at a pressure slightly greater than atmospheric

pressure in order to vent nitrogen gas when using liquid nitrogen to cool the

tunnel. The boundary on the left is determined by the maximum T t, which is

about 340 K, coupled with the restraints dictated by the fan drive system. The

boundary on the right is determined by the minimum T t that will avoid local

saturation (condensation) over the model which for M = ].4 and Pt = 6.65 arm

is about ]]7 K. T t based on the M = ].4 saturation boundary varies from

96 K at the minimum pressure (atmospheric) to ]22 K at the maximum pressure.

The operating characteristics of pressurized cryogenic tunnels, such as the NTF,

make possible the unique testing capability of pure Reynolds number studies at

a constant pressure by the appropriate changes in T t, as indicated by the
horizontal line in figure ](a). Also, pure aeroelastic studies at a constant

Reynolds number (as indicated by the vertical line in fig. ](a)) can be

obtained by varying Pt with an appropriate adjustment of T t. The variation
of Reynolds number with temperature as indicated in reference 4 is nonlinear,

with the greatest change in Reynolds number per unit temperature change occur-

ring at the lowest temperature. Therefore, the present analysis was made for a

AT of 50 K between temperatures of ]67 K and ]]7 K (near minimum temperature)

which corresponds to a Reynolds number range for the NTF from 50 × ]06 to

85 × ]06 at 6.65 arm as indicated in figure ](b).



In this phase of the investigation a step change in temperature was

assumed. This gives a somewhat optimistic estimate of the time required for

the model to reach adiabatic conditions. The actual time required to make a

50-K step change in the NTF was not known at the time of this analysis, however,

it is estimated to be on the order of ]5 to 30 sec at pressures of 2 to 6 atm.

A rapid decrease in T t means that the recovery temperature of the flow will be

less than the temperature of the model and that for a period of time the model

will be cooling toward its adiabatic wall temperature. The consequent heat

transfer will significantly affect the boundary-layer properties until the

adiabatic wall condition is reached. As noted in reference 4, results from

boundary-layer calculations made at a flight Reynolds number show that if an

ideal-gas method of calculation (i.e., flight calculations) is compared to a

real-gas cryogenic method of calculation (i.e., NTF application) there is virtu-

ally no difference in boundary-layer properties if both the results are at adia-

batic wall conditions. The analysis made in this report will examine local skin

friction Cf and boundary-layer displacement thickness 6" from the time the

total temperature is changed until the time the model reaches an adiabatic wall

condition. These two parameters (Cf and 6*) were chosen because they are two

basic viscous boundary-layer characteristics used in inviscid and viscous wind-

tunnel simulation. For all of the conduction calculations presented herein, it

is assumed that a 50-K step change in total temperature from ]67 K to ]]7 K
occurs at t = 0.

METHOD OF ANALYSIS

This report presents results from a theoretical study of the time-varying

effects of nonadiabatic wall conditions on boundary-layer properties for two

hypothetical model configurations made from AISI type 310S stainless steel.

The geometry used in the conduction analysis for wing and fuselage simulation

are shown in figure 2 in relation to a wind-tunnel model sized for use in the

NTF. The root section of the wing is simulated by the NACA 00]2-64 airfoil

with a 25.4-cm chord. The fuselage is simulated by a NASA body of revolu-

tion, referred to in reference 5 as body ]], with a length of ]2].92 cm and a

thickness-to-length ratio of about 0.]05. The geometry of the four configura-

tions that were analyzed is shown in figure 3. The NACA 00]2-64 airfoil was

input into the conduction code as a solid body. The body of revolution was

analyzed as a solid body, a body with a 2.54-cm-thick wall, and a body with a

].27-cm-thick wall. The pressure distributions that were used as input for all

boundary-layer calculations are shown for the airfoil and the body of revolu-

tion in figures 4 and 5, respectively. The pressure distribution over the air-

foil, found in reference 6, was obtained at cryogenic conditions. The pressure

distribution over the body of revolution (ref. 5) was obtained at room tempera-

ture conditions.

The six steps used in the method of analysis are:

]. Determine heating rates for the airfoil section and the body of revolu-

tion at M_ _ 0.85 and e = 0° using measured pressures.

2. Determine effect of Tw/T t ratio and Pt on heating of bodies.
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3. Discretize the two-dimensional airfoil and body of revolution into con-

duction and storage nodes.

4. Input heat-transfer coefficients and nodal geometry into transient heat

conduction code and determine temperature history for 3]0S stainless steel with

step changes in total temperature at t = 0.

5. Make boundary-layer calculations for various Tw/T t ratios over a range

of T t and Pt for the airfoil and the body of revolution.

6. Evaluate error in boundary-layer properties, relative to adiabatic con-

ditions, due to nonadiabatic wall conditions by combining results of steps 4

and 5. Subsequent sections of this paper describe in detail each of the six

steps in the analysis and give results in terms of the stabilization times for

skin friction and boundary-layer displacement thickness.

RESULTS AND DISCUSSION

Boundary-Layer Calculations

The effect of Pt and the Tw/T t ratio on the heat-transfer coefficient

h calculated by the method in reference 7 is shown in figure 6 for a station

on the NACA 00]2-64 airfoil. The usual large effect of Pt on the level of h

is indicated. A similar effect of the Tw/T t ratio and Pt was observed for
the body of revolution. The conduction code used a constant distribution of h

in its solution. Thus, the distribution of h was calculated at a mean value

of Tw/T t = 1.22 to give an approximation of the time-varying value of Tw/T t.

The value of Tw/T t = ].22 falls midway between the initial value of ].41 and

the final (i.e., adiabatic) value of about 0.985. For stagnation pressures of

2, 6, and 9 arm the distribution of h over the airfoil and the body of revolu-

tion is shown in figures 7 and 8, respectively. The distributions of h were

used as input for the heat conduction analysis. At Pt = 2 atm the beginning

of transition was assumed to be about 3 and 4 percent of chord (and length) for

the airfoil and the body of revolution, respectively. For the higher pressures

the start of transition moves upstream as would be expected due to the increased

Reynolds number. For both the airfoil and the body of revolution the material

used in the conduction analysis was 3]0S stainless steel. The physical proper-

ties used in the conduction analysis for 3]0S stainless steei are given in
table I.

TAB_ I.- PHYSICAL PROPE_IES FOR 310S STAINLESS S_EL

[Q = 8027.0 kg/m 3]

Values of physical properties at

Physical property temperatures, K, of -

373.3 273.0 200.0 ]00.0 50.0

Cp, J/kg-K .... 502.0 480.0 4]5.0 255.0 ]05.0
k, W/m-K ..... ]3.8 12.4 ]0.8 8.101 5.35



The variations of surface temperature with time at three locations on

the airfoil are shown in figure 9. The temperature variations were obtained

from a computer program, described in reference 8, which uses the backward

finite difference method for solving the heat balance equations. As can be

seen, the trailing edge of the airfoil, which has a relatively small mass,

approaches the adiabatic wall temperature within about 30 sec. The leading

edge approaches the adiabatic wall temperature more slowly because of the

larger mass in this region compared to the trailing edge. In the region of

maximum thickness at the 40-percent chord it takes almost 4 min to reach the

adiabatic wall temperature.

The variations of surface temperature with time at three locations on the

body of revolution are shown in figure ] 0. The wall thickness for this particu-

lar configuration is ].27 cm. It can be seen from figure 3 that this configura-

tion has about the same mass per unit surface area at the nose, trailing edge,

and midbody. The rate at which these locations approach the adiabatic wall tem-

perature is primarily dependent on the value of h at the respective locations

(fig. 8). The recovery temperature ratio Taw/T t for the airfoil and the body

of revolution was 0.985 and 0.990, respectively. The Taw/Tt ratio was held

constant over the respective bodies as a requirement of the conduction code.

The stagnation point at the nose of the body of revolution has the highest

h (h = ] 30] W/m2-K) and thus cools rapidly. The midbody station cools somewhat

slower than the nose. The trailing edge which has the lowest h cools the

slowest. All three stations reach the adiabatic wall temperature at about

240 sec after the 50-K step change in total temperature.

The distribution of surface temperature, over the three configurations of

the body of revolution, 30 sec after the 50-K step change in total temperature

is shown in figure ] ]. The peak temperature at x - 5 cm corresponds to the

beginning of transition which is seen in the distribution of h in figure 8.

During this period of time, after the 50-K step change in total temperature,

the surface-temperature distribution is quite sensitive to the distribution of

h over the model. In particular, the location of the beginning and end of

transition will strongly affect the temperature distribution over the model.

A similar effect was noted for the airfoil.

The Cf/Cf, aw ratio is shown in figure ]2 as a function of the Tw/T t

ratio at x/c = 0.4 on the airfoil. It should be noted that the Cf/Cf, aw

ratio collapses to a single curve that is nearly independent of Pt and T t

for the range of conditions indicated in figure ]2. The skin friction ratios

are calculated from a boundary-layer code described in reference 9. The initial

wall temperature conditions for which the heat conduction analysis was made

correspond to a Tw/T t ratio of about ].4] at t = 0. At this condition

(indicated by the dashed line) Cf is about 88 percent of Cf, aw (fig. ]2).

The _ /_aw ratio is shown in figure ]3(a) as a function of the Tw/T t

ratio at x/c = 0.4 on the airfoil for Pt = 2 arm. The 6*/6aw ratio forms

nearly a single curve for a range of total temperatures from about 333.3 K to

cryogenic conditions (83.3 K). In terms of the initial Tw/T t ratio at t = 0
---- o 6" *(Tw/T t ] 4]), is about 26 percent greater than _aw- The data of fig-

ures ] 3 (b) and ] 3 (c) are similar to those of figure ]3 (a) only they are for Pt

values of 6 and 9 atm, respectively. The effect of Pt on _ /6aw versus
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Tw/T t is shown in figure 14 for the airfoil. Figure 14 is the result of com-

bining the (a), (b), and (c) parts of figure 13. Figure 14 shows the variation

of _ /Saw as a function of Tw/T t over the range of T t from 333.3 K to

cryogenic conditions (83.3 K) and over a range of Pt from 2 to 9 atm. The

effect of pressure on the 6 /6aw ratio is indicated in figure 14 by the band

of values as the Tw/T t ratio increases above the adiabatic value.

The Cf/Cf,aw ratio is shown in figure 15 as a function of Tw/T t at
the midbody station on the body of revolution. As was noted in figure 12, the

Cf/Cf,aw ratio collapses to a narrow band that is nearly independent of Pt
and T t for the range of conditions indicated in figure 15. For the initial

temperature condition of this study (t = 0), when Tw/T t = 1.41 the local skin

friction is about 13 percent below the adiabatic wall value.

The 6 /6aw ratio is shown in figure 16(a) as a function of the Tw/T t

ratio at the midbody station on the body of revolution for Pt = 2 atm. The

explanation and results of figure 16(a) is the same as that discussed _revi-
ously for figure 13(a). For example at t = 0 when Tw/T t = 1.41, 6 is

about 13 percent below 6aw. The 6 /6aw versus Tw/T t curves of fig-

ures 16(b) and 16(c) are similar to that of figure 16(a) only they are for

Pt values of 6 and 9 atm, respectively. The effect of Pt on 6"/6_w ver-

sus Tw/T t is shown in figure 17 for the body of revolution. Figure 17 is

the result of combining the (a), (b), and (c) parts of figure 16. The varia-

tion of 6*/6*aw as a function of Tw/T t is shown in figure 17 over the range

of T t from 333.3 K to cryogenic conditions (83.3 K) and over a range of Pt

from 2 to 9 arm. The effect of Pt on the 6"/6_w ratio is indicated in

figure 17 by the band of values on either side of the adiabatic value of the

Tw/T t ratio.

Boundary-Layer Stabilization Time

The boundary-layer stabilization times due to nonadiabatic wall condi-

tions, as a function of time, are determined by combining the results from the

transient heat conduction code, such as shown in figures 9 and 10, with the

boundary-layer analysis shown in figures 12 to 16. The results of combining a

boundary-layer analysis with the heat conduction results at x/c = 0.4 for the

airfoil are shown in figures 18 and 19, and at x/L = 0.5 for the three shapes

of the body of revolution in figures 20 to 25. It should be remembered that the

analysis is based on the model being at an initial uniform equilibrium tempera-

ture of ]64.49 K and then at t = 0 there is a 50-K step change in total tem-

perature from 167 K to 117 K. Table II summarizes the stabilization times for

the 4 configurations at M = 0.85, for stagnation pressures of 2, 6, and 9 arm.
Included in the table is the maximum error (at t = 0), the time to reduce the

maximum error by 50 percent, the time to reach a condition where the error is

] percent, and the time to reach an adiabatic condition. The times required for

the 4 configurations to reduce the maximum error by 50 percent is considerably

less than the times required to reach an adiabatic condition as can be seen in

table II. The pronounced increase in the time to reach an adiabatic condition

over the time to reduce the maximum error by 50 percent is due to the nonlinear-

ity of the curves in figures 13 to 20. For instance at t = 0, the maximum

error in boundary-layer properties relative to adiabatic conditions is between
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TABLE II.- STABILIZATION TIMES AFTER A 50-K STEP (:_ANGE IN TOTAL TEMPERATURE

FC_ MODELS _DE OF AISI T_E 310S STAINLESS STEEL

Stabilization times at -

Pt = 2 atm Pt = 6 arm Pt = 9 atm

Model Approximate
i Time to Time to

maximum error, Time to reduce I reach a reach an Time to reduce Time to Time to Time to Time toreach a reach an Time to reduce reach a reach an

configurations percent maximum error l-percent adiabatic maximum error -percent adiabatic maximum error ]-percent adiabatic

by 50 percent, error, condition, by 50 percent, error, condition, by 50 percent, error, condition,
sec sec sec sec sec sec sec sec sec

Cf/Cf,aw

NACA 0012-64 ]2 28 _42 300 6 72 200 3 55 ]80

[x/c = 0.4)

Body of revolution 13 37 426 >600 9 168 540 6 }16 480
(solid, x/L = 0.5)

Body of revolution 13 36 240 390 9 114 235 5 87 205
(T = 2.54 cm, x/L = 0.5)

B_dy of revolution 13 29 I18 200 8 55 100 5 44 85
(T = 1.27 cm, x/L = 0.5)

NACA 0012-64 26 21 175 ]00 I 4 95 200 2 78 ]80

(x/c = 0.4]

3ody of _evolution 28 29 542 >600 8 262 540 4 193 480
(solid, X/L = 0.5)

3ody Of revolution 28 29 289 390 8 ]50 235 4 120 205
[_ = 2.54 cm, x/L = 0.5)

%ody of revolution 28 25 138 200 7 67 100 4 54 85

(T = ].27 cm, x/L = 0.5]

12 and 13 percent for Cf and between 26 and 28 percent for 6*. The error in

boundary-layer properties decreases very rapidly with time after the 50-K step

change in total temperature (figs. 18 to 25). At a stagnation pressure of

2 arm, the error in boundary-layer properties is reduced to half its original

value between 21 and 37 sec (see table II), even though the total time to reach

an adiabatic condition may vary from approximately 3 min to slightly greater

than 10 min. As would be expected, as time increases beyond the point where the

error is cut in half the rate at which the boundary layer approaches an adia-

batic wall condition decreases sharply.

The solid airfoil (figs. ]8 and ]9) requires about 300 sec to reach an

adiabatic condition at Pt = 2 atm, and about 190 sec at Pt = 6 and 9 atm.

The time for the airfoil to reach a condition where the error is ] percent at

Pt = 2 atm is ]42 sec and ]75 sec for the Cf and 6" error, respectively.

The times required to reach the ]-percent error level are always less for the

Cf error than for the 6* error because the initial maximum error for Cf is

about half that of 6*. The times for the ]-percent error condition are some-
what less for the 6- and 9-arm condition as can be seen in table II.

The times to reach an adiabatic condition for the bodies of revolution

(figs. 20 to 25) at Pt = 2 arm range from slightly greater than 600 sec for

the solid body to 390 and 200 sec for the T = 2.54 cm and T = ].27 cm hollow

bodies, respectively. The solid body of revolution reaches an adiabatic condi-

tion in about 540 and 480 sec for Pt = 6 and 9 atm, respectively. The thicker-

walled hollow body of revolution (T = 2.54 cm) reaches an adiabatic condition in

about 220 sec for Pt = 6 and 9 atm. The thinner-walled hollow body of revolu-

tion (T = 1.27 cm) reaches an adiabatic condition in about 100 sec and 85 sec

for Pt = 6 and 9 atm, respectively. The times to reach the condition where the

8



error in 6" is ] percent for Pt = 2 arm are 542, 298, and 138 sec for the

solid, T = 2.54 cm, and T = 1.27 cm bodies of revolution, respectively. The

times to reach the ]-percent error condition in Cf are somewhat less due to

the lower initial maximum error as was noted for the airfoil (see table II). At

the two higher pressures (6 and 9 arm) the times to reach the ]-percent error

condition are significantly reduced as can be seen in table II.

CONCLUDING REMARKS

A theoretical analysis has been made of the time-varying effect of non-

adiabatic wall conditions on two boundary-layer properties for a two-dimensional

wing section and an axisy_metric fuselage section made from AISI type 310S

stainless steel. The wing and fuselage sections are representative of the wing

root chord and fuselage of a typical transport model for the National Transonic

Facility. The analysis was made with a solid wing and three fuselage configura-

tions (one solid and two hollow with skin thicknesses of 2.54 and 1.27 cm). The

displacement thickness and local skin friction were investigated at a station on

the model after a 50-K step change in total temperature in terms of the time

required for these two boundary-layer properties to reach an adiabatic wall con-

dition. The results of the time-varying analysis showed that if the axisymmet-

ric body is made hollow with a moderately thin skin, its time constants are

approximately those of the airfoil. For example, decreasing the wall thickness

from 2.54 cm to 1.27 cm approximately cuts the time to reach an adiabatic condi-

tion in half. In general, the time to reach an adiabatic condition decreases

significantly with an increase in stagnation pressure.

The nonlinearity of the cooling process after the 50-K step change results
in a pronounced increase in time to reach an adiabatic condition over the time

to reduce the maximum error by 50 percent. For instance, at a stagnation pres-

sure of 2 atm (1 atm = ]0].3 kPa) the error in boundary-layer properties is

reduced to half its original value in between 2] and 37 sec, even though the

total time to reach an adiabatic condition can be slightly in excess of ]0 min.

The variation of the ratio of the local skin friction to the adiabatic

wall value of local skin friction, as a function of the wall-to-total tempera-

ture ratio, was found to be nearly independent of the stagnation pressure from

2 to 9 atm and stagnation temperatures from room temperature to cryogenic con-

ditions. In addition, the ratio of displacement thickness to the adiabatic wall

value of skin friction was found to be nearly independent of stagnation tempera-

ture, from the room temperature to cryogenic conditions, but was dependent on

the level of stagnation pressure.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

April 3, 1980
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Figure 2.- Simulation of wing and fuselage sections for conduction analysis..-a
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Figure 3.- One airfoil and three fuselage shapes tested for time to reach an
adiabatic wall condition. All dimensions are in cm.
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Figure 4.- Pressure distribution used for all boundary-layer calculations for

the NACA 0012-64 airfoil (based on data from ref. 6). _ = 0°; M = 0.85;

Pt = 2.12 atm; T t = 16l.l K.
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the NASA body of revolution. _ = 0o; M = 0.852; L = 12].92 cm; Pt = I atm;
Tt = 312 K.
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Figure 18.- Departure of Cp from C f t a w  as a  function of t for the NACA 0012-64 
a i r f o i l  a t  x/c = 0.4.  c  = 25.4 cm; M _ =  0.85 .  
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Figure 19.- Departure of S* Scorn 5*, as a function of t for the NACA 0012-64 
airfoi l  a t  x / c  = 0.4. c = 25.4 cm: Ma = 0.85. 
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F i g u r e  22.- D e p a r t u r e  of Cf from C f a w  as a f u n c t i o n  o f  t f o r  t h e  NASA body 
o f  r e v o l u t i o n  a t  X/L = 0.5. L = 121.92 cm; M = 0.85. 
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of revolution at x/L = 0.5. L = 12].92 cm; M_ = 0.85.



I
1.00

9 ,_ .,.,,/_ Hollowmodel
.98 /

.96 /

Cf .94 / At t = 0: Twfl"t • 1.41;I t changes from 167K to 117K

/Cf,aw

.92

.90 /

Maximum error =13 percent
.88

.86
0 40 80 120 160 200 240 280 320 360 400

t, sec
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