NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

STATISTICAL ANALYSIS

 OF MULTIVARIATE
ATMOSPHERIC VARIABLES

(NASA-CR-164472) STATISTICAL AAALYSIS OF
hultivariate athospheric variables pinal
Report (arkansas Oniv.) 158 p HC A08/AF A01
N80-25991
Unclas
23463

Final Technical Report

$$
b y
$$

Jack D. Tubbs
Principal Investigator
Department of Mathematics
University of Arkansas Fayetteville, Arkansas

March 31, 1979

Prepared for the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812

Under Contract No. NAS 8-31550 Control No. 505-8-10-ES-6-004-300-2150

Department of Mathematics University of Arkansas Fayetteville, Arkanses

Final Report

STATISTICAL ANALYSIS OF MULTIVARIATE ATMOSPHERIC VARIABLES

Jack D. Tubbs
Principal Investigator

Contract \# NAS 8-31550
Control 505-8-10-ES-6-004-300-2150

March 31,1979

STATISTICAL ANALYSIS OF MULTIVARIATE ATMOSPHERIC VARIABLES

FINAL REPORT

ACKNOWLE DGMENTS

Research work contained in this final report was performed for the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration for the perioo commencing October 31, 1975 and ending March 31, 1979. Dr. M. Carter was the inftial principal investigator and was responsible for the first three reports. Dr. James Dunn and graduate students Ms. Nebra Waits, Mr. Bradley Skarpness, Mr. Gary Spencer, and Mr. Chung Jin Lee also contributed to some of the reports.

PREFACE

The work presented in this final report was in response to the following three topics as suggested in the contract's scope of work.
1). Investigation of possible multivariate extensions of existing univariate distributions which have been used for modeling meteorological phenomenon.
2). Development of Goodness-of-fit tests, in particular for nonGaussian distributions.
3). Investigation of the effect of correlated observations on statistical inference

Reports 1-4 are concerned with some aspects of topic \#1. Report 1 contains an estimation procedure for several discrete multivariate distributions. Report 2 contains a procedure for computing cloud cover frequencies in the bivariate case. This procedure can be used to compute probabilities for cloud frequencies for either two geographical locations or for the same location at different times. Report 3 contains the procedure and corresponding computer code for calculating conditional bivariate normal pararieters. This report was requested by the COR. Report 4 contains a procedure for transforming multivariate non-Gaussian distributions into a nearly Gaussian distribution.

Reports 5 and 6 are concerned with topic \#2. Report 5 contains a goodness-of-fit test for the extreme value distribution which is used in many meteorological applications. Report 6 contains a goodness-of-fit test for several continuous distributions.

Report 7 is concemed with the problem given in topic \#3. In this report, the effect of autocorrelated observations on confidence regions is inves tigated.

Report 8 contains a computer code for generating both random and nonrandom observations for specified distributions. This program was used to generate the samples for the Monte Carlo simulation needed in the other reports.

TABLE OF CONTENTS

ACKNOWLEDGMENTS 1
PREFACE 11
REPORTS

1. ESTYMATION IN DISCRETE MULTIVARIATE DISTRIBUTIONS 1
Debra A. Waits
2. A PROCEDURE TO PREDICT CLOUD COVER FREQUENCIES IN THE BIVARIATE 17 CASE
Debra A. Waits \& Michael C. Carter
3. A PROGRAM TO COMPUTE CONDITIONAL BIVARIATE NORMAL PARAMETERS 58Michael C. Carter
4. TRANSFORMATION OF NON-NORMAL MULTIVARIATE DATA TO NEAR-NORMAL 65
James Dunn \& Jack Tubbs
5. TEST OF FIT FOR THE EXTREME VALUE DISTRIBUTION BASED UPON THE 79 GENERALIZED MINIMOA CLII-SQUAREChung Jin Lee \& Jack Tubbs
6. TEST OF FIT FOR CONTINUOUS DISTRIBUTIONS BASED UPON THE 87 GENERALIZED MINIMUM CHI-SQUARE
Jack Tubbs \& Gary Spencer
7. EFFECT OF CORRELATED OBSERVATIONS ON CONFIDENCE SETS BASEL 123 UPON CHI-SQUARE STATISTICSJack Tubbs
8. GENERATION OF RANDOM VARIATES FROM SPECIFIED DISTRIBUTIONS 134Jack Tubbs \& Gary Spencer

ESTIMATION IN DISCRETE MULTIVARIATE DISTRIBUTIONS

Summary

Procedures for estimating the parameters of three discrete multivariate distributions, the Multinomial, Negative Multinomial, and the multivariate Poisson distribution, are given along with approximate variances for the parameter estimates.

I. INTRODUCTION

This paper is concerned with the problems associated with the estimation of parameters for three discrete multivariate distributions, the multinomial, negative multinomial, and the multivariate poisson, which are the multivariate extensions of three common univariate discrete distributions, the tinomial, the negative binomial, and the Poisson aistribution. The distributions are introduced in Section 2. A detailed explanation of the estimation procedures along with approximate bounds for the variances of the estimates are given in Section 3. An example is presented in Section 4 which is intended to demonstrate the use of the estimation procedures. A listing and card input description of the computor program is given in the Appendix.

II. DISTRIBUTIONS

Johnson and Kotz (1969, Ch. 11) provides a detailed discussion of the functions described below.

2.1 Multinomial Distribution

The simplest of the three distributions both in structure and theory is the multinomial distribution. Let $E_{1}, E_{2}, \ldots E_{k}$ be possible events which can occur from a series of independent trials. If E_{j} has probability P_{j} of occuring and n_{j} is the number of times E_{j} occurs in the N trials where k $\sum_{j=1} n_{j}=N$, then the joint distribution of the random variables $n_{1}, n_{2}, \ldots, n_{y}$ is the multinomial distribution with parameters $N, P_{1}, P_{2}, \ldots, P_{k}$. The distribution is defined by

$$
\begin{equation*}
P\left(n_{1}, n_{2}, \ldots, n_{k}\right)=N!\prod_{j=1}^{k}\left(P_{j}^{n_{j}} / n_{j}!\right)\left(0 \leq n_{j} ; \sum_{j=1}^{k} n_{j}=N\right) . \tag{1}
\end{equation*}
$$

2.2 Negative Multinomial

Just as the multinomial distribution is a natural
extension of the binomial distribution, the multivariate negative binomial distribution is a natural extension of the negative binomial distribution. Hence, the probability generating function for the multivariate negative binomial is defined by

$$
\begin{equation*}
\left(Q-\sum_{i=1}^{k} P_{i} t_{i}\right)^{-N} \tag{2}
\end{equation*}
$$

with $P_{i}>0$ for all $i=1, \ldots, k ; N>0$, and $Q-\sum_{i=1}^{k} P_{i}=1$. From formula (2) we have the following distribution function

$$
\begin{equation*}
P\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\frac{\Gamma\left(N+\sum_{i=1}^{k} n_{i}\right)}{\left(\prod_{i=1}^{k} n_{i}!\right)(N)} Q^{-N} \prod_{i=1}^{k}\left(P_{i} / Q\right)^{n_{i}} \tag{3}
\end{equation*}
$$

where $n_{i}>0, i=1, \ldots, k$.
This is called the negative multinomial (or multivariate negative binomial) distribution with parameters $N, P_{1}, P_{2}, \ldots, P_{k}$, where N is a non-negative integer. A special form of this distribution is a compound Poisson distribution which can be further simplified to a bivariate form as described by Bates and Neyman (1952).

2.3 Multivariete Poisson

Consider a sequence of k variables $x_{1}, x_{2}, \ldots, x_{k}$ such that each one is a combination of two independent univariate Poisson variables where one of the Poisson variables is present in all k variables. That is,

$$
x_{1}=u+v_{1}, x_{2}=u+v_{2}, \ldots, x_{k}=u+v_{i} \text { and } u, v_{1}, v_{2}, \ldots, v_{k}
$$

are independent univariate Poisson variables with expected values $\xi, \theta_{1}, \theta_{2}, \ldots, \theta_{k}$ respectively. The joint distribution of $x_{1}, x_{2}, \ldots, x_{k}$ is

$$
\begin{array}{r}
\left.P\left(x_{1}, \ldots, x_{k}\right)=\exp \left(-\xi-\theta_{1}-\ldots-\theta_{k}\right) \sum_{j=0}^{m}\left[\begin{array}{c}
\frac{\xi^{j}}{j!} \frac{\theta_{1}^{x_{1}-j}}{\left(x_{1}-j\right)!} \\
\frac{\theta_{2}}{\left(x_{2}-j\right)!}
\end{array}\right] \frac{x_{k}-j}{\left(x_{i}-j\right)!}\right]
\end{array}
$$

where $m=\min \left(x_{1}, x_{2}, \ldots x_{k}\right)$. This is called the multivariate Poisson distribution with parameters $E, \theta_{1}, \theta_{2}, \ldots, \theta_{k}$.
III. ESTIMATION

In section 3.1 the techniques used to estimate the parameters of the three distributions are described. The subsequent section is concerned with the variances of the estimates for the multinomial and negative multinomial distributions. A computer program was written to perform the needed computations.

3.1 Parameter Estimation

The maximum likelihood estimates of $P_{1}, P_{2}, \ldots P_{k}$ for the multinomia] distribution are the relative frequencies

$$
\begin{equation*}
\hat{p}_{j}=n_{j} / N \quad(j=1, \ldots, k) \tag{5}
\end{equation*}
$$

where n_{j} is the observed frequency of E_{j} given N independent trials.

The method of moments is the most convenient approach for estimating the parameters of the negative multinomial distribution. The moment generating function of a k variate negative multinomial distribution is

$$
m\left(t_{1}, \ldots, t_{k}\right)=\left(Q-\sum_{j=1}^{k} P_{i} e^{t_{i}}\right)^{-N}
$$

Thus we obtain the following moments

$$
E\left(n_{j}\right)=\left.\frac{\partial m\left(t_{1}, \ldots, t_{k}\right)}{\partial t_{j}}\right|_{\underline{t}=\underline{0}}=N P_{j} \text { for } j=1, \ldots, k
$$

$$
\begin{aligned}
E\left(n_{i} n_{j}\right) & =\left.\frac{\partial^{2} m_{m}\left(t_{1}, \ldots, t_{k}\right)}{\partial t_{j} t_{i}}\right|_{\underline{E=0}} \\
& =N(N+1) P_{i} P_{j} \\
& =N^{2} P_{i} P_{j}+N P_{i} P_{j} \\
& =E\left(n_{i}\right) E\left(n_{j}\right)+\frac{E\left(n_{j}\right) E\left(n_{j}\right)}{N}
\end{aligned}
$$

giving

$$
\begin{equation*}
N=\frac{E\left(n_{i}\right) E\left(n_{j}\right)}{E\left(n_{i} n_{j}\right)-E\left(n_{i}\right) E\left(n_{j}\right)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{j}=E\left(n_{j}\right) / N \tag{7}
\end{equation*}
$$

Equating raw estimates to moments to obtain an estimate for N, we have

$$
\begin{aligned}
\dot{N} & =\frac{\bar{n}_{i} \bar{n}_{j}}{\bar{n}_{i} n_{j}}-\bar{n}_{i} \bar{n}_{j}
\end{aligned} \text { and } \dot{p}_{j}={\overline{{ }_{n}^{j}}}_{j} / \hat{N} \text { for } j, j=1, \ldots, k \text { and } i \neq j \text { where } .
$$

The accompanying computer program utilizes this method of moments in two ways. There are $k(k-?) / 2$ possible estimates of N by this method where k is the number of parameters. Similarly there are $k(k-1) / 2$ possible values of $\bar{n}_{i} \bar{n}_{j}$ as well as $\overline{n_{i} n_{j}}$. The program first averag. 3 the $k(k-1) / 2$ values of $\bar{n}_{i} \bar{n}_{j}$ and $\overline{n_{j} n_{j}}$ and then outputs an estimate of if based on these averages. The second approach calculates the $k(k-1) / 2$ estimates of N and prints out the average estimate of N. The parameters $P_{i}, i=1, \ldots, k$ is also estimater twice corresponding to the two estimates of N.

The method of moments is also used in estimating the parameters of a multivariate Poisson. The moment renerating function is given by

$$
\begin{equation*}
m\left(t_{1}, \ldots, t_{k}\right)=\exp \left[-\xi\left(1-\exp \left(\sum_{i=1}^{k} t_{i}\right)\right)-\sum_{i=1}^{k} \epsilon_{i}\left(1-e^{t_{i}}\right)\right] \tag{8}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& \left.\frac{\partial m\left(t_{1}, \ldots, t_{k}\right)}{\partial t_{i}}\right|_{\underline{t}=\underline{0}}=E\left(x_{i}\right)=\xi+\theta_{i} \tag{9}\\
& \left.\frac{\partial^{2} m\left(t_{1}, \ldots, t_{k}\right)}{\partial t_{i} \partial t_{j}}\right|_{\underline{t}=\underline{0}}=E\left(x_{j} x_{j}\right) \\
&
\end{aligned} \begin{aligned}
& =\left(\xi+\theta_{i}\right)\left(\xi+\theta_{j}\right)+\xi \\
& \\
& =E\left(x_{i}\right) E\left(x_{j}\right)+\xi
\end{align*}
$$

Therefore

$$
\begin{equation*}
\xi=E\left[x_{i} x_{j}\right]-E\left[x_{i}\right] E\left[x_{j}\right] . \tag{暴保}
\end{equation*}
$$

Substituting raw estimates for expected values we have $\hat{\xi}=\overline{x_{i} x_{j}}-\bar{x}_{i} \bar{x}_{j}$ where $\bar{x}_{\mathcal{E}}=\frac{\sum_{i=1}^{n} x_{\ell}}{n} ; \overline{x_{1} x_{k}}=\frac{\sum_{i=1}^{n} x_{\ell_{i}} x_{x_{i}}}{n}$.
Since $\theta_{i}=E\left(x_{i}\right)-\xi$, a method of moments catimate for θ_{i} is $\left(\bar{x}_{j}-\hat{\xi}\right)$. Again the accompanying computer program uses two approaches to estimate ξ via the method of moments. First the program averages all possible values for $\overline{x_{j} x_{j}}$ and $\bar{x}_{i} \bar{x}_{j}$ and estimates ξ based on these two averages. Next the program averages the $k(k-1) / 2$ possible estimates of ξ and outputs
this average as a workable estimate of ξ. The parameters of $\theta_{i}, i=1, \ldots, k$ are estimated twice to correspond to the two estimates considered for ξ.

3.2 Variances of Parameter Estimates

The exact variance of the estimates for the multinomial r rameters can be easily derived. Consider

$$
\begin{align*}
\operatorname{var}\left(\hat{P}_{j}\right) & =\operatorname{var}\left(n_{j} / N\right) \\
& =E\left(n_{j} / N\right)^{2}-\left\{E\left(n_{j} / N\right)\right\} \\
& =\frac{1}{N^{2}}\left(N^{2} P_{j}^{2}+N P_{j} q_{j}\right)-P_{j}^{2} \\
& =\frac{P_{j} q_{j}}{N}=\frac{P_{j}\left(1-P_{j}\right)}{N}, \tag{12}
\end{align*}
$$

hence an approximate variance for \hat{P}_{j} is $\hat{P}_{j}\left(1-\hat{P}_{j}\right) / \hat{N}$.
In order to place approximate bounds on the variances of the negative multinomial parameter estimates, consider Fisher's Information Matrix for the maximum likelihood parameter estimates which is defined as

$$
\begin{equation*}
V\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(E\left[-\frac{\partial^{2} 1 o g L}{\partial a_{i} a_{j}}\right]\right)^{-1} \tag{13}
\end{equation*}
$$

where a_{i} and a_{j} are parameters and L is the likelihood function. Kendall and Stuart have shown that this matrix is the asymptotic variance-covariance matrix for the maximum likelihood parameter estimates. From equation (3), we have the following

$$
\begin{align*}
\ln L= & \sum_{j=1}^{n} \ln r\left(N+S_{j}\right)-\ln \left(\prod_{j=1}^{n} \prod_{i=1}^{k} n_{i j}!\right)-n \ln \Gamma(N) \tag{15}\\
& \left.-N n \ln Q+\sum_{i=1}^{k} \sum_{S_{j}^{1}}^{n} n_{i j}\right)\left(\ln P_{i}-\ln Q\right)
\end{align*}
$$

where $S_{j}=\sum_{i=1}^{k} n_{i j}, S_{i}^{1}=\sum_{j=1}^{n} n_{i j}, n$ is the number of samples taken and $n_{i j}$ is the number of times E_{i} is satisfied on the $j^{\text {th }}$ sample.

$$
\begin{align*}
& \frac{\partial \ln I_{1}}{\partial N}=\sum_{i=1}^{n} \sum_{k=0}^{E\left(S_{j}\right)-1} \frac{1}{\hat{N}+K}-n \ln \hat{Q} \tag{16}\\
& \frac{\partial^{2} \ln I}{\partial^{2} N}=\sum_{j=1}^{n} \sum_{k=0}^{\mathbb{E}\left(S_{j}\right)-1} \frac{-1}{(N+k)^{2}}=\sum_{k=1}^{\infty}-(\hat{N}+k-1)^{-2} E\left(F_{j}\right) \tag{17}
\end{align*}
$$

where F_{i} is the number of S_{j} 's greater than or equal to j,

$$
\begin{equation*}
\frac{\partial^{2} \ln L}{\partial N \partial P_{i}}=\frac{-n}{\substack{k \\ k \\ i=1}} \hat{P}_{i} \quad \text { for } i=1, \ldots, k \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \ln I_{1}}{\partial P_{i}}=\frac{-\hat{N}_{n}-\sum_{\ell=1}^{k} F\left(S_{\ell}^{1}\right)}{1+\sum_{j=1}^{k} \hat{P}_{j}}+\frac{E\left(S_{i}^{l}\right)}{P_{i}} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \ln L}{\partial^{2} F_{j}}=\frac{N n+\sum_{\ell=1}^{k} E\left(S_{\ell}^{1}\right)}{\left(1+\sum_{\ell=1}^{k} \hat{F}_{\ell}\right)^{2}}-\frac{E\left(s_{j}^{1}\right)}{P_{j}^{2}} \tag{20}
\end{equation*}
$$

Using the two sets of ostimate: for N, P_{1}, \ldots, F_{k} and numerical values for $E\left(S_{i}\right), E\left(S_{j}^{l}\right)$, and $E\left(F_{i}\right)$, wo can obtiain upproximate bound: for $V\left(\hat{N}, \hat{F}_{1}, \ldots, \hat{F}_{k}\right)$.

IV. AN EXAMPLE

Negative multinomial data were obtained from Arbous and Kerrich (1951,p. 424) to illustrate the output from the computer procram. The results are found in Table l. Notice that in the binomial case both estimates of N are the same since there are only two variables. For this same reason, only one Fisher's information matrix is produced. If more than two variables were considered, we would have obtained two different estimates for N and the information matrix. From the two distinct variances obtained from these matrices one could obtain the boundary points of the internal about the variance of the parameter estimates.

TABLE 1.

THE MOMENT ESTIMATE OF N OBTAINED BY AVERAGINGTHW RAW MOMENTS FIRST IS3.350THE CORRESPONDING PROBABILITIES ASSOCIATED WITHTHE RESPECTIVE VARIABLES ARE0.295
THE MOMENT ESTIMATE OF N OBTAINED BY AVERAGINGALL POSSIBLE MOMENT ESTIMATES3.350
THE CORRESPONDING PROBABILITIES ASSOCIATED WITHTHE RESPECTIVE VARIABLES ARE0.295
FISHER'S INFORMATION MATRIX USING THE MINIMUM ESTIMATE OF N

$$
\begin{array}{rrr}
1.207 & & \\
-0.108 & 0.010 & \\
-0.140 & 0.012 & 0.017
\end{array}
$$

REFERENCES

Arbous, A.G. and Kerrich, J.E. (1951). Accident Statistics and the Concept of Accident Proneness, Biometrics ?, pp. 340-432.
Bates, Grace E. and Neyman, J. (1952). Contributions to the Theory of Accident Proneness, University of California, Publications in Statistics, 1 , pp. 215-253.

IBM Application Program (1968). System/360 Scientific Subroutine Package, Fourth edition.

Johnson, N. and Kotz, S. (1969). Distributions in Statistics: Discrete Distributions. Boston: Houghton-Mifflin.

Kendall, Maurice G. and Stuart, Alan (1961). The Advanced Theory of Statistics: Inference and Relationship, 2, p. 28.

APPENDIX

CARD INPUT DESCRIPTION

Card 1
Cols.
$3 \quad 1$ if a multivariate poisson distribution is to be analyzed 2 if a multinomial distribution is to be analyzed Any other number in this column indicates that the negative multinomial distribution is to be analyzed.

FOR THE MULTIVARIATE POISSON AND NEGATIVE MUITINOMIAL DISTRIBUTIONS

Card 2
1-3 contains the number of variables
4-7 contains the number of observations
7-77 contains 7 pieces of data in consecutive 10 -column spaces
Card 3^{+}
1-70 contains 7 pieces of data in consecutive lo-column spaces

FOR THE MULTINOMIAL DISTRIBUTION
Card 2
1-3 contains the number of events
4-74 contains 7 pieces of data in consecutive lo-column spaces
Card 3^{+}
1-70 contains 7 pieces of data in consecutive 10-column spaces

READ (5, Si,ENCSSE: IVF

1 FURMATI213017F:J...i
$K_{B}=K+1$
$K K=R-1$
DO 9 I =i,k
- $11=00 \mathrm{C}$
9
10
$\begin{array}{ll}S P I I=O D C \\ 00 & 0 \\ 00 & 1\end{array}$

12
EPII,d)EODÓ
ititu $2=2$

14
$003 \quad J=1: M$
2 E(I)EEIIHN
2 E(I)=EIIGMM
$j J=j+j=20 K K$
LL= $L-1=J J, K$
5 EP:J.LLi=E
(e)
Eと(JっLL) = ć(J)*EてL)
4 EP (J,LLi=EP(J,LLI/M
$S_{i}=600$
Sz=úDC
$-$
$0061=1, K K$
000 J =IBKK
$S 2=S 2+E P(I ; J)$
$G=K *(K-1) / 20 C$
IF (IHAEOBI) GO TUG¿C MULTINUMIAL PANAMETERS BEGINS HEFE
HN=S:/(S2-S:)
IF (HN.LE.ODC) GC TO gO
IS WKITEIO.81 HN
WRITE $(0,26)$
DO 7 I =1, K
P(I) =E(I)/HN
7 WRITEI6,27) PIII
SUM = 000
$\begin{array}{llll}0 \\ 0 & 1 & 3 & 1=1, K K \\ 0 & 1 & 3 & =1, K K\end{array}$
AN(I,J)=EE(I,J)IIEP(I,J)-EE: i, J))
If IAN(I,JiliEGDE, GJ TO O:
13 SUM=SUM+AN(I,J)
SUM = SUM/G
WRITE $(0,24)$ SUM

15 WRITE(0, 27) $P(1)$
$D=A N(1,1)$

OO 31 d=I.KK
IF IANII,J)-C
CI
C N>C IN THE NEGETIVE MULTINOMIAL LISTEIBUTIGN
32 DAAN(IOd)
33 IF (ANRIDJI-AEI $34,36.3 i$

- 34 ÁEAN(IBJI

C D IS NOH THE MAX ESTIMATE OF N ANO AE IS THE MIN
62
$\begin{array}{lll}0 & 0 & 1=1, K \\ 00 & 0 & J=1, M\end{array}$
$\begin{array}{ll}00 & 0 \\ 00 & 3 \\ 003 & 1=1, M\end{array}$
63 Sili=SilitNJII, Ji
MM $=\mathrm{M}-\mathrm{C}$
DO $64,1=1$ MM, -

75
76 00 04 J=11, M
IF (SiJ)-Si(1) 5 E,05,24
05

Silll $=00$
SiJ)
COE
04 CUNTINUE
$L=S I M$
$0 U 60$
$D U$
O 7 I
IF
0δ

07
CONTINUE
66
CONTINUE
SH=CDC
$0078 \quad 1=1, M$
78
39
35
INFIL, IIEIN

SPI a COJ
$00361=1, K$
36
P(I)=E(II)D
$S P I=S P I+P(1)$
00
$H=M T=2 ; K I$
$\mathrm{O}_{\mathrm{H}=\mathrm{M}^{37} \quad I=2, K 1}$

DO $38 \quad I=J, K I$
$\operatorname{INF}(J, I)=(D * M+S H) /(10 O+S P I) * * 2$
38
IF (D.EQ.AE) WRITE $(0,44)$
CALL ARRAY ($\left.2, K_{i}, K Y, I V F\right)$
CALL SINV (RM:K:BSSAER)

$\frac{1}{2}$
 23

$\begin{array}{ll}00 & 23 \\ 1 & 0 \\ 00 & 1\end{array}$ IaloK
0023 J-1:OK
NFIJ, JiBiNFi(i, J)

FORMAT $(9 F 14.8 / 4 F 14 \cdot 8)$
FORMATI'GFISHERS INFORMATIUN MATRIX USING THE MGXIMUM ESTIMATE GF CNE
IF $(O . E Q . A E)$ GU TO 28
44 FURMATI'CFISHER'OS INFORMATION MATKIX USING THE MINIMIJM ESTIMATE COF N'?


```
OLATIUNS IT
            IFIPESEEODCI GU TJ SO
```

 If MULIIVARIATE PJISSUN
 \(N P\)
 WRITE \((0,18) P E\)
 WKITE (6,21)

20 KRIEE 6,27 K
17 IF IEN(I,J):LEG:UQ)GOTO \& !
17
OU i 7 OUB,KK
EH(I, J)=EP(I, d)-EE(I, 1$)$
SUM= SUM \quad EE
WRITE $(0,191$ SUM
WRITE $0: 211$
OO 22 (ilink
22
27
1
19 FORMAT(3iX,F: - 8)
CAINEAT GYGGVEREGMOMENT, ESTIMATE DF THE POISSUN PARAMETER FJK UGEGT

C MOMENTS FIRST IS: $13 \dot{\text { O }}$, FIL. OI
26 FORMATI THE CORKESPUNOING PKLBLBILITIES LSSUCI:TEJ AITH THE KESP:
CCTIVE VARIABLES AKEOI
24 FURMAT ICC: THE MOMENT ESTIMATE OF OBTAINEL BY AVERIGING ALL PUS

21 FURMAT ('UHE COKRESPONOING ESTIMATE CF THE POISSON PARAMETER FJR
C THE RESPECTIVE V VGRIABLES IFE:I
GU TO 4
C CALCULATION OF MULTINOMIAL PARAFETEFS BEGIN HEFE
3.JREAD (5,49) KMVITINMIEI,K)
49 FORMAT (13,17F1U...1)
WRITE 16,52)
$S U M=000$
SU $5 \mathrm{C} I=1 ; K$
50 SUM = SUMAF(1)

5 WRITE(0,48) P(I),SP(I)

GOTO 20
80 MRITE (O, OI) 8 GN-VEGATIVE PARAMETER HAS BEEN ESTIMATEO IS NEGATIVE'I
FORM
STOP
END
GO $1 J=C_{0} 140$

1J=1 $1+1$
125

RETURN
END

DIMENSION LIt.?
$1=(N-: 1 \quad 2,:$?
K戸̈iv:。
DU $12 k=1, N$
KPIV=KPIV+K
IND = KPIV
LEND =K-
TUL=DABS(EPSHA(KP!V))
DC $1=K, N$
OSUMEL

OUNELEJVENO
LANF=KPIV-L
LIND:INO-L
3 DSUMECSUM+A(LENF)FE(LINO)
4 DSUM=A(IND)-DSUM
IF 1 (1-K)
5 IF (DSUM-TÓLi o, e,o

7 If (ItR) 30t,
8 © 1 CREK-
DP IVELSURI (USUM)
A(KPIV)=EPIV
OPIVEsD: IDPIV

RETURN
12 LIREM
RET

```
    SURROUTIN: SINVIA,VAEPSOIERI
    IMPLICIT REAL*O \((:-H=J=6)\)
    DIMENSION AIG.I
    CALL MFSC(2,PiolPSolin)
IPIVEN:(N+İ):
    IND EIPIV
    OU O I =AB
    Aliplvi=DItio
    MIN:N
    \(K \subseteq N_{1}\) - \(1-\)
    LANFEN-K ENO
    If (K\&NJ) 5, 2, :
2 J=IND
    OUAK=!,KENO
    WCRK= J
    MIN MIN-
    LHDR=IPIV
    LVER=J
    OU \(\hat{j}\) L \(=\) LANF.MIN
    LVEN=LVEO+
    \(L H E K=L H O R+L\)
3 WORKENOKK+A(LVE:) = \& (LHOK)
    A(J) =-WOKK (JIN
\(4 \mathrm{~J}=\mathrm{J}=\mathrm{MIN}\)
5 IPIVEIPIV-MIN
- IND:IND:-
    DU 0 I \(1=, N\)
    IPIV=IPIV+I
    \(J=I P I V\)
    Du \(8 K=1, N\)
    WURK= DL
    LHOR=J
    DU 7 LEK,N
    LVER=LHOK+K-1
    WしRK=WORK+A(Lいる?)*~(LVEF)
7 LHOR=LHUK \(+L\)
    Al J) =mUNK
\(8 \mathrm{~J}=\mathrm{J}+\mathrm{K}\)
9 RETURN
    ENO
```


A PROCEDURE TO PREDICT CLOUD COVER FREQUENCIES IN THE BIVARIATE CASE

Summary

The purpose of this report is to present a procecince for approximating cloud cover probabilities for two different locations or for the same location at different times. In addition a monte carlo procedure is presented for integrating the bivariate normal distribution. This program is used for computing the approximate probabilities.

If one assumes that the density function for the bivariate cloud cover model is approximately bell-shaped, then it is shown that the desired conditional probablities can be approximated using the bivariate normal distribution. Examples illustrating the feasibility of this procedure are included. However, if the bivariate density for the cloud cover model is highly J or U shaped this procedure provides resuits which are less than satisfacfory. Examples illustrating this situation are also included.

I. INTRODUCTION

The purpose of this report is to present a procedire for estimating joint probabilities for the degree of cloud cover over two regions or one region at subsequent time intervals.

Falls (1974) demonstrated thac the beta distribution adequately describes the variation in the anounts of cloud cover. This conclusion was based upon analysing cloud cover data from diverse lncations, for different times of the year and for
different times of the day. Thus, we may expect that the multivariate beta distribution, sometimes called the Dirchlut distribution would be a natural extension for describing the bivarlate case. However, a thecretical requirement of the pirchet distribution is that the variables be negatively corrcistec, and this constraint seems to intuitively disagree with the actual situations. Consequently, a different approach was requiped, one allowing for both positive and negative correlations.

Peizer and Pratt (1968) provide a possible approach, that of using the norial distribution for approximating tail probabilities in the deta distribution. Thus, if one assumes that the correlation between the two sites is structurally related to the corelation present in the bivariate normal distribution, one may te able to extend the work of Peizer and Pratt to the altivariate etting, that of approximating joint probabilities using the tivariate normal distribution (BVI). This approximation would aprsar to work adequately for those cases where the Lnivariate normal approximation gives satisfactory approximations t the beta distrobution.

This reno: sonsitts of three main sections. The first section describti a program for integrating the BVN over rectangelar regiots. This section is basically self contained, and it. pr vides the user the needed explanation for integrating the BVN. The second section illustrates how this procedure is used In approximating the bivariate cloud cover model. Applications and examples of this procedure are presented in section 3. The program documentation and listinfs are presented in the Appendix.

II. BVN FROGRAM

A procedure was required for integrating the bivariate normal distribution over a specified region. The RVN program provides an approximation to the above integral. This section consists of three sutsections, 1) introduction to the monte carlo theory, 2) application of this theory to the BVN distribution, 3) examples.

2.1 General Monte Carlo Technique

An excellent summary on the general principles of monte carlo theory can be found in Newman and Odell (1971). The following is a discussion of this method as related to double integration.

Let $\underline{x}=\left(x_{1}, x_{2}\right)$ denote an arbitrary two dimensional vector and $f(\underline{x})$ a real valued function of \underline{x}. Consider the integral

$$
\begin{equation*}
0-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} r(\underline{x}) E(\underline{x}) d x_{1} d x_{2} \tag{2.1}
\end{equation*}
$$

where $\mathbb{E}(\underline{x})$ denotes a probability density function on the plane. The integral (2.1) is the expected value of $f(\underline{x})$ and san be estimated by

$$
\dot{0}=\frac{1}{N} \sum_{i=1}^{N}\left[\underline{x}_{-1}\right)
$$

where $\underline{x}_{i}, i=1, \ldots, N$ are random samples from the pdif $g(\underline{x})$. The variance of $\hat{0}$, is given by

$$
\operatorname{var}(i)=\frac{1}{N} \operatorname{var}(f(\underline{x}))=\dot{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(f(\underline{x})-0)^{2} g(\underline{x}) d x_{1} d x_{2}
$$

which can be estimated by

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(f\left(\underline{x}_{i}\right)-\dot{\theta}\right)^{2}
$$

The estimated standard error is civen by, $\hat{e}=8 / \sqrt{n}$.
The following describes a procedure for reducing the magnitude of the var ($\hat{\theta}$). Suppase that there exists a function $h(\underline{x})$ on R^{2} (two dimensional real; which approximates $f(\underline{x})$ on R^{2} and suppose that

$$
x=\int_{-\infty}^{\infty} h(\underline{x}) g(\underline{x}) d x_{1} d x_{2}
$$

is known. Then

$$
0=x+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(f(\underline{x})-h(\underline{x}))_{\varepsilon}(\underline{x}) d x_{1} d x_{2}
$$

The variance of $f(\underline{x})-h(\underline{x})$, is given by

$$
\operatorname{var}(f(\underline{x})-h(\underline{x}))=\operatorname{var}(f(\underline{x}))+\operatorname{var}(h(\underline{x}))-2 \operatorname{cov}(f(\underline{x}), h(\underline{x}))
$$

If $\operatorname{var}(h(\underline{x}))<2 \operatorname{cov}(f(\underline{x}), h(\underline{x}))$, we have that

$$
\operatorname{var}(f(: \underline{x})-h(\underline{x}))<\operatorname{var}(f(\underline{x}))
$$

Note that if ($f-h$) and h are positively correlated then var ($f-h$) is less than var (f). This is true since

$$
\begin{aligned}
\operatorname{var}(f) & =\operatorname{var}[h+f-h] \\
& =\operatorname{var}(h)+\operatorname{var}(f-h) \operatorname{cov}(h, f-h)
\end{aligned}
$$

Thus we have

$$
\operatorname{var}(f-h)=\operatorname{var}(f)-\operatorname{var}(h)-2 \operatorname{cov}(h, f-h)
$$

Assume the correlation of ($f-h$) and h is positive. Hence,

$$
\operatorname{var}(f-h)<\operatorname{var}(f)-\operatorname{var}(h)
$$

which implies that

$$
\operatorname{var}(f-h)<\operatorname{var}(f)
$$

Therefore the larger the correlation of ($f-h$) and h, the greater the reduction of the variance by removal of the regular part $h(x)$.

2.2 Program Explanation

The object is to integrate

$$
\theta=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(\underline{x} \mid \underline{\mu}, \quad \varepsilon) d x_{1} d x_{2}
$$

where $\mu^{\circ}=\left(\mu_{1}, \mu_{2}\right) ; \Sigma=\left(\begin{array}{cc}\sigma_{1} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}\end{array}\right)$ and
$f(\underline{x} \mid \underline{y}, \Sigma)=$ BVN distribution $=$
$\frac{1}{2 \pi \sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho \frac{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1}} \sigma_{2}+\right.\right.$

$$
\begin{equation*}
\left.\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \tag{2.2}
\end{equation*}
$$

In formula (2.1) we define $g(x)=\frac{1}{\left(b_{1}-a_{1}\right)\left(b_{2}^{-a_{2}}\right)}$, ie. $g(x)$ represents a bivariate uniform distribution, and evaluate the integral

$$
\begin{equation*}
\emptyset=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(\underline{x} \mid \mu, \Sigma) \frac{d x_{1} d x_{2}}{\left.\left(b_{1}-a_{1}\right)\left(b_{2}^{-a}\right)_{2}\right)} . \tag{2.3}
\end{equation*}
$$

It follows that

$$
\theta=\theta\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)
$$

and the estimate

$$
\dot{\theta}=\hat{g}\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)
$$

where

$$
\dot{\phi}=\frac{1}{N} \sum_{i=1}^{N} f\left(\underline{x}_{i} \mid \underline{\mu}, \Sigma\right)
$$

when \underline{x}_{i} is a random vector from the pdf

$$
g(\underline{x})=\left(\begin{array}{c}
\frac{1}{\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)} ; \\
0 \quad a_{j} \leq x_{j} \leq b_{j}, \quad j=1,2 \\
0
\end{array}\right.
$$

Since $g(x)$ is the product of two independent uniform distributions. a random vector is generated using the equations $x_{j}=a_{j}+u_{j}\left(h_{j}-\mathrm{a}_{j}\right)$, $j=1,2$ where u_{j} is distributed uniform over the interval (0,1).

In the BVII program the regular part $h(x)$ is defined to he all the terms up to the coeffecient $1 / 8$! in the two dimensional Taylor's expansion (Fulls 1969, p. 26n). The tho dimensional Taylor's expansion about the point (a_{1}, a_{2}) is given by

$$
\begin{align*}
& f\left(x_{1}, x_{2}\right)=f\left(a_{1}, a_{2}\right)+\left(x_{1}-a_{1}\right) \frac{\partial f}{\partial x_{1}}\left(a_{1}, a_{2}\right) \\
& +\left(x_{2}-a_{2}\right) \frac{\partial f}{\partial x_{2}}\left(a_{1}, a_{2}\right)+\frac{1}{\partial!}\left[\left(x_{1}-a_{1}\right)^{2} \frac{\partial^{2} f}{\partial x_{1}}\left(a_{1}, a_{2}\right)\right. \\
& \left.+2\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right) \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(a_{1}, a_{2}\right)+\left(x_{2}-a_{2}\right) \frac{\partial^{2} f}{\partial x_{2}^{2}}\left(a_{1}, a_{2}\right)\right] \\
& +\frac{1}{3!}\left[\left(x_{1}-n_{1}\right)^{3} \frac{\partial^{3} f}{\partial x_{1}^{3}}\left(a_{1}, a_{2}\right)+3\left(x_{1}-a_{1}\right)^{2}\left(x_{2}-a_{2}\right) \frac{\partial^{3} f}{\partial x_{1}^{2} \partial x_{2}}\left(a_{1}, a_{2}\right)\right. \\
& \left.+3\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)^{2} \frac{\partial^{3} f}{\partial x_{1} \partial x_{2}^{2}}\left(a_{1}, a_{2}\right)+\left(x_{2}-a_{2}\right)^{3} \frac{\partial^{3} f}{\partial x_{2}^{3}}\left(a_{1}, a_{2}\right)\right]+\ldots \tag{2.4}
\end{align*}
$$

Hence it was necessary to find all partials (up to 8th order) of the BVN distribution function, $f\left(x_{1}, x_{2}\right)$.

Let $\left(a_{1}, a_{2}\right)=\left(\mu_{1}, \mu_{2}\right)$ the mean vector of the $B V N$ distribution. 'Then equation (2.4) becomes

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}\left(\mu_{1}, u_{2}\right)=f\left(x_{1}, x_{2}\right)\left[\frac { 1 } { - 2 (1 - p ^ { 2 }) } \left(\frac{2}{\sigma_{1}^{2}}\left(x_{1}-\mu_{1}\right)\right.\right. \\
& \left.\left.-\frac{2 p}{\sigma_{1} \sigma_{2}}\left(x_{2}-\mu_{2}\right)\right\}\right] \left\lvert\, \begin{array}{c}
=0 \\
x_{1}=\mu_{1} \\
x_{2}=u_{2}
\end{array}\right. \\
& \frac{\partial^{2} f}{\partial x_{1}^{2}}\left(u_{1}, u_{2}\right)=\frac{-1}{2 \pi \sigma_{1}^{3} \sigma_{2}\left(1-o^{2}\right)^{3 / 2}} \\
& \frac{\partial^{2} t}{\partial x_{1} \partial x_{0}}=\frac{p}{2 \pi 0_{1}{ }^{2} \sigma_{f}{ }^{2}\left(1-\rho^{3}\right)^{3 / 2}} \\
& \frac{\partial^{2} f^{2}}{\partial x_{2}^{2}}=\frac{-1}{2 \operatorname{ro}_{1} 0_{2}^{3}\left(1-0^{2}\right)^{3 / 2}} \\
& \frac{\partial^{4} f}{\partial x_{1}^{4}}=\frac{3}{2 \pi \sigma_{1}^{5} \sigma_{2}\left(1-p^{2}\right)^{5 / 2}} \\
& \frac{\partial^{4} f}{\partial x_{2} \partial x_{1}{ }^{3}}=\frac{-3 p}{2 \pi \sigma_{1}^{4} \sigma_{2}^{2}\left(1-p^{2}\right)^{5 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{4} f}{\partial x_{2}^{2} \partial x_{1}^{2}}=\frac{2 \rho^{2}+1}{2 \pi \sigma_{1}^{3} \sigma_{2}^{3}\left(1-o^{2}\right)^{5 / 2}} \\
& \frac{\partial^{4} f}{\partial x_{2}{ }^{3} \partial x_{1}}=\frac{-30}{2 \pi \sigma_{1}{ }^{2} \sigma_{2}{ }^{4}\left(1-\rho^{2}\right)^{5 / 2}} \\
& \frac{\partial^{4} f}{\partial x_{2}^{4}}=\frac{3}{2 \pi_{1} \sigma_{2}^{5}\left(1-\rho^{2}\right)^{5 / 2}} \\
& \frac{\partial^{\sigma_{f}}}{\partial x_{1}{ }^{6}}=\frac{-15}{2 \sigma_{1}{ }^{7} \sigma_{2}\left(1-\rho^{2}\right)^{7 / 2}} \\
& \frac{\partial^{6} f_{f}}{\partial x_{1}{ }^{5} \partial x_{2}}=\frac{15 \rho}{2 \pi \sigma_{1}{ }^{6} \sigma_{2}^{2}\left(1-\rho^{2}\right)^{7 / 2}} \\
& \frac{\partial^{6} f}{\partial x_{1}{ }^{4} \partial x_{2}^{2}}=\frac{-3-12^{2}}{2 \pi \sigma_{1}^{5} \sigma_{2}^{3}\left(1-\rho^{2}\right)^{7 / 2}} \\
& \frac{\partial^{6} f}{\partial x_{1}^{3} \partial x_{2}^{3}}=\frac{9 p+6 p^{3}}{\left.2^{n \sigma}\right]_{1}^{4} \sigma_{2}^{4}\left(1-p^{2}\right)^{7 / 2}} \\
& \frac{\partial^{6} r}{\partial x_{1}{ }^{2} x_{2}^{4}}=\frac{-3-12^{2}}{20_{1}{ }_{1}{ }_{0} 2^{5}\left(1-p^{2}\right)^{7 / 2}} \\
& \frac{\partial^{6} \mathrm{f}}{\partial x_{1} \partial x_{2}{ }^{5}}=\frac{15 \rho}{2 \sigma_{1}{ }^{2} \sigma_{2}{ }^{6}\left(1-\rho^{2}\right)^{7 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{6} f}{\partial x_{2}^{5}}=\frac{-15}{2 \pi 0_{1} \sigma_{2}^{7}\left(1-\rho^{2}\right)^{7 / 2}} \\
& \frac{\partial^{8} \mathrm{f}}{\partial x_{1}{ }^{8}}=\frac{105}{2 \pi 0_{1}{ }^{9} \sigma_{2}\left(1-p^{2}\right)^{9 / 2}} \\
& \frac{\partial^{8} f}{\partial x_{1}{ }^{7} \partial x_{2}}=\frac{-105 \rho}{2 \pi \sigma_{1}{ }^{8} \sigma_{2}{ }^{2}\left(1-\rho^{2}\right)^{9 / 2}} \\
& \frac{\partial^{8} f}{\partial x_{1} \sigma_{\partial x_{2}}{ }^{2}}=\frac{15+90 p^{2}}{2 \pi \sigma_{1}{ }^{7} \sigma_{2}^{3}\left(1-0^{2}\right)^{9 / 2}} \\
& \frac{\partial^{8} f}{\partial x_{1}{ }^{5} \partial x_{2}^{3}}=\frac{-45^{p}-600^{3}}{2 \pi \sigma_{1}{ }^{6} \sigma_{2}^{4}\left(1-p^{2}\right)^{9 / 2}} \\
& \frac{\partial^{8} c}{\partial x_{1}^{4} \partial x_{2}^{4}}=\frac{720^{2}+9+24 p^{4}}{200_{1}^{5} 0_{2}^{5}\left(1-p^{2}\right)^{9 / 2}} \\
& \frac{\partial^{8} 1}{\partial x_{1}^{3} \partial x_{2}^{5}}=\frac{-45 p-600^{3}}{2 \pi 0_{1}^{40} \sigma^{6}\left(1-\rho^{2}\right)^{9 / 2}} \\
& \frac{\partial^{8} f}{\partial x_{1}^{2} \cdot \partial x_{2}^{6}}=\frac{15+9\left(p^{2}\right.}{2 \pi \sigma_{1}^{3 \sigma_{2}^{7}\left(1-\rho^{2}\right)^{9 / 2}}} \\
& \frac{\partial^{8} f}{\partial x_{1} \partial x_{2}{ }^{7}}=\frac{-105 \rho}{2 \pi \sigma_{1}{ }_{0} \sigma_{2}^{8}\left(1 \rho^{2}\right)^{9 / 2}}
\end{aligned}
$$

$$
\frac{\partial^{8_{f}}}{\partial x_{2}^{8}}=\frac{105}{2 \pi o_{1} 0_{2}^{9}\left(1-\rho^{2}\right)^{9 / 2}}
$$

However, since all odd ordered partials of the BVN distribution evaluated at the mean are zero, equation (2.4) can be simplified as follows

$$
\begin{align*}
& f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)^{1 / 2}}-\frac{1}{2}\left(x_{1}-\mu\right)^{2} \frac{1}{2 \pi \sigma_{1}^{3} \sigma_{2}\left(1-o^{2}\right)^{3 / 2}} \\
& +\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \frac{\rho}{2 \pi \sigma_{1} \alpha_{\sigma_{2}}^{2}\left(1-\rho^{2}\right)^{3 / 2}}-\frac{1}{2}\left(x_{2}-\mu\right)^{2} \frac{1}{2 \pi \sigma_{1} \sigma_{2}^{3}\left(1-\rho^{2}\right)^{3 / 2}} \\
& +\frac{1}{2^{4}}\left(x_{1}-\mu_{1}\right)^{4} \frac{3}{2 \pi \sigma_{1}^{5} \sigma_{2}\left(1-o^{2}\right)^{5 / 2}} \\
& -\frac{1}{6}\left(x_{1}-\mu\right)^{3}\left(x_{2}-\mu_{2}\right) \frac{3}{2 \pi \sigma_{1}^{4} \sigma_{2}^{2}\left(1-p^{2}\right)^{5 / 2}}+\cdots \tag{2.5}
\end{align*}
$$

From equation (2.5) we observe that $\left\|f\left(x_{1}, x_{2}\right)-h\left(x_{1}, x_{2}\right)\right\|$ becomes large as $\left(x_{1}, x_{2}\right)$ deviates from (μ_{1}, μ_{2}), where $h\left(x_{1}, x_{2}\right)$ are the first 25 terms in (2.5) and || • || is some distance function. For this reason

$$
\int_{A} f(\underline{x})-h(\underline{x}) g(\underline{x}) d \underline{x}
$$

may not be bounded, especially for large region A. However, if the regular part $h(\underline{x})$ is not removed, the converyence would be very slow. To accelerate the convergence and allow for
integration over large regions, the RVN Mromram divides the original integration region into four rectangular regions and integrates each region separately. The program divides the four regions as follows.

Let $L_{1} \leq x_{1} \leq u_{1}$ and $L_{2} \leq x_{2} \leq u_{2}$ be the integration region. When divided into the four desired regions, this becomes

Recion l limits are $L_{1} \leq x_{1} \leq \frac{\mathrm{I}_{1}{ }^{\prime u_{1}}}{\gamma} ; I_{1} \leq x_{2} \leq \frac{I_{1}+u_{n}}{?}$. Recion 2 limits are $\frac{L_{1}+u_{1}}{2} \leq x_{1} \leq u_{1} ; L_{2} \leq x_{2} \leq \frac{L_{P^{\prime \prime}} u_{2}}{2}$. Region 3 limits are $L_{1} \leq x_{1} \leq \frac{L_{1}+u_{1}}{2} ; \frac{I_{2}+u_{2}}{2} \leq x_{2} \leq u_{2}$. Region 4 limits are $\frac{L_{1}+u_{1}}{2} \leq x_{1} \leq u_{1} ; \frac{L_{2}+u_{2}}{2} \leq x_{2} \leq u_{2}$.

After obtaining the approximate integral for each region the results are then added together for the final answer. The final standard error is computed as the average of the standard errors corresponding to the four regions.

Since it is difficult to detevmine if $\operatorname{var}(\mathrm{h})<2 \operatorname{cov}(f, h)$, the BVN program is currentily set up to integrate both the BVN
function and the BVN function after extraction of the regular part. Convergence is currently checked by computing the estimated standard error of $\hat{\theta}$ after every 1000 random samplen.

There are six input items. These are the means, $\left(\mu_{1}, \mu_{2}\right)$, the standard deviations, σ_{1}, σ_{2}, the correlation ρ, the maximum standard error, starting value for random number generation (odd integer I5), and the limits of integration. The estimates for each of the four regions are outputed along with their estimated standard error. If the regular part is removed, the correlation between $f-h$ and h is output. The output also indicates whether or not the regular part has been removed. Finally, the sum of the values obtained by integrating over each of the four regions is displayed as the final answer.

2.3 Specific Examples

This section presents the output of four examples along with the correct answers Pearson (1931). The four integrals chosen are

$$
\begin{aligned}
& \text { 1. } \int_{0}^{\infty} \int_{0}^{\infty} f(\underline{x} \mid \underline{o}, v) d x_{1} d x_{2} \\
& \text { where } \Sigma=\left[\begin{array}{lr}
1 & .5 \\
.5 & 1
\end{array}\right] \\
& \text { 2. } \int_{y / 2}^{\infty} \int_{1}^{\infty} f(\underline{x} \mid \underline{o}, \Sigma) d x_{1} d x_{2} \\
& \text { where } \varepsilon=\left[\begin{array}{cr}
1 & -.5 \\
-.5 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } \int_{0} \int_{0} f(\underline{x} \mid \underline{o}, \varepsilon) d x_{1} d x_{2} \\
& \text { where } \Sigma=\left[\begin{array}{cc}
1 & -.75 \\
-.75 & 1
\end{array}\right] \\
& \text { 4. } \int_{1 / 2}^{\infty} \int_{1}^{\infty} f(\underline{x} \mid \underline{0}, \Sigma) d x_{1} d x_{2} \\
& \text { where } \Sigma=\left[\begin{array}{cc}
1 & .75 \\
.75 & 1
\end{array}\right] .
\end{aligned}
$$

The results of the BVN program are given in the Tables (1-4).
THE RESPECTIVE MEANS ARE 0.0 0.0
THE RESPECTIVE STANDARD DEVIATIONS ARE 1.00000000 1.00000000
THE CORRELATION IS 0.50000000
THE MAXIMUM ERROR AIIOWED IS 0.00300000
THE UPPER BOUNDS ARE 4.00000000 4.00000000
THE IOWER BOUNDS ARE

$$
0.0
$$

$$
0.0
$$

AN APPROXIMATION FOR THE 1 REGION
THE VALUE IS 0.2930342318 WTTH A STANDARD ERROR OF 0.0025139714 AND A CORRELATION OF 0.6115916511 THE REGULAR PART IS POSITIVETY CORRELATED WITH THE INTEGRAL AND THUS EXTRACTED
AN APPROXIMATION FOR THE 2 REGION
THE VALUE IS 0.0161355461 WIIH STAT:DARD ERROR OF 0.0006924657 THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 3 REGION
THE VALUE IS C. 0164091896 WITH STANDARD ERROR OF 0.0007069048 THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 4 REGION
THE VALUE IS 0.0040517887 WITH STANDARD ERROR OF 0.0002146251 THE REGUIAR PART IS NOT REMOVED

$$
\begin{array}{ll}
\text { THE TOTAL FROBABIIITY IS } & 0.32963076 \\
\text { WINH A STANDARD ERROR OF } & 0.00103199
\end{array}
$$

The correct answer is .33333

AN APPROXIMATION FOR THE 4 REGION
THE VALUE IS 0.0000000995 WITH STANDARD ERROR OF 0.0000000122 THE REGULAR PART IS NOT REMOVED

$$
\begin{array}{ll}
\text { THE TOTAI PROBABILITY IS } & 0.01135074 \\
\text { WIIH A STANDARD ERROR OF } & 0.00015377
\end{array}
$$

The correct answer is . 012447
TABLE 2.
THE RESPECTIVE MEANS ARE 0.0 0.0
THE RESPECTIVE STANDARD DEVIATIONS ARE 1.00000000 1.00000000
THE CORRELATTON IS -0.75000000
THE MAXIMUM ERROR ALIOWED IS 0.00300000
THE UPPER BOUNDS ARE 4.00000000 4.00000000
THE LOWER BOUNDS ARE 0.0 0.0
AN APPROXIMATION FOR THE 1 REGION
THE VALUE IS 0.1118712551 WITH STANDARD ERROR OF 0.0028780424 THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 2 REGION
THE VALIJE IS 0.0001379567 WITH STANDARD ERROR OF 0.0000210493 THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 3 REGICN
THE VALUE IS 0.0001607447 WITH STANDARD ERROR OF 0.0000219862 THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 4 REGION
THE VALUE IS 0.0000000005 WITH STANDARD ERROR OF 0.0000000001 THE REGULAR PART IS NOT REMOVED
THE TOTAL PFOBABILITY IS 0.11216996
WITH A STANDARD ERROR OF 0.00073027
The correct answer is . 115027
THE RESPECTIVE MEANS ARE $0.0 \quad 0.0$THE RESPECTIVE STANDARD DEVIATIONS ARE 1.000000001 .00000000THE CORRELATION IS 0.75000000
THE MAXIMUM ERROR ALIOWED IS 0.00300000
THE UPPER BOUNDS ARE 4.000000004 .00000000
THE IOWER BOUNDS ARE 0.500000001 .00000000
AN APPROXIMATTON FOR THE \perp REGION
THE VALUE IS 0.1133274387 WITH STANDARD ERROR OF 0.0027673633
THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 2 REGION
THE VALUE IS 0.0084165793 WITH STANDARD ERROR OF 0.0003595563
THE REGULAR PART IS NOT REMOVED
AN APPIROXIMATION FOR THE 3 REGION
THE VALUE IS 0.0033200334 WITH STANDARD ERROR OF 0.0001715015
THE REGULAR PART IS NOT REMOVED
AN APPROXIMATION FOR THE 4 REGION
THE VALUE IS 0.0027903045 WITH STANDARD ERROR OF 0.0001249913
THE REGULAR PART IS NOT REMOVED
THE TOTAL PROBABILITY IS 0.22785436
WITH A STANDARD ERROK OF 0.00085585
The correct answer is . 128133

TABLE 4.

III. APPROXIMATION

The introduction briefly presented the reason why the Dirchlet distr: bution was not applicable in the multivariate case. As the beta distribution seemed firmly established as a proper model in the univariate case, it seemed more reasonable to build a prediction process utilising the beta distribution than to seek a new model applicable to both univariate and multjvariate cases. Ihis led to the BVN distribution.

The reason why the Dirchlet would not work was the theoretical requirement of a negative covariance between the variables-a situation not frequently encounternd in most applications. However, the BViv distribution imposes fewer constraints on the value of the covariance. Also, the normal disttribution has been shown to yicld excellent approximations for "tail" probabilities in the univariate beta case (See Peizer and Pratt, 1968, pg. 1418). Also, the normal Approximation exists for the beta probabilities over any interval. If the covariance (or correlation) is thought of as effecting an increase or decrease in probabilities (compared with uncorrelated probabilities) rather than depicting the underlying association between the variables, then one chould be able to determine this effect using either the approximations to the beta probabilities or
the beta rrobabilities themselves. The only reason why a bivariatc model is required is because we know cloud cover frequencies at the sites are related. Otherwise an assumption of independence would allow one to compute the joint probabilities via a direct multiplication of the univariate beta probabilities.

Finally, it is important to stress that the BVN, as we us. it is only a mechanism to calculate probabilities. In conversations with MSFC personnel it was noted that some persons in the meteorological profession had proposed the normal distribution as a model to describe cloud cover frequencies. Such a model may or may not be plausible and we did not investigate it. The beta model serves as the basis for our analysis, i.e., we assume the beta model fits the data--all we must do is calculate the parameters. Falls (1973) did encounter months, time intervals and sites where the beta model was not a good fit. It would be proper to preface all our remarks and, indeed, the whole report with the condition that the beta distribution must yield a good fit on the data at hand. However, it is also proper to assert, based on proper evidence, that the beta model is always adequate, at least for the purposes envisioned. The result is the same--situations where the results obtained from applying the model differ substantially from empirical results.
3.1 Normal Approximation to the Beta Distribution

Peizer and Pratt (1968) show that the tail probabilities for a wide range of distributions can be approximated using a normal distribution. Much of the article is not germane to our discussion and will not be discussed. However, it is informative to trace their procedure for approximating the univariate beta distribution.

The density function for the beta distribution is given by

$$
\begin{equation*}
h(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} ; 0 \leq x \leq 1, \alpha, \beta>0 . \tag{3.1}
\end{equation*}
$$

To approximate the probability that $0 \leq x \leq x_{0}$, ie.

$$
\operatorname{Pr}\left\{x \leq x_{0}\right\}=\int_{0}^{x_{0}} h(x: \alpha, \beta) d x
$$

calculate the quantities

$$
\begin{aligned}
& d_{1}=(a+\beta-2 / 3) x_{0}-(\alpha-1 / 3) \\
& d_{2}=d_{1}+.02\left(\frac{x_{0}}{\beta}-\frac{1-y_{0}}{a}+\frac{x_{0}-.5}{\alpha+\beta}\right),
\end{aligned}
$$

and

$$
\begin{gather*}
z=\frac{d_{z}}{\left|\beta-.5-(\alpha+\beta-1)\left(1-x_{0}\right)\right|}\left\{\frac { 1 2 (\alpha + \beta - 1) } { 6 (\alpha + \beta - 1) - 1 } \left[(\beta-.5) \log \frac{\beta-.5}{[\alpha+\beta-1]\left[1-x_{0}\right]}+\right.\right. \\
(\alpha-.5) \log \frac{\alpha-.5}{\left.\left.[\alpha+\beta-1] x_{0}\right]\right)} \tag{3.2}
\end{gather*}
$$

The approximate probability is given by

$$
P=\int_{-\infty}^{z} \frac{1}{\sqrt{2 x}} e^{-x_{i}^{2}} d y
$$

Of course, should you desire to have a right tail probability. The approximate value for the right tail probability is

$$
F=\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{\prime} y^{2}} d y
$$

The error in these approximations is less than. OI if $a, \beta>1$ and less than .001 if $a, B>2$. It also follows that $P_{r}\left\{x_{0} \leq x \leq x_{1}\right\}$ can be approximated as

$$
\mathrm{I}_{r}\left\{y_{0} \leq x \leq x_{1}\right\}=\int_{x_{0}}^{x} h(x ; a, \beta) d x=1-\int_{0}^{x_{o_{h}}(x: a, B) d x-\int_{x_{1}}^{1} h(x ; a, B) d x}
$$

or

$$
1-\int_{-\infty}^{z_{0}} \frac{1}{\sqrt{2 \pi}} e^{-k / y^{2}} d y-\int_{z_{1}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-k y^{2}} d y=\int_{z_{0}}^{z_{1}} \frac{1}{\sqrt{2 \pi}} e^{-y_{k}^{2}} d y .
$$

However, the error is potentially doubled for this case.
The approximation is not valid for $a, B \leq .5$ which implies the data must be highly U-shaped for the approximation to fail. This could further restrict the applicability to some locations and for some seasons. However, Falls has shown that this situation is infrequent.

3.2 The Bivariate Case

Assuming that x and y are beta distributed,

$$
\begin{gather*}
x_{0} \leq x \leq x_{1}, y_{0} \leq y \leq y_{1} \text { can be approximated by } \\
\int_{z_{x_{0}}} \int_{x_{1}} \int_{y_{0}} f\left(z_{x}, z_{y}\right) d z_{x} z_{y} \tag{3.3}
\end{gather*}
$$

where $f\left(z_{x}, z_{y}\right)$ is the BVN distribution defined in equation (2.2).

IV. THE APPROXIMATION I'ROGRAM

In order to use the BVN approximation, a computer program was developed to convert raw data and desired beta intervals into the z-values and correlations (BVN program inputs). This program takes raw data and calculates means, variances, correlations and estimated beta parameters for both raw and categorized data. Then for each inputed beta interval value (lower and upper values for each variate) it calculates a corresponding z-value.

Two aspects of the program need explanation. The formulas in Section 3.1 are not defined for the beta values of 0 or l. Consequently, the program cannot handle such values. For this reason, 0 or 1 must be inputed as $0+\varepsilon$ or $1-\varepsilon$ where $\varepsilon>0$ is some arbitrary real number. Likewise -4 is used for $-\infty,+4$ for $+\infty$ in the BVN program.

Since the approximation fails if α, $\beta \leq{ }^{\prime}$ ', the program resets the parameters to .51 and prints a notice to the user if the estimated beta parameter value falls below . 5 . It is then left to the user to decide whether or not he wants to use this acknowledged poor approximation.

The beta parameters are estimated using the method of moments as described by Hahn and Shapiro (1967, pg. 95). The estimated beta parameters for the original data are

$$
\begin{aligned}
& B=\frac{(1-\bar{X})}{s^{2}}\left[X(1-\bar{X})-s^{2}\right] \\
& A=\frac{\bar{X} B}{1-\bar{X}}
\end{aligned}
$$

where \bar{X} and S^{2} are the sample mean and variance.
A frequency table for both original and category data is given in order to compute the empirical probabilities which are used to check the corresponding approximate BVN probabilities.

> V. DATA

The data used in this study was compiled by ESSA, National Weather Records Center, Asheville, North Crmolina and was provided to the authors by Organization ES-42, Marshall Space Flight Center, Alabama. The sites selected were Fort Worth and Houston, Texas. Daily records (January 1971 to December 1975) on cloud cover, measured in tenths, were recorded every third hour.

The data was grouped into the categories shown in Table 5 (Fall 1973).

Table 5	
Cloud Cover Categories	
Category	Tenths
1	0
2	$1,2,3$
3	4,5
4	$6,7,8,9$
5	10

Since Falls (1971) demonstrated that the beta distribution adequately describes variation in categorial data, our primary investigation was restricted to categorical data. However, the approximation program is not restricted to categorical data.

VI. EXAMPLES

A complete set of probabilities (25 values) have been calculated for the Fort Worth 9 a.m. and Fort Worth 3 p.m. combination. These values are presented in Figure 1. Each of the five portions of figure represents a category level for 9 a.m. and the abseissas represent the categories for $3 \mathrm{p} . \mathrm{m}$. Table 6 presents a portion of the approximation program and Table 7 gives the corresponding BVN computations. Figure 1 values were determined based on observed and expected frequencies for 5 years (155 values). As can be noted, the agreement is quite satisfactory with a couple of exceptions. Values for Category 1 for 9 a.m. and Category 2 for 3 p.m. shows a wide divergence. Also the five values predicted for 3 p.m. and Category 4 for 9 a.m. show substantial disagreement.

These discrepencies between observed and predicted values can be explaincd by analyzing how well the beta model describes univariate cloud cover in the various data sets.

From Table 6 the category frequencies for Site l (9 a.m.) are $46,29,20,39$, 21 respectively and the estimated beta parameters are . 862646 and 1.06241. These parameters are for a very U-shaped density which decreases as $\mathrm{x} \rightarrow \mathrm{l}$. Consequently, the fitted distribution does not reflect the variation in these

> 9a.m. Cloud Cover Mean $=.443387$ Standard Deviatior: $=? 90846$

3p.m. Cloud Cover Mean $=.510323$ Stondard Ueviation $=.24039 \%$

Corre:'ation $=.570033$

Beto Parameters for 9a.m. are . 862640 1.061241
Beto Porometers for 3p.m. ore $1.685583 \quad 1.617392$
FIGURE 1.
OBSERVED AND TREDICITED FREQUENCIFS FOR FOR'P WORTI AT 9 A.M. AND FORI' WORII AT 3 P.M. BASED ON JUIY DATA FOR 1971-75.
data for categories 1 and 4, which is reflected in the approximate probability.

Some additional comments are necessary. First it is important to note that we have only 155 data points and more data would, in most such cases, give better fit to the true distribution hence a better approximation. Secondly, this problem is not restricted to this one isolated case. Based upon our analyses, we feel that the substantial disagreement between observed and predicted probabilities were based upon the inadequacy of the beta distribution. It does not seem likely that large errors will occur because of this condition but if the parameter values are low the approximation error could contribute substantially to the disagreement between the values. Thirdly, it must be noted that Figure 1 is based upon integration limits (determined by the transformation from categories to the (0,1) interval) that should give the best results. The category values $1,2,3,4,5$ are transformed to .l, .3, .5, .7, . 9 respectively. The corresponding limits of integration are found in Table 6.

Table 6
Integration Limits
Category Integration Limits Midpoint
.01 to . 2

The vaiues in Table 6 are the usual "continuity" corrections for approximating probabilities for discrete variables. It must be noted that the intervals selected will not always reflect the underlying situation and hence could contribute to the differences in values. However, if the above limits are a source of error then its effect will be minor compared with the other errors and its effect will decrease over wider intervals.

As noted, we have elected to use categorical data throughout the analyses. However, one might consider using the orjginal data in that the beta model might actually fit whereas the categorical fit was inadequate. Another reason for using the original data is the greater flexibility in selecting the integration limits which can be made to closely agree with the originai situation (cloud cover measured in tenths).

6.2 Application of the Programs

The apprcximation programs must be run to obtain the approximate integration limits used in integrating the BVN distribution. The input needed for this program consists of two parts. The first part consists of the raw data (read pairwise with the first value corresponding to the first site and the second value corresponding to the second site or the data can represent one site at two different times). The second part consists of the inputed boundary numbers for the
regions to be integrated. Before continuing one should inspect the outputed beta parameters and corresponding frequency tables. If the estimated beta parameters are significantly less than .5 , then one must proceed with caution since the calculated integration limits are probably unreliable (for reason explained previously).

The outputed correlations and the integration limits are then used as inputs into the BVN program. Note that since the approximated integration limits pertain only to the standard normal distribution, the mean vector will be $(0,0)$ and the standard deviation will be (1,1). The main output of the BVN program is the total probability. This value represents the approximate probability of a specified category or categories at Site 1 intersected with a specified category or categories at site 2.

For example, Table 7 lists the output of the approximation program for the percent of cloud cover over Fort Worth, Texas, at 9 a.m. and 3 p.m. during the month of July (19711975). Since the beta parameters for the original data is significantly less than .5 , we decided to work with the category data. The category data z 's are the approximate integration limits corresponding to category 1 at 9 a.m. and category 1 at 3 p.m. These values were then used as input for the BVN program along with the correlation of .57 . The output of the BVN program is found in Table 8. The total probability of having cloud cover in category 1 , (i.e.
essentially no cloud cover) at 9 a.m. and of having cloud cover in category 1 at 3 p.m. during July at Fort Worth is shown to be approximately . 063 . Whercas the empirical value, found in the category frequency table, is $\frac{10}{155}=.0645$.

JULY 7L-75 FT.A!JTH 7 A.M. AND 3 P.M.
**** RESULTS USIVG ORIGIIAL UATA

FREOJENGY TABLE: 155 VALUES

10	3	9	11	9	1	0	3	j	0	0
1	0	1	2	4	2	0	2	0	0	1
0	0	0	1	2	2	0	2	1	0	1
0	0	1	2	0	1	0	j	1	2	1
2	2	0	2	4	2	1	0	2	0	1
1	0	0	1	0	1	0	1	5	0	0
0	0	0	2	0	1	0	2	0	0	1
0	0	2	5	1	2	0	0	2	1	0
0	0	0	1	0	0	0	2	1	0	4
0	0	0	5	0	0	2	1	1	3	3
0	0	0	0	1	3	0	0	4	5	H

0.4151
0.3778
0.6411
$0.5!365$
$0.316 ?$

ESTIMATE) GFTA Pazayeters
SITE $\begin{aligned} & \text { SITE }\end{aligned}$
0.2847
0.7000
0.3948
0.7406
***** RESULTS USIVG CATEjJRICAL)ata \#\#***
fredueney tabls: 155 values

10	23	10	3	0
1	7	11	8	2
3	5	7	4	1
0	10	4	15	10
0	0	4	7	8

MEANSEVE	0.4434	0.5103
STORREV	0.5908	0.2410
CORR	0.5757	
SITE II	0.8626	1.2612
SITE II	1.6855	1.5174

FIRST SITEOWER
0.90002000
1.02408124
0.59792524
0.29000000
-0.64939553
-0.64792529
5.80000005
1.04935735
0.71410073

SECOND SITE
UPPER
L6 MER
cat egitaralotinlis original data z's
$\begin{array}{ll}0.8026 \\ 1.6855 & 1.5174\end{array}$

```
INPUT PazamETERS
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
MEANS: \\
ST. DEV= \\
CORRELATION \\
MAX ERRJ?: \\
UPPER BOJNOS \\
LONER BUJNDS:
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
```0.3
\[
1.0000
\]
\[
\begin{aligned}
& 0.5709 \\
& 0.5030
\end{aligned}
\]
\[
\begin{aligned}
& 0 . j 030 \\
& 1.224
\end{aligned}
\]
\[
\begin{array}{rr}
1.2241 & 1.0894 \\
-0.5494 & -1.1777
\end{array}
\]

```

\&\&THE REGULAR PARTHAS BEEN REMJVED	
THE VAGUE IS	0.13776
STJEKRJR	0.50001
CJRR E	0.56849

```



```

+     +         + THE REGULAR PART HAS GEEN KEMJVED

THE VAL JE IS	U.12317
$S T$ ERRUV	$0 . J J 50 S$
CORR	0.56105

*糔 APPROX. FUR REGION NO. = 4
t++THE REGULAR PART HAS SEEN REMJVED
THE VALUE IS 0.13429
STRERRUR = 0.70000
THE TOTAL PROBABILITY IS O.47424 WITH A STANOARDERROR UF
0.00018

```

\section*{REFERENCES}

Falıs, L.W. (1973). The Beta Distribution: A Statistical Model For World Cloud Cover. Nasa SIM X-64714.

Falls, L.W. (1974). The Beta Distribution: A Statistical Model for World Cloud Cover. Journal of Geophysical Fesearch, 79, pp. 1261-1264.

Fulks, W. (1969). Advanced Calculus, second esition. John Wiley \& Sons, N.Y.

Hahn, G.J. and Shapiro, S.S. (1967). Statistical Moiels in Engineering. John Wiley \& Sons, N.Y.

Johnson, N.I. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions, Vol. IV. John Wiley \& Sons, N.Y.

Newman, T.G. and Odell, P.I. (1971). The Generation of Random Variates. Hafner, New York.

Pearson, K. (1931). Biometrika Tables for Statisticians and Biometricians, Vol. II. Cambridge University Press.

Peizer, D.B. and Pratt, J.W. (1968). A Normal Approximation for Binomial, F, Beta, and Other Common, Related Tail Frobabilities, I. Journel of the American Statistical Association, 63, 1416-1456.

\section*{APPENDICES}

Appendix A gives a description of the card inputs followed by a listing of the BVN program. Appendix B gives a similar listing for the approximation program. Both programs are written in Fortran and, the approximation program can compute 100 individual integration limits in less than a minute (on IBM 370/155). The BVN program also takes less than a minute to calculate one total probability.

\section*{APIPENDIX A}

BVN Program - Card Input
\begin{tabular}{|c|c|c|}
\hline Card 1 & \(1-14\)
\(15-28\) & \begin{tabular}{l}
mean of the first variable of the BVN distribution \\
mean of the second variable
\end{tabular} \\
\hline Card 2 & \[
\begin{array}{r}
1-14 \\
15-28 \\
29-42
\end{array}
\] & standard deviation of the first variable standard deviation of the second variable correlation between the two variables \\
\hline Card 3 & \[
\begin{array}{r}
1-14 \\
21-25
\end{array}
\] & maximum standard error allowed odd, five digit random integer \\
\hline Card 4 & \(1-14\)
\(15-28\) & \begin{tabular}{l}
upper integration limit for the first variable \\
lower integration limit for the first variable
\end{tabular} \\
\hline Card 5 & \(1-14\)
\(15-28\) & ```
upper integration limit for the second
variable
lower integration limit for the second
variable
``` \\
\hline
\end{tabular}
```

nonconommanomexing
CARD EOLS. VARIABLE

```

```

 14P!1CIT REAL* (A-HPO-Z)
 EOMYJY 3,ML,ML,KJ,SIGL,SIG2
 NEA! * C C (
 C2(4),UP2 (4), L1. L2
 INTESER KANJ
    ```


```

 FRITE(S.20))
 :0J FURYAT: [iNDUT PARAYETERS•, //1
 WRITE(5, 21 YI,N2,SIGI,SIS2,RJ
 2 FOKMATI' MEAYS=1, 2OX, 2FIJ, 4, 1, ST. UEV=1, 13X, 2F10.4, 1,
 * : JRRELATIUN=0, \(14 \times\), F10.41
 NRITE (O:3) ERROR
 3 FORYAT1" MAX ERKJR=! \(16 \mathrm{XX}, \mathrm{F} 10.41\)
 WKIIE(S:4i Jl,U2,LI,L2
 4 FURYATI' UPOER BUJNOS = \(, 13 X=2 F 10.4,1\),
 * LOWER QJUNDS=.,13x,2F10.4,11i
 UPI 11\()=(11+J 1) / 200\)
 JP1 (2)=U1
    ```

```

 JP1 \(141=11\)
 UP2(1)=(Lて+J2)/200
 JP2(2)=UPく(1)
 UP \(2(3)=U 2\)
 \(J P 2(4)=J 2\)
 \(\operatorname{LOL}(1)=L 1\)
 LOL(2) \(=(11+11) / 200\)
 L01(3)=L
 LOL(4) \(=\) LCL(?)
 LU2 (1) = L 2
 LO2(2) \(=12\)
 \([02(3)=(L 2+J 2) / 200\)
 LO2 14) \(=\) L (\(2(3)\)
 \(B(2.1)=-1.000\)
 \(B(2,3)=-1.030\)
 \(3(2,2)=R 0\)
 \(8(4 \cdot 1)=300\)
 \(3(4,5)=300\)
 B(4.2) \(=-30 \mathrm{C} * R 0\)
 B \((4,4)=-30 U 4 R U\)
 B \((4,3)=2004204 * 2+100\)
 \(B(6,1)=-150)\)
    ```

```

 9(0,6)=1500*R0
    ```

```

 H(0.4)=700*20)+500*R'J**3
 3(口,)1=-30C-1200*以U**2
 B(H.1)=1050)
 3(d, 2) = (-10500)*R]
 3(8,3)=1500+9000*R(1** 2
 8(d.4)=-450)*R(U-600つ*R0**3
 3(8.5)=720C*RU**2+2400*RO**4+900
 3(5.5)=F(8.4)
 9(3,7)=3(0,3)
 3(8,y)=3 (4,2)
 3(8,7)=3(8,1)
    ```

```

 E(1)=(i.000)/(200*3.1415926535900*SIGl*SIG2*ROSN**(.5)0))
 0] y J=1,4
 JJ=? #J
 8 こ(Jう)ェごいノ/<USい**J
 Su=900
 SE=300
 JC 15 I= 1.4
    ```

```

 ju it I=1,4
 NマITE(5:18) l
    ```

```

 <EGP=Q(I I
 NT=1005
 50FF=000
 TSUY=05J
 FSUY=005
 FGS2=000
 FSQ=000
 pR\=(UP1(I)-LU1(1))*(UP2(I)-LO2(|))
 5 00, 5 I I= 1,1 200
DD }7\quadJ=1,
CAL! RAVDU(RANU, [Y,YFL)
RANJ= (Y
7 X(J)=YFL
x(1)=LOL (1)+X(1)*{UP1(1)-LO1(I))
X(2)=L02(1)+X(2)*(UP2(I)-LU2(I)
HOL=(-1.000/(200*R05Q))*((x)1)-41)**2/S131**2-200*RO*(X(1)-M1)*
C(X1?)-42)/(SIG1*S(G2)+(X(2)-M2)**21SIG2**2)
F=C(1)*UEXP(HOL)
F=F\&P々丁
FSU=FSJ+(F**2)
FSUY=FSUM+F
CALL TAYLUR(G,C,X(1),X(2),LO1(1),LO2(1),2)
G=G*PRO
GSUY=GSJM+G
FGSQ=FGSO+((F-G)\#\#2)
COFG=CJFG+F*(F-G)
6
GONTINJE
FGSUM=FS UM-SSUM
FG.Y = FGSUM/NT
FVAR=(FSQ-(FSUM**2/NTI)/(NT-1.ODO)
VVAR=(FGSO-FGSUM**2INTIIINT-1.ODO)

```
```

 {Eg:PSJ%!IYARNTS
 SF=OSORTIFVARINTI
 CMEESUM/NT
 {F(SFG-ERRITR) 2,9,9,10
 13 YT=VT+1200
 %0 1] 5
 GUYIINJE
 AKITE(6,114)
 114 FIIRYATI: +++THF KFGJLAR PART IS NUT REMOVEJ'I
ARIIE(O,14) FM;SF
SE=SE+SF
SUFTJM17
COF=CUFIDSURT(VVAR㸷VAR)
SE=SE+SFG
SU=SU+FS
ARITE(S,1I1)
111 FJRHAT\:+++THE KEGJLAR PART HAS BEE\ RFYIIVEJ'I
|RITE(O,11) FG,SFG,EUF
14 FORYATM: THE VALUE IS:,F10.5,1,: ST. ERRJR =0,F11.51

```

```

 17 GONTINJE
 SE=SE14JO
 NRITEIS:191 SU,SE
 19 FGRYATI'O,/OOTHE TOTAL PROBABILITY IS',FIC.5,' WITH A STANJARO ERR
 C.JR JF',F12.5i
 100
l

```

```

 5OM43N B,M1,M2,RO,S1G1,51心2
 FEA', # C (8),L1,L2,ML;M2:3(8,9)
 j=C(1)
 IF(INC.EU.1) O=N*(Ul-LI)*(U2-L2)
 j0 12 K=2,3,2
 VK=<+1
 VAK2=1.JDO
 \0 12 j=1,NK
 Jj=J-1
 IF (J.LE.2) GO TO 17
 J3=J-2
 VVAR2=JJ
 15VVAR2=NVARZ*(JJ-L)
 VAR?=NVAR2
 17 lF (J-K) 18,19,19
 18 NVAR3=(K-JJ)
 KH=K-JJ-1
 jO 16 L=1,K+
 16NVAQ3=NVAR3*(K-JJ-L)
 VAR3 =NVAR3
 GOTIT20
 19 VAR3=1.0D0
 2J VAR=1.0D0/(VAR2#VAR3)
 IF (INC.EQ.2IGOTOI4
 2=0+(VAR*IC(K)/ISIG1**(K-JJ)*SIS2**JJ))
 C*((J2-M2)*&J-(L2-M2)**J)*(L.ODOj((NK-JJ)*J))*((U1-M1)**(NK-JJ)-
 C(1L-M|)**(NK-JJ))*E(K,J))
 14 2xコ&(VAR*(CIK)/(SICl**(K-JJ)*S!Gl**JJ))
    ```

```

 REIJRN
 END
    ```

\section*{APPENDIX B}

\author{
Approximation Program - Card Input
}

Cols.
Card 1 1-4 number of data pairs
5-80 19 pairs of data with each element of each pair right justified in a two column space; no decimal points

Card 2+ 1-76 19 pairs of data with each element of each pair right justified in a two column space; no decimal points. That is the data is read with an 19F2.1 format. There will be as many cards of this type as necessary to punch all data.
\begin{tabular}{lrl} 
Last & l-10 & lower integration limit for the first site \\
Card & 11-20 & upper integration limit for the first site \\
& \(21-30\) & lower integration limit for the second site \\
& \(31-40\) & upper integration limit for the second site
\end{tabular}


A \(1=(1100-m x)(S V X) *(4 X *(100-4 x)-S V X)\)
A1：（1X\＆al） \(110 \leq-4 x)\)
a \(2=(1110)-11 Y) / S V Y) \$(4 Y *(100-m y)-S V Y)\)
12＝（4Y₹32）／（10U－MY）
ARITEDBCOL
201
FRNAE GSTMATED BETA
 सR1FE1002021

 ARIECO．54）N \(3053 \quad l=1,5\)
53 小र［TE（h，52，（F（1，J），J＝1，5）
बRITE（O，4B）MCXOMCY，SIGC1，SIGC 2，RO2
＋ \(61=(100-: 1=X) / S V C X) *(Y C X * 1 \mid 00-4(X)-S V(X)\)
（A）\(=(M C X * H B 1)(100-y(X)\)
－182天（110C－MFY）\((S V C Y) \#(M C Y *(1 D C-Y C Y)-S V C Y)\)
त4 \(=(M C Y * H S\) ？\() /(1110-Y C Y)\)
WRIIE（6，50）HA1，HB1，HAZ，HB2
ARITG（0．203）
203 FQRMAT（l／，：＊\＃\＃\＃\＃VJTE＊\＃\＃\＃\＃口） WRITE 16,751
75 FDRYATI＇，IF A PAYAMETER JR PARAMETERS IS LESS THAN IR EZUAL TO


－all cal ol or
EALL CAL \(2(H 31, H A 1, Y 1, N, L C 1)\)
EALL CAL L（HYZ，HAZ，Y），N，ICZ）
CALL CAL Z1H32，HAZ，Y3，NO2L3）
GALL CAL 2GB1，A1，Y1，Y，Z11
\(\therefore A L L C A L<(B 2, A Z, Y 2, v, 22)\)
CALL CAL \(Z(S A B A L, Y 3, N ; 2 L 1)\)
EALLCAL L（BZ，AZ，Y4，V，ZLZ）
－RITE 0.74 ）

70 FORYATI： \(0^{\prime}\)＇OOER＇， \(10 X\) ．＇LOWER＇
CZY JATA ZO：
C？（F14． \(3,1 x, 14,8\) ， \(1 \times 1\)（F）
68
NRITC（5，70）Y3，Y1，Y4，Y2，ZL3，LC1，ZL4，LC2，ZL1，Z1，ZL2，Z2
```

 SURROUTINE STAT(X,Y,ML,MZ,SVARX,SVARY,RO,VI
 REA}*8 X (155),Y(155)
 Sx=300
 $Y= 500
 $xS=000
 SYS=0.ju
 20 47 1=1,N
 Sx=5x+x(1)
 SY=SY+Y1 I
SXS=SXS+(X亻1):***2
SxY=SXY+X(II*Y(I)
M1=5x<y
SVARX=(SXS-V\#ML\#\#2)/(N-200)
SVAZY=(SYS-1SY**2iNII/IN-100)
20={SXY-N*iAL*M?)/(N-1)NO)
<D={JIJSNQTISVARX*SVARY)
RETJ\N
END

```
```

SUBROUTINE CALZ(B1,AL,Y,Y,Z)
$\begin{array}{ll}(F)(A 1,(E, 5)-1) & A 1=510-2 \\ (F)(E, 5)-1) & S 1=51 J-2\end{array}$
$5 \times 1=81-500$
$\$ \times 2=A 1-500$
$S X N=A L+B L-100$
$P=12 J-Y$
) $2=(S X 1+.3333333300) * Y-(A 1-.3333333300)+20-2 *(Y / B 1-P / A 1+(Y-.50) O 1 /$
CAL+311)

```



```

 \(2=0 \geq 1 D A * D S U 2 T 112 C O * S X N /(600 * S X N+100) *(S \times 1 * O L S+S \times 2 * D L T)\)
 2ETJRN
 END

```

                                    10.

                                    3
\(\%\)
\begin{tabular}{cc}
\(H(1)=530\) \\
50 & 0 \\
\hline
\end{tabular}

\(42 H(1)=400\)
HOTJ 39
1F \((X(1)-.4) 0) 43,44,44\)
H(I) = 300

43
\(\mathrm{HI} 11=200\)
601738
\(G 0 T J 38\)
\(H 11 I=100\)
HINI=10
EDNTINUE
EDNTINU
RETURN
END

\title{
A PROGRAM TO COMPUTE CONDITIONAL BIVARIATE \\ NORMAL PARAMETERE
}

Summary

This report derives the conditional bivariate normal parameters from an original quadravariate distribution. The paper presents the theory and appended is a computor program developed to give numerical results. An example is presented in the paper.

\section*{I. INTRODUCTION}

This report presents a sketch of the theory and a computer program designed to calculate the bivariate normal conditional distribution derived from the quadravariate normal distribution. The reguired computer inputs are described and an ev.aple is presconted. The computer program is appended.

Theory

The general multivariate normal distribution has the density
\[
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{1}{(2 \pi)^{k / 2}\left|\sum\right|^{1 / 2}} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\mu})^{\prime} \sum^{-1}(\underline{x}-\underline{\mu})\right\} \tag{1}
\end{equation*}
\]
where \(\underline{\mu}^{l}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)\), the vector of mean values and
\[
\sum=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 k} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 k} \\
\sigma_{k 1} & \sigma_{k 2} & \cdots & \sigma_{k k}
\end{array}\right] \text {, }
\]

A property of the multivariate normal distribution is that marginal and conditional distributions are also normally distributed. The general expression for these distributions are found often in the literature [see Morrison (1967)]. We shall confine remarks here to the specific case.

Assume we wish to derive \(f\left(x_{1}, x_{2}, \mid x_{3}, x_{4}\right)\). If we define

then letting
\(\underline{x}=\left[\begin{array}{c}x_{1} \\ \hdashline \underline{x}_{2} \\ \underline{-}_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \hdashline x_{3} \\ x_{4}\end{array}\right]\), we have
\[
\begin{equation*}
f\left(\underline{x}_{1} \mid \underline{x}_{2}\right)=\frac{1}{2 \pi\left|\Sigma^{*}\right|^{\frac{r}{2}}} \exp \left\{-\frac{1}{2}\left(\underline{x}_{1}-\underline{\mu}^{*}\right)^{\prime}\left(\Sigma^{*}\right)^{-1}\left(\underline{x}_{1}-\underline{\mu}^{*}\right)\right\} \tag{2}
\end{equation*}
\]

Where
\[
\begin{equation*}
\Sigma^{*}=\varepsilon_{11}-\varepsilon_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{3}
\end{equation*}
\]
and
\[
\begin{equation*}
\underline{u}^{*}=\underline{u}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\underline{x}_{2}-\underline{\mu}_{2}\right) . \tag{4}
\end{equation*}
\]

Computation of the parameters for this conditional distribution really reduces to computation of the quantities \(\Sigma^{*}\) and \(\underline{\underline{*}}\). Carefully note that the value of \(\underline{\mu}^{*}\) includes values of \(\underline{x}_{2}=\left[x_{3}, x_{4}\right]^{\prime}\) that must be specified before numerical values for \(\underline{\mu}^{*}\) can be calculated.

Even for this rather easy case the actual expressions for \(\Sigma^{*}\) and \(\underline{\mu}\) and therefore for the quadratic form in (2) are very complicated algebraically. They are, however, very amenable to nuncrical computation via computer. The least complicated for the expressions is that for \(\underline{\mu}^{*}\) and the actual form is given below (letting \(\sigma_{34}=\sigma_{43}\) for convenience).

The matrix triple product \(\Sigma_{12} \Sigma_{22}^{-1} \varepsilon_{21}\) makes \(\Sigma^{*}\) a complicated expression and this, of course, causes \(\left(\Sigma^{*}\right)^{-1}\) and, thercfore, the quadratic form in (2) to be almost incomprehensible in an expanded form.

\section*{Computer Program and Required Inputs}

The computer program is written to accept quadravariate data and retirn the conditional bivariate parameter. The conditional variancecovariance matrix and the associated standard deviations and correlations are initially calculated and printed. The program is designed to take as many pairs of "conditioning values" of \(x_{3}\) and \(x_{4}\) as desired and print out both the values of \(x_{3}\) and \(x_{4}\) plus the associated values of \(\underline{*}\).

Example: The following data was input to the program
\[
\underline{u}=[21.58,-.04,43.35,1.25]^{\prime}
\]
\[
\begin{aligned}
& \sqrt{0_{11}}=11.03, \quad \rho_{12}=.0503, \quad \rho_{13}=.7382, \quad \rho_{14}=-.0199 \\
& \sqrt{0_{22}}=11.52, \quad \rho_{23}=1614, \quad \rho_{24}=.8134 \\
& \sqrt{0_{33}}=15.47, \rho_{34}=.1524 \\
& \sqrt{0_{44}}=14.59 \\
& {\left[x_{3}, x_{4}\right]=[4.3 .35,0] }
\end{aligned}
\]

Attached as Appendix I is the output giving the calculated parameter: for the bivariate conditional. Note carefully that the standard deviations and correlations are printed in matrix form for convenience--
not to be confused with the variance-covariance matrix printed ahove it. Below the standard deviation and correlation matrix the values conditioned on and the resulting conditional means are printed. The original inputs and matrices will be printed only once but the values conditionco on, followed by the conditiona: means calculated using those values, will be repeated for each set of conditioning values read in.

Input to the program consists of the followin; cards:
Card 1 The 4 means for the quadravariate normal in \(4 F 10.4\) Formalt.

C:ard 2 Standard deviation for variahle lollowed by correlations for variables \(162,16,3\), and 18.3 in 4F10.4 lormat

Card 3 Standard deviation for variable 2 followed by correlations for variables \(2 \& 3\) and \(2 \& 4\) in \(3 F 10.4\) Format.

Card 4 Standard deviation for variable 3 followed by correlation between variables \(3 \& 4\) in \(2 F 10.4\) Format.

Card 5 Standard deviation for variable 4 in F10.4 format.
Card 6 Number of sets of \(x_{3}, x_{4}\) values to be conditioned on in 12 Format.

Card \(7 \quad 1^{\text {st }}\) set of \(x_{3}, x_{1}\) values to be conditioned on
Card \(8 \quad 2^{\text {nd }}\) set of " " " " "
" \(3^{\text {rd }}\) " " " " " " " 11
" etc.

The source deck listing is given in Appendix II.

\section*{References}

Morrison, D. F. (1967). Multivariate Statistical Methods, Wiley, N. York.

\section*{APPENDIX I}

MEANS VECTRR \(=21.5800-0.4000\) A3.30חn \(1.2 .50 n\)
VARIANCE-COVARIA:ICE :IATRIX
\begin{tabular}{|c|c|c|c|}
\hline 121.6609 & C. 3914 & 125.ne2 & -3.2095 \\
\hline C. 3314 & 132.7104 & 20.7630 & 136.7338 \\
\hline 125.9021 & 28.7635 & 23\%.3207 & 34.3770 \\
\hline -3.2025 & 136.7336 & 34.3n78 & 212.85 .31 \\
\hline
\end{tabular}

COMA. Vir. COV.lintrix
\[
\begin{array}{rr}
53.17973 & 1.83821 \\
4.83823 & 14.71625
\end{array}
\]

Sbicorri.intrix
\[
\begin{array}{ll}
7.29244 & 0.07 \cap 22 \\
0.09922 & \text { C.r67C2 }
\end{array}
\]

VALUES CDIIDITIOILE! Nii 43.3500 -0.0370
CDILDITIO:NAL ILCA:IS 21.7nel -C.OE7n


```

 2. }\operatorname{RIO(4,4),\cup(4),S(4,4)
 \operatorname{EEAD}(5,1) (U(I), I=1,4)
 1 FGRimt(4F10.4)
 in ? I=1,4
 L=1
 If (I.LE.3) L=I+1
    ```

```

3 FORTMT(4F10.1)
UO 4 I=1,4
L=I+1
S(I,I)=SD(I)**2
IF (L.E\cap.S) OO TO 4
U0 4 J=L,4
S(I,d)=RHN(I,J)*SD(I)*SD(I)
S(J,I)=S(I,J)
4 CO!ITIUE
IRITE(C,5) (U(I),I=1,4)
5 FORIAT('1"/l/' GEAMS VECTOR = ',A(F1O.f,2X))
IIRITE(c,6)
G FOR:IAT('VARIAHCE - COVAPIMICE MATRIN'/)
DN 7 I=1,4
7 VRITE(6,8) (S(I,J),J=1,4)
8 FOR:AT(5X,4(F10.4,4K))
DO 9 I=1,2
DO 9 J=1,2
V1(I,J)=S(I,J)
V2(I,J)=S(I,N+2)
V3(I,J)=S(I+2,J)
9 V4(I,J)=S(I+2,J+2)
D=V4(1,1)*V4(2,2)-V4(1,2)*V4(2,1)
C=V4(1,1)
V4(1,2)=-V4(1,2)/D
V4(2,1)=-V4(2,1)/D
VA(1,1)=C/D
DO 10 I=1,2
U1(I)=U(I)
10 U2(I)=U(I)

```

\section*{APPEMiNX II ( COntituri) )}
un \(11[=1,2\)
un \(11 \mathrm{~J}=1,2\)
VV24 (I, J) \(=0\)
DO \(11 \mathrm{~K}=1,2\)
11 VV24( \(1, J)=V \vee 24(1, J)+V 2(I, K) * \cup \cap(!, J)\)
D0 \(12 I=1,2\)
DO \(12 I=1,2\)
\(\operatorname{VVY}(1, J)=0\)
D) \(12 k=1.2\)
\(12 \operatorname{VVV}(I, J)=\operatorname{VVV}(I, J)+V V 24(I, K) * V 3(K, J)\)
on \(13 \mathrm{I}=1,2\)
DO \(13 \mathrm{~J}=1,2\)
\(13 \operatorname{sicin}(1, J)=V 1(I, J)-\operatorname{lvV}(I, J)\)
\(\operatorname{COR}(1,1)=\operatorname{SORT}(\sin : 1 A(1,1))\)
\(\operatorname{COR}(2,2)=\operatorname{SORT}(\operatorname{SIGIA}(2,2))\)
\(\operatorname{COR}(2,1)=\operatorname{SiCin}(1, ?) /(\operatorname{CRn}(1,1) * \operatorname{Crp}(2,2))\)
\(\operatorname{COR}(1,2)=\operatorname{C\cap R}(2, i)\)
URITE \((6,14)\) SITIM
\(\operatorname{IIRITE}(6,15)\) COR
14 FORIIAT ('OCOMO. VAR. COV.IMTRIX'//2(2X,F10.5)/)
15 FORTIAT('OSDACORP.!?TRIK'//2(2X,F10.5)/)
\(\operatorname{READ}(5,16)\) il
16 FORIINT(I2)
DO 23 ! \(1=1\) !!
\(\operatorname{READ}(5,17)\) ( \(X(1), I=1,2)\)
17 FORTAT (2F10.5)
DO \(13 \mathrm{I}=1,2\)
\(18 \mathrm{XU}(\mathrm{I})=\mathrm{X}(\mathrm{I})-\mathrm{U}\) 2(I)
D0 \(19 \mathrm{I}=1,2\)
\(v \times(I)=0\)
D0 \(19 \mathrm{~J}=1,2\)
\(19 \mathrm{VX}(\mathrm{I})=\mathrm{VX}(\mathrm{I})+\mathrm{VV24}(\mathrm{I}, \mathrm{J}) \star \times U(\mathrm{~J})\)
DO \(20 \mathrm{I}=1,2\)
20 US(I) \(=\mathrm{Ul}(\mathrm{I})+\mathrm{VX}(\mathrm{I})\)
\(\operatorname{urite}(6,21)(x(1), 1=1,2)\)
WRITE \((6,22)\) (US(I), \(I=1,2)\)
21 FORIAT('OVALUES COHDITIOMED ON',2(5X,F10.4)/1)
22 FOPIMT(' CONDITIOHAL MEAHS \(\quad, 2(5 X, F 10.4) / /)\) STOP
END

TRANSFORMATION OF NON-NORMAL MULTIVARIATE DATA
TO NEAR-NORMAL

\section*{Summary}

A procedure for transforming non-normal multivariate data to near-normal data is presented. The procedure is based upon a multivariate generalization of a technique proposed by Box and Cox (1954). Several examples of the procedure are included along with a documentation of the computor software.
I. INTRODUCTION

Investigators are often confronted with the problem of analysing multivariate data. Upon investigating the existing procedures for analysing this type of data, one soon realizes that a majority of the existing techniques are restricted to the normal distribution. However, real data often violates this normality assumption. Thus the investigator is confronted with two possible approaches: 1) determine a non-normal multivariate distribution which provides a satisfacory model, 2) determine a technique for transforming the non-normal data to near-normal data. If the investigator is mainly interested in modeling the multivariate data, then the first approach is probably most appropriate, however, if the main interests are in making statistical Inferences or probabilistic forecasts then the second approach could prove to be adequate. In this paper, we
have presented a procedure which addresses this second approach. The procedure is a multivarlate generalization of a procedure proposed by Box and Cox (1964). They proposed the following univariate transformation
\[
y^{(\lambda)}= \begin{cases}\frac{y^{\lambda}-1}{\lambda} & \text { for } \lambda \neq 0  \tag{1}\\ \log (y) & \text { for } \lambda \neq 0\end{cases}
\]

Andrews et. al. (1971) extended this transformation to the bivariate case. In their paper, they were able to find approximate maximum likelihood estimates' for \(\lambda\), by examining the contures of the likelihood function. In this paper, the method of Box and Cox is extended to the multivariate case, where the maximum likelihood estimate for \(\lambda\) is determined using a numerical analysis approach. The procedure is presented in a multivariate analysis of variance setting, however, several examples are presented which demonstrate the versatility of the technique.

\section*{II. Procedure}

Let \(Y_{\mathbf{i}_{1}}, \ldots Y_{\mathbf{i}_{n_{\mathbf{i}}}}\) denote a random sample of \(n_{\boldsymbol{i}} p\) - dimensional observations from a population with finite mean \(\mu_{i}\) and finite covariance \(\Sigma_{i}\), for \(\mathbf{i}=1,2, \ldots, m\). The problem can be stated as; find \(\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)^{\top}\) such that \(Y_{i j}^{(\lambda)}\) is distributed normally with
mean \(\mu_{i}\), and common covarince \(\Sigma\), where
\[
\begin{align*}
& y_{i j}^{\left(\lambda_{1}\right)}=\left(y_{i j}^{\left(\lambda_{1}\right)}\left(\lambda_{p}\right) y_{i j}^{T}\right.  \tag{2}\\
& y_{i j}^{\left(\lambda_{k}\right)}= \begin{cases}\left.\left(y_{i j k}\right)-1\right) / \lambda_{k} & \text { for } \lambda_{k} \neq 0 \\
\log \left(y_{i j k}\right) & \text { for } \lambda_{k}=0\end{cases} \tag{3}
\end{align*}
\]
for \(i=1,2, \ldots, m, j=1,2, \ldots, n_{i}\), and \(k=1,2, \ldots, p\). For \(0, Y_{i j}^{(\lambda)}\) can be written as
\[
\begin{equation*}
Y_{i j}^{(\lambda)}=D^{-1}\left(Y_{i j}^{\lambda}-J\right) \tag{4}
\end{equation*}
\]
where
\[
\begin{aligned}
& D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) \\
& J \text { is a pxl vector of } 1 ' s \\
& Y_{i j}^{\lambda}=\left(y_{i j 1}, y_{1 j 2}, \ldots, y_{i j p}^{\lambda_{p}}\right)^{T} .
\end{aligned}
\]

Since \(Y_{i j}^{(\lambda)} N\left(\mu_{i}, \Sigma\right)\), its density function can be written as
\[
\begin{equation*}
f(z)=\exp \left\{-1 / 2(z-\mu)^{T} \Sigma^{-1}(z-\mu)\right\}(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \tag{5}
\end{equation*}
\]
where \(z=Y_{i j}^{(\lambda)}\). From this, one can determine the density function for the
untransformed data \(w=Y_{1 j}\) as \(g(w)=K_{i j} f(z)\) where,
\[
\begin{equation*}
K_{i j}=\prod_{k=1}^{D} \frac{\partial z}{\partial w}=\prod_{k=1}^{D}\left(y_{i j k}\right)^{\lambda_{k}-1} . \tag{6}
\end{equation*}
\]

Hence the joint likelihood function becomes
\[
\begin{align*}
& L(\lambda)=\left(\prod_{i=1}^{m} \prod_{j=1}^{n i} K_{i j}\right) \\
& (2 \pi)^{-n p / 2}|\Sigma|^{-n / 2} \\
& \cdot \exp \left\{-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(Y_{i j}^{(\lambda)}-\mu\right)^{\top} \quad \Sigma^{-1}\left(Y_{i j}^{(\lambda)}-\mu\right)\right\} \tag{7}
\end{align*}
\]
where \(n=\sum_{j=1}^{m} n_{i}\). The likelihood function can be written as
\[
\begin{equation*}
L(\lambda)=K(2 \pi)^{-n p / 2}|\hat{\Sigma}|^{-n / 2} \exp \{-n p / 2\} \tag{8}
\end{equation*}
\]

T \(n_{i}\)
where \(K=\prod_{i=1} \prod_{j=1} K i j\) and \(\mu\) and \(\Sigma\) are replaced by their maximum likelihood estimates
\[
\begin{aligned}
& \hat{\mu}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} r_{i j}^{(\lambda)}=\bar{Y}_{i}^{(\lambda)} \\
& \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(\gamma_{i j}^{(\lambda)}-\bar{Y}_{i}^{(\lambda)}\right)\left(r_{i j}^{(\lambda)}-\bar{Y}_{i}^{(\lambda)}\right)^{\top} .
\end{aligned}
\]

Equation (8) follows from equation (7) since
\[
\begin{aligned}
& \sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(Y_{i j}(\lambda)-\hat{\mu}_{i}\right)^{\top} \hat{\Sigma}^{-1}\left(Y_{i j}^{(\lambda)}-\hat{\mu}_{i}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(\operatorname{tr} \hat{\Sigma}^{-1}\left(Y_{i j}^{(\lambda)}-\mu_{i}\right)\left(Y_{i j}^{(\lambda)}-\mu_{i}\right)^{\top}\right) \\
& \left.=\operatorname{tr} \hat{\Sigma}^{-1}\left(\sum_{i=1}^{m} \sum_{j=1}^{n_{i}\left(Y_{i j}(\lambda)\right.}{ }_{i}\right)\left(Y_{i j}^{(\lambda)}-\hat{\mu}_{i}\right)^{\top}\right) \\
& =n \operatorname{tr}\left(\hat{\Sigma}^{-1} \hat{\Sigma}\right)=n p .
\end{aligned}
\]

Equation (8) can be further simplified as
\[
\begin{equation*}
L(\lambda)=C \cdot h(\lambda) \tag{10}
\end{equation*}
\]
where \(C=(2 \pi)^{-n p / 2} \exp \{-n p / 2\}\)
\[
\begin{equation*}
h(\lambda)=\left|K^{-2 / n} \hat{\Sigma}\right|^{-n / 2} \tag{Il}
\end{equation*}
\]

Note that maximizing the likelihood function \(L(\lambda)\) is equivalent to minimizing the function \(h(\lambda)^{-1}\). This function can be further simplified by considering
\[
\begin{align*}
k^{2 / n} & =\left(\prod_{i=1}^{m}{\underset{\prod}{j=1}}_{n_{i}}^{k_{i j}}\right)^{2 / n} \\
& \left.=\prod_{k=1}^{p}\left(\prod_{i=1}^{m} \underset{j=1}{n_{i}}\left(y_{i j k}\right)^{\lambda_{k}-1}\right)^{1 / n}\right)^{2} \\
& \left.=\prod_{k=1}^{p}\left(\dot{y}_{k}\right)^{\lambda_{k}-1}\right)^{2} \tag{12}
\end{align*}
\]
where \(\dot{y}_{k}=\left(\prod_{i=1}^{m} \prod_{j=1}^{n_{i}} y_{i j k}\right)^{1 / n}\) is the geometric mean for the \(k^{\text {th }}\) variate, \(k=1,2, \ldots, p\). From equation (4) \(\hat{\Sigma}\) can be written as
\[
\begin{align*}
\hat{\Sigma} & =\sum_{i=1} \sum_{j=1}\left(Y_{i j}^{(\lambda)}-\bar{Y}_{i}^{(\lambda)}\right)\left(Y_{i j}^{(\lambda)}-\bar{Y}^{(\lambda)}\right)^{\top} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} D^{-1}\left(Y_{i j}^{\lambda}-\bar{Y}_{i}^{\lambda}\right)\left(Y_{i j}^{\lambda}-\bar{Y}_{i}^{\lambda}\right)^{\top} D^{-1} \tag{13}
\end{align*}
\]

Hence \(|\Sigma|\), becomes
\[
\begin{align*}
|\hat{\Sigma}| & =\left|0^{-1}\right|\left|\sum_{i=1}^{m} \sum_{j=1}^{n}\left(Y_{i j}^{\lambda}-\bar{r}_{i}^{\lambda}\right)\left(r_{i j}^{\lambda}-\bar{\gamma}_{i}^{\lambda}\right)\right|\left|0^{-1}\right| \\
& =\left|0^{-2}\right||G| \tag{14}
\end{align*}
\]
where \(G=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(Y_{i j}^{\lambda}-\bar{Y}_{i}^{\lambda}\right) \quad\left(Y_{i j}^{\lambda}-\bar{Y}_{i}^{\lambda}\right)\). Thus the minimization of
\[
h(\lambda)^{-1} \text { is equivalent to minimizing }
\]
\[
\begin{align*}
\theta(\lambda) & =\frac{|G|}{\left|K^{2 / N} D^{2}\right|} \\
& =\frac{|G|}{\left(\prod_{k=1}^{P} \lambda_{k} \dot{y}_{k} \lambda_{k-1}\right)^{2} .} \tag{15}
\end{align*}
\]

Note that equation (15) reduces to \(\frac{\sum_{i=1}^{n}\left(y_{i}^{\lambda}-y^{\lambda}\right)^{2}}{\left(\lambda \dot{y}^{\lambda-1}\right)^{2}}\)
which was proposed by Box and Cox (1964) for the univariate case.
The function \(\varphi(\lambda)\) in equation (15) can now be minimized using a standard numerical technique. In this paper the Flecher-Powell algorithm of deflected \(s\) teepest descent is used (see Appendix A).

\section*{III. Application}

The first example illustrates a violation of the equality of covariance matrix assumption in a multivariate analysis of variance problem. The data set is R.A. Fisher's classical iris data (Fisher, 1936) where the response measurements are sepal length, width and petal length, width for three iris species: virginica, versicolor, and setosa. Although this ciata was originally presented as an application of linear discriminate analysis, Morrison (1967) uses this as an example in multivariate analysis of variance, for which he states, "we shall of course assume... a common covariance matrix". However, in applying Bartlett's likelihood ratio test for equality of covariance, we obtain a test statistic of 141 for 20 degrees of freedom. Hence the hypothesis of equality of covariance can easily be rejected with a high level of significance. In figure 1, the confidence ellipse for the two untransformed variables: sepal length and sepal width, clearly illustrate the difference in covariance matrices. The data is then transformed, and the corresponding confidence ellipses are presented in figure 2. Although the confidence ellipses for the transformed data are more nearly identical, Bartlett's test statistic has been reduced to 63 , however, this value is still significant at the . 01 level.


Sepal Length

Figure 2. Transformed 95\% Confidence Ellipses


Sepal Length

In the second example, we are interested in obtaining probablifstic forecasts. The data was originally preser ved in a paper by Haggard et. al. (1973), in which the author was able to model the maximum rainfall from tropical cyclone systems across the Appalachians using the Gamma distribution. Since ri:e of their primary objectes was to obtain esiimates for the probaibility of rainfall exceedence in the Appalachian regions, I felt that comparative results could be obtained by transforming the data then using the well tabulated nomal distribution. The results are given in Table 1.

\section*{IV. Conclusions}

A method transforming non-normal multivariate data to neariy-normal data is presented. The method extends the univariate transformation of Box and Cox (1964) to the multivariate case. A numerical method for approximating the optimal transformation is also included (see Appendix A). The procedure was then applied in two applications. The first was in the area of multivariate analysis of variance where the primary objective was to achieve equality of covariance matrices. It was shown that the transformed data was less heterogeneous than the untransformed data. However, the population covariances were still unequal. The second application illustrated that this type of procedure can be used when the primary objective is the estimation of tail probabilities. This method allows the use of the normal distribution on the transformed data, rather than determining the appropriate non-normal distribution for the untransformed data.

TABLE 1
Expected Probabilities of Exceeding Arbitrary
Precipitation Amounts Over the Appalachian Region

Precipitation in inches
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{A} & \multicolumn{2}{|c|}{\(B\)} & \multicolumn{2}{|c|}{C} & \multicolumn{2}{|c|}{0} \\
\hline & 1** & II & I & II & 1 & II & 1 & II \\
\hline 1 & . 978 & . 966 & . 993 & . 999 & . 981 & . 971 & . 995 & . 997 \\
\hline 2 & . 913 & . 903 & . 959 & . 999 & . 932 & . 924 & . 971 & . 976 \\
\hline 3 & . 821 & . 819 & . 893 & . 962 & . 865 & . 864 & . 926 & . 931 \\
\hline 4 & . 717 & . 723 & . 806 & . 809 & . 789 & . 794 & . 866 & . 866 \\
\hline 5 & . 613 & . 624 & . 706 & . 625 & . 710 & . 719 & . 794 & . 788 \\
\hline 6 & . 515 & . 528 & . 605 & . 472 & . 631 & . 644 & . 717 & . 706 \\
\hline 7 & . 427 & . 439 & . 507 & . 361 & . 556 & . 571 & . 639 & . 623 \\
\hline 8 & . 349 & . 359 & . 418 & . 283 & . 486 & . 500 & . 562 & . 544 \\
\hline 9 & . 283 & . 291 & . 340 & . 227 & . 423 & . 436 & . 489 & . 471 \\
\hline 10 & . 227 & . 232 & . 273 & . 186 & : 365 & . 376 & . 422 & . 405 \\
\hline 15 & . 070 & . 066 & . 079 & . 090 & . 165 & . 166 & . 182 & . 174 \\
\hline 20 & . 019 & . 016 & . 020 & . 057 & . 070 & . 066 & . 070 & . 076 \\
\hline 25 & . 005 & . 003 & . 002 & . 042 & . 028 & . 025 & . 025 & . 032 \\
\hline 30 & . 001 & . 001 & . 001 & . 033 & . 011 & . 009 & . 008 & . 023 \\
\hline
\end{tabular}
* A - maximum 24-hour precipitation all storms. B - maximum 24-hour precipitation from no more than one storm per year. \(C\) - maximum precipitation totals from all storms. D - maximum precipitation totals from no more than one storm per year
**
I- 厄amma parameters from Hacgard et.al.(1973); II transformed normal probabilities.

\section*{V. REFERENCES}
1. Andrews, D.F., Gnandesikan, R., and Wainer, J.L. (1971), Trantormations of multivariate data. Biometrics vol. 27,p.825-840.
2. EOX,G.E.P. and Cox,D.R. i1964). An analysis of transformations. J.R.Statistical Soc. series B vol. 25,p.211-252.

Append i: A

Flecher-Powell method of deflected steepest descent, requires the gradient vector
\[
\varphi(\lambda)=\left[\begin{array}{c}
\frac{\partial \phi}{\partial \lambda_{1}}  \tag{A.1}\\
\frac{\partial \Phi}{\partial \lambda_{2}} \\
\frac{\partial \varnothing}{\partial \lambda_{p}}
\end{array}\right]
\]
where
\[
\begin{equation*}
\theta(\lambda)=\frac{|G|}{\left(\prod_{k=1}^{p} \lambda_{k} \dot{y}_{k}^{\lambda_{k}-1}\right)^{2}} \tag{A.2}
\end{equation*}
\]
\[
\begin{equation*}
\frac{\partial \emptyset(\lambda)}{\partial \lambda_{h}}=\frac{\partial|G|}{\partial \lambda_{h}}\left(\prod_{k=1}^{p} \lambda_{k} \dot{y}_{k} \lambda_{k}^{-1}\right)^{-2}+\frac{\partial\left(\prod_{k=1}^{p} \lambda_{k} \dot{y}_{k}^{\lambda_{k}-1}\right)^{-2}}{\partial \lambda_{h}}|G| \tag{AB}
\end{equation*}
\]
\[
\begin{equation*}
\frac{\partial\left(\prod_{k=1}^{p} \lambda_{k} \dot{y}_{k}^{\lambda_{k}-1}\right)^{-2}}{\partial \lambda_{h}}=-2\left(\prod_{k=1}^{p} \lambda_{k} \dot{y}_{k}^{\lambda_{k}-1}\right)^{-2} \quad\left(\lambda_{h}+\ln \dot{y}_{h}\right) \lambda_{n}^{-1} . \tag{A.4}
\end{equation*}
\]

Since \(|G|=\sum_{j=1}^{p} g_{i j} a_{i j}\) where
\[
\begin{equation*}
G=\left(g_{i j}\right) \tag{A.5}
\end{equation*}
\]
\[
a_{i j} \text { is the cofactor of } g_{i j}
\]

Also, since \(g_{i j}\) only depends upon \(\lambda_{i}, \lambda_{j}\) using the chain rule we have
\[
\begin{align*}
& \quad \begin{aligned}
& \frac{\partial|G|}{\partial \lambda_{h}}=\sum_{i=1}^{p} \sum_{j=1}^{p} \frac{\partial|G|}{\partial g_{i j}} \frac{\partial g_{i j}}{\partial \lambda_{h}} \\
& \text { where } \\
& \text { and } \\
& \frac{\partial|G|}{\partial g_{i j}}=a_{i j} \\
& \frac{\partial g_{u v}}{\partial \lambda_{h}}= \begin{cases}0 & \text { if } u, v \neq h \\
b_{2} & \text { if } u \text { or } v=h \\
b_{3} & \text { if } u=v=h\end{cases}
\end{aligned} . \tag{A.6}
\end{align*}
\]
and
\[
\begin{aligned}
b_{2} & =\frac{\partial}{\partial \lambda_{h}}\left(\sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(y_{i j u}^{\lambda_{u}}-\bar{y}_{i u}^{\lambda_{u}}\right)\left(y_{i j h}^{\lambda_{h}}-\bar{y}_{i h}^{\lambda_{h}}\right)\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n_{i}^{i}}\left(y_{i j u}^{\lambda_{j}}-\bar{y}_{i u}^{\lambda_{u}}\right)\left(y_{i j h}^{\lambda_{h}} \ln y_{i j h}-\bar{y}_{i h}^{\lambda_{h}}{ }^{l n} \bar{y}_{i j h}\right) \\
b_{3} & =2 \sum_{i=1}^{m} \sum_{j=1}^{n}\left(y_{i j h}^{\prime}-\bar{y}_{i h}^{\lambda_{h}}\right)\left(y_{i j h}^{\lambda_{h}} \ln y_{i j h}-\bar{y}_{i h}^{\lambda_{h}} \ln \bar{y}_{i j h}\right)
\end{aligned}
\]
(A.9)

From this, equation (A.3) becomes
\[
\begin{aligned}
\frac{\partial g(\lambda)}{\partial \lambda_{h}}=\frac{2}{\left(\prod_{k=1}^{p} \lambda_{k} \dot{y}_{k} k^{-1}\right)^{2}} & {\left[\sum_{\substack{p \\
k=1 \\
k \neq h}} \alpha_{k h} \frac{\partial g_{k h}}{\partial \lambda_{h}}+\frac{\alpha h h}{2} \frac{\partial g_{h h}}{\partial \lambda_{h}}\right.} \\
& \left.-|G|\left(\lambda_{h}^{-1}+\ln \dot{y}_{h}\right)\right] \cdot \text { (A.10) }
\end{aligned}
\]

Test of Fit for the Extreme Value Distribution Based Upon the Generalized Minimum Chi-Square

\section*{Summary}

A goodness of fit test for the extreme value distribution is developed. The procedure is based upon the generalized minimum chi-square distribution [Gurland and Dahiya (1570)] . Application of the test is given for some extreme value data [Gumbel (1964)].
I. Introduction

There are several difficulties with using the Pearson chi-square test of fit for continuous distributions [c. f. Dahiya and Gurland (1970)]. These difficulties are primarily concerned with the choice of cell width and the number of cells. However, to the applied statistician or non-statistician who must use test of fit procedures on a frequent basis, the primary difficulty of the procedures is in the users set up. That is, the user must have knowledge of the tabular values for the null hypothesis. Dahiya and Gurland ( 1970 , 1972 ) presented a goodness of fit test for several continuous distributions which eliminate most of the user's set up. Their procedure was based upon the generalized minimum chi-square statistic. In this paper, I have developed a test of fit for the extreme value distribution based upon this generalized riinimum chi-square technique.

\section*{II. Procedure}

Suppose that one would like to test the null hypothesis given by
\[
\begin{equation*}
H_{0}: x_{1}, x_{2}, \ldots, x_{n} \tau F_{x}(x ; \theta) \tag{1}
\end{equation*}
\]
where \(X_{1}, X_{2}, \ldots, X_{n}\) denotes a random sample of \(n\) observations from a distribution function \(F_{X}(x ; \theta) . F_{X}\) is an asymptotic Fisher-Tippett type 1 distribution, that is,
\[
\begin{align*}
F_{X}(x ; \theta)= & \exp \{-\exp (-(x-\alpha) / \beta)\}  \tag{2}\\
& -\infty<\alpha<\infty \\
& \beta>0
\end{align*}
\]

Let \(T\) denote a transformation from the population raw moments to \(\xi\), which can be written as a linear function of the parameters \(\theta\) where
\[
\begin{align*}
& \eta^{\prime}=\left(n_{1}^{\prime}, \eta_{2}^{\prime}, \ldots, n_{s}^{\prime}\right)^{T}  \tag{3}\\
& \xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)^{T}
\end{align*}
\]
and \(\eta_{j}^{\prime}\) is the \(j^{\text {th }}\) raw population moment for \(F_{X}\) and \(\xi=W \theta\), W is a known sx2 matrix, and \(\theta=(\alpha, \beta)^{T}\). That is,
\[
\begin{equation*}
T: \eta \rightarrow \xi=W \theta . \tag{4}
\end{equation*}
\]

Let \(m^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{s}^{\prime}\right)^{T}\) denote the sample raw moments corresponding to \(n\) and let \(h=\left(h_{1}, h_{2}, \ldots, h_{s}\right)^{T}\) denote the sample values corresponding to \(\xi\), that is,
\[
\begin{equation*}
T: m^{\prime}+h \tag{5}
\end{equation*}
\]

By the central limit theorem, we know
\[
\begin{equation*}
n\left(m^{\prime}-n^{\prime}\right) \sim n(0, G) \tag{6}
\end{equation*}
\]
where the \(i j^{\text {th }}\) element of the matrix \(G\) is
\[
\begin{equation*}
g_{i j}=\eta_{i}^{\prime}+j-\eta_{i}^{\prime} \eta_{j}^{\prime} \tag{7}
\end{equation*}
\]
for \(i, j=1,2, \ldots, s\). It also follows that
\[
\begin{equation*}
n(h-\xi) \sim n(\emptyset, \Sigma) \tag{8}
\end{equation*}
\]
where \(\Sigma=T G T{ }^{\top}\). Now using the distributional properties for the quadratic forms, we know that
\[
\begin{equation*}
Q^{*}=n(h-\xi)^{\top} \quad \hat{\Sigma}^{-1} \quad(h-\xi) \tag{9}
\end{equation*}
\]
has an asymptotic chi-square distribution with \(s\) degrees of freedom where \(\hat{\Sigma}\) is a consistent estimator for \(\Sigma\). Since \(\xi=W \theta\), an estimate for \(\theta\) can be found by minimizing \(Q^{*}\). In which case, the estimate becomes
\[
\begin{equation*}
\theta=\left(W^{\top} \hat{\Sigma}^{-1} W\right)^{-1} W^{\top} \hat{\Sigma}^{-1} h . \tag{10}
\end{equation*}
\]

By letting \(\hat{\xi}=W \hat{\theta}, Q^{*}\) becomes
\[
\begin{equation*}
\hat{Q}=n h^{\top} \hat{A h} \tag{11}
\end{equation*}
\]
where
\[
\begin{align*}
& \hat{A}=\hat{\Sigma}^{-1}(I-\hat{R}) \\
& \hat{R}=W\left(W^{\top} \hat{\Sigma}^{-1} W\right)^{-1} W^{\top} \hat{\Sigma}^{-1} . \tag{12}
\end{align*}
\]

Again by the distributional properties of the quadratic forms, \(\hat{0}\) has a noncentral chi-square distribution with degrees of freedem \(=\operatorname{tr} \hat{\Sigma} \hat{A}\) and non centrality parameter \(\lambda=\xi^{\top} A \xi\) if and only \(i \hat{i} \quad \hat{\Sigma A}\) is an idempotent matrix. It is easy to verify tiat \((\hat{\Sigma} \hat{A})^{2}=\hat{\Sigma} \hat{A}\), and \(\lambda=0\), so \(\hat{Q}\) has a chi-square
distribution with s-q degrees of freedom. Using this distribution, one can reject the null hypothesis (1) with type I error if \(\hat{Q}>_{X_{\alpha}}^{2}(s-q)\), where
\[
\begin{equation*}
\operatorname{Pr}\left(x \geq x_{a}^{2}(s-q)\right)=\alpha . \tag{13}
\end{equation*}
\]

Dahiya and Gurland (1970) developed the non-null distribution for \(\bar{Q}\), using this distribution one can compute the power of the test for a specified non-null distribution. In order to test ( 1 ), the transformation \(T\) and the matrix \(W\) need to be specified. Since we know that the populations cumulants for the extreme value distribution are
\[
\begin{equation*}
x_{j}=(-\beta)_{\psi}^{j}(j-1) \quad \text { for } j=2,3, \ldots \tag{14}
\end{equation*}
\]
where
\[
\begin{align*}
& \psi_{(n)}^{(n)}=(-1)^{n+1} n \mid \delta(n+1) \\
& \delta(n)=\sum_{i=1}^{\infty} i^{-n} . \tag{15}
\end{align*}
\]
 and \(\theta=\beta\) it is possible to map \(\eta^{\prime} \rightarrow \xi\) where \(s=4\) and \(q=1\). By letting \(h=\left(h_{1}, h_{2}, h_{3}, h_{4}\right)^{T}\), where \(h_{j}=k_{j+2} / k_{j+1}\), for \(j=1,2, \ldots, 4\), and \(k_{j}\) is the \(j^{\text {th }}\) sample cumulant. We are now able to compute \(Q\), where
\[
\begin{align*}
& \Sigma=\left.J G J^{T}\right|_{\beta=\hat{\beta}}  \tag{16}\\
& J=\left(j_{m n}\right) ; \quad J_{m n}=\frac{\partial \xi_{m}}{\partial k_{n}} \text { for } m, n=1,2, \ldots, s
\end{align*}
\]
and \(\hat{\beta}\) is the maximum likelihood estimate for \(\beta\).

The values in equation (15) can be found in Abrahomovich, hence \(J\) becomes
\[
J=1 / \beta\left[\begin{array}{llll}
1 & 0 & 0 & 0  \tag{17}\\
-.885 & .6079 & 0 & 0 \\
0 & -1.131 & .4174 & 0 \\
0 & 0 & -.5901 & .154
\end{array}\right]
\]

From these values, we are able to compute \(\hat{Q}\) in (11) for the sample values \(x_{1}, x_{2}, \ldots, x_{n}\). Hypothesis (1) can be rejected if \(\hat{Q}>x^{2}(3)\) since \(s=4, q=1\).

\section*{Application}

In this section, an extreme value data set given in Gumbel and Goldstein (1964) is analysed using this test of fit procedure. The data set consists of the oldest ages at death for men and women in Sweden from the period 1905-1958. The data for male and female are fitted separately. Gumbel and Goldstein (1964) estimated the extreme value distribution parameters using a modified method of moments. Tables \(1 \& 2\) contain a comparison of the two different procedures in term of estimated parameters and cumulative tail probabilities. It must be noted, that the null hypothesis of the extreme value distribution being the null distribution could not be rejected at a significance level of greater than 70\%.

In the second example, extreme monthly temperatures and winds for three United States locations were analysed. The data set taken from thi daily meteorological records, 1970-1971, for New Orleans, LA., Orlando, FL., and Daytona Beach, FL. The results are surmarized in Tables 3 and 4.

Table 1: Comparison of Procedures using Swedish Men
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Method of Moments} & \multicolumn{3}{|c|}{Generalized minimum} & \multirow[b]{2}{*}{\(G_{X}(x)\)} \\
\hline \[
\hat{\alpha}
\] & \(\hat{\beta}\) & X* & \(F_{X}(x)\) & \[
\hat{\alpha}
\] & \[
\hat{B}
\] & X* & \\
\hline \multirow[t]{7}{*}{102.49} & 1.39 & 100.90 & . 0433 & 102.53 & 1.25 & 100.90 & . 0251 \\
\hline & & 101.65 & . 1625 & & & 101.66 & . 1346 \\
\hline & & 102.61 & . 3994 & & & 102.61 & . 3914 \\
\hline & & 103.24 & . 5582 & & & 103.24 & . 5674 \\
\hline & & 104.22 & . 7497 & & & 104.22 & . 7720 \\
\hline & & 105.72 & . 9067 & & & 105.72 & . 9250 \\
\hline & & 106.50 & . 9457 & & & 106.50 & . 9591 \\
\hline
\end{tabular}
* the values \(X\) represent the \(5,10,20,30,40,50,54\) th smallest sample value. \(F_{X}\) and \(G_{X}\) are the corresponding c.d.f.

Table 2: Comparison of Procedures using Swedish Women
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Method of Moments} & \multicolumn{2}{|r|}{Generalized minimum} & \multicolumn{2}{|l|}{\(x^{2}\)} \\
\hline \(\hat{\alpha}\) & \(\hat{\beta}\) & \(\chi^{*}\) & \(F_{X}(x)\) & \(\hat{\alpha}\) & \[
\hat{\beta}
\] & \(\chi^{+}\) & \(G_{X}(x)\) \\
\hline \multirow[t]{6}{*}{103.83} & \multirow[t]{6}{*}{1.25} & 102.54 & . 0604 & 103.33 & 1.57 & 102.54 & . 2118 \\
\hline & & 103.31 & . 2190 & & & 103.31 & . 3866 \\
\hline & & 103.94 & . 4002 & & & 103.94 & . 5293 \\
\hline & & 104.52 & . 5623 & & & 104.52 & . 6442 \\
\hline & & 106.15 & . 8553 & & & 106.15 & . 8558 \\
\hline & & 106.50 & . 8889 & & & 106.50 & . 8829 \\
\hline
\end{tabular}
* same as in Table 1

\section*{TABLE 3}

\section*{Extreme Monthly Temperatures}

Site
\(\begin{array}{ccc}\text { Extreme } & \text { Value Distribution } \\ \hat{\alpha} & \hat{\beta} & Q^{\star}\end{array}\)
\begin{tabular}{llll} 
New Orleans & 83.8 & .98 & .001 \\
Orlando & 84.8 & .88 & .003 \\
Daytona Beach & 81.7 & .67 & .002
\end{tabular}
* null distribution of extreme valued distribution can not be rejected.

\section*{TABLE 4}

Extreme Monthly Winds
\begin{tabular}{lccc} 
Site & \multicolumn{2}{c}{ Extreme Value \({ }^{2}\) Distribution } \\
New Orleans & \(\hat{\alpha}\) & \(\hat{B}\) & \(\hat{Q^{*}}\) \\
Orlando & 15.4 & 2.9 & .9 \\
Daytona Beach & 13.6 & 2.5 & .6 \\
& 13.0 & 2.2 & .4
\end{tabular}
* same as in Table 2

\section*{IV. Conclusions}

A procedure for testing the goodness of fit for the extreme value distribution, based upon a generalized minimum chi-square is presented. The procedure is applied to several data sets where the extreme value distribution is a potential fit, although it must be mentioned that the meteorological data set was included in a manner which lends itself to program utility rather than for meteorogical interpretation.

\section*{V. References}
1. Dahiya,R.C., and Gurland,J. (1970). A test of fit for continous distributions lased on generalized minimum chi-square. Statistical Papers in Honor of George W. Snedecor, T.A. Bancroft, editor
2. Dahiya,R.C., and Gurland,J. (1972). Goodness of fit tests for the gamma and exponential distributions, Technometrics, vol. 14,p.791-801.
3. Gumbel, E.J., and Goldstein,N. (1964). Analysis of smpirical bivariate extremal distribution, JASA vol. 59,p.794-816.

\title{
Test of Fit for Continuous Distributions Based Upon the Generalized Minimum Chi-Square
}

\section*{Summary}

A procedure for test of fft for several continuous probability distributions based upon the generalized minimum chi-sqare method is presented. The procedure was first presented in a series of papers by Dahiya and Gurland ( (1970a),(1970b),(1972)). Examples of the procedure are included, along with the corresponding computer listing.

\section*{I Introduction}

Dahiya and Gurland (1970a) discuss the difficulties with using the Pea:son chi-square test of fit for continusus distributions. These difficulties are primarily concerned with the choice of cell numbers and widths. However, to the applied statistician who must use test of fit procedures on a frequent basis the main disadvantace is in the users setup. That is, the user must have knowledge of the parameters and the tabular values for the specified null distribution. These demands severally hamper the investigator Who must determine an appropriate distribution from potentially many distribution functions. The purpose of this paper is to present a test of fit for continuous distributions wilch minimizes the users interface in the estimation of parameters for the specified null distribution or in specifying the tabular values of the null distribution. In fact, several different families of distributions can be tested for fit using a single
setup. The procedure is based upon the generalizec minimum chi-square (GMCS) statistical method. Section 3 contains the GMCS procedure for the univariate normal and gamma distributions.

\section*{Procedure}

Suppose that we want to test the null hypothesis
\[
\begin{equation*}
\text { Ho: } x_{1}, x_{2}, \ldots x_{n} \sim F_{x}(x ; 0) \in \mathcal{F}(x ; 0) \tag{1}
\end{equation*}
\]
where \(x_{1}, x_{2}, \ldots x_{n}\) is a random sample of \(n\)-observations from an unknown distribution function \(F_{X}(x ; \theta)\); \(\partial\) is a \(q \times 1\) vector of parameters and \(\mathcal{F}(x ; \theta)\) is a specified family of distributions with admissable parameters 0 . The (GMCS) procedure can be used for testing any family of distribution \(\mathcal{F}(x ; 0)\), provided there exists a transformation \(T\), where
\[
\begin{equation*}
T: \mu \rightarrow \xi \tag{2}
\end{equation*}
\]
where \(\mu^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots \mu_{s}^{\prime}\right)^{\top}, \mu_{j}^{\prime}\) is the \(j^{\text {th }}\) raw population moment
and \(\xi=\left(\xi_{1}, \xi_{2}, \ldots \xi_{s}\right)^{\top}\) can be expressed as \(\bar{\xi}=W \theta\)
for a known \(s \times q\) matrix \(w\) and \(s>q\). Let \(m^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots m^{\prime}\right)^{\top}\)
denote a \(s \times 1\) vector of raw sample moments and define
\(h=\left(h_{1}, h_{2}, \ldots h_{s}\right)^{\top}\) to be the image of the transformation \(T\), that is
\(T: m^{\prime}+h\). Using the central limit thenrem, we have
\[
\begin{equation*}
n\left(m^{\prime}-\mu^{\prime}\right) \rightarrow n(\emptyset, G) \tag{4}
\end{equation*}
\]
where \(G=\left(g_{i j}\right), g_{i j}=\mu_{i+j}^{\prime}-\mu_{i}^{\prime} \mu_{j}^{\prime}, i, j=1,2, \ldots, s\).

From this, it can be shown that
\[
\begin{equation*}
n(h-\xi) \rightarrow N(\emptyset, \Sigma) \tag{5}
\end{equation*}
\]
where \(\Sigma=, ~ I\left(W^{\top}\right.\), \(J\) the jacobian matrix for the transformation \(T\). Now using the properties of quadratic forms, we know that
\[
\begin{equation*}
Q=n(h-\xi)^{\top} \quad \varepsilon^{-1}(h-\xi) \tag{6}
\end{equation*}
\]
has a chi-square asymptotic null distribution with \(s\) degrees of freedom. Furthermore, this distribution does not change when we estimate \(\Sigma\) in (6) by \(\hat{\Sigma}\), where \(\hat{\Sigma}\) is a consistent estimator for \(\varepsilon\). Since \(\xi=W \theta\), we can estima e \(\theta\), by findirig \(\hat{\theta}\) which minimizes \(Q\). This estimate is given by
\[
\begin{equation*}
\hat{\theta}=\left(H^{\top} \Sigma^{-1} W\right)^{-1} W^{\top} \hat{\Sigma}^{-1} h . \tag{7}
\end{equation*}
\]

By letting \(\xi=W \theta\), the minimal \(Q\) is
\[
\begin{equation*}
\hat{Q}=n(h-\hat{\xi})^{\top-1}(h-\xi)=n h^{\top} A h \tag{8}
\end{equation*}
\]
where
\[
\begin{align*}
& \hat{A}=\hat{\Sigma}^{-1}(I-\hat{R})  \tag{9}\\
& \hat{R}=W\left(W^{\top} \hat{\Sigma}^{-1} W\right)^{-1} W^{\top} .
\end{align*}
\]

Again, using the properties of the quadratic forms, we know that \(\hat{Q}\) has a non-central chi-square distribution with degrees of freedom \(=\operatorname{tr}(\hat{\Sigma} \hat{A})\) and asymptotic non-centrality parameter \(\lambda=\xi^{\top} \hat{A} \xi\), if and only if \(\hat{\Sigma} \hat{A}\) is idempoterit. Under the null hypothesis, \(\operatorname{tr}(\hat{\Sigma} \hat{A})=s-q\) and \(\lambda=0\). Hence the asymptotic distribution of \(\hat{Q}\) is \(x^{2}(s-q)\). Using this distribution, we cari reject the null hypothesis with \(\alpha\) type \(I\) error if \(\hat{Q}>\chi_{\alpha}(s-q)\).

Gurland and Pahiya (1970) developed the non-null distribution for \(\hat{Q}\). Using this result, they were able to compute the power of the test for selective alternative distributions.

In the next section, the general procedure is adapted for two specific distributions, the normal and gama.

\section*{Normal Distribution}

Suppose one would like to test the following hypothesis
\[
\begin{equation*}
H_{0}: X_{1}, x_{2}, \ldots, X_{n} \sim F_{X}(x ; \theta) \in N\left(\mu, \sigma^{2}\right) \tag{10}
\end{equation*}
\]
where \(\theta=\left(\theta_{1}{ }_{\mu} \mu_{0} \theta_{2} \sigma^{2}\right)^{T}, \mu\) and \(\sigma^{2}\) are unknown parameters. If we let
\[
\xi=\left(\xi_{2} \omega_{1}^{\prime \prime}, \xi_{2}=\log _{2}, \xi_{3} \sigma_{3}, \xi_{4}=\log \left(\frac{1}{3} \mu_{4}\right)\right)^{T}
\]
we have
\[
\begin{equation*}
\xi=W_{\theta}{ }^{\prime \prime} \tag{2i}
\end{equation*}
\]
whire
\[
\begin{align*}
\theta^{*} & =\left(\theta_{1}, \theta_{2}^{\prime \prime}\right), \\
W & \theta_{2}=\log \theta_{2}  \tag{12}\\
W & {\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 2
\end{array}\right] }
\end{align*}
\]

The transforamtion \(f\) from \(\mu\) 'to \(\xi\) can be achieved in two steps; \(T_{i}: \mu^{\prime} \rightarrow \mu\) \(T_{2}: \mu \rightarrow 5\). Hence, \(\Sigma\) in equation (5) becomes
\[
\begin{equation*}
\Sigma=J_{2} J_{1} G J_{1}^{T} J_{2}^{T} \tag{13}
\end{equation*}
\]
where
\[
\begin{aligned}
& J_{1}=\left(j_{m n}\right) ; j=\frac{\partial \mu_{m}^{\prime}}{\partial \mu_{n}} \quad m, n=1,2, \ldots, s \\
& J_{2}=\left(j_{u v}\right) ; j=\frac{\partial \mu_{u}}{\partial \xi_{v}} \quad u, v=1,2, \ldots, s .
\end{aligned}
\]

By assuming that \(\mu_{1}^{\prime}=0, J_{1}\) and \(J_{2}\) become
\[
J_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0  \tag{15}\\
0 & 1 & 0 & 0 \\
-3 \theta_{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]
\[
J_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0  \tag{16}\\
0 & 1 / \theta_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{3 \theta_{2}^{2}}
\end{array}\right]
\]
and equation (14), becomes
\[
\Sigma=\left[\begin{array}{cccc}
\theta_{2} & 0 & 0 & 0  \tag{17}\\
0 & 2 & 0 & 4 \\
0 & 0 & 6 \theta_{3}^{2} & 0 \\
0 & 4 & 0 & 32 / 3
\end{array}\right]
\]

Since \(\theta_{2}\) is unknown, let \(\hat{\theta}_{2}\) denote the usual maximum likelihood estimate. Then \(\hat{\Sigma}=\left.\Sigma\right|_{\theta_{2}=\hat{\theta}_{2} .} \quad\) Now by computing \(\hat{\theta}\) and \(\hat{Q}\) in equation (7) and (8),
one can test the hypothesis (10).
Gamma Distribution
Test the hypothes is
\[
\begin{equation*}
\text { Ho: } x_{1}, x_{2}, \ldots, x_{n} \sim F_{X}(x ; \theta) \sim \Gamma\left(\theta_{1}, \theta_{2}\right) \tag{18}
\end{equation*}
\]
where the density function for the gamma distribution \(\Gamma\left(\theta_{1}, \theta_{2}\right)\) is
\[
\begin{gathered}
f_{x}\left(x ; \theta_{1}, \theta_{2}\right)=\frac{e^{-y} y^{\theta_{1}-1}}{\theta_{2} \Gamma\left(\theta_{1}\right)} ; y=x / \theta_{2} \\
\theta_{1}, \theta_{2}>0 .
\end{gathered}
\]

Since \(\quad \xi=(j-1): \theta_{1} \theta_{2}^{j}\), the \(j^{\text {th }}\) cumulant, we can express \(\xi=W \theta^{*}\), where
\[
\begin{equation*}
\xi=\left(\xi_{1}=\kappa_{1}, \xi_{2}=\kappa_{2} \kappa_{1}^{-1}, \xi_{3}=\kappa_{3} \kappa_{2}^{-1}, \quad \xi_{4}=\kappa_{4} \kappa_{3}^{-1}\right)^{\top} \tag{20}
\end{equation*}
\]
\(W=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 2 \\ 0 & 3\end{array}\right]\)
\[
\begin{equation*}
\theta^{\star}=\left(\theta_{1}^{\star}=\theta_{1} \theta_{2}, \theta_{2}^{\star}=\theta_{2}\right) \tag{21}
\end{equation*}
\]

The transformation \(T\) from \(\eta^{\prime}\) to \(\xi\) can be obtained in two steps
\[
\begin{align*}
& T_{1}: \eta^{\prime} \rightarrow K  \tag{22}\\
& T_{2}: K \rightarrow \xi
\end{align*}
\]
where \(K=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)^{\top}\). In which case \(\Sigma\) becomes
\[
\begin{equation*}
\Sigma=J_{2} J_{1} G J_{1}^{\top} J_{2}^{\top} \tag{23}
\end{equation*}
\]
where
\[
J_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0  \tag{24}\\
j_{12} & 1 & 0 & 0 \\
j_{13} & j_{23} & 1 & 0 \\
j_{14} & j_{24} & j_{34} & 1
\end{array}\right]
\]
\(j_{12}=-2 n_{i}\)
\(j_{13}=-3 n_{1}^{\prime}\)
\(j_{23}=-3 n_{2}+6 n_{j}^{j}\)
\(j_{14}=-4 n_{3}^{\prime}+12 n_{3}^{\prime} n_{j}^{\prime}-24\left(n_{j}\right)^{3}\)
\(j_{24}=-6 \dot{j}+12\left(n_{j}\right)^{2}\)
\(j_{34}=-4 n j\)
\(\eta_{j}^{\prime}=\frac{\Gamma\left(\theta_{1}+j\right)}{\Gamma\left(\theta_{1}\right)} \quad \theta_{2}^{j} ; j=1,2,3,4, \ldots\)
\(J_{2}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ -k_{2} k_{1}^{-1} & k_{1}^{-1} & 0 & 0 \\ 0 & -k_{3} k_{2}^{-1} & k_{2}^{-1} & 0 \\ 0 & 0 & -k_{4}^{k_{3}^{-1}} & k_{3}^{-1}\end{array}\right]\)

Since \(\theta_{1}, \theta_{2}\) are unknown, they can be estimated by \(\hat{\theta}_{1}, \hat{\theta}_{2}\) where
\[
\begin{aligned}
& \hat{\theta}_{2}=X / \hat{\theta}_{1} \\
& \hat{\theta}_{1}=y^{-1} / 4\left(1+(1+4 y / 3)^{\frac{1}{2}}\right) \\
& y=\log (\bar{X} / G M) \\
& \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& G M={\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}}^{\text {GM }}
\end{aligned}
\]

By replacing \(\hat{\theta}_{1} \hat{\theta}_{2}\) in \(\Sigma\), we can test the hypothesis (18) using \(\hat{Q}\).

\section*{Results}

In order to demonstrate the GMCS procedure, the procedure was used in three different experiments. The first was to simulate data from several different distributions and determine the test of fit. In the second example the procedure was analysed using meteorological data consisting of several different atmospheric variables. The third experiment consisted of analyzing a meteorological data set from a specified distribution function.

\section*{Experiment 1}

In this experiment, random observations were simulated from many different distribution functions in order to demonstrate how robust the procedure is to varyina sample sizes, shape parameters, etc. This part of the experiment was not meant to provide conclusive evidence that the (GMCS) procedure is better or worse than any other procedure, but was intencied to point out any apparent deficiencies. The results have been summarized in Table 1. In this table, I have only included the results for fitting the true distribution, however, the procedure may have indicated that another distribution could have provided satisfactory fit. However, this is explainable since the Garma and Extreme Value distribution can resemble many other distributions depending upon their shape parameters.

TABLE 1
Evaluation GMCS procedures using Simulated Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline True Distribution & \multicolumn{2}{|r|}{Parameters} & Sample Size & & ed ters & \(\hat{0}\) \\
\hline \multirow[t]{13}{*}{\(\Gamma(Y, B j\)} & \(\gamma\) & B & & \[
\hat{\gamma}
\] & \(\hat{8}\) & \\
\hline & 3 & 1 & 10 & 1.2 & 1.06 & 6.600* \\
\hline & 3 & " & 25 & 1.0 & . 91 & . 001 \\
\hline & " & " & 50 & 1.1 & . 86 & 1.200 \\
\hline & " & 1 & 100 & 1.1 & . 90 & 4.900* \\
\hline & 2 & 1 & 10 & . 97 & . 98 & 5.600* \\
\hline & 2 & I & 85 & . 88 & . 88 & 14.900* \\
\hline & " & " & 50 & 1.18 & . 96 & 12.700 \\
\hline & " & " & 100 & . 83 & . 72 & 3.300 \\
\hline & . 5 & 1 & 10 & 1.99 & 1.6 & . 420 \\
\hline & \({ }^{\prime \prime}\) & " & 25 & . 80 & . 63 & 1.000 \\
\hline & " & 11 & 50 & 1.02 & . 77 & 1.200 \\
\hline & " & " & 100 & 1.17 & . 91 & 15.100* \\
\hline \multirow[t]{5}{*}{\(N\left(\mu, \sigma^{2}\right)\)} & \(\mu\) & \(\sigma^{2}\) & \(N Q B\) & \(\hat{\mu}\) & \(\hat{\sigma}^{2}\) & Q \\
\hline & \multirow[t]{4}{*}{10} & \multirow[t]{4}{*}{25} & 10 & 12.1 & 11.8 & . 008 \\
\hline & & & 25 & 9.5 & 31.5 & . 091 \\
\hline & & & 50 & 8.9 & 20.0 & . 041 \\
\hline & & & 100 & 10.2 & 23.9 & . 001 \\
\hline \multirow[t]{9}{*}{Extreme value, \(\alpha, \beta\)} & \(\alpha\) & B & NOB & \(\hat{\alpha}\) & \(\hat{\beta}\) & \(\hat{Q}\) \\
\hline & \multirow[t]{4}{*}{5.} & \multirow[t]{4}{*}{1.} & 10 & 5.01 & 1.68 & \\
\hline & & & 25 & 5.04 & 1.15 & . 008 \\
\hline & & & 50 & 5.04 & . 85 & . 003 \\
\hline & & & 100 & 4.82 & . 85 & . 006 \\
\hline & \multirow[t]{4}{*}{2.} & 2. & 10 & 2.90 & . 98 & . 002 \\
\hline & & & 25 & 2.69 & 1.50 & . 004 \\
\hline & & & 50 & 1.74 & 2.08 & . 617 \\
\hline & & & 100 & 2.09 & 1.95 & . 033 \\
\hline \multirow[t]{13}{*}{\[
\underset{\lambda}{\text { Exponential }}
\]} & & \(\lambda\) & NOB & \(\lambda\) & & \(\hat{Q}\) \\
\hline & \multicolumn{2}{|r|}{\multirow[t]{4}{*}{. 5}} & 10 & . 69 & & 9.04 * \\
\hline & & & 25 & . 56 & & 3.2 \\
\hline & & & 50 & . 53 & & 1.3 \\
\hline & & & 100 & . 42 & & 4.15 * \\
\hline & \multicolumn{2}{|r|}{\multirow[t]{4}{*}{1.0}} & 10 & 1.04 & & . 33 \\
\hline & & & 25 & . 83 & & . 75 \\
\hline & & & 50 & 1.28 & & . 29 \\
\hline & & & 100 & 1.1 & & 2.90 \\
\hline & \multirow[t]{4}{*}{} & 2.0 & 10 & 2.60 & & 4.9 * \\
\hline & & & 25 & 1.89 & & 1.54 \\
\hline & & & 50 & 1.97 & & 1.04 \\
\hline & & & 100 & 1.92 & & . 35 \\
\hline
\end{tabular}

\section*{Experiment 2}

In this experiment meteorological data sets from three southern United States locations were analysed. The first set consisted of monthly percepitation totals and monthly mean temperature for the years 1936-1975 for sites New Orleans, LA, Orlando, FL, and Daytona Beach, FL. The results for these data sets have been summarized in Tables \(2 \& 3\), where the data sets are partitioned into five year intervals, each containing 60 observations. The second data set consists of daily (high temperature, maximum wind speed) for the three U.S. sites. The observations are partitioned into monthly intervals for the 1970-1971 data. The results are summarized in Tables \(4 \& 5\). Tables \(6 \& 7\) contain the results for test of fit for extreme monthly temperature and wind for the three U.S. locations.

It should be mentioned that the above data set was partitioned for the author's convenience rather than for meteorological interpretation.

TABLE 2
Monthly Total Precipitation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Site**} & \multirow[t]{2}{*}{Year} & \multicolumn{3}{|c|}{Normal} & \multicolumn{2}{|c|}{Exp} & \multicolumn{3}{|c|}{Gamma} & \multicolumn{3}{|c|}{Extreme} \\
\hline & & \(\hat{\mu}\) & \(\hat{\sigma}^{2}\) & \(\hat{Q}\) & \(\hat{\lambda}\) & \(\hat{Q}\) & \[
\hat{\gamma}
\] & \(\hat{B}\) & \[
\hat{Q}
\] & \[
\hat{\alpha}
\] & \(\hat{B}\) & \(\hat{Q}\) \\
\hline \multirow[t]{8}{*}{1} & 1936-40 & 4.8 & 24 & 3.3 & . 02 & 7.6* & 1.9 & . 04 & . 0 & 12.9 & 3.0 & 3.5* \\
\hline & 47-45 & 4.5 & 12 & 1.3 & & 8. \({ }^{\text {* }}\) & 2.2 & . 05 & & 8.3 & 2.4 & 1.8 \\
\hline & 46-50 & 5.4 & 20 & . 8 & " & 5.3* & 1.8 & . 03 & " & 9.4 & 3.1 & 3.3* \\
\hline & 51-55 & 4.6 & 9 & 1.4 & " & 7.8* & & & & 6.7 & 2.2 & 1.4 \\
\hline & 56-60 & 4.7 & 8 & . 3 & " & 10.6* & 2.7 & . 06 & 1 & 7.3 & 2.1 & 1.1 \\
\hline & 61-65 & 4.6 & 7 & . 0 & " & 9.3* & 2.3 & . 05 & " & 6.3 & 2.1 & 1.1 \\
\hline & 66-70 & 4.4 & 8 & . 3 & " & 8.6* & 2.3 & . 05 & " & 6.7 & 2.2 & 1.2 \\
\hline & 71-75 & 5.8 & 10 & . 3 & " & 13.1* & 3.5 & . 06 & " & 8.8 & 2.4 & 1.3 \\
\hline \multirow[t]{8}{*}{II} & 1936-40 & 4.2 & 13 & . 7 & . 02 & 3.7* & 1.6 & . 04 & . 0 & 7.5 & 2.5 & 2.2 \\
\hline & 41-45 & 4.0 & 14 & 1.4 & " & 3.6* & 1.6 & . 04 & 1 & 8.8 & 2.4 & 2.3 \\
\hline & 46-50 & 4.5 & 19 & . 5 & " & . 9 & 1.1 & . 02 & " & 7.7 & 3.0 & 3.9* \\
\hline & 51-55 & 4.4 & 16 & . 9 & " & . 9 & 1.5 & . 04 & " & 8.0 & 2.7 & 2.7 \\
\hline & 56-60 & 3.4 & 9 & . 1 & " & 2.0 & & & - & 5.3 & 2.2 & 1.9 \\
\hline & 61-65 & 4.3 & 19 & 1.2 & " & 1.4 & 1.3 & . 03 & " & 9.0 & 2.9 & 3.5* \\
\hline & 66-70 & 4.0 & 9 & 1.4 & " & 4.6* & 1.7 & . 04 & " & 6.1 & 2.2 & 1.5 \\
\hline & 71-75 & 3.9 & 15 & 1.2 & " & 1.3 & 1.2 & . 03 & " & 7.8 & 2.6 & 2.8 \\
\hline \multirow[t]{8}{*}{III} & 1936-40 & 3.8 & 7 & 1.5 & . 02 & 6.1* & 1.8 & . 05 & . 0 & 5.6 & 2.0 & 1.2 \\
\hline & 41-45 & 4.5 & 16 & . 3 & & 2.0 & 1.3 & . 03 & . & 7.4 & 2.8 & 3.0 \\
\hline & 46-50 & 4.4 & 13 & . 3 & " & 3.5* & 1.5 & . 03 & " & 7.1 & 2.6 & 2.3 \\
\hline & 51-55 & 4.1 & 20 & 1.9 & " & 2.2 & 1.3 & . 03 & " & 9.3 & 2.8 & 3.5* \\
\hline & 56-60 & 3.9 & 10 & . 3 & " & 3.3* & 1.5 & . 03 & " & 6.2 & 2.3 & 1.9 \\
\hline & 61-65 & 3.9 & 9 & . 3 & " & 9.9* & 1.7 & . 04 & " & 6.1 & 2.2 & 1.5 \\
\hline & 66-70 & 3.9 & 14 & . 8 & " & 1.3 & 1.2 & . 03 & " & 7.3 & 2.6 & 2.7 \\
\hline & 71-75 & 3.9 & 9 & . 3 & " & 5.3* & 1.7 & . 05 & " & 6.0 & 2.2 & 1.5 \\
\hline
\end{tabular}

\footnotetext{
* null hypothesis can be rejected at \(\alpha=.05\) level
** I - New Orleans; II - Orlando; III - Daytona Beach
}

\section*{TABLE 3}

\section*{Monthly Mean Temperature}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Site**} & \multirow[t]{2}{*}{Year} & \multicolumn{3}{|c|}{Normal} & \multicolumn{2}{|c|}{Exp} & \multicolumn{3}{|c|}{Gamma} & \multicolumn{3}{|c|}{Extreme} \\
\hline & & \[
\hat{\mu}
\] & \(\hat{\sigma}^{2}\) & \(\hat{Q}\) & \[
\hat{\lambda}
\] & \(\hat{Q}\) & \[
\hat{\gamma}
\] & \(\hat{B}\) & \(\hat{Q}\) & \[
\hat{\alpha}
\] & \[
\hat{\boldsymbol{B}}
\] & \(\hat{0}\) \\
\hline \multirow[t]{8}{*}{1} & 1936-40 & 69.7 & 116 & . 0 & . 01 & 24.1* & 26 & . 36 & . 0 & 75.2 & 8 & . 0 \\
\hline & 41-45 & 69.4 & 120 & & & & 25 & . 39 & & 75.1 & 9 & \\
\hline & 46-50 & 69.4 & 106 & " & " & " & 29 & . 39 & " & 74.6 & 8 & " \\
\hline & 51-55 & 69.2 & 111 & " & " & " & 25 & . 42 & " & 74.9 & " & " \\
\hline & 56-60 & 68.5 & 121 & " & " & " & 25 & . 36 & " & 74.2 & " & " \\
\hline & 61-65 & 67.5 & 121 & " & " & " & 22 & . 32 & " & 73.0 & " & " \\
\hline & 66-70 & 67.0 & 130 & " & " & " & 23 & . 34 & " & 72.9 & 9 & " \\
\hline & 71-75 & 68.6 & 99 & " & " & " & 23 & . 49 & " & 73.8 & 8 & " \\
\hline \multirow[t]{8}{*}{II} & 1936-40 & 71.0 & 69 & . 0 & . 01 & 24.6* & 40 & . 57 & . 0 & & 6 & . 0 \\
\hline & 41-45 & 72.0 & 80 & 1 & & & 41 & " & & 76.7 & 7 & " \\
\hline & 46-50 & 73.4 & 58 & " & " & " & 43 & " & " & 77.0 & 6 & " \\
\hline & 51-55 & 71.8 & 72 & " & " & " & 57 & . 80 & " & 76.0 & 7 & " \\
\hline & 56-60 & 71.8 & 78 & " & " & " & 34 & . 48 & " & 76.1 & 7 & " \\
\hline & 61-65 & 72.4 & 73 & " & " & " & 40 & . 55 & " & 76.6 & 11 & " \\
\hline & 66-70 & 71.8 & 83 & " & " & " & 36 & . 51 & " & 76.3 & " & " \\
\hline & 71-75 & 73.6 & \(\bigcirc 6\) & " & " & 11 & 53 & . 72 & " & 77.4 & 6 & " \\
\hline \multirow[t]{8}{*}{III} & 1936-40 & 69.7 & 63 & . 0 & . 01 & 24.7* & 41 & . 54 & . 0 & 73.7 & 6 & . 0 \\
\hline & 41-45 & 70.1 & 86 & " & \({ }^{\prime \prime}\) & & 33 & . 47 & " & 74.8 & 7 & . \\
\hline & 46-50 & 71.5 & 61 & " & " & " & 40 & . 56 & " & 75.3 & 6 & " \\
\hline & 51-55 & 70.4 & 75 & " & " & " & 55 & . 78 & " & 74.9 & 7 & " \\
\hline & 56-60 & 70.0 & 82 & " & " & " & 32 & . 46 & " & 74.5 & 7 & " \\
\hline & 61-65 & 69.8 & 76 & " & " & " & 39 & . 56 & " & 74.3 & 7 & " \\
\hline & 66-70 & 70.0 & 89 & " & " & " & 34 & . 49 & " & 74.7 & 7 & " \\
\hline & 71-75 & 71.3 & 60 & 1 & " & " & 34 & . 50 & " & 75.2 & 7 & " \\
\hline
\end{tabular}
* null hypothesis can be rejected at \(\alpha=.05\) level
** I - New Orleans; II - Orlando; III - Daytona Beach

\section*{TABLE 4}

\section*{Daily Maximum Temperature}

* null hypothesis can be rejected at \(\alpha=.05\) level
** I - New Orleans; II - Orlando: III - Daytona Beach
*** data set consists of daily observation for a monthly interval, only these selected months are presented.

TABLE 5
Daily Maximum Wind
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Site} & \multirow[t]{2}{*}{Date***} & \multicolumn{3}{|c|}{Normal} & \multicolumn{2}{|c|}{Exp} & \multicolumn{3}{|c|}{Gamma} & \multicolumn{3}{|r|}{Extremely} \\
\hline & & \[
\hat{\mu}
\] & \[
\hat{\sigma}
\] & \(\hat{Q}\) & \(\hat{\lambda}\) & \(\hat{Q}\) & \(\hat{\gamma}\) & \(\hat{B}\) & \(\hat{Q}\) & \[
\hat{a}
\] & \[
\hat{\boldsymbol{B}}
\] & \(\hat{Q}\) \\
\hline \multirow[t]{8}{*}{1} & 1/70 & 9.6 & 7 & . 0 & . 10 & 11.2* & 14.8 & 1.5 & . 0 & 11.8 & 2.1 & . 0 \\
\hline & 3/70 & 9.8 & 6 & & " & & & & & 11.2 & 2.0 & \\
\hline & 6/70 & 6.8 & 6 & " & . 14 & 9.7* & 7.7 & 1.1 & . 0 & 8.7 & 1.8 & \\
\hline & 10/70 & 7.6 & 9 & 1.3 & . 13 & 9.3* & 5.6 & . 7 & . & 9.6 & 2.3 & \\
\hline & 1/71 & 8.4 & 12 & . 0 & . 11 & 8.7* & 4.7 & . 5 & " & 10.6 & 2.7 & \\
\hline & 3/71 & 9.7 & 7 & " & . 10 & 11.1* & 11.6 & 1.2 & " & 11.6 & 2.1 & \\
\hline & 6/71 & 5.3 & 2 & " & . 18 & 10.4* & 8.6 & 1.6 & " & 6.1 & 1.2 & \\
\hline & 10/71 & 4.7 & 5 & . 3 & . 20 & 9.1* & 6.5 & 1.3 & " & 7.1 & 1.6 & \\
\hline \multirow[t]{8}{*}{II} & 1/70 & 9.6 & 10 & . 0 & . 10 & 10.4* & 7.8 & . 8 & . 0 & 11.7 & 2.4 & 2.4 \\
\hline & 3/70 & 10.3 & 10 & " & . 04 & 10.6* & 8.3 & . 8 & . & 12.3 & 2.4 & . 0 \\
\hline & 6/70 & 8.4 & 4 & " & . 12 & 11.1* & 14.1 & 1.6 & " & 9.8 & 1.6 & \\
\hline & 10/70 & 8.8 & 6 & " & .11 & 11.1* & 10.9 & 1.2 & " & 10.5 & 1.9 & \\
\hline & 1/71 & 8.8 & 7 & " & . 11 & 10.7* & 8.7 & . 9 & " & 10.4 & 2.0 & \\
\hline & 3/71 & 10.1 & 11 & " & .11 & 10.7* & 10.9 & 1. & " & 12.7 & 2.5 & \\
\hline & \(6 / 71\) & 7.4 & 3 & " & .13 & 11.3* & 15.6 & 2. & " & 8.5 & 1.3 & \\
\hline & 10/71 & 6.8 & 5 & " & .14 & 11.0* & 7.1 & 1. & " & 8.2 & 1.7 & ' \\
\hline \multirow[t]{8}{*}{II!} & \[
1 / 70
\] & 9.2 & 5 & . 0 & . 10 & 11.3* & & & & 10.5 & 1.8 & . 0 \\
\hline & 3/70 & 8.8 & 6 & " & " & 11.2* & 11.8 & 1.3 & . 9 & 10.5 & 1.9 & \\
\hline & 6/70 & 9.0 & 7 & " & " & 10.9* & 15.6 & 1.7 & , & 11.1 & 1.9 & \\
\hline & 10/70 & 10.3 & 13 & " & " & 10.3* & 8.6 & . 8 & " & 12.8 & 2.7 & \\
\hline & 1/71 & 8.0 & 7 & " & " & & 8.8 & 1.1 & " & 4.4 & 2. & \\
\hline & 3/71 & 9.5 & 11 & " & " & " & 10.5 & 1. & " & 12.0 & 2.4 & \\
\hline & 6/71 & 7.3 & 3 & " & " & 11.5* & 21.9 & 2.9 & " & 8.5 & 1.2 & \\
\hline & 10/71 & 7.5 & 6 & " & " & 10.7* & 9.7 & 1.2 & " & 9.3 & 1.8 & \\
\hline
\end{tabular}
* null hypothesis can be rejected at \(\alpha=.05\) level
** I - New Orleans; II - Nrlando; III - Daytona Beach
*** data set consists of daily observation for a monthly interval, only these selected months are presented.

\section*{TABLE 6}

Extreme Monthly Temperatures
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{site} & \multicolumn{3}{|c|}{Normal} & \multicolumn{2}{|l|}{Exponential} & \multicolumn{3}{|c|}{famma} & \multicolumn{3}{|c|}{Extreme} \\
\hline & \(\hat{\mu}\) & \(\hat{\sigma}^{2}\) & Q & \(\hat{\lambda}\) & Q & \(\hat{\gamma}\) & \(\stackrel{\text { B }}{ }\) & \(\hat{Q}\) & \[
\hat{\alpha}
\] & \[
\hat{\boldsymbol{B}}
\] & \(\hat{Q}\) \\
\hline 1 & 82.5 & 1.5 & . 0 & . 012 & 16.9* & & & & 83.3 & . 98 & . 00 \\
\hline 11 & 82.9 & 1.3 & . 0 & . 012 & 16.9* & & & & 84.8 & . 88 & . 00 \\
\hline III & 81.1 & . 8 & . 0 & . 012 & 16.9* & & & - & 81.7 & . 67 & . 00 \\
\hline
\end{tabular}

TABLE 7
Extreme Monthly Winds

Site

III

Normal
\(\hat{u} \quad \hat{\sigma}^{2}\)
\(11.1 \quad 17\)
11.211
10.39

Exponential

13.6*
14.1* 1.1 .10
14.5* 1.6 .16
.09

Gamma
\(\hat{B} \quad \hat{Q}\)
* null hypothesis can be rejected at \(\alpha=.05\) level
** I - New Orleans; II - Orlando; III - Daytona Beach

\section*{Experiment 3}

In this section the procedure was applied to a data set found in Haggard et. al. (1973). In their paper, they analysed a meteoroloaical data set consisting of maximum rainfall amounts in the Appalachian region resulting from tropical disturbances. In their paper they satisfactorly modeled the data set with a Gamma distribution. In this section, I wanted to determine if the GMCS procedure whuld indicate that the Garma distribution would provide a satisfactory fit. Also, since the original authors were interested in making probabilistic forecasts, I have included the similiar forecasts based upon the GMCS fitted distribution. The results for the test of fit are summarized in Table 7. Table 8 contains a comparison of the GMCS fitted Gamma distribution with the resul ts found in Haggard et. al. (1964).

\section*{TABLE 7}

\section*{GMCS Procedure for Maximum Rainfall within the Appalachians}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Data \\
Set**
\end{tabular}} & & \multicolumn{2}{|l|}{Normal} & \multicolumn{2}{|c|}{Exp} & \multicolumn{3}{|c|}{Gamma} & \multicolumn{3}{|c|}{Extreme} & \multicolumn{2}{|l|}{Haggard et. al. Result} \\
\hline & & \(\hat{\sigma}^{2}\) & \(\hat{Q}\) & \(\hat{\lambda}\) & \(\hat{\mathbf{Q}}\) & \(\hat{\gamma}\) & \(\hat{\beta}^{-1}\) & Q & \(\hat{\alpha}\) & \(\hat{\beta}\) & \(\hat{Q}\) & & \(\hat{\beta}^{-1}\) \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrrr} 
A & 7.29 & 0.3 & 1.75 & .14 & \(5.14^{*}\) & 1.9 & 3.85 & .14 & 16.3 & 4.4 & .04 & 2.2 & 3.33 \\
B & 8.08 & 53.5 & 1.24 & .12 & \(4.70^{*}\) & 2.2 & 3.85 & .09 & 16.6 & 9.6 & .03 & 2.8 & 2.88 \\
C & 9.37 & 55.6 & .42 & .10 & \(3.40^{*}\) & 1.9 & 5.07 & .00 & 15.9 & 5.2 & .05 & 1.9 & 4.73 \\
D & 10.18 & 55.3 & .32 & .09 & \(3.90^{*}\) & 2.2 & 4.56 & .00 & 16.6 & 5.2 & .03 & 2.6 & 3.87
\end{tabular}
\begin{tabular}{llllllllllllll}
\(A^{\prime}\) & 7.18 & 39.7 & 1.23 & .13 & \(5.05 *\) & 2.1 & 3.4 & .06 & 14.2 & 4.0 & .02 & 2.2 & 3.1 \\
\(B^{\prime}\) & 7.94 & 41.8 & .86 & .12 & \(4.78^{*}\) & 2.4 & 3.4 & .04 & 14.7 & 4.2 & .02 & 2.9 & 2.6 \\
\(C^{\prime}\) & 9.2 & 47.9 & .26 & .10 & \(3.73^{*}\) & 1.9 & 4.8 & .02 & 14.5 & 4.9 & .04 & 2.0 & 4.5 \\
\(D^{\prime}\) & 10.0 & 46.5 & .18 & .09 & \(4.24 *\) & 2.3 & 4.3 & .00 & 15.2 & 4.9 & .02 & 2.7 & 3.6
\end{tabular}
* null hypothesis can be rejected at \(\alpha=.05\) level
** A - maximum 24-hour precipitation all storms. B - maximum 24-hour precipitation from no more than one storm per year. C - maximum precipitation totals from all storms. D-maximum precipitation totals from no more than one storm per year. \(A^{\prime}\) - \(D^{\prime}\) - same as \(A\) - D except using 27 inches for Camille rather than 31 inches.

TABLE 8
Expected Probabilities of Exceeding Arbitrary Precipitation Amounts Over the Appalachian Region

Precipitation in inches
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline & I* & II & I & II & 1 & II & I & II \\
\hline 1 & . 976 & . 966 & . 992 & . 980 & . 980 & . 980 & . 994 & . 987 \\
\hline 2 & . 909 & . 890 & . 954 & . 926 & . 926 & . 930 & . 968 & . 950 \\
\hline 3 & . 817 & . 797 & . 887 & . 850 & . 850 & . 863 & . 923 & . 894 \\
\hline 4 & . 716 & . 698 & . 801 & . 764 & . 764 & . 788 & . 826 & . 827 \\
\hline 5 & . 615 & . 602 & . 705 & . 674 & . 674 & . 705 & . 792 & . 754 \\
\hline 6 & . 519 & . 513 & . 607 & . 587 & . 587 & . 632 & . 716 & . 680 \\
\hline 7 & . 433 & . 432 & . 513 & . 505 & . 505 & . 559 & . 639 & . 607 \\
\hline 8 & . 357 & . 362 & . 427 & . 431 . & . 431 & . 490 & . 565 & . 537 \\
\hline 9 & . 292 & . 301 & . 351 & . 364 & . 364 & . 427 & . 494 & . 471 \\
\hline 10 & . 237 & . 248 & . 286 & . 306 & . 306 & . 371 & . 429 & . 412 \\
\hline 15 & . 077 & . 090 & . 091 & . 118 & . 118 & . 172 & . 191 & . 195 \\
\hline 20 & . 023 & . 030 & . 024 & . 042 & . 042 & . 075 & . 077 & . 085 \\
\hline 25 & . 006 & . 009 & . 006 & . 014 & . 014 & . 031 & . 029 & . 036 \\
\hline 30 & . 002 & . 003 & . 001 & . 005 & . 005 & . 013 & . 010 & . 014 \\
\hline
\end{tabular}

* 1- Haggard et.al. Gamma distribution; II- GMCS Gamma distribution.
** Same as Table 7

\section*{Conclusions}

A goodness of fit procedure based upon the theoretical work of Dahiya and Gurland [(1970a), (1970b), (1972)] is presented. The procedure has been documented in the computer software package (Appendix A). Several examples using meteorological data sets are analysed using this procedure. The principle advantages of this procedure over existing goodness-of-fit tests lies in the ability to test for several distributions using a single user setup. This advantage stems from the freedom of testing a distribution without having to specify all the unknown parameters of the tabular values of the null distribution.

References

Dahiya, R.C. and Gurland, J. (1970a). A test of fit for continuous distributions based on generalized minimum chi-square. Statistical Papers in Honor of George W. Snedecor, T.A. Bancroft, editor.

Dahiya, R.C. and Gurland, J. (1970b). Estimating the parameters of a gamma distribution. MRC-TR \#1067.

Dahiya, R.C. and Gurland, J. (1972). Goodness of fit tests for the gamma and exponential distributions. Technometrics, vol. 14, no. 3 , pp 791-801.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Appendix A} \\
\hline \multicolumn{4}{|c|}{User setup for Gurland's (GMCS) procedure} \\
\hline \multicolumn{4}{|c|}{JOB CONTROL PARAMETERS} \\
\hline CARD & COL & & DESCRIPTION \\
\hline \multirow[t]{11}{*}{1} & 1-5 & IUNIT & INPUT DEVICE for DATA. \\
\hline & 6-10 & NOB & Number of observations to be fitted. \\
\hline & 15 & ICOR & \(I C O R=0\). \\
\hline & 20 & IDIST & 1 NORMAL distribution fitted. \\
\hline & & & 0 NORMAL distribution not fitted. \\
\hline & 25 & & 1 Exponential fitted. \\
\hline & & & 0 Exponential not fitted. \\
\hline & 30 & & 1 Gamma distribution fitted. \\
\hline & & & 0 Gamma distribution not fitted. \\
\hline & 35 & & 1 Extreme value distribution fitted. \\
\hline & & & O Extreme value distribution not fitted. \\
\hline 2 & 1-80 & NFORMT & Format for input raw data. \\
\hline \(3+\) & & & Input raw data \\
\hline
\end{tabular}

\section*{Program Description}

MAIN - main program; input job parameters
GCALC - calculates the coefficients for matrix \(G\).
RHAT1 - calculates the matrix \(\hat{R}\) for exponential dist.
RHAT2 - calculates the matrix \(\hat{R}\) for other dist.
TRIPLE - calculates matrix product \(x^{*} y^{*} z\).
AHAT - calculates matrix \(\hat{A}\).
QHAT - calculates matrix \(\hat{Q}\).
GREXTR - performs goodness of fit for extreme value distribution.

GRNORM - performs goodness of fit for normal dist.
GREXPO - performs goodness of fit for exponential dist.
GRGAMM - performs goodness of fit for gamma dist.
DGMPRD - IBM matrix multiplication
DMIN - IBM matrix inversion

Subroutines Needed By A Given Routine
\begin{tabular}{|c|c|}
\hline MAIN & GRNORM, GREXPO, GREXTR, GRGAMM \\
\hline GCALC & - \\
\hline RHATI & - DGMPRD \\
\hline RHAT2 & DGMPRD, DMINY \\
\hline TRIPLE & DGMPRD \\
\hline AHAT & DGMPRD \\
\hline QHAT & - DGMPRD \\
\hline GREXTR & - GCALC, TRIPLE, DMINV, RHAT 1, AHAT, QHAT, DGMPRD \\
\hline GRNORM & - GCALC, TRIPLE, DMINV, RHAT 2, AHAT, QHAT, DGMPRD \\
\hline GREXPO & - Same as GREXTR \\
\hline GRGAMM & - Same as GRNORM \\
\hline
\end{tabular}



FURTRAV IV G LEVEL 21 GCALC DATE \(\mathbf{z} 78192\) 0001 SUBRJUTINE SCALCIICORI
\begin{tabular}{|c|c|c|}
\hline & &  \\
\hline 0002 & & IMPLICIT KEAL*8 (A-H, D-2) \\
\hline 0003 & & OIMEVSIJN RAW(0),G(4,4), CUML(E).CENRL(8), A110001,8(1000) \\
\hline 0004 & & COMYUN / MUMENT/ RAW,CUML.CENRL, S, NUS \\
\hline 0005 & & XV = JFL UAT(:4OB) \\
\hline 0006 & & DU \(1001=104\) \\
\hline 0007 & & DJ LCJ J \(=1.4\) \\
\hline 0008 & & GII.J) = RAN(It)J) - RAW(l)*RAW(J) \\
\hline 0009 & 103 & cuntinue \\
\hline 00.0 & & RETJRN \\
\hline 0011 & & END \\
\hline
\end{tabular}

\section*{RHAT}

DATE \(=78192\)
furtray iv g level 2 :
SUBRJUTINE PHATIINOSIGI,RI
0001
\(c\)
\(c\)
\(c\)
نuO2
0003
IMPLICIT KEAL*B (A-H, O-2)
0004 CALL OGYPRD(nOSIGI,JUM,1.4.4)
0005
CALL OGYPRD(DUM,W,X,1,4,1)
0006
\(X(L)=1.0^{\prime} \times(1)\)
0007 CALL DGYPRD(X,WODUM,L,1,4)
0008 CALL DGYPRD(W, OUM,FJUR,4,1,4)
0009
0010
CALL OGYPRDIFOUR,SIGI,R,4,4,4)
RETJRY
0011
END -.
furtray Iv g level 21

\section*{RHAT2}
\begin{tabular}{|c|c|}
\hline 0001 & SUBRJUTINE ZHATZIWOS(GI,R) \\
\hline & Cal eutate r hat matrix (4ẋ) fur gamma, veg bine normal \\
\hline 0002 & IMPLICIT KEAL* \({ }^{\text {a }}\) (A-H, \(\left.0-Z\right)\) \\
\hline 0003 &  \\
\hline & FOUK(4,4), M(2),L(2) \\
\hline 0004 & DO \(70001=1,2\) \\
\hline 0005 & DJ \(7300 \mathrm{~J}=1,4\) \\
\hline 0006 & WT(I,J) =W(J,I) \\
\hline 0007 & CALL DGYPKC(WT,SIGI, DUM, 2,4,4) \\
\hline 0008 &  \\
\hline 0009 & CALL DMINV (X,2,DET,L,M) \\
\hline 0010 & CALL DGYPRD(X,WT, DUM, \(2,2,4\) ) \\
\hline 0011 & CALL DGYPRC(W,DUM,FJUR,4,2,4) \\
\hline 0012 & CALL DGYPRD(FUUF,SIGI,R,4,4,4) \\
\hline 0013 & RETJRN \\
\hline 0014 & END \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{calculate a hat} \\
\hline 0062 & & IMPLICIT REAL* \({ }^{\text {a }}\) ( \(\left.A-H, 0-2\right)\) \\
\hline 0003 & & DIMENSIJH SIGIL4,4)-R(4,4).A(4,4).R1(4,4) \\
\hline 0004 & & Do \(1=1,4\) \\
\hline 0005 & & D0 \(1 \mathrm{~J}=1.4\) \\
\hline 0000 & & RIflod) \(=-2(1, J)\) \\
\hline 0007 & & LF \(11 . N E . J\), GJ TO 1 \\
\hline 0008 & & K(lleJ) = RIII,J) + 1.0 \\
\hline 0009 & 1 & continle \\
\hline 0010 & & CALL DGYPROISIGI,RI,A,4,4,4) \\
\hline 0011 & & RETJRN \\
\hline 0012 & & ENO \\
\hline
\end{tabular}

0001 SUBRUUTINE PRIPLE(X,Y, 2\()\)

: ortray iv g level 21 ahat
\begin{tabular}{|c|c|}
\hline 021 & SUBRJUTINE 2HAT(XN,H,A,Q) \\
\hline & CALCJLATLE Chi-s Quare a hat \\
\hline -0002 & IMPLICIT KEAL*8 (A-H, \(0-2)\) \\
\hline 0003 & DIMENSIJN \(+(4), A(4,4)\), DUM \((4), \times \times 11)\) \\
\hline 0004 & CALL OGYPKO(H,A,UUM, \(1,4,41\) \\
\hline 0005 &  \\
\hline 0006 & \(0=X \times 11)\) - XN \\
\hline 0007 & RETJRN \\
\hline 0008 & ENU \\
\hline
\end{tabular}
.jRTRAN IV G LENEG 21
GREXTR
OATE \(\quad 78192\)
14147.
2001

JdO2 j003 SUSRUUTINE GREXTR(X)
c
.206 XN \(\quad\) = DFLOATITUBI
- 207
[ERJ=J. \({ }^{2}\)
-208
JNE \(=1.2\)
calejlate extreme cumulant mamevts
put cumlil-i) in place uf cumlili iv order tu make the same SUdSCRIPTS JF h-VECTOR aS that Jf the jacublan matkix
.509 -210 ESUY: 0.0
 - 312
- 313

014
1 ESU年
\(-515\)
.310
.017
- 318
. 319
- \(3<0\)
\(-521\)
- 222
- 323
. 324
رJ25
1
6
6
6
6
6
6
gURLANO RUÜT INE FJR EXTREME VÄLJE JISTRIGUTIUN
IMPLI:IT KEAL* 8 (A-H, D-Z)


DIME:NSIJN XJI(4,4),RAW(B),CUML(B),CENRL(8),G(4,4),W(4):H(4),
 X(1COO), BHATILOCI, TOENUM(100)
GUMYON IMUMENTI RAHOCUMLICENRL,Ṡ,NDS
CUMYJN INUMGER/ XOIVOXMEAN,XVAROXGEOY,IUNIT,IGOR,PI,STU
XN - DFLOATITUBI






c






\title{
Effect of Correlated Observations on Confidence \\ Sets Based Upon Chi-Square Statistics
}

\section*{Summary}

This paper investigates how the presence of correlation in a multivariate sample effects the confidence coefficients of confidence sets based upon chi-square statistics.

\section*{I. Introduction}

Basuet. al. (1976) investigated the effect that simple equicorrelation within a multivariate normal sample has upon confidence sets based upon chisquare statistics. They suggested that their results could provide a useful application in the area of pattern recognition using remotely sensed LANDSAT data. However, several recent investigations have demonstrated that the equicorrelated correlation structure is not an appropriate model in the Landsat application. In fact, Tubbs and Coberly (1978) demonstrated that the correlation struction in the LANDSAT data is similiar to observations obtained from a stationary autoregressive process. In this paper, I have investigated the effect that autocorrelated data have on confidence sets based upon chisquare statistics.

\section*{II. Basic Concepts}

Let \(X_{1}, \ldots, X_{n}\) denote a sample of \(n\) p-dimensional normal observations with mean \(\mu\) and common positive definite covariance matrix \(\Sigma\). Suppose
that \(x=\left[x_{1}, x_{2} \ldots, x_{n}\right]^{T}\) and that
\[
\begin{equation*}
E\left[(X-E(X))\left(X-E(X)^{T}\right]=r_{n} \otimes \Sigma\right. \tag{1}
\end{equation*}
\]
where \(\Gamma_{n}\) is a positive definite \(n \times n\) matrix, \(A \propto B\) denotes the Kronecker product of matrices \(A\) and \(B\), and \(E(\cdot)\) denotes the expectation operator Note, if the sample \(X_{1} \ldots X_{n}\) is random then \(\Gamma_{n}=I\), where \(I\) is an identity matrix.

Now suppose that the sample \(X_{1} \ldots X_{n}\) is a realization from a discrete stationary time series \(\left\{X_{t}\right\}\) with continuous density function \(f_{X}(\cdot)\). If \(\Gamma_{n}\) denotes the autocorrelation matrix for \(n\) lags.

That is,
\[
\begin{align*}
& \Gamma_{n}=\left(\rho_{i j}\right) i, j=1,2 \ldots, n  \tag{2}\\
& \rho_{i j}=\operatorname{corr}\left(x_{i}, x_{j}\right)
\end{align*}
\]

It is well known [Fuller (1972) ] that there exists an orthogonal matrix \(U\) such that
\[
\begin{equation*}
U^{* *} \Gamma_{n} U \simeq 2 \Pi D_{x} \tag{3}
\end{equation*}
\]
where
\[
\begin{aligned}
& d_{x}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \\
& d_{1}=f_{X}(0) \\
& d_{n}=f_{x}(\pi) \\
& d_{2 k}=d_{2 k+1}=f_{x}\left(\frac{2 \pi k}{n}\right) ; k=1,2, \ldots,(n-1) / 2 .
\end{aligned}
\]
and
\[
n^{\frac{1}{2}} 2^{-\frac{1}{2}} U^{n}=\left[\begin{array}{cccc}
2^{-\frac{1}{2}} & 2^{-\frac{1}{2}} & \cdots & 2^{-\frac{1}{2}}  \tag{4}\\
1 & \cos (2 \pi / n) & \cdots & \cos \left(2 \pi \frac{n-1}{n}\right) \\
0 & \sin (2 \pi / n) & \cdots & \sin \left(2 \pi \frac{n-1}{n}\right) \\
\cdots & \cdot & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & & \cdots \\
1 & \cos \left(\frac{n-1}{n} 2 \pi / n\right) & \cdots & \cos \left(\frac{n-1}{n} 2 \pi \frac{n-1}{n}\right) \\
0 & \sin \left(\frac{n-1}{n} 2 \pi / n\right) & \cdots & \sin \left(\frac{n-1}{n} 2 \pi \frac{n-1}{n}\right)
\end{array}\right]
\]

By letting
\[
\begin{equation*}
Z=U * X \tag{5}
\end{equation*}
\]
it follows that
\[
\begin{equation*}
E\left[(Z-E(Z))(Z-E(Z))^{T}\right]=D_{x} \Sigma \text {. } \tag{6}
\end{equation*}
\]

Furthermore, it follows that
\[
\begin{equation*}
z_{1}=n^{\frac{3}{2}} \bar{x} ; \quad \bar{x}=\frac{1}{n} \sum_{l=1}^{n} x_{1} \tag{7}
\end{equation*}
\]
where \(z=\left[z_{1} \ldots z_{n}\right]^{T}\). The distribution for \(z_{j}\) is
\[
\begin{align*}
& z_{1} \sim N\left(n^{\frac{1}{2}} \mu, d_{1} \Sigma\right)  \tag{8}\\
& z_{j} \sim N\left(\phi, d_{j} \Sigma\right) ; \quad j=2,3, \ldots, n
\end{align*}
\]
where the symbol \(\sim\) means "is distributed as". The expectation of \(Z_{j}=\) zero since
\[
\begin{aligned}
E\left(z_{g}\right) & =E\left(\sum_{k=0}^{n-1}\left(\cos \left(\frac{j-1}{n} 2 \pi k / n\right) x_{k}\right)\right) \\
& \text { or } \\
& =E\left(\sum_{k=0}^{n-1}\left(\sin \left(\frac{j-1}{n} 2 \pi k / n\right) x_{k}\right)\right) \\
& =\mu\left(\sum_{k=0}^{n-1} \cos \left(\frac{j-1}{n} 2 \pi k / n\right)\right) \text { or } \mu\left(\sum_{k=0}^{n-1} \sin \left(\frac{j-1}{n} 2 \pi k / n\right)\right) \\
& =0 .
\end{aligned}
\]

Now let
\[
\begin{align*}
& Q_{1}(\mu)=n(\bar{x}-\mu)^{T} \Sigma^{-1}(\bar{x}-\mu) \\
& Q_{2}=\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{T} \Sigma^{-1}\left(x_{j}-\bar{x}\right) \tag{10}
\end{align*}
\]

If \(\Gamma_{n}=I\), it is well known that
\[
\begin{align*}
& Q_{1}(\mu) \sim x^{2}(p) \\
& Q_{2} \sim x^{2}(n-1) p \tag{11}
\end{align*}
\]
where \(x^{2}(v)\) denotes a chi-square distribution with \(v\) degrees of freedom.

However, if \(\Gamma_{n}\) is given by (1) we have
\[
\begin{align*}
Q_{1}(\mu) & =n(\bar{x}-\mu)^{T} \Sigma^{-1}(\bar{x}-\mu) \\
& =\left(n^{\left.\frac{1}{2} \bar{x}-n^{3} z_{1}\right)^{2} z^{-1}\left(n^{3} \frac{1}{x}-n^{\frac{1}{2}} \mu\right)}\right. \\
& =\left(z_{1}-E\left(z_{1}\right)\right)^{T} \Sigma^{-1}\left(z_{1}-E\left(z_{1}\right)\right) \\
& =d_{1}\left(z_{1}-E\left(z_{1}\right)\right)^{T}\left(d_{1} \Sigma\right)^{-1}\left(z_{1}-E\left(z_{1}\right)\right) . \tag{12}
\end{align*}
\]

Hence
\[
\begin{equation*}
Q_{1}(\mu) / d_{1} \sim x^{2}(p) . \tag{13}
\end{equation*}
\]

Now consider \(Q_{2}=\sum_{j=1}^{n}\left(X_{j}-\bar{x}\right)^{q} \Sigma^{-1}\left(X_{j}-\bar{x}\right)\)
\[
\begin{align*}
& =\operatorname{tr} \Sigma^{-1}\left[\sum_{j=1}^{n}\left(x_{j} \cdot \bar{X}\right)\left(x_{j}-\bar{x}\right)^{T}\right] \\
& =\operatorname{tr} \Sigma^{-1}\left[\sum_{j=1}^{n} x_{j} x_{j}^{T}-n \overline{X X}^{T}\right] \tag{14}
\end{align*}
\]

However, since \(U\) is orthogonal (14) becomes
\[
\begin{align*}
Q_{2} & =\operatorname{tr} \Sigma^{-1}\left[\sum_{j=1}^{n} z_{j} z_{j}^{T}-n \overline{X X} \bar{X}^{T}\right] \\
& =\operatorname{tr} \Sigma^{-1}\left[\sum_{j=2}^{n} z_{j} z_{j}^{T}\right] \\
& =\sum_{j=2}^{n} z_{j}^{T} \Sigma^{-1} z_{j} \\
& =\sum_{j=2}^{n} d_{j} W_{j} \tag{15}
\end{align*}
\]
for \(W_{j}=z_{g}{ }^{T}\left(d_{j} \Sigma\right)^{-1} z_{g}\). We know that \(W_{f}\) has a chi-square distribution with \(p\) degrees of freedom and that \(W_{1}, W_{j}\) are independent for each
\(1 \neq \mathrm{g}=2,3, \ldots, n\).
III. Confidence Set for Mean

Let \(H_{0}\) denote the null hypothesis that \(X_{1} \ldots X_{n}\) is a random sample from a p -dimensional normal population with \(E(X)=U, \operatorname{cov}(X)=\mathbb{L}\). The statistic \(Q_{1}\), as given in equation (10) is used to define a confidence set for the unknown population mean \(\mu\). That is, let
\[
\begin{equation*}
I_{\varepsilon}=\left\{\mu: Q_{1}(\mu) \leq X_{\varepsilon}^{2}(p)\right\} \tag{16}
\end{equation*}
\]
where \(X_{\varepsilon}^{2}(p)\) is the \(100 \varepsilon\) percentage point of \(X^{2}(p)\). Thus since \(Q_{1} \sim X^{2}(p)\) whenever \(H_{0}\) is true, we know that
\[
P\left[\begin{array}{ll}
\mu \varepsilon & \left.I_{\varepsilon} \mid H_{0} \text { true }\right]=\varepsilon . ~ \tag{17}
\end{array}\right.
\]

Let \(H_{1}\) denote the alternative hypothesis that the sample satisfies a auation (1). If \(H_{1}\) is true, then find the value \(\alpha\) such the
\[
\begin{equation*}
P\left[\mu \in I_{\varepsilon} \mid H_{1} \text { true }\right]=\alpha \tag{18}
\end{equation*}
\]

From equation (13), we know that \(a\) urst satisty the following relationship
\[
\begin{equation*}
x_{\alpha}^{2}(p)=x_{\varepsilon}^{2}(p) / d_{1} \tag{19}
\end{equation*}
\]
IV. Confldence Interval for the Dispersion Scalar

Let \(x_{1} \ldots x_{n}\) denote a sample from a normal distribution with mean \(\mu\) and covariance matrix \(\sigma^{2} \Sigma\), where \(\Sigma\) is a known positive definite matrix. Let \(H_{0}\) denote the hypothesis that the sample is random and \(H_{1}\) denote the hypothesis that the sample setisfies equation (1). If \(H_{0}\) is true, ther
\[
\begin{equation*}
Q_{2} / \sigma^{2} \sim x_{p(n-1)}^{2} \tag{20}
\end{equation*}
\]
where \(Q_{2}\) is given by equation (10). Hence the interval
\[
\begin{equation*}
0 \leq \sigma^{2} \leq Q_{2} / x_{\varepsilon, p(n-1)}^{2} \tag{21}
\end{equation*}
\]
is a 100 e confidence interval for \(\sigma^{2}\). However, to find the conridence interval for \(\sigma^{2}\) when \(H_{1}\) is true, it is necessary to determine the distribution of \(Q_{2}\). From equation (15) we obtain
\[
\begin{equation*}
a_{2} / \sigma^{2}=\sum_{j=2}^{n} d_{j} W_{j} \tag{22}
\end{equation*}
\]
where \(W_{j}\), for \(g=2,3, \ldots, n\) are distributed as independent chi-squares with \(p\) degrees of freedom. The distribution for (22) can be expressed in the
following series representation [c.f. Kotz, Johnson, and Boyd (1967)].
\[
\begin{equation*}
P\left[Q_{2} / \sigma^{2} \leq y\right]=\sum_{k=0}^{\infty} c_{k} G(v+2 k ; y / B) \tag{23}
\end{equation*}
\]
where \(G(v+2 k ; y / B)\) denotes the cumulative probability density function for a central chi-square with degrees of freedom \(v+2 k\), and \(c_{k}\), B are known functions of the \(d_{j}\) ' \(s\), for \(j=2,3, \ldots, n\). Hence, whenever \(H_{1}\) is true, the confidence interval for \(\sigma^{2}\) in equation (21) is given by \(a\) where \(a\) is the value which satisfied the following relationship
\[
\begin{equation*}
\alpha=\sum_{k=0}^{\infty} c_{k} G\left(n(n-1)+2 k ;{ }^{y} c / B\right) \tag{24}
\end{equation*}
\]
where
\[
y_{\varepsilon}=x_{c, p(n-1)}{ }^{2}
\]

\section*{V. Examples}

Suppose that \(X_{1} \ldots X_{n}\) are a realization from a stationary autoregressive process of order one with parameter \(\phi\). Then the spectral density function is
\[
\begin{equation*}
f_{x}(w)=\frac{1}{2 \pi\left(1+\phi^{2}-2 \phi \cos w\right)} \tag{25}
\end{equation*}
\]

Hence
\[
\begin{align*}
& d_{2 k}=\left(1+\phi^{2}-2 \phi \cos (2 k \pi / n)\right)^{-1} \quad k=1,1, \ldots, n-1 / 2  \tag{26}\\
& d_{1}=(1-\phi)^{-2}
\end{align*}
\]

The arvalues which satisfy eiuation (19) are given in Table 1 for \(\varepsilon=.99,95\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\multirow[t]{2}{*}{TABLE 1}} \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{\(P \backslash 中\)} & . 0 & . 1 & . 2 & . 3 & . 4 & . 5 \\
\hline & . 9900 & . 9795 & . 9606 & . 9285 & .8776 & . 8021 \\
\hline 1 & . 9500 & .9222 & . 88.30 & . 8298 & .7603 & . 6728 \\
\hline \multirow{2}{*}{2} & . 9900 & . 9760 & . 9475 & . 8953 & . 8094 & . 6838 \\
\hline & . 9500 & . 9116 & . 8529 & . 7695 & . 6598 & . 5270 \\
\hline \multirow[b]{2}{*}{5} & . 9900 & . 9681 & . 9145 & . 8071 & . 6346 & . 4174 \\
\hline & . 9500 & . 8896 & . 2856 & . 6337 & . 4485 & . 2642 \\
\hline \multirow{2}{*}{10} & . 9900 & . 9570 & . 8623 & . 6704 & . 4055 & . 1682 \\
\hline & . 9500 & . 8614 & . 6952 & .4648 & . 2363 & . 0823 \\
\hline
\end{tabular}

From Table 1, we observe that a 95\% confidence elipse is a \(65.98 \%\) confidence elipse if the sample \(X_{1} \ldots X_{n}\) is a bivariate sample from an autoregressive process of order 1 with parameter \(\phi=.4\)

TABLE 2
\(\alpha\)-Values for \(A R(1)\) Process
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline N & p\$ & . 0 & . 1 & . 2 & . 3 & . 4 & . 5 & 8 \\
\hline \multirow[t]{3}{*}{13} & 1 & . 9500 & . 9326 & . 8759 & . 7901 & . 6913 & . 5938 & . 3896 \\
\hline & 2 & .9143* & . 8817 & . 7768 & . 6317 & . 4822 & . 3539 & . 1518 \\
\hline & 5 & .9144* & . 8211 & . 5822 & . 3365 & . 1666 & . 0754 & . 0089 \\
\hline \multirow[t]{3}{*}{25} & 1 & .9143* & . 8742 & . 7577 & . 5996 & . 4386 & . 3020 & . 0902 \\
\hline & 2 & \(1.000{ }^{*}\) & . 8935 & . 6452 & . 3869 & . 1998 & . 0927 & . 0031 \\
\hline & 5 & 1.0000* & . 7547 & . 3344 & . 0934 & . 0178 & . 0026 & . 0000 \\
\hline \multirow[t]{3}{*}{51} & 1 & 1.0000* & . 8859 & . 6223 & . 3550 & . 1702 & . 0712 & . 0036 \\
\hline & 2 & 1.0000* & . 7850 & . 3872 & . 1260 & . 0286 & . 0050 & . 0000 \\
\hline & 5 & 1.0000* & . 5460 & . 0933 & . 0056 & . 0001 & . 0000 & . 0000 \\
\hline \multirow[t]{3}{*}{101} & 1 & 1.0000* & .7822 & . 3811 & . 1209 & . 0266 & . 0043 & . 0000 \\
\hline & 2 & 1.0000* & . 6123 & . 1453 & . 0146 & . 0007 & . 0000 & . 0000 \\
\hline & 5 & 1.0000* & . 2932 & . 0080 & . 0000 & . 0000 & . 0000 & . 0000 \\
\hline
\end{tabular}
* the specified level \(\varepsilon=.9500\)

From Table 2, a \(99 \%\) confidence interval for \(\sigma^{2}\) is a \(19.98 \%\) confidence based upon a bivariate sample of 25 observations from an \(A R(1)\) process with \(\phi=.4\).

It is well known in applications using atmospheric observations that the data are non-randam and in fact are highly correlated. Very little research has been done in the area of determining the effect that correlated samples have upon statistical inference. In this paper, I have investipated the effect that samples taken from a stationary autoregressive process have upon the confidence regions for the parameters of a normal distribution. Tables are included for the effect that sampling from an \(A R(1)\) process have upon these confidence regions.

\section*{VII REFERENCES}
1. Basu, R., Basu,J.P., and Lewis,T.0.(1976). Effect of intraclass correlation on confidence coefficients of confidence sets based on chi-square statistics. IEEE Trans. on Systems, Man, and Cybernetics June 1976, p.445-448.
2. Fuller, W.A. (1976) Introduction to Statistical Time Series. Wiley \& Sons.
3. Kotz,S.,Johnson,iN.L., and Boyd,D.W. (1967). Series representations of distributions of quadratic forms in normal variables; central case. Annals of Math. Stat. vol 38,p.823-837.
4. Tubbs,J.D. and Coberly,W.A. (1978). Spatial correlation and its effect upon classification results in landsat. Proceedings of the l2th International Symposium on Remote Sensing of Environment, Manila, Philippines.

\title{
GENERATION OF RANDOM VARIATES FROM SPECIFIED
}

DISTRIBUTIONS

\section*{Summary}

Due to the complexity of many of the existing statistical problems associated with atmospheric variables, computer simulations have proved to be a very informative technique. However, due to the various types of atmospheric data, thus the different type of statistical distributions one can no longer perform simulations based solely upon normal data. So in anticipating this problem, this paper presents the computer software for generating both random and correlated data for several specified distributions. A brief explantion of the procedure is given along with the program documentation.

\section*{I. INTRODUCTION}

In order to obtain insight into some of the statistical problems with atmospheric data, it is necessary to be able to simulate some of the environmental situations. However, since most of the data are non-normal it is necessary to generate data from various specified distributions (e.g. Gamma, Beta, Negative Binomial, etc.). The purpose of this paper is to document the procedures used in generating both correlated and uncorrelated observations. The uncorrelated procedures have been documented in Newmann and Odell (1971). The correlated procedures have been compiled from numerous sources, however, Johnson and Kotz (1972) provide the primary reference. In this paper, I have included only a brief description of the statistical distributions. For a more detailed discussion see Falls (1971).

\section*{II. UNCORREIATED VARIATES}

All of the procedures listed here are transformations of independent random variates from a uniform \(U(O, 1)\) distribution. The pseudo-random number generator used is a congruential generator (IBM SSP RANDU) whose choice was based solely upon convenience. However, some additional testing will be necessary to determine if the pseudo-random variates procedures are satisfactory for our purposes.

\section*{Continuous Distributions}
2.1 Univariate Normal Distribution \(N\left(\mu, \sigma^{2}\right)\)

The Box-Muller transformation [1] has been used. It can be summarized in the following result.

Result: 2.1 If \(u\) and \(v\) are independently aistributed \(U(0,1)\) then,
\[
\begin{align*}
& x=(-2 \ln u)^{1 / 2} \cos 2 \pi v \\
& y=(-2 \ln v)^{1 / 2} \sin 2 \pi v \tag{1}
\end{align*}
\]
are independent random variates with the standardized normal distribution \(N(0,1)\).

Thus if \(u_{1} \ldots u_{N}\) is a sequence of independent \(U(0,1)\) one can generate a sequence \(x_{1} \ldots x_{N}\) of independent \(N(0,1)\) using the above procedure. Also if \(\sigma\), \(\sigma\) is a fixed known constant, then \(y_{i}=\sigma x_{i}+\mu, i=1,2, \ldots, n\) is a sequence of independent normal with mean \(=\mu\), variance \(=\sigma^{2}\).

\section*{2. 2 Multivariate Normal \(N_{p}(\mu, \Sigma)\)}

Let \(x_{1} \ldots x_{p}\) be a sequence of \(p\) independent normals with mean 0 and variance 1 , then \(x=\left(x_{1}, \ldots, x_{p}\right)^{T}\) is said to be multivariate normal with mean \(\varnothing\) and covariance matrix \(I_{p}\) (pxp identity matrix). However, if \(x \sim N_{p}\left(\emptyset, I_{p}\right)\) then \(y=B x+\mu\) has a multivariate normal distribution with mean \(=\mu\) and covariance matrix \(\Sigma\), where \(\Sigma=B B^{T}\). From \(x\) we can find \(y\) for any specified real positive definite symmetric matrix \(\Sigma\). This follows irom the following result.

Result: 2.2 Let \(\Sigma\) be a real p.d. symmetric matrix. Then there exists a lower triangular matrix \(B\) with positive eiements on the main diagonal such that \(\Sigma=\mathrm{BB}^{\mathrm{T}}\). This is often referred to as the Crout factorization of \(\Sigma\).

\subsection*{2.3 Gamma Distribution \(\Gamma(\lambda, k)\)}

Let \(u_{1} \ldots u_{k}\) be a sequence of \(k\) independent random variables each having a \(U(O, 1)\) distribution. Then
\[
\begin{equation*}
x=-1 / \lambda \quad \ln \prod_{i=1}^{k} u_{i} \tag{2}
\end{equation*}
\]
is a gamma with parameters \(\lambda\) and \(k\). Note the chi-square distribution with \(n\) degrees of freedom can be obtained by letting \(k=n / 2\) and \(\lambda=\%\). Also, if \(n\) is odd then \(y=x+w^{2}\) is chi-square with d.f. \(=n\) if \(x \sim \Gamma(k=n-k, \lambda=\nless k)\) with \(w \sim N(0,1)\). The exponential distribution with parameter \(\lambda\) can also be obtained by letting \(k=1\) in (2).

\subsection*{2.4 Beta Distribution \(B(p, q)\)}

If \(x_{1} \sim \Gamma(1, p)\) and \(x_{2} \sim \Gamma(1, q)\) are independent then \(y=x_{1} /\left(x_{1}+x_{2}\right)\) has a Beta distribution with parameters \(p\) and \(q\).

Discrete Distributions
If the distribution function \(\mathrm{F}_{\mathrm{x}}\) is known then we can generate pseudo-random numbers by using the inverse function \(\mathrm{F}_{\mathrm{x}}{ }^{-1}\). However, this procedure can be simplified by letting \(\mathbf{x}\) be the random variate from \(F_{x}\) which satisfied the relation \(\mathrm{F}_{\mathrm{x}}(\mathrm{x}-1) \leq \mathrm{u}<\mathrm{F}_{\mathrm{x}}(\mathrm{x})\) where u is a random variate having a \(U(0,1)\) distribution. This procedure could be used to generate Binomials, since the distribution function for the Binomial is easily obtained. Included is a discussion of some other discrete distributions which can be generated without knowledge of \(\mathrm{F}_{\mathrm{x}}\).
2.5 Poisson Distribution \(P(\lambda)\)

If \(x_{1} \ldots x_{N}\) is a sequence of \(N\) independent exponentials with parameter \(\lambda\), then a non-negative integer \(k\) such that \(S_{k} \leq 1\) and \(S_{k+1}>1\) is distributed Poisson with parameter \(\lambda\), where
\[
S_{k}=\sum_{i=1}^{k} x_{i} .
\]
2.6 Negative Binomial Distribution NB(p,N)

The negative binomial distribution can be generated
from a mixture of a Poisson and a Gamma distribution. That is, let \(\underline{X}\) be distributed as a Poisson with parameter \(\theta\), where \(\theta\) is a random variable from a Gamma distribution with parameters \(\lambda, R\). Then \(\underline{X}\) is distributed as a negative binomial with parameters \(p=\lambda /(1+\lambda)\) and \(N=R\).

\section*{III. CORREIATED YARIATES}

\section*{Continuous Distributions}
2.1 Correlated Multivariate Normal Distribution CNORM ( \(\mu, \varepsilon, A\) )

Let \(Z_{o}, Z_{i}, \ldots, Z_{N}\) be a sequence of \(N+1\) p-dimensional independent multivariate normals with common null mean vector \(\emptyset\) and pxp covariance matrix \(\varepsilon\). Then
\[
x_{i}=a_{i}^{2} z_{0}+\left(1-a_{i}^{2}\right)^{1 / 2} z_{i}+\mu \text { for } i=1,2, \ldots, N
\]
are correlated multivariate normals with mean vector \(\mu\) and dispersion matrix \(A\) where denotes the Kronecker product of \(A\) and \(\Sigma\), that is
\[
\underset{\operatorname{nxn}}{\operatorname{A} \dot{\operatorname{pxp}}}=\left[\begin{array}{cccc}
a_{11^{\Sigma}} & a_{12^{\Sigma}} & \ldots \cdot & a_{1 n^{\Sigma}} \\
a_{21^{\Sigma}} & a_{22^{\Sigma}} & \cdots \cdot & a_{2 n \Sigma} \\
\vdots \cdot & & & \\
a_{n 1^{\Sigma}} & \cdots \cdots & \cdots & a_{n n^{\Sigma}}
\end{array}\right]
\]
and \(A\) is an \(N \times N\) matrix where the \(i, j^{\text {th }}\) element of \(A\) is
\[
a_{i j}= \begin{cases}\alpha_{i} \propto j & i \neq j, i \quad j=1,2, \ldots, n \\ 1 & i=j\end{cases}
\]

From the dispersion matrix \(A \Sigma\) we have that
\[
\begin{aligned}
\operatorname{cov}\left(x_{i}, x_{j}\right) & =\alpha_{i} \alpha_{j} \Sigma & & i \neq j \\
& =\Sigma & & i=j
\end{aligned}
\]

Hence the correlation matrix between vector \(X_{i}, X_{j}\) is
\[
\begin{aligned}
\operatorname{CORR}\left(X_{i}, X_{j}\right) & =\alpha_{i} \alpha_{j} & & i \neq j \\
& =I_{p} & & i=j
\end{aligned}
\]
where \(I_{p}\) is a pap identity matrix. When \(p\) is 1 we have the univariate case.
3.2 Correlated Univariate Gamma Distribution \(\Gamma(\lambda, R, A)\)

Let \(Z_{0}, Z_{1}, \ldots Z_{n}\) denote a sequence of independent variables having the following Gamma distributions
\[
\begin{aligned}
& Z_{0} \sim \Gamma\left(\lambda, R_{0}\right) \\
& Z_{i} \sim \Gamma\left(\lambda, R_{i}-R_{0}\right)
\end{aligned}
\]

Let \(X_{i}=Z_{0}+Z_{i}, i=1,2, \ldots, n\), then \(X_{1} \ldots X_{n}\) is a secuence of correlated Gamma variables where \(X_{i} \sim r\left(\lambda, R_{i}\right)\) and the correlation between \(X_{i}\) and \(X_{j}\) is
\[
\operatorname{CORR}\left(X_{i}, X_{j}\right)=a_{i j}
\]
where \(a_{i j}\) is the \(i j^{\text {th }}\) element of the non matrix \(A\) and
\[
a_{i j}=\left\{\begin{array}{cc}
1 & \text { if } i=j \\
\left(\frac{R_{0}^{2}}{R_{i} R_{j}}\right)^{1 / 2} & \text { if } i \neq j
\end{array}\right.
\]

\subsection*{3.3 Correlated Beta Distribution BAp, \(Q, A\) )}

Let \(z_{0} z_{1} \ldots . z_{n}\) be a sequence of independent chisquares with degrees of freedom \(d f=v_{i}\) (Gamma with \(\lambda=1\), \(R_{i}=v_{i} / 2\) ) for \(i=0,1,2 \ldots, n\). Let
\[
x_{i}=z_{i} /\left(\sum_{j=0}^{n} z_{j}\right) \quad i=1,2, \ldots, n
\]
then the \(X_{i}\) 's are correlated Beta with parameter \(\left(p_{i}, q_{i}\right)\) where \(p_{i}=v_{i} / 2\) and \(\quad q_{i}=p-p_{i} \quad\) where \(p=\sum_{j=0}^{n} p_{j}\). \(T\) hen the correlation between \(X_{i}\) and \(X_{j}\) is given by
\[
\operatorname{CORR}\left(X_{i}, X_{j}\right)=a_{i j}
\]
and
\[
a_{i j}= \begin{cases}1 & i=j \\ -\sqrt{\frac{p_{i} p_{i}}{\left(p-p_{i}\right)\left(p-p_{j}\right)}} & i \neq j\end{cases}
\]

\section*{Discrete Distributions}
3.4 Correlated Poisson \(P(\lambda, A)\)

Let \(z_{0}, z_{1}, \ldots, z_{n}\) be a sequence of independent Poisson with parameters \(C_{i}, i=0,1,2, \ldots, n\), then
\[
x_{i}=z_{o}+z_{i}
\]
is a sequence of correlated Poisson with \(X_{i} \sim P\left(\lambda_{i}\right)\) \(\lambda_{i}=C_{i}+C_{0}, i=1,2, \ldots, n\) and the correlation between \(X_{i}\) \(\mathrm{X}_{f}\) is given by
\[
\operatorname{Corr}\left(x_{i} x_{j}\right)=a_{i j}
\]
and
\[
a_{i, j}=\left\{\begin{array}{cc}
1 & i=j \\
\left(\frac{c_{0}^{2}}{\lambda_{i} \lambda_{j}}\right)^{1 / 2} & i \neq j
\end{array}\right.
\]
IV. CONCLUSIONS

The purpose of this paper is to document the procedure used in programming uncorrelated or correlated number generators for various specified distributions. The results are fairly well known and should prove to be satisfactory for most simulation needs. As mentioned in the introduction, the procedures are dependent upon the choice of the pseudo-random number generator selected, and hence the objective of the situation to be simulated may dictate changes in the random number generator. A simple package is presented which would hopefully satisfy the needs of those researchers interested in generating numbers from the statistical distributions given.

\section*{REFERENCES}
1. Box and Muller (1958). A note on the generation of random normal deviates, Amer. Math. Stat. 29, 610-11.
2. Falls, L.W. (1971). A Computer Program for Standard Statistical Distributions, NAS TM X-64588.
3. Johnson and Kotz (1972). Distribution in Statistics: Continuous Multivariate Distributions, Vol. 4, John Wiley \& Sons, N.Y.
4. Newman and Odell (1971). The Gencration of Random Variates, Hafner Publ. Co., N.Y.

APPENDIX A
JOB CONTROL PARAMETERS
\begin{tabular}{|c|c|c|c|}
\hline CARD & COL & \multicolumn{2}{|r|}{DESCRIPTION} \\
\hline 1 & 1-5 & \multicolumn{2}{|l|}{NREPS - Number of sets of numbers to be generated (I5)} \\
\hline (215) & 6-10 & \[
\begin{aligned}
& \text { IX }- \text { See } \\
& \text { (I5 } \\
& \text { usi }
\end{aligned}
\] & random number fenerator. \(=0\), then program will initiate PU clock \\
\hline \multicolumn{4}{|l|}{** Note the following set of cards are repreated NREFS times} \\
\hline 2 & 1-5 & \multicolumn{2}{|l|}{NOB - Number of observations to be generated (I5)} \\
\hline & 6-10 & \multicolumn{2}{|l|}{\begin{tabular}{ll}
1 - Normal & 4 - Poisson \\
2 - Ganma & 5 - Negative Binomial \\
3 - Beta & 6 - Binomial
\end{tabular}} \\
\hline & 11 & \multicolumn{2}{|l|}{\[
\begin{aligned}
\text { ICOR } & =1 & & \text { correlated data } \\
& =0 & & \text { uncorrelated data }
\end{aligned} \text { (Il) }
\]} \\
\hline & 22 & \multicolumn{2}{|l|}{\[
\begin{array}{rlrl}
\text { ISTAT } & =1 & \text { pur Tatistics (II) } \\
& =0 & N \cdot N i \Omega t
\end{array}
\]} \\
\hline & 12-13 & \multicolumn{2}{|l|}{\begin{tabular}{rl} 
IUNIT \(=0\) & \(\quad\)\begin{tabular}{l} 
st output eenerated data (TI \\
\(\neq 0\)
\end{tabular} \\
& \begin{tabular}{l} 
Generated data output on
\end{tabular} \\
& external device \# IUNIT
\end{tabular}} \\
\hline
\end{tabular}
*** Note the following cards depend upon the distribution selected on Card \# 2.
- NORMAL -

3 1-5
NV = Number of variates (NV=2=bivariate normal (I5)

6-10 \(\quad K E Y=0 \quad\) Standardized normal mean \(=0\) variance \(=1\)

KEY =1 Read Mean, Variance (I5)
```

IF KEY = 1 Read following cards

CARD	COL	DESCRIPIION	
4	$(16 F 5.0)$	$Y(I), I=1, \ldots N V$	Mean vector
5	$(16 F 5.0)$	$S(I), I=I, N V * * 2$	Covariance matrix

** OF ICOR = 1 on card 2 read following for correlated case
6 Correlation factor (see page iii)
7
Means (same grouping as correlation
factors) only need when NV=1
- GAMMA -

| $1-5$ | RI | Shape parameter (F5.0) |
| :--- | :--- | :--- | :--- |
| 6-10 | XLAMDA | Scale parameter (F5.0) |

** IF ICOR = I Read following
4+ Correlation factor (page iii)
- BETA -
3 1-5 RI Beta parameter (F5.0)
6-10 R2 Beta parameter (F5.0)

* IF ICOR = 1 Read following
4 1-5 VND Parameter for Zo (see page 9)(F5.0)
5+ V(I), same format as correlation
factors (page iii)
- POISSON -
3 1-5 XLAMDA Poisson Parameter (E5.0)
** IF ICOR = 1 Read following
$4+$
Correlation factors (page iii)

```
- NEGATIVE BINOMIAL -
\begin{tabular}{cllll} 
CARD & COL & \multicolumn{2}{c}{ DESCRIPTION } \\
3 & \(1-5\) & \(P\) & parameter & (F5.0) \\
& \(6-10\) & \(N\) & parameter & (I5)
\end{tabular}

\section*{** IF ICOR = 1 Read following}
\(4^{+}\)
Correlation factors
(page iii)
- BINOMIAI -

No additional inputs needed.
*** The following cards are used to define the A-matrix used in defining correlated observation
- CORRELATION FACTORS -

1
(I3)
NG= Number of groups
\(1 \leq N G \leq N O B\)
2
(16I5)
NOL(I) \(I=1, N G\) Length of each group NOL \((1)+\) NOL \((2)+\ldots+\mathrm{NOL}(\mathrm{NG})=\mathrm{NOB}\)

3
(16F5.0)
example 1
\(\operatorname{NOB}=25 \quad \operatorname{NG}=1 \quad \operatorname{NOI}(1)=25\)
\(\operatorname{VALUE}(1)=.8\)
the \(\operatorname{CORR}\left(X_{i}, X_{j}\right)=(.8) x(.8)=.64\)

CARD
1 W61
2 2
example え
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{NOB \(=25\)
VALUE} & \(N G=2\) & NOL(1) \(=10\) & NOL(2) \(=15\) \\
\hline & \multicolumn{3}{|l|}{VALUE ( 1 ) \(=.5\) VALUE (2) \(=.8\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{then \(\operatorname{CORR}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\)}} & . 25 i,j & 10 \\
\hline & & . 40 i 5 & , j > 10 \\
\hline & & . 40 ¢ \({ }^{\text {a }}\) & , io > 10 \\
\hline \multicolumn{4}{|l|}{CARD} \\
\hline 1 & \multicolumn{3}{|l|}{182} \\
\hline 2 & \multicolumn{3}{|l|}{6\%\%10以6\%15} \\
\hline 3 & \multicolumn{3}{|l|}{66x. 56808} \\
\hline \multicolumn{4}{|l|}{(Note: denote blank column) jii} \\
\hline
\end{tabular}

PROGRAM DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline MAIN & - & main program to read in job parameters \\
\hline SUPER & & supervisor routine to direct the generation of data, computation of statistics and printed output. \\
\hline BETA & - & generates independent Beta variates. \\
\hline GAMMA & - & " " Gamma variates. \\
\hline BINOM & - & " " Binomial variates. \\
\hline NORIMAL & - & " " Normal variates. \\
\hline POISSN & - & " " Poisson variates. \\
\hline NEGBIN & - & " " Negative Biromial variates. \\
\hline CBETA & - & " correlated Beta variates. \\
\hline CGAMMA & - & " " Gamma variates. \\
\hline CNORML & - & " " Normal variates. \\
\hline CPOISN & - & " " Poisson variates. \\
\hline CNEGBN & - & " " Negative Binomial variates. \\
\hline PRINT & - & prints generated values and output on specified unit. \\
\hline STATS & - & calculater statistic for gereirated values. \\
\hline RANDU & - & generates random uniform variates. \\
\hline
\end{tabular}


```

 |TMFA&TOM X(200),Y(100) & {(100), 7(100)
 COMMOM/12/ Y.S.%
    ```

```

 IX=514477735
 HFAO\5.|nत) NDFFS
 |in 4Y II =1, NHFNS
 HFAl|(5.10(1) M(1),ITYPF.[IJNIT
 CALL TYCF(XGAII).ITYDFF
 CALL. DHINTT(X,AM.IUNIT,ITYPE.III
 0a
.OnitIallif
InO FOHMAT(Z15)
STOM
ENO

```
    SUAROIIT TMF IAFTA (X:NO)

    COMMOM/A/ IX, NV•RI•XLAMSIA.RZ.P.N

    \(\times(A \cdot 4 i) A=1\)
    CALL GAMA:A(X,AN)
    \(\mathrm{R}=\mathrm{D}\)
    H1=.? 2
    CALL GAMAMA(Y, N(I)
    R1=4
    Do \(\frac{1}{x} \quad I=1\) an
    \(X X=X(I) /(X(I)+Y(I))\)
    \(X(I)=x x\)
        RETURAI
    E.NI)
    SIHAOITTAEE GAMMA (X,NO)

    COMMOMID \(\quad \mathrm{Y}\) © S. 2

        \(X_{L}=-1 *(1 . / X L A M \cap A)\)
    \(k=k 1+\)
\(c=H 1-k\)

    \(\begin{array}{ll}x \\ n_{1}=1 \\ 1\end{array} \quad i=1 \cdot k\)

    (0) \(?^{x} J=1 \cdot 1 \mathrm{~N}\)
    CALL Qaninili(IX,IX,YFL)
    \(x x=x x \forall y F L\)

    IFi
\(\mathrm{N} V=1\)
    CALL minhayal (Y, Nin.NO•O)
    กn 9\% \(T=1\) •N(
Qa \(X(I)=X(I)+Y(I) \psi Y(I)\)
    HFTUPN
    ENO

URIGINAL PAGE is OF POOR QUALTY

GIMFNGICAE X NO)

bo \(1=1=1 \cdot N \cap\)
\(I N=\{X-(I X /](1) * 10+1\)
DO \(2 \mathrm{~K}=1 \cdot 1 \mathrm{~N}\)
\(?\) CALL anainU(IX.IX•YFL)
\(1 \times(I)=Y F I\)
KFTUSN
ENO


```

 Comannorn/Y.
 COAPMON/A/IX.AV.WI. XLAMMA.H?
 - \(-\mathrm{P} \cdot+1\)
 MVV=NVANIV
    ```

```

 GFAFRATF NMO TMMFPFAMFAT (INIFONM (0.1)
 (1) \(<1=1 . \operatorname{NVO}\)
 \(I^{A}=1 \times-(1 \times / 10) * 1(1+1\)
 مo \(1 \quad r=1\) - [1:
 3 (ALL QAIH:I(IX,IX•YFI.)
 \(\geqslant \mathrm{X}(1)=\mathrm{VFI}\)
 C THANSFODA TO AVO MOLHMAL (0.1)

```




```

 IF(KFY.FO.O) RFTIIPN
 WHITF (a. 200)
    ```

```

 HFAい(5.100) (Y(I) •I=1•NV)
    ```

```

 (ral! (5. 10n) (S (I) •I=1.NVV)
    ```

```

つOI FONMAF(INX.1OFIO.3)
IF (AV.GT. L) rin Tín
ก○ $5 \quad i=1$ - An
ᄃ $X(I)=5(1) \forall X(I)+Y(1)$
RFTURA
\& $\mathrm{N}=\mathrm{NiV}$
$1011 \quad 1=1 \operatorname{NV}$
(inll $1=1.11$
$\left.112(15-1)^{n+1+1}\right)=0$ 。
l(1)=SJDT(S(1))
(0) $31=2 . N$
$12<(1)=¢(1) / Z(1)$
inly .Jニン・11
$0014 T=1 \cdot N$
$S 1 M=0$.
IF (I-.j) 16.15 .17
$15 \quad M=1-1$
onlf $x=10^{4}$
$16 \sin =\sin M+7(1 K-1) \Delta N+I) * * ?$

```

```

 (G) TOl 19
 \(17 \mathrm{~N}=\mathrm{J}-1\)
 nolm \(K=1.11\)
 19 S(JM=S1: \(9+(7((K-1) * N+T) \# Z((K-1) * N+J))\)
 \(\forall\left((J-1)^{* N}+I\right)=(S((J-1) * A:+I)-S U M) / L((J-1) * N+J)\)
 19 CONTIVIIF
 lin \(7 \quad T=1\) - NO
 \(\operatorname{rin} 7 k=1\).NV
    ```

```

 0) \(7 . j=1 \cdot k\)
 \(7 S((I-1)+1 V+K)=S((1-1) * N V+K)+7((J-1) \otimes N V+K)\)
 *x(NV*J-(NV-J))
 (1) \(H \quad 1=1 . D 0\)
 DO \(\mathrm{B}, \mathrm{J}=\mathrm{I}\) •NIV
    ```

```

 RFTいん!
 IOn FOHMAT(1GFS.0)
 ENS)
    ```
```

 SHarnoltilif (intride C(x)
    ```

```

 \(x \times=0\).
 \(r=0\)
 ONF \(=1\).
 1) \(=\) ONE - -
 (in \(1 \quad i=1 \cdot N\)
 CAI.L DINHIIIIX.IX.ll)
 SUM=O.
 \(J=1\)
 \(J=1+1\)
    ```


```

 IF (S1)M-11) ? •1•1
 2 [F(J.l.T.10) GO TO a
$x=x x+1$
HFTUHAN
F NII)

```

    () [MFASTIAM \(X\) (Nul)

    \(\mathrm{P}!\mathrm{SM}=0\)
    \(\mathrm{H}=1=\)
\(1 \operatorname{Sin}=0\).
    \(\mathrm{J}=0\)
2 CALL fAMMMA \((x X \cdot 1)\)
    \(J=J+1\)
    S!nat =Sim+xx
    IF (SIIM.I.F.I.) fO TO ?
    \(x(" 1)(1)=1-1\)
    NSUM=かSIIM+1

    HETURHI
    FA!
    SIIARUITTIMF TYPF (X,AIN, ITYPF)
    () [PAFMSTON \(x\) (NOC)
    COMMMN/A/IX.NV.HI.XLAMNA.QZ.P.AI
    (G) TO (1.?.7.4.5.6).ITYPF
    1 PFAll(5.)OO) NV.KEY
    MVV=NVariv
    nvon=fvarin

    HFTUHO.

    (All GAmPan \((x, N O)\)
    WFFTJKM

    CALL RFTA \((x, H(1)\)

    4 FFAD(5.101) XLAMI)A
        CALL ROlSSM(x.NO)
    hFTillim
    5 CALL alNOM ( \(x\) a NO)
    RETIMR
    G KFAU(S.1NJ) P.N
    CALL NFFGFIN(X:NO)
    \(\mu\) FTURN

1n1 FOMMAT(アFら.n)

    f(NI)
                                    USUGNE "RIE H
OF FOR WALSTY

```

 ()[AENETON X(AIO)
 CNMPMOM1/A/ [X.OV.H1•XLAM[IN.FR.D.N1
 |い1 [=1.PM)
 CAL L TMMF THC.(XX)
 1 x(I)=xx
HFTUKA
FP(1)

```

```

 IY=I\lambda<<<55 30
 IF(IY)L.R.K
 5IY-IY+>1474H.1G47+1
\& YFI=IY
YFi=YFL*.4K5AK] IE-9
HETURN
ENH
SHmROIITIIF NPINT (X,NO.IU.IT.II)
UIMFNSTOHI X (NT))
COHMONI/A/TX\&NV,HI - XLAMTIA.RZ.P.N
NVO=NVEAN
GO TO(1.0.7.4.5.f). IT
1 WRITE (F.! (O)) II |NV
WHITE(6.P00) (X(I):I=1.NVO)
IF(IU.FO.2) WRITE(4.3nO)(X(I).I=1.NVO)
RrT|RM
~WHITE(a.l0l) II.RI.XLAMMA
WHITE (a., %OO)x
IF(10.F().2) WRITF(9,.300) x
HFTUNN
3 wWITE (5,107) II.t2l.Q?
WHITE(\&.ק OU)X
IFIIU.FB. ว) WRITE(9.300) x
HFTUR\
4 WRITE (R.IOH) II * LAMNA
WHITE(G.วOO)X
IF(IU.F(0.?) WRITE(9.300) X
HFTURA
5 WHITE(R.lO4) II
WWITE(G.%OO)x
IF(IIj.Fn.2) WHITF.(4.300) x
NFTUKN

```

```

 W01TE(6.200)x
 LF(IU.FO. \) WRITF(9.300) X
 kFTINHS
 ION FOKMAT(//.' NOPMAL DATA FOR RFP.='•IK.//,' NO. DF VAHIATEG=I.IK.
* //1
101 ! OLMMAT(//.! GIAMMA OATA FOR REP.=1.IG.//.I N=1.FIO.3.
* LAMNA=:,Fin.7.1/)

```



```

IOS FORMAT!//:M !FGG.RINOMIAL OATA FOR REPG=!.IG.//!
* P P=,FFlo.3.; N=1.110./1)
znn f OOMAT(IOX.1OF1O. 3)
7\capก FNQMAT(5OFIO.3)
F NH

```
```

