NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

PHOTOVOLTAIC SYSTEM COSTS USING LOCAL LABOR AND MATERIALS

IN DEVELOPING COUNTRIES

Final Report

by

Edward Jacobson, George Fletcher, Gerald Hein
Engineering Extension Laboratory
Engineering Experiment Station
Georgia Institute of Technology
Atlanta, GA 30332

May 20, 1980
SECTION PAGE
I. INTRODUCTION 1
II. CONCLUSIONS AND RECOMMENDATIONS 4
Conclusions 4
Recommendations 5
III. METHODOLOGYStandard System7
Input Requirements 8
Price Data 10
Assumptions 14
Calculations 15
IV. RESULTS AND OBSERVATIONS 21
Results 21
Observations 23
APP. A DETAILED DATA AND COST CALCULATIONS 28
APP. B DATA SOURCES 45
APP. C FORTRAN CODING OF CALCULATION PROGRAM 50

LIST OF FIGURES AND TABLES

FIGURE OR TABLE PAGE
'ABLE III-1 COMPOSITION OF COMPONENTS 9
TABLE III-2 LABOR INPUT REQUIREMENTS 11
TABLE III-3 OPERATING AND MAINTENANCE REQUIREMENTS 12
TABLE III-4 LIST OF VARIABLES 16
TABLE IV-1 SUMMARY OF LABOR RATES 22
TABLE IV-2 SUMMARY OF MATERIALS COSTS 24
TABLE IV-3 SUMMARY OF SYSTEM COSTS 25
TABLE A-1 LABOR DATA FOR EGYPT 29
TABLE A-2 LABOR DATA FOR HAITI 30
TABLE A-3 IABOR DATA FOR IVORY COAST 31
TABLE A-4 LABOR DATA FOR RENYA 32
TABLE A-5 LABOR DATA FOR MEXICO 33
TABLE A-6 LABOR DATA FOR NEPAL 34
TABLE A-7 LABOR DATA FOR THE PHILIPPINES 35
TABLE A-8 LABOR DATA FOR THE UNITED STATES 36
TABLE A-9 SYSTEM COSTS FOR EGYPT 37
TABLE A-10 SYSTEM COSTS FOR HAITI 38
TABLE A-11 SYSTEM COSTS FOR IVORY COAST 39
TABLE A-12 SYSTEM COSTS FOR KENYA 40
TABLE A-13 SYSTEM COSTS FOR MEXICO 41
TABLE A-14 SYSTEM COSTS FOR NEPAL 42
TABLE A-15 SYSTEM COSTS FOR THE : 5 ILIPPINES 43
TABLE A-16 SYSTEM COSTS FOR THE UNITED STATES 44
FIGURE B-1 WAGE RATE WORKSHEFT 46
FIGURE B-2 MATERIALS COST WORKSHEET 47
TABLE B-1 LIST OF DATA SOURCES 48

SECTION I

INTRODUCTION

To enjoy sustained development, a nation must find sources of energy that are dependable, renewable, and feasible. Solar energy, including all solar-driven renewable sources, is politically attractive and economically feasible under certain conditions. Solar energy is feasible because once it is installed, balance of payments deficits for energy are reduced and because a great portion of the solar energy industry may be available within a country's existing agricultural and industrial infrastructure. Solar energy system components are typically not high technology and could apply the comparative advantages enjoyed by many nations in small manufactures, agriculture, and labor.

Photovoltaics (PV) is an emerging solar technology that has shown its cost effectiveness in the United States and elsewhere in increasing numbers of applications. Flat plate photovoltaic energy conversion systems have the capability of providing electrical energy in remote locations or in any location where solar cells can be arrayed to collect solar energy. The PV electric generator has no moving parts, has few parts that require servicing and is composed of components which, with the exception of the solar cells themselves, are recognized, well-known, relatively lowtechnology industrial products. The system can be prefabricated to permit installation by individuals with little formal training in electricity or electronics. Typically, the appliances or devices powered by the photovoltaic system are likely to be more complex, requiring more maintenance, than the electricity supply itself.

Photovoltaic energy conversion systems comprise solar cells and other components that support those cells in providing usable electricity. Those supporting components are refered to as the balance of the system (BOS). The BOS is subdivided into five categories: array and structure, electrical, storage, installation and checkout, and other. The major part of costs in stand-alone $P V$ installations is in BOS components. As the U. S. Department of Energy realizes its goal to reduce the cost of PV modules by 1986 , those BOS costs will be even more significant.

This study addresses the use of photovoltaic technology in countries that do not presently have high technology industrial capacity. The project determines the relative cost of integrating indigenous labor (and manufacturing where available) into the BOS industry of seven countries: Egypt, Haiti, the Ivory Coast, Kenya, Mexico, Nepal, and the Phillipines. Some of the results may be generalized to other countries, at most levels of development.

Following this introduction, Section II presents conclusions and recommendations. Section III describes the methodology used in carrying out the research project. Included in that section are discussions of the research design and the tools used, including data collection and computational assumptions. Section IV deals with the results of the study. In synopsis form, the collected data and the system costs for all seven countries are given. For comparison, the analogous data and calculations are made for the United States and presented in the synopsis. Appendix A provides the data collected and the system costs in detail, presented in tabular form for each country. Appendix B provides a reproduction of the questionnaires used to collect data, and the names of individuals who supplied information for the study. Appendix C presents the full Fortran coding of the calculation program.

The relative costs of solar technologies depend on existing energy infrastructure, including national priorities and the supply and distribution system. In general, however, development at almost any level implies an increased demand for energy; traditional fuels are practically infeasible to apply in increasing proportion; thus, renewable fuels appear very attractive. Economic development progresses directly as energy availability. Energy drives industry, agriculture and investment in human capital as well. In addition, as energy demand increases, investment in energy industries is likely to increase, and economic development is stimulated.

Much information used in this research was available at embassies of the seven countries in Washington, DC. The remainder was collected by mail as described in Section II, "Methodology."

gection II

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The results of the study imply several conclusions:

1. The cost of installing and maintaining comparable photovoltaic systems in developing countries is less than that in the United States. Those countries with the lowest wage rates show the lowest system costs.
2. Skills and some materials are available in the seven subject countries that may be applied to constructing and maintaining PV systems.
3. There is an interest in foreign countries in photovoltaics. There is not yet a strong bias against PV in favor of other solar technologies, but in some countries and some bureaucratic echelons there exists a misunderstanding of the technology and its attendant costs and benefits.
4. Conversations with foreign nationals suggest that photovoltaics must be introduced in foreign markets as an appropriate technology with high technology components rather than as a high technology system.
5. Socio-economic institutions, such as barter, significantly complicate the determinction of feasibility. That is not to imply that they will hinder the introduction of photovoltaic technology.
6. For those countries that supplied minimum-wage data, the labor is of ten not available at those rates, but at higher rates.

Recoumendations

Based on the experience of performing this study, there are several implications for further research into this area.

1. Life-cycle system costs for other alternative energy sources should be determined for the countries under study. At ainimum, electric rates are essential to make wise investment decisions concerning energy source infrastructure.
2. Socio-cultural or economic behavioral conaiderations ought to be included in the specification of the system trade-offs. For example, there is a trade-off between maintenance-free components and man power. Such trade-offe are made differently within different socio economic contexts.
3. Demonstration experiments should be initiated that would make maximum use of local labor and capital inputs, perhaps in one of the included countries, to install a photovoltaic system. For examples, contacts in the Philippines, have expressed a degree of local willingness to cooperate and even to contribute to such an experiment.
4. Data must include unemployment within labor classification, minimum wages, and market wage rates. All data are necessary to determine realistic system costs. Workers are hired at prevailing market rates, not necessarily at minimum wage. It is recognized that meny data are not available.
5. Continually changing energy markets in the world economy require periodic evaluation of relative feasibility of energy alternatives.
6. U.S. Department of Comerce generic Industry Profiles may be used to characterize potential $B O S$ manufacturing. In order to make use of the profiles, the costs of all the inputs to each industry must be avail-
able so that a total cost may be calculated for the production process and an average unit cost derived.
7. Relative prices among countries do not determine the feasibility of photovoltaics. The acceptance of the technology depends primarily on the relative prices of alternative energy sources within a national economy.

SECTION III

METHODOLOGY

The methodology addresses the problem of calculating systam costs for a standardized photovoltaic system, using local inputs. The methodology has the following five aspects:

1) definition of atandard photovoltaic system
2) determination of the labor and materials input requirements per unit of each BOS component.
3) collection of price data in the foreign markets for labor and material that are available in the BOS areas
4) construction of cost calculation assumptions and algorithms
5) calculation of system cost based on the generic system configuration and collected data.

Standard System

There is no standard PV system, but for comparison purposes, a 1000 peak watt oystem with the attendant BOS requirements was defined for this study. In addition, there is no functional relationship between the peak power of aystem and the magnitude of the BOS components. A system would have components that fall into each of the five BOS categories mentioned in Section I. In specifying the system, a compromise was struck between a high enough level of detail to calculate meaningful, comparative astem cost, and low enough level to permit the collection of useful data.

The configuration of the standard $1000 W_{p}$ system was specified as follows:

- $1000 \mathrm{~W}_{\mathrm{p}}$ photovoltaic modules
- 2500 watt-hours of battery atorage
- 10 square meters of shelter atructure
- 20 meters of fencing
- 200 meters of wire
- miscellaneous (constant)

These figures are based on experience with existing systems; they are abstractions or simplifications, since there are neither load nor insolation paramaters specified. The miscellaneous input was included for accounting reasons.

Input Requirements

Based on previous work, each BOS component was broken into the materials and labor that compose it. This determination was done in the firat days of the study, so that data could be collected in timely fashion from foreign sources. The labor categories that were determined to contribute to $80 S$ components either at the construction phase or in the manufacture of components, are:

- Laborer
- Electrician
- Carpenter
- Pipefitter/Plumber

0
Foreman
The composition of the components were specified as shown in Table III-1. Most of the inputs were available in the economies of foreign countries. The collection of data was simplified by expressing the information sought in terms understandable to people that may have no exposure to solar energy systems.

COMPOSITION OF CONPONENTS

1. Array and structure

a. structural steel
b. fencing (wood, steel, blocke, locks)
c. construction materials (wood and blocks)
d. ventilation equipsent (louvers, fan)
e. labor
2. Electrical
a. wire
b. voltage regulator
c. inverter
d. boxes
e. insulation plastic
f. labor
3. Storage
a. betteries
b. labor
4. Installation and Checkout
a. labor
5. Other
a. labor

There has been no work reported to date in disageregating labor and other inputs in PV syatems costa. Typical labor requirements for system construction were subjectively synthesized, based ry previou experience and knowledge of the construction requirements for other systems. The labor infut requirements assumed for aystem installation are presented in Table 111-2.

Operating and maintenance extends throught the syatem lifetime, but because of the peculiar nature of photovoltaic experience and the variety of economic contexts being studied, nome simplifying assumptions were made. Checkout is considered as 0 m during the first year, and is assumed to be the only significant such cost over the system life. In particular, OsM is expressed entirely as lebor costs, outlined in Table IIi-3. First yeat requirementa are given, the second year is assumed to be the year requiring minimum $O S M$. The minimum amount as well as the requirement during the lant year of the life cycle are also given.

Price Data

Foreign vage and price data were collected by aending data worksheets to individuals identified at likely ources. The embasies of the countries in question were visited for the suggestions of their staffs, and local contacta were approached directly. Many data were available from previous work done in the subject countries by Georgis Tech perzonnel, from United Nations documents, from the mppropriate ministries of the national sovernmenta, from embasies, and from other contacts made previously, but sone data vere collected or clarified by telephone contacta. Very little information was collected frop the initial mailing. Follow-up cables, telexes, telephone calls, and visits were required to assemble sufficient information to make meaningful system cost calculations. Some surces

TABLE III-3

OPERATIMG AND MAINTENANCE REQUIREMENTS FOR STANDARD PV SYSTEM

Labor Category	Hours Required First Year	Hours Required Second Year	Hours Required Final Year
Common Labor	100	80	100
Electrician	80	0	10
Carpenter	40	0	5
Foreman	40	1	2

were hesitant to provide data, because of price uncertainty due to high rates of inflation. The ultimate sources of information are found in Appendix B.

There are deficiencies in the data worksheets that did not show up until it was attempted to make use of the data. It is recomended that the following improvements be made in future data collection efforts of this type:

- inquire concerning length of standard work week and work day.
o inquire as to average worker productivity
o specify type of wage: minimum, average, union/non-union/urban/ rural/etc.
-
- include labor classification of foreman or supervisor
o specify thoroughly the products (e.g. copper or aluminum wire, exact metric gauges, etc)
- indicate what to enter in data sheet if question is not applicable
- choose units, items, etc. so that non-comparability is minimized Even when these suggestions are taken into account, the collected data may be inadequate to permit detailed cost calculations.

Since some countries produced no goods in some industries, methodology wis developed to determine the likely cost of such commodities if the industries were to be established. The methodology is based on using the U.S. Department of Commerce generic Industry Profiles. Such profiles exist for several industries that make products that are included or products that are similar to those in the balance of systems, such as plywood, creosoted wood products, concrete blocks, steel bars and shapes, flexible steel conduit, copper wire, chain link fencing, electric outlet switch and
fuse boxes, and automobile batteries. The profiles identify and quantify the input requirements for each industry. It was impractical to incorporate that information into the calculation of costs of those components in foreign countries due to data limitations, and default values were provided.

The system configuration in this study is illustrative. Based on previous BOS experience, a per-unit cost was determined that would provide sufficient accuracy in comparative calculations. Specifically, the following unit prices were used:

Photovoltaic Modules
Batteries
Shelter Structure
Fencing
Wire
\$10 per peak watt $\$ 0.25$ per watt-hour \$215 per square meter \$6.52 per lineal meter \$0.46 per lineal meter.

These prices are useful only for system installations within the United States. Outside the United States, the prices are not applicable, but where no data are available, these prices are used as default values. Price data were assumed to be f.o.b. the manufacturer or his designated delivery point. Freight and tariffs are significant in the cost calculations, but they are not expressly included here.

Assumptions

Cost calculations were based upon the state of the art system design methodology, with a provision for permitting the substitution among components according to the desires of the operator. The cost calculation uses, as inputs, the set of price data, the system configuration, the labor input requirements, inflation, discount, and interest rates, and operating and maintenance requirements. It is assumed that the installation is fi-
nanced, and that the loan is repayed in equal annual installments. In the absence of data supplied for the subject countries, default values were provided.

Calculations were done by using a number of equations specified with the goal in mind to keep the calculation methodology as general as possible. The procedure is broken down into several parts:

1) Construction Cost
2) Operating and Maintenance Cost
3) Finance Costs
4) Total Life Cycle Costs and Cash Flow
5) Net Present Value of Life Cycle Costs
6) Correction for Inflation
7) Conversion to Equivalent U.S. Currency

Parameters may be specified by the individual performing the calculations. However, default values in our calculations are as follow:

interest rate	$=$	10%
inflation rate	$=$	10%
discount rate	$=$	6%
life cycle	$=$	20 years
term of loan	$=$	20 years
down payment	$=$	0

Calculations

The calculations may be done by hand, but computer tools were used to simplify and streamline the operation. The full computer coding is given as Appendix C, but the definitional equations are presented here. The list of variables appears as Table III-4.

LIST OF VARIABLES

TABLE III-4 (Continued)

PMT	- annual payment on loan (debt service)
R_{j}	= inflation rate in year j
REALX k	$=$ the inflation adjusted value of X_{k}
S	= shelter structure size in square meters
T	- term of loan
USZ	$=$ the equivalent of Z in U.S. dollars
W	= wiring length in meters
WH	= storage capacity in watt hours
Wp	= peak wattage of system
X_{k}	= any money variable in year k
Z	= any money variable in foreign currency

1) Construction costs are the total of all component costs and the labor to install them. The materials requirements are discussed under "Standard System," while labor requirements are detailed under "Input Requirements."
(1.0)

$$
\operatorname{COST}=\sum_{i}\left(\text { LABOR }_{i} \times L W_{i}\right)+\sum_{j}\left(\text { MATERIALS }_{j} \times M C_{j}\right)
$$

$$
\begin{equation*}
\operatorname{LABOR}_{i}=\mathbf{a}_{\mathbf{i}} \mathrm{Wp}+\mathbf{b}_{\mathbf{i}} \mathrm{WH}+c_{i} \mathbf{s}+\mathrm{d}_{\mathbf{i}} F+\mathbf{e}_{\mathbf{i}} \mathbf{W}+\mathbf{f}_{\mathbf{i}} \tag{1.1}
\end{equation*}
$$

2) Operating and maintenance costs are born throughout the lifetime of the system. It is assumed in this calculation that operating and maintenance can be approximated with a two parabolas sharing a minimum point.

$$
\begin{equation*}
O \& M_{j}=\sum_{i}\left(\text { OMLABOR }_{j, i} \times L W_{i}\right) \tag{2.0}
\end{equation*}
$$

when $\mathrm{j}-1 \leq \mathrm{M}$

when $j-1>M$
3) There are three options available for paying for the system:

- cash at the beginning
- financing with equal payments over the term of financing
- financing with equal payments to a point and a payoff at the end of the term (equal payments may be zero)

The calculation was done assuming the second option.
(3.0)

$$
P M T=\frac{(1+I)^{T} \times P}{\sum_{j=1}^{T}(1+I)^{j-1}}
$$

4) Cash flow is the sum of all costs every year for the life of the system.
(4.0) $\quad L C C=\sum_{j} C F j$
(4.1) $\quad C F_{j}=P M T j+O \& M_{j}$
5) Net present value is the value today of a stream of life-cycle costs based on the relative value of money at some future time compared to the present--the so-called discount rate.
(5.0) $\quad N P V=\sum_{j=1}^{N} \frac{C F_{j}}{(1+D)^{j}}$
6) The value of these figures is affected by inflation. In order to reflect the buying power of the cash flow involved, the figures are corrected for inflation, by expressing them in terms of currency of the construction year.
(6.0)

7) The value of international exchange is determined from day to day on the foreign exchange markets.
(7.0) USZ $=2 \times E R$

The costing program is written to permit specification of inputs or to rely on default values. The program was constructed based on the assumption that system configurations are variable, conditions of insolation and geography diverse, and socio-cultural trade-offa numerous. Therefore, it is useful to leave the options open to apply any relevant set of hypotheses. The program is capable of taking into account economic conditions, wages and prices, exchange rates, operating and maintenance requirements, syatem configuration, labor input requirements, and capital (components) input requirements. The calculations were performed for each country, based on the useful information obtained from that country. Other values were defaulted.

The output is in the form of system costs, as described in Section IV, integrating indigenous labor into BOS production. The construction cost, life-cycle cash flow, present value of life cycle cash flow, and both cash flows corrected for inflation are given in both local currency and U.S. dollars. Examples output are Tables $A-1$ through $A-8$ in Appendix A.

SECTION IV

RESULTS AND OBSERVATIONS

This section reports the numerical results of the research, from which the conclusions of Section II are drawn. In addition, further relevant observations are made, on which the recommendations of Section II are based.

Results

The results of this study belong to two groups: 1) data collection results and 2) system cost calculations. Both the data and the cost calculation results are presented in country-specific form in Appendix A, but sumarized in this section.

The data collection included wage and product information. The wage data are nearly complete, but product data were seldom available, and when they were provided, they did not alwaya fit well into the standard system configuration that was postulated. The country specific labor data, summarized in Table IV-1, are expanded in tables A-1 through A-8 in Appendix A.

The design phase of the data collection did not take into account that there is a large variety of talents and skill levels for each category. (e.g., finish/rough carpentry, house/water-main plumber, bulldozer/ tractor/crane operators, etc.) There was also a large regional differential in wage rates among urban and rural areas. Thus, for each data set, the appropriate wage rate or an average was used for calculations. In addition, some of the data were collected with the intention that they would be used in costing out component manufacturing processes. However,
TABLE IV -1
SUMMARY OF LABOR RATES

more information would be required to do that. Thus, not all the data were uted.

Price data were collected for a large variaty of commodities, but the following were useful, where they were available: batteries, wire, building conatruction, and fencing. Again there is a degree of ambiguity that made the data difficult to use. (e.g., commercial/induetrial/domestic construction, etc.) In each case a judgment was made to be able to make use of the data. Table IV-2 sumarizes the component price data tiat were used in calculations.

The cost calculation results are given in tables A-9 through A-16 in Appendix A. They are presented in synopsis form in Table IV-3. A system cost is calculated for the United States data for comparison purposes. The differences among syatem costs are generally due to labor input costs at two levels -- in the installation of the system and in the manufacture of the system components. The cost impact from installation is calculated, while the cost impact of using components manufactured with local labor is factored in by using local prices for domestically produced commodicies when avaiiable. The life-cycle costs of the systems augment the construction coste by debt service aci by operating and maintenance costs. $0 \& \mathrm{M}$ is largely labor, and in our calculations it is assumed to be entirely so. Observations

Photovaltaic design procsorites range in complexity from computer prograpa to slide rules. Most published work to date assumes U. S. prices of the late 1970's, a developed economy, eclear cost effectiveness with (or in the atsence of) competing electric grid supplied power, and an implicit level of risk aversion. Load profiles are also assumed to be established. In fact, few of those characteristics exist outside the United States. To
 －会会
安

－紫

Component
Batteries
Shelter
Structure
Fence
Wire

蒐

0
0
0
$\stackrel{\circ}{0}$
\cdots

$$
\begin{aligned}
& \text { ni } \\
& 0 \\
& \underset{\sim}{m}
\end{aligned}
$$

$\stackrel{\infty}{\square}$
8
9
9
13,672
30
57
9,290

> Figures occasionally do not total due to rounding errors. Parameters governing these calculations are found in chapter III, and full calculations are in Appendix A.
10478
Haiti
15,164
14,947
217
15,493
15,164
129
200
11,005
16,719
15,697
414
608
11,358
15,122
118
245
10,468
15,122
118
245
10,468

$$
13,672
$$

$\overline{00!\times 2 \boldsymbol{x}}$
or ni on
O.
ni
$10,468 \quad 11,358$
$\stackrel{n}{\infty}$
design systems in a universal fashion, these factors wust be taken into account on an individual basis. There must be interface between the pricing and the sizing portions of the design procedure. And there must be explicit recognition of the many facets of energy demand, including variable load profiles and willingness to take risks.

There are cost and technology trade-offs among the various components of $P V$ systems. Within reason, for one example, battery capacity may be replaced with $P V$ generation capacity. More cells will generate electricity on cloudy days, obviating the need for battery storage during periods of cloudiness. In another example applicable to relatively inexpensive labor, we observe that batteries are made with or without maintenance requirements. Maintenance requires man-hours of labor, but maintenancefree batteries cost more. As a third example, if reliability requirements are reduced, other components may be reduced. If the user is willing to take the chance that demand will coincide with sunshine, or that battery discharge will be of one description and not another, then designers may be able to include fewer or less expensive batteries in the system.

Demand for energy is a culturally defined phenomenon. Demand will slowly change as sources of energy change and are ar septed, but initially the existing energy-related behavior will define the load on new sources. If PV replaces oil lamps, then people will want to use PV-powered lights in the same way as they used oil. If PV replaces horses, then the machinery powered by $P V$ will be used according to the same schedule as similar machinery driven by horses. If machinery is placed where there was nothing previously, then there is no characteristic demand profile, and it can be molded.

In societies where electricity and electrical appliances are used and maintained, then the technical expertise to deal with them is likely to be available. Since the technical level for much BOS installation or operation and maintenance is no higher than for such appliances, then PV system construction and support are feasible. On the other hand, in some societies, there is presently no electricity. Thus, it is much more tifficult to locate skills adequate to participate in the installation of PV systems.

The recognition of $P V$ cost effectiveness will increase demand for systems. That will imply increased demand for components that can be produced locally. Thus, industrial development will be stimulated.

APPENDIX A

detailed data and cost calculations

Labor Category
Wages in Pounds/day ${ }^{1}$
Wages in U.S. $\$ / \mathrm{day}^{2}$
Laborer3
4.30
Machinist 30 42.85
Welder 50 71.40
Electrician 10 14.30
Carpenter 40 57.15
Cement Mason 15 21.45
Pipe Fitter 25 35.70
Heavy Equipment Operator 25 35.70

1. Source: A. Alaa El-Din Nazmy, Third Secretary, Embassy of the Arab Republic of Egypt.
2. Exchange Rate: 0.70 L.E./U.S. dollar. Effective November 15, 1979 (Source: First National Bank of Atlanta)

LABOR DATA FOR HAITI

Labor Category	Wages in Gourdes/day ${ }^{2}$	Wages in U.S.\$/day ${ }^{1}$
Laborers	11.00	2.20
Machinist	30.00	6.00^{3}
Welder	35.00	7.00
Electrician	25.00	5.00
Carpenter	25.00	5.00
Mason	35.00	7.00
Pipefitter	25.00	5.00
Heavy Equipment Operator	873.00 month	175/month
Foreman	38.72	7.75
Data was collected in U.S. dollars during a trip to Haiti in October, 1979 and then converted to gourdes.		
Exchange Rate: 4.99 Gourdes/U.S. Dollar, effective November 15, 1979 (First National Bank of Atlanta)		
3. Estimated by relativ	es for similar categor	

TABLE A-3

LABOR DATA FOR IVORY COAST

Labor Category	Wages in Francs/mo.	Wages in U.S. $\$ / \mathrm{month}^{2}$
Laborer	27,408	109.65
Machinist	54,576	218.30
Welder	82,224	328.90
Electrician	87,357	349.50
Carpenter	87,357	349.50
Mason	87,357	349.50
Pipe Fitter	68,986	275.95
Heavy Equipment Operator	109,152	436.60

1. Source: Ivory Coast Chamber of Commerce
2. Exchange Rate: 250 FCFA/U.S. dollar. Effective November 15, 1979 (Source: First National Bank of Atlanta)

TABLE A-4
LABOR DATA FOR KENYA

Labor Category	Wages in Shillings/hour ${ }^{1,2}$			$\begin{gathered} \text { Wages } \\ \text { in U.S. } \$ / \text { hour } \end{gathered}$
	Nairobi area	other urban	rural	
Laborers	2.30	2.25	2.15	. 30
Machinists ${ }^{4}$	3.40	3.30	3.10	. 44
Welders	3.75	3.60	3.30	. 48
Electricians ${ }^{4}$	3.40	3.30	3.10	. 44
Carpenters ${ }^{4}$	3.40	3.30	3.10	. 44
Masons ${ }^{4}$	3.40	3.30	3.10	. 44
Pipefitters ${ }^{4}$	3.40	3.30	3.10	. 44
Heavy Equipment Operators	3.70	3.55	3.25	. 48
Foreman		5.89		. 80
Housing Allowance	90.00/mo.	75.00/mo.	60.00/mo.	8.10/mo.

1. Minimum wages effective October 30 th 1979 , housing allowances must be added. Source: Kenya Ministry of Labor.
2. The data for skilled tradesmen in Kenya was subdivided into three levels, any of which appear to be qualified to do unsupervised work. Some of the data in this table are the middle of the three categories.
3. Exchange Rate: 7.4 shillings/U.S. Dollar, effective November 15th, 1979. Values are converted from the column marked "other urban." (First National Bank of Atlanta)
4. These labor categories fall under the label "general tradesmen"

TABLE A-5
LABOR DATA FOR NEXICO

Labor Category	Wages in Pesos/day ${ }^{1}$	Wages in U.S. \$/day ${ }^{2}$
Laborer	150	6.65
Machinist	375	16.65
Welder	375	16.65
Electrician	375	16.65
Carpenter	375	16.65
Mason	300	13.35
Pipefitter	400	17.51
Bulldozer Operator	375	16.65
1. Effective 1980. Source: Ricardo Alvarez		
2. Exchange Rate: 12, 1980 (Firs	s/U.S. dollar, effec Bank of Atlanta)	ruary

TABLE A-6
LABOR DATA FOR NEPAL

Labor	Category	Wages in Rupees/month ${ }^{1}$	Wages in U.S.\$/month ${ }^{2}$
Labor	rers	200	16.70
Mechi	inists	290	24.20
Elect	tricians	320^{3}	26.70
Welde	ers	2903	24.20
Carpe	enters	390^{4}	32.50
Mason		3904	32.50
Pipef	fitters	3904	32.50
Heavy	y Equipment Operators	$450{ }^{4}$	37.513
$1 .$	Effective October 30, 1979. Source: Nepal Ministry of Industry and Commerce, Department of Labour		
2.	Exchange Rate: 12.00 Rupees/U.S. Dollar, eifective November 15, 1979 (First National Bank of Atlanta)		
3.	May be as high as 390 Rupees		
4.	May be higher		

TABLE A-7
LABOR DATA FOR THE PHILIPPINES

Lebor Catesory	Wages in pesos/month	Wages in U.S. \$/month
Laborer	330	44.90
Machinist	444	60.40
Welder	472	64.20
Electrician	454	61.80
Carpenter	416	56.60
Cement Mason	394	53.60
Pipe Fitter	424	57.70
Heavy Equipment Operator	544	74.00

1. Mean wages for Manila effective March 1979 astuming a 48-hr. work week. Source: Philippine Ministry of Labor
2. Exchange Rate: 7.35 Pesos/U.S. dollar. Effective November 15, 1979 (Source: First National Bank of Atlanta)
table A-8
LaBOR DATA FOR THE UNITED STATES
Labor Category
Wagea in U.8. \$/hour ${ }^{1,2}$
Laborer 11.13
Electrician 15.30
Carpenter 14.20
Mazon 14.20
Pipefitter 15.40
Heavy Equipment Operator 14.00
Supervisor
(percentage)
3. Prevailing union wages effective July 1979. Source: NationalConstruction Eatimator, Crafteman Book Co. (1979)
4. Including benefits

EYefe cnsts tha EcYpT
(In Eqyption Peonde)

TAALE A-9b
system costs rot Ecypt
(in u.s. Belleta)
E67*1:
Fi6tEIS In L. S. DCbHES
707A. LBtos cospi 1087.10

FALL A 10 A
fritter cote roin mitt (En Meition Eeurtes)

TABLE A-10
systim costs row matt
(in U. * Dellara)
nIIII
figiots in 6.s. octass

	10146 4.0\%	cost	217.01
7084		cesy:	1454.8.8
rotil	CNET*6CIIO\%	cos7:	14844.02

TABLE A-11a
GYSTEM COSTS FOR IVORY COASt (in Ivory Coast Franca)

PETE E EOF cos? intt.14
TOTA MATE: LLS CCST: zE=?t.7E

TABLE A-11b
SYSTEM COSTS YOR IVORY COST (in U.S. Dollars)

Ivery ceasta
FIGLRES IN L.S. DCLLAES
40503.05
27512.09
total la=of costi
TOTAL PATERIELS COST:
TOTAL CCNETRLETSOI COST:
592.0も
14751.51
15342.57
casr flew
yf farment maint. cestifa

	DOWNFAYPEAT:	
1	18C2.25	416.77
2	1802.25	53.72
3	1802.25	53.66
4	1802.25	54.25
5	1802.25	55.00
6	1802.25	55.69
7	1802.25	57.27
0	1602.25	5c.0s
9	1802.25	60.67
10	1802.25	62.80
11	1002.25	65.81
12	1002.25	67.50
13	1002.25	70.68
14	1002.25	74.16
25	1002.25	77.69
16	1002.25	61.E2
11	2802.25	65.es
12	1802.85	90.51
19	1002.25	94.78
20	1002.25	96.67
101	3 OR46. ¢\%	1736.56

CaSH FLCWI hpy of cast fleas

CASt FLOW
CORRECIED fGG INFLATION
PAYMEAT MEIAT. CCST/YR

DOWAPGYPEAT:		0.00
1638.41	318.86	2017.25
1489.46	44.40	1533.86
1354.06	40.47	1394.52
1230.96	37.08	1268.04
1115.06	34.15	1253.20
1017.32	31.60	1048.92
924. 84	29.39	954.23
640.76	27.46	-68.21
764. 33	25.73	790.0t
694. 65	24.21	719.06
631.68	22.85	654.53
574.25	21.64	595.85
522.05	20.53	$542.5 t$
474.59	19.52	494.11
431.44	18.60	450.04
\$92. 22	17.74	409.95
356.57	16.94	373.51
324.15	16.19	340.34
294.68	15.49	310.27
267. 29	16.82	282.71
25343.57	857.67	

[^0]TAB:E A-124
SYSTEM CNSTS POR XEMYA
(in Kenyan Shillings)
KEAY\&
FIGGRES 11. KENVEA STIHLINGS

TABLE A-12b
SYSTEM COSTS FOR RENYA
(in U.S. Dollars)
XENYA:
FIGLRES IN L.S. DCLLAGS
TOTAL $\angle A=O R \operatorname{costi} 175.15$
TOTAL NATERILLS COST: 14947.01
TOTAL CENSTFLニTION COST: 1512 c̈.16
CASHFLCW PAYMENT PAINT. ECCSTIVE

COFRECTEO FOF INFLATION
YE PAYMENT PAINT ECCSTIVA
PAYEENT MAINT. CCSTIYR

	DOWNFAYPEATI		0.00	OOMAPAYPEAT:		0.00
1	177E.24	129.70	1505.95	1614. 77	117.91	1732.6t
2	177E.24	25.01	1605.26	1467.67	23.98	1491.95
3	1776.24	29.06	1205.30	1334.52	21.83	\$356.35
4	1776. ${ }^{14}$	25. 21	1805.45	121 :20	19.95	2233.15
5	1776.24	25.45	1405.65	1102.81	18.2 t	1121.19
6	1776.24	$2 ¢ .79$	1406.03	1002.64	16.61	1019.46
7	177 E.24	30.22	1406.46	511.49	15.51	927.0 C
8	1776.24	30.75	1807.00	024.t3	84.35	642.96
9	177E.24	31.38	1207.63	753.30	13.31	766.61
10	1776.24	32.11	2808.35	684. 62	12.36	697.20
11	177E.24	32. 53	1609.17	622. 56	11.54	E34.10
12	177t.26	33. 85	1610.0%	565. 67	10.79	576.75
13	1776.24	34.67	1811.11	514.51	10.10	524.61
14	1776.24	35.9	1612.22	467.14	9.67	477.21
15	177t.24	37.19	1613.43	425.22	0.90	434.12
16	1776.84	34.49	1414.74	364. 36	8.38	396.94
17	1776.24	34.50	1416.14	351.42	7.69	359.31
16	177t.26	41.40	1117.64	319.47	7.45	326.92
15	1776.24	42.95	1419.24	c90.43	7.03	297.46
20	177 E 24	44.E4	1 ± 20.93	264.03	6.64	270.E7
101	3552m. 66	742.¢6		1512 Ca . 16	362.50	

CASM FLCMI
$\begin{array}{lll}36 I C T .82 & \text { ACJUSIEDCASHFLOHI } & 15484.66 \\ 20 E 42.55 & \text { ACJUSIED APV: } & 10467.97\end{array}$

TABLE A-13a
SYSTEM COSTS FOR NEXICO (in Mexicen Pesos)

MEXEC:
FEUQES In MEICAF EESOS

Total Matelats costi

ChSr FLOm
CASPFLCW
CORFEGTED FOF INFLATION

TABLE A-13b
SYSTEM COSTS FOR MEXICO (in U.S. Dollars)

WEXICO:
FIGLRES IA L.S. DCLLAES
TOTA. LLEOF COST: EOE.1き
TOTAL PATERIELS COST: 1505 E .OG
TOTAL CCNETRUCTIOA COST: $25697.2 \hat{C}$

	CAS+FLCH			CORRECIE 0	CASH FLOM	TION
Vh	Payment	maint.	$\cos 1 / \mathrm{y}$	Payment m	MAIAT.	CCST/YR
	COWNPAYPERT		$=0.00$	DOWPiPAYPEAT:		0.00
2	1843.79	455. 22	2259.01	1676.17	413.84	2090.01
2	1845.73	$65.7 E$	- 1513.55	1523.79	57.65	1581.44
3	1643.79	69.91	- 1c13.70	1385.27	52.53	1437.7¢
4	8843.79	70.36	1514.17	1255.33	48.07	1307.41
5	1843.73	71.17	1584.96	1144.25	44.19	1189.04
6	1843.79	72.27	$1 ¢ 16.0 ¢$	1040.77	40.79	1081.56
7	1843.77	73.62	1517.47	946.16	37.81	903.9t
0	1848.79	75.40	1519.15	860.14	35.18	895.32
9	1843.79	77.44	1421.23	718.95	32.86	124.75
10	1043.79	$7 \mathrm{7.79}$	1523.51	710.86	30.76	742.62
12	1843.75	82.45	1526.24	646.24	20.90	675.14
12	1043.78	65.43	1529.22	507.49	27.22	614.71
13	1643.79	88.73	1532.51	534.08	25.70	559.78
14	1642.73	92.13	$1 ¢ 56.12$	485.53	26.31	509.64
15	1843.79	9E. $2 ¢$	1540.04	441.39	23.04	464.43
16	1443.75	100.48	1544.27	401.26	21.47	423.13
17	1843.79	205.05	1548.82	364.78	20.78	385.56
10	1043.74	109.89	1553.62	331. 2	19.76	351.35
19	1643.73	125.06	1550.85	301.47	18.18	320.29
20	1842.79	120.55	1564.34	274.67	17.92	298.95
101	3t475.7y	2111.21		15697. 22	1021.96	

CASH FLCM:
APY OF CASH FLOWI
3ESET.00 ACJUSTEC CASM FLOM:
16719.20
11356.11

F1Gt-pEs if AEAgL flyoges
TOTG LE.OS COST: 574.61
TJTE! PGFEI:LE CRETI 16T4E4.12
TOTA CCNSTFLETFOR CCSTI IEGOE\&.7!

TABLE A-14b
SYSTEM COSTS FOR MEFAL
(in U.S. Dollara)

NEPAL:
FIGURES IN L.S. DCLLASS

TOTEL LASOF COST:
TOTAL HATEGI:1E COST: TOTAL CCNSTELCTIOR COST:

13E26.51
13672.34
oral cCNSTELCTIO COST
CASH FLCN
PF FAYMEAT MEINT. COSTME

CASM FLOM
COPRECTED BOF INFLATION
PAYEENT MAIAT. CCST/FR

$32304.9 E$ ACJUSTED CASM FLOM IESE2.00 ACJUSTEO APV:
23759.59
5290.02

TABLE A-15b
SYSTEM COST FOR PHILIPPINES
(in U.S. Dollars)

PMILIEPINES: FIGLEESIA LOS. DELLAKS
TOTA. LAFOF COST: $10 C .0 \overline{0}$
TOTAL FBTEDI:LE COST: 13147.43
TOTAL CCNETPLCT: OR COST: 1ミ267.4E
casr FLCW
CASH FLOH
CORRECTED FOF INFGATION

TABLE A-16
sYSTEM COSTS FOR UNITED STATES (in t.s. Dollari)
U. S.

FICLEES IN L.S. OCLLAFS
 TOTAL FAIEPIASECOST: 16947.01

	CASP FLCH			COARECIED SOF FLOM INFLATION		
VR	payment	natar.	$\cos 1 / 7 \%$	PayPENT M	M INT.	CCST/PR
	COMAFSVFE		0.00	DOWMPAYPEAT:		0.06
1	2317.20	3505.60	- 222.20	2106. 55	3166.36	5292.91
2	2317.20	905.40	1822.60	1915.84	74.4.26	2663.31
3	$23: 7.20$	956.82	524.03	1740.85	682.32	2422.2t
4	2317.20	911.10	3226.30	1582.68	622.29	2204.97
5	2317.20	914.22	3835.42	143t. 80	570.14	2008.94
6	2317.20	926.20	3845.40	1306.C6	523.94	1831.94
7	2317.20	94:.02	3488.27	1189.09	462.89	1671.96
-	2317.20	¢5E.65	3873.85	1060.99	446.30	1527.25
9	$23: 7.20$	975. 21	$32 ¢ 2.41$	582.72	413.58	1396.30
10	2317.20	89E. 58	3513.7t	693.38	344.22	1277.61
11	2317.20	1020.80	3536.00	A2 2.26	357.76	1169.95
12	2317.20	1047.87	3265.07	738.33	333.88	1072.22
13	2317.20	1077.75	$3 \leq 64.95$	671.21	312.20	983.41
14	2317.20	1110.56	3427.7t	610.19	$2 ¢ 2.44$	902.64
15	6317.20	1146.17	34E3.37	554.72	274.38	825.10
16	2317.20	1184.64	3501.e4	504. 29	257.81	762.10
17	2317.20	1225.96	3543.16	450.45	242.55	700.99
18	2317.20	1270.18	$3 ¢ 67.32$	416.77	228.44	645.21
19	2317.20	1217.24	3634.34	37t.te	215.36	594.24
$\begin{array}{r} 20 \\ 10 \mathrm{~T} \end{array}$	$\begin{array}{r} 2317.20 \\ 4344.03 \end{array}$	$\begin{array}{r} 1367.00 \\ 23712.67 \end{array}$	3 E \% 20	$\begin{array}{r} 344.44 \\ 19727.64 \end{array}$	$\begin{array}{r} 203.20 \\ 18777.37 \end{array}$	547.63
$\begin{aligned} & \text { Cast } \\ & \text { APV } \end{aligned}$	$\begin{aligned} & \text { FLCH: } \\ & \text { OF CASR FL } \end{aligned}$		$\begin{aligned} & 70 c \& 6.30 \\ & 40455.2 E \end{aligned}$	$\begin{aligned} & \text { aCJUSTED CASM } \\ & \text { ACJUSTED APV: } \end{aligned}$	FLCW:	$\begin{aligned} & 30505.01 \\ & 21055.65 \end{aligned}$

APPENDIX B

data sources

FIGURE $\left.\begin{array}{l}\text { B-1 } \\ \text { RATE } \\ \text { WORKSHEET }\end{array}\right]$

PHOTOVOLTAIC ENERGY CONVERSION SYSTEM
(Average Labor Costs)

Mr. Ed Jacobson
Baker Building
Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332
U.S.A.

FIGURE E-2
 MATERIALS COBT WORRSHEET
 PHOTOVOLTAIC ENERGY CONVERSION SYSTEM
 (Typical Component Costs)

Structures

Materials - wood \qquad per (ft. ${ }^{2}$) (meter ${ }^{2}$)

- block
per (ft. 2) (meter ${ }^{2}$)

Miscellaneous

- Ventilator louvers (for building)
each
- 10" fan (for building ventilation)
each

Airmail to:	Mr. Ed Jacobson
	Baker Building
	Engineering Experiment Station
	Georgia Institute of Technology
	Atlanta, GA 30332
	U.S.A.

TABLE B-1

LIST OF DATA SOURCES

Esypt

```
A. Alaa El-Din Nazmy
Third Secretary
Embassy of the Arab Republic of Egypt
Commercial and Economic Office
2715 Connecticut Avenue, N.W.
Washington, DC 20008
```


Haiti

Ernest Paultr:
Engineer, U.S.A.I.D.
J.C. Duvalier \& Christophe
Porte au Prince, Haiti, W.I.
Ivory Coast
M. Delafosse
Secretaire General
Chambre de Comerce de la Cote d'Ivoire
01 - B.P. 1399
Abidjan, Ivory Coast
Kenya
J.B.C. Chegge
Permanent Secretary
Ministry of Labour:
P.O. Box 40326
Nairobi, Kenya
Mexico
Ricardo Alvarez
Avenida Morelos 25
Parque Industrial Naucalpan
Estado de Mexico, Mexico
Nepal
P. Wagle
Section Officer United Consultants Engineering
Ministry of Industry \& CommerceDepartment of Labour
Puspa Aashram
Ram Shaha Path
Kathmandu, Nepal

TABLE B-1

(continued)

Philippines

Rose Hammond
Director, Asia Office
Georgia Institute of Technology
Enrique T. Virata Hall
UP Campus, Diliman
Quezon City, Philippines
Eugene Construction Supply
25 Roosevelt Avenue
Quezon City, Philippines

University of the Fhilippines Physical Plant, School of Architecture, Administration Department, Center for Non-Conventional Energy Development, Engineering Department Quezon City, Philippines
Rufino Lopez 8 Sons
Manila, Philippinet

United States

National Construction Estimator
 Crafteman Book Co.

APPENDIX C

FORTRNN CODING

of

CALCULATION PROGRAM


```
c Toreost fotal casn flon
```



```
C TMMAINT TOTAG MAZNTENANCE ECST IDJUSTEO FOR INFSGTION &,?
C IRPIY TOTAL OF PATWENTS ADMSTED FOF INFGATION I Il
C XINF INF&ATIG, RATE E
```



```
        OINENSION SNI6I,N&NF(30), PAVRIS00),FIEIT(100),COSTNETIIOOI.
```



```
        COHMON NCOUA, NPP, MATIAT,AFAY, PAYMENT,NYRS DE XCN,ICOUN,TPAYG,THAINT.
        GTRPAY,TRMAINT,SN(6),SND(6), MIAF(30), CSO(5),CS(5,5), COSTL(9,6).
        -DMLAB(9,H),COLN(B,2),CCOLN(E,G),C&AS(5,6),T.C,COSTMAT
        60t0e0.
            WNITE IN OATAE
    C
    1234 00 10 IE1.4
    86 SN(8):+2.
        NPPE2
        Ratint*.80
        MPATE2%
        PAYMENTASASO.
        OOWNED.
        NYRSE20
        &COUNEE
        MMITE(E.26)
        whItE(6.6)
        FORMAT ('COUNT GY gIF I-REPAL 2-FMILLIPPINES 3-MLXICO GOMAITIL SOKENYG
        * O-Ivonr consti"I
        WhITE(S,17)
    87 FCRMAT (18%, "-EGYFT %-U.S.:*)
        REAO(5.*INCOUT.
        WMETET6.2001
    200 FORMATGMRITE - 2* TO OETAIN DIFALLI VGLLES FOD AGL FURTHEG IMDUT*J
```



```
201 FORMATEO}\mathrm{ SCTMERWISE ENTER OO*)
    REMO15,012
        IF12.E0. 2.1 60 10 2
        WHITE(6.26)
    26 FCRMAT(* *)
        WhITE(6, 14)
    14 FCRMAT (MMRITi IN DATA.")
        wREIE(E.155)
85 FORMATG*IF YOU WISM TO USE TME DEFAULT VGGUEZ FOP QUISTICH.S NOTED &
    "DEFE-2*.ENTER-2*I
        WRITE(6,26)
        WhITEIE.IBI
    13 FORMAT (0mOW MANY YEARS OF USEFUL LIFE:*)
        READC5.*)NYRS
        MRITE(E.1)
```



```
        REAO(5.0) SM(1)
        WRITE(E.J)
    3 PCRMATfMEATTERY CAPACITY IN WATT-MOUES: EDEFE-2D*!
        READ(S,0) SN(2)
        W\mp@code{ITETG&4)}
    4FORMAT(CMETERS OF FENCINGI CDEFE-2D*I
        RESDI5.*: SMI3!
        MRITEIE.5)
    * FCRMATICSO. METEPS OF STPLCTUEE: CDEFE-2**!
    READ(5.0) SN(G)
    whgiE(6,7)
    7 FCRMAT (MPAYFLAT PLAN.IF I-KAOWN PATMEATS 2-CALCULATED PAYMENTS 3-D
```



```
        READI5.*) NOP
        WRITEIG.EI
```

```
    0 FORHAT ("INTEREST HATE IN FERCENTI")
        READ(5.*) RATINT
        RATINTERATINT/100.
        MRITE(6.10)
    10 FORMAT("NUMBER OF YEARS TO EAY BACK LOANE ")
        READ(5,*) NPAY
        MRITEI6.11)
        FCRMAT (*IF PLAN EL IS USEC. ENTER PAYMEMT &IF NOT. ENTER O>:*I
        READ(5,*) PAYMENT
        URITE(E,I2)
12 FORMATI*IF DOHNFAYMENT IS MLDE, LIST IT <IF NOT, ENTEK O>:'J
        READ(5.*) DOWN
```



```
C IN THIS SECTION, COSTEST SUMS THE TOTAL COST OF
C
    2 IF(GOTO .EQ. 1.) GOTO 4321
C READ In ALL DATA FROM DATG SETS
        REAO(11,E)(EXC(I),IEI,ICOLN)
        REAO(11,*)(SND(I),IE1,6)
        READ(11,*)((COSTL(I,J),J=1,ICCUN),I=1,9)
        READ(11;*)(ICLAE(I;J),J=1,6),I=1,9)
        READ(11,*)(CSD(I),I=1,5)
        READ(12,*)((CS(K,I),I=1,5),K=I,ICOUN)
        READ(7,*)((DHLAB(I,J),J51,4),I=1,9)
        DO 18 IXE:2,ICOUN
    18 REAC(7,19)(COUN (IX,J),J=1,2),(CCOUN(IX,J),J=1,4)
    1% FCRMAT (2AS,4A6)
4321 EXCHEEXCINCOUN)
    DOWN=OOWN+EXCh
    PAYMENTI=FAYMENT *E XCH
    CALL BATTERY(CAPCOST)
    CAPCOST&CAPCOST-DCWA
    DO 101 LCCAM=1,2
    IFIACOLN.EO. 8 .AND. LOCAM -EQ. 21 GOTO 101
    TPAYF=0.
    TMAINT=J.
    TRPAY=0.
    TRHAINT=0.
    DO }100\mathrm{ NYR=1,NYFS
    IF ILOCAM EQ. 21 GO TO 50
    CALL CAP(NYR, PAYR(AYR),CAPCOST)
    CALL MAINT (NYF,FIXIT (NYRI)
    60 TO 10%
    50 CALL EXCHNG(OOWN,CAFCOST,FAYR (NYR:,FIXIT (NYRI)
        TLCETLC/EXCH
        COSTMAT=COSTMAT/EXCH
    100 CALL CHART (NYF,DOWA,CAPCOST,PAYR(NYR),FIXIT (MYRI,LOCAM)
    101 CONTINUE
    HRITE(6,26)
    WRITE(E,Z1)
    21 FCRMAT('GPROGRAM STOP. IF YOL WANT TO RLN IT AGAIN, ENTEF 1*',
    WRITE(6,2011
    REAO(5,*) GOTO
    IFIGOTO .EQ. 1.) GOTO 1234
    STOP
    END
C
        SUBROUTINE CHART(NYR,COWN,CAPCOST,PAYR,FIXIT,LOCAM)
        PRINTS ALL OUTPUT CNTC DATA SET -PRINT*
        DIMEASIOA COSTNET(100), RFAYF(1001.
    -RFIX(100), RCOSTNT (100), COLN(E,2),CCOUN(0,4)
    COMPON NCOUN, NPP, FATINT, NFAY,FAYMENT,AYKS ,EXCH,ICOUN,TPAYF,TMAINT,
    -T&PAY,TRMAINT,SN(6),SND(6), XINF(30), CSD(5),CS(0,5), COSTL(9,8),
```

 -ONLAB(9,4), COLN(0,2), CCOUN(6,4),CLAB(9,6),TLC,COSTMAT
 SET UP CHARTS
 IF INYR .NE. I) 60 TO 100
 TOTCCST=00WN
 RTCOSTEDOWN
 MRITE(9,26)
 26 FORMAT (^ c)
IF LLOCAM.EO. II GO TP 75
HRITE(9,2) (COUN(NCOUN, XX), :XE1,2)
2 FORHATIZAB, *FIGURES IA U.S. DCLLARS*)
60 T0 1
75 00 74 I=1.5
74 WRITE(9.26)
MRITE(9,6)(COUN(NCOUN,JX),JX=1,2),(CCOUN(NCOLN,JX),JX=1,4)
6 FCRMAT (2AB, *FIGURES IN**4AB)
1 CAPWK=CAFCOST \&DOWN
MRITE(9.26)
WRITE(9.4) TLC
4 FCRMAT (7X,*TOTAL LABOR COST:**F10.21
HRITEI9.Si COSTMAT
5 \mp@code { F O R M A T ~ (3 x . * T O T A L ~ M A T E R I A L S ~ C O S T i * , F 1 0 . 2) }
HRITE (9.3) CAFWK
3 FORHAT (*TOTAL CCNSTRUCTIOR, COST:**F10.2%
WRITE (9.12)
12 FCRHAT (51X, "CASH FLOW*)
MRITE(9.27)
FORMAT \$16X; "CASM FLOW".16X."CORRECTED FOF IAFLATICA")
HRITE(9.26)
WRITE (9,50)

```

```

 **PAYMEAT",4X,"MAINT.".5X, "COST/YF*')
 WRITE(9.26)
 WRITE(G,25) DOWN,DOWN
 25 FCRMAT (5X, "DOWNFAYMENT:*,10X,F9.2.4X, "DOWNPAYPENT: ",10X,FQ.21
10G CALL REALINYR,PAYR,FIXIT,RPAYF(NYE),RFIX(NYR)I
COSTNET(AYR)=PAYR+FIXIT
RCOSTNT(NYRIERPAYF(NYF) +RFIX(NYF)
CALL AFY(NYR, COSTNET (NYR), RCOSTAT (NYRI,CNPV,RCNPV)
RTCCSTERTCOST \&RCOSTNT (NYF)
TOTCOST=TOTCOST \&CCSTNET (NYR)
TPAYR=TPAYR+PAYR
TMAIAT =TMAINT \&FIXIT
TRPAY=TRPAY\&RFA YR (NYR)
TRMAINTETRMEINT +RFIX(MYR)
WRITE(9. 101)NYR,PAYR,FIXIT,COSTNET (NYF),RFA YK (NYRI,
*RFIX(NYR), RCOSTNT (NYR)
FORMAT (I 3, 2X,F9.2, 2X,F9.2.2X,F9.2.4X,F9.2,2X,F9.2.2X,FG.2)
IF (NYF NE. NYRS) GO TO G9
WRITE 19. 200ITPA YR,TPAINT,TRFAY,TRMAINT
200 FORMAT (0`TOT*,F11.2,F11.2.13X,F11.2,F11.2)
WRITE (9, 26)
WRITE(9.102) 1OTC CST,RTCOST
102 FCRMAT 1"CASH FLCW:*,15X,F11.2,2X, "ADJUSTED CKSH FLOW\&*",3X,F:1.21
MRITE(9.103) CNPV,RCNPY

```

```

 99 RETURN
 END
 C
SUBROUTINE EXCHPG(AA,BB,CC,COI
C EXCHANGES VALLES IN U.S. DOLLARS FOR VALUES IN LOCAL CURRENCY
COMMON NCOUN, NPP,FATINT,NFAY,HAYMENT, RYKS,E XCH,ICOUN,TPAYR,TMAINT,
-TRPGY,TRMAINT,SN(E),SND(6), YIAF(30),CSD(5),CS(8,5), COSTG(4,8),
*DMLAB!9,4), COUN(8,2), CCOUN(P,4),CLAB(9,6),TLC,COSTHAT

```
```

 AA:AM/EXCH
 B日=8日/EXCH
 CC=EC/EXCH
 DDEODIEXCH
 RETURN
 END
 C
C
IF (NYR .GT. NPAYI PAYR=0.
GOTO 5
PLAN S
C
DIMENSION XINF(30)
COMMON NCOUN, NPP, FATIAT, NFAY, FAYME NT, NYRS,E XCH, ICOUNI,TPAYR,TMAIAT,
-TRPAY, TRMAINT,SN(6),SND(6), XIH:F(30),CSO(5),CS(8,5), COSTL(9,6).
*DMLAB(9,4), COUN(8,2),CCOLN(8,4),CLAB(9,6),TLC,COSTMAT
DO 1 I=1.30
1 XINFIII=.10
IF (NYR -EQ. 1) DEI.
O=D*(1. \& XINF(NYR))
RPAYR=FAYR/D
RFIX=FIXIT/D
SUARCUTINE NPVINYF,COSTAET, FCCSTNT, CNPV,RCNFVI
COMMON NCOUN, NPP, FATINT, NFAY, FAYMENT, NYRS , XEK, ICOLN,TPAYF, THAIAT, -TRPAY,TRMAINT,SN(6),SNO(6), XINF(30), CSO(5), CS(8,5), COSTL(9, 8),

```
```

 -DHLAB(9,4), COUN(8,2),CCOUR(8,4),CLAB(9,6),TLC,COSTMAT
 DISRT:.06
 IFINYR EEQ.1) CNPVEO.
 IF INYR EEQ.II RCNPVED.
 CMPYACCSTNET/(1.4DISRTI*&NYR &CNPV
    ```

```

 RETTURN
 ENO
 C
SUBRCUTINE BATTERY(CAPCCST)
CALCULATES THE TOTAL CCNSTRUCTION COST FCK THE PROJECT
DIMENSION SN(6),SND(6),CLAS(9,6),COSTL(9,8),TCLAB(9,6)
CDMPON NCOUN, NPP, FATINT, NFAY, FAYMENT,NYRS,EXCh,ICOLN,TPAYF,TMAINT,
*TRPAY,TRMAINI,SN(6),SND(6), XINF(30), CSO(5),CS(8,5), COSTL(9,8),
*OMLAG(9,4), COUN(6,2), CCOLN(E,4),CLAB(9,6),TLC,COSTMAT
INSTALL THE MATERIAL DEFALLT VALUES HMERE NEEDED
DO 2I=2,4
2 IF (SN(I) -LT. O.) SN(II =SND(I)
SN(5) =SND(5)
SN(6)=SND(6)
C INSTAGL THE LABOR COST OEFALLT VALUES MmE RE NEEDE O
W=0.
00 4 I=1,7
4 W=COSTL(I,NCOUN)+W
Av=4/7
00 5 I=1,7
5 IF (COSTL(I,NCOLN) EQ. O.) COSTL(I.NCOUA)=AV
IF (COSTL(8,NCOLN) -EO. O.) CCSTL(B,NCOLAII=1.36*AV
IF (COSTL(9,NCOL'N) -EQ. O.) COSTL(3,NCOLP.) =1.66'\&V
C THIS SECTION OF BATTERY CALCLLGTES THE TCTAL LABOR
C COST CF CONSTRUCTION
00 7 J=i,6
00 }7\mathrm{ I=1.9
7TCLAS(I,J) =CLAB(I,J)*SN(J)
TLC=0.
00 9 I =1.%
TCAT=O.
00 J=1,6
- TCATETCAT+TCLAS(I.J)
9 TLC=TLC+TCAT* COSTL(I,NCCLN)
CALL MAT
SUM UP THE LABOR ANO MATERIALS COSTS
CAPCOSTETLC+C OSTMAT
RETURN
ENO
C
SUBRCUTINE MAT
C SUMS THE TOTAL MATERIALS CCST OF CONSTRUCTION
OIMEASION CSD(5),SN(6),CS(8,5),CST (5)
COMMON NCOUN, NPP, FATINT, AFAY,FAYMENT, AYRS,EXCH,ICOLN,TPAYR,TMAINT,
*TRPAY,TRMAINT,SN(6),SNO(6), XINF(3D),CSD(5),CS(6,5), COSTL(9,6),
*OMLAB(9,4), COUN(8,2),CCOUR,(8,4),CLAB(9,6),TLC,COSTMAT
PUT ALL FIGURES IA LOCAL CURRENCY
D0 2 I=1.5
2CSTIII=CSO(I)*EXCH
COSTMAT=0.
DO 5 I =1,5
IF(CS(ACOUN,I) .NE. O.I CST(IIECS(NCOLN,I)
5 COSTMAT=COSTHAT+CST(I)*SNIII
COSTMAT=COSTMAT*. 15*COSTMAT
RETURN
ENO

```

\section*{SUGROUTINE MA INT(NYR,FIXIT)}
calcllates the maintenance costs each yeaf
OIMENSION ORLAB(S, 4), HRSLAG(9), COSTL(S, 6)
COMMON NCOUN, NPP, FATINT, AFAY, FAYMENT, AYFS, EXCh, ICOUN, TPAYR,TMAINT, -TRPAY,TRAAINT,SN(E),SND(6), XINF (30), CSD (5), CS(0,5), COSTL(9,6),
-DMLAB(9,4), COUN(0,2),CCOLA(8,4),CLAB(9,6), TLC, COSTMAT FIXIT=0.
DO 50 I \(=1,9\)
If (AYF -LE. DhlaE (I.Z)ICM=(DMLAE(I, 1)-DMLAE(I,4))/
- COMLAE (I,2)-1.) **2.

IF (NYF OGT. DMLAG(I,2))CME(DMLAB(I,3)-DMLAB(I,4))/
- (NYRS-DMLAB (I,2))*e2.

HRSLAE (I) \(=D\) MLAB \((I, 4)+C M^{*}(K Y P-D M L A B(I, 2)): 2\). FIXIT=FIXIT+HFSLAB(I)*CCSTL (I, NCOUN)
RETURN
END```


[^0]:    377E1.5E ACJUSTED CASH FLCW:
    16201.24
    11004.64

