

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19800017555 2020-03-21T18:41:35+00:00Z

k
r.

D

PJASA
Technical Memorandum 80690

(N ASA-TM-80690) THE RSZ BASIC PROGRAMMING 	 N80-26053LANGUAGE MANUAL (NASA) 52 P HG A04/MF A01

CSCL 09B
Unclas

G3/61 22950

The RSZ Basic Programming
Language Manual

Raymond J. Stattel, James K. Niswander
and Anil K. Kochhar

JUNE 1980

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

,/U/V ^^ U

RrcC

TM 80690

THE RSZ BASIC PROGRAMMING LANGUAGE MANUAL

Raymond J. Stattel
James K. Niswander

Anil K. Kochhar

June 1980

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

PREFACE

The Sounding Rocket Division Instrumentation Branch has provided PCM telemetry ground sup-
port equipment for the sounding rocket project since the introduction of its airborne PCM telem-
etry system in 1972. The various devices now displaying the PCM telemetry data are:

• CRT analog Bar Graph and Storage Scope displays

• Switch selectable electrostatic plots

• Remote multiple numeric LED displ ,,. ,• s

• Special purpose mini—computer driven CRT displays

A SRD Ling 1800 mini—computer is used for generating PCM formatted tapes and performing
various telemetry data processing tasks.

The balloon project at Goddard Space Flight Center identified a requirement for a small portable
E	 computer—based system which would allow observation of many pieces of PCM telemetry data in

real time. The Instrumentation Branch had proposed the development of such a system called
the Telemetry Data Processor, a Zilog Z80 microprocessor—based microcomputer system which
would offer valuable features not otherwise commercially available. After an evaluation of exist-
ing commercial systems, the balloon project decided to support the development of the Telemetry
Data Processor system.

A prototype Telemetry Data Processor system was designed, built and tested by the Instrumenta-
tion Branch. The prototype system has already successfully supported four balloon flight launched
at Palestine, Texas. The procurement of Telemetry Data Processor production units is in progress.
It is expected. that the Telemetry Data Processor system will be used in sounding rocket, balloon,
aircraft; and Get—Away—Special and Experiment of Opportunity shuttle projects.

The Telemetry Data Processor System (Figure 1) is dedicated to decommutation, processing and
display of PCM telemetry data. The system runs in a resident BASIC interpreter which has special
enhancement to increase programming efficiency for telemetry data handling and facilitate overall
operations. The system is composed of:

• CRT Display

• Keyboard

• Dual Mini—floppy Disk D.r;':ves

• Frame Synchronizer

+ Telemetry Data Memory

• Versatec Electrostatic Plotter and Printer Controller

• Thirty—two Analog Output Controller

• Dual 16—Bit Parallel Data Output Controller

• Bit Synchronized Remote Controller Interface

• Time Code Reader Interface

• General Purpose Computer Interface
f

r
I

"'ZI.-ECEDING P G1' MANIA NOT FILMED

1

The principal outp-it devices me the U R r display, thirty—two analog outputs, the electrostatic
printer/plotter anti the two 1 0—bit I)ar: ► Ilel data output port%.

The CRT display is used for pr-sunting numeric anti graphic information derived from the telem-
etry data stream and processed by the RSZ BASIC programs. Typical applications have up to 44
pieces of telemetry data in it 	 display. A matmitude or deviation bar graph display may
show 10 pieces of data w 'h a har resolution of one part in 400.

The analog outputs. 16—bit parallel data outputs, and Ver , :atec electrostatic plotter display data
separately and independently from the CRT display. '1 hey are each driven by hardware control-
lers which an, loaded t.nce with telemetry &eta selection and option parameters and immediately
begin decommu tat ing, processing and delivering outputs. Each controller can operate at data
rates up to I r 106 bits per second.

The general purpose computer interfat;e is provided so that future special purpose devices can be
tied into the system. A Telemetry Data Processor system Block Diagram is shown in Figure 11.

Figure 1. relemctry Data Proc^	 r Prototype Front View

I	 OIIIGNAL PA GE
OP PO OR	 GE IS

^?UAI,1'I'Y

r, A

j
R

uj 2
cc

cc xU. UJQ z
>.

cc ch
z0

x
z

CL

CC

1

W

I L

z
>.

1C

(A U)
0
LU
L) zC)cc

Wz us

>. LCUL

CC LU
ru a

w Z

uj

41

O R---

cc

I's uj
oz

J
0
Ic

Z U)
05

z
O

0 Z2 cc
w

LU zLU
2

yyY
IL _5 UJ0	 LU
U,

ui 0 L. 0= >	 I—uj — CC
C3	 IL)0 UA
4
-i

LL. -C	 W
cc ^ M,
LU cc x
I.-m

0 cc

19 (.A.L

IC Lou ...
CL0

s

ACKNOWLEDGMENT

This document was developed by Systex Inc., Beltsville, MD in col-
laboration with the authors. Anil Kochhar is a member of senior
technical staff of Systex Inc.

vi

ABSTRACT

This document describes the RSZ BASIC, an interactive language de-
veloped by the Sounding Rocket Division Instrumentation Branch.
The BASIC interpreter is a resident in the Telemetry Data Processor
System. The system is dedicated to processing and displaying
PCM telemetry Data. A series of working examples teaches the
fundamentals of RSZ BASIC and shows how to construct, edit and
manage storage of programs.

vii

t

CONTENTS

Page

Chapter 1	 INTRODUCTION	 1-1

1.1 PURPOSE	 ... 1-1
1.2 GETTING STARTED 1-1
1.3 LINE NUMBERS	 1-3
1.4 THE REMARK STATEMENT (REM)	 1-3
1,5 LET STATEMENT	 1-3

Chapter 2 VARIABLES, TYPES, OPERATORS, AND EXPRESSIONS '--1

2.1 CONSTANTS	 2-1
2.1.1	 Hexidecimal Constant 	 2-1
2,1.2	 Binary Constant	 2-1

2.2 VARIABLES	 2-2
2.3 ARITHMETIC OPERATORS	 2-2
2.4 RELATIONAL AND LOGICAL OPERATORS 2-2
2.5 EXPRESSIONS	 2-3

Chapter 3 ARRAYS AND SUBSCRIPTED VARIABLES	 3-1

3.1 THE 'DIM STATEMENT 3-1
3.2 STORAGE ALLOCATION FOR ARRAYS 3-1
3.3 INITIALIZATION OF ARRAYS 3-2

Chapter 4	 CONTROL STATEMENTS 4-1

4.1	 GO TO STATEMENT 4-1
4.2 IF-THEN-ELSE STATEMENT 4-1
4.3 FOR AND NEXT STATEMENT 4-2

Chapter 5 INPUT AND OUTPUT	 5-1

5.1 INPUT STATEMENT	 5-1
5.2 PRINT STATEMENT	 5-1
5.3 SOME ADDITIONAL INFORMATION ON PRINTING AND

INPUTING DATA	 5-4
5.4 THE TAB STATEMENT 5-6

Chapter 6 SOME ADDITIONAL RSZ BASIC STATEMENTS 6-1

6.1 CLEAR STATEMENT	 6-1
6.2 DROP STATEMENT	 6-1
6.3 FIELD AND CFIELD STATEMENT 6-1
6.4 REVERSE STATEMENT	 6-3
6.5 ROTATESTATEMENT	 6-3
6.5 SHIFT STATEMENT 6-3
6.7 XDIM STATEMENT	_ 6-4

6.8 PSCRN STATEMENT	 6-4
6.9 EJECT STATEMENT 6-4

viii

CONTENTS (Continued)

Page

Chapter 7	 FUNCTION DEFINITION	 7-1

7.1	 DEFSTATEMENT 	 7-1
7.2	 LIBRARY FUNCTIONS 7-2

'	 7.3	 ANGLE STA 'EMENT 7-3

Chapter 8	 FUNCTION EDITING 8-1

8.1	 DISPLAYING A FUNCTION 8-1
8.2 ADDING A LINE 8-2
8.3 REPLACING A LINE WITH ANOTHER LINE 8-3
8.4 INSERTING A LINE BETWEEN TWO OTHER LINES 8-4
8.5	 DELETING A LINE • 8-5
8.6 EDITING OF PART OF LINE 8-6
8.7	 EDITING THE HEADER 8-6
8.8 DELETING A FUNCTION	 8-7

Chapter 9 MANAGING THE WORKSPACE 9-1

9.1	 WORKSPACE CONTENTS 9-1
9.2 SAVING AND RECOVERING A WORKSPACE 9-2
9.3 DELETING A SAVED WORKSPACE	 9-3
9.4	 THE WSID COMMAND 9-3
9.5 THE SIZE COMMAND	 9-3
9.6 THE CONTINUE COMMAND 9-4
9.7	 THE MEM COMMAND 9-4

E
Appendix A SUMMARY OF RSZ BASIC STATEMENTS A-1

Appendix B SYSTEM COMMANDS B-1

Appendix C TERMINAL COMMANDS C-1

Appendix D RESIDENT CONSTANTS D-1

LIST OF TABLES

Table	 Page

2-1	 Variable Type		 2-2

7-1	 Library Functions 7-2

A-1	 Listing of RSZ BASIC Statements A-1

w .	
ix

^R

CONTENTS (Continued)

LIST OF ILLUSTRATIONS

Figure	 Page

1-1 Telemetry Data Processor Prototype, Rear View 1-2

rE

X

Chapter 1
INTRODUC'T'ION

1.1 PURPOSE

This document presents the information needed by a user to implement programs written in RSZ
BASIC for the Telemetry Data Processor System. Each RSZ BASIC 7Aatement is described ir, de-
tail. Applying a programmed series of working examples, this document shows how to construct,
edit and manage the BASIC programs. As the RSZ BASIC statements language is enhanced, re-
vision to this document will be generated. The user should note that, if necessary, additional
BASIC statements can be implemented on the Telemetry Data Processor System tailored to user's
need. The RSZ BASIC Programming Language Manual is the first of four planned documents to
be released by the Instrumentation Branch on the Telemetry Data Processor System. The other
three documents planned to be' released are;

• Telemetry Data Processor Hardware Manual

• Telemetry Data Processor RSZ BASIC Application Manual

• Z80 Assembly Language for RS)1ASIC;

1.2 GETTING STARTED

To start the Zilog Z80 microprocessor eased microcomputer system, simply turn on the power;
the switch is located at the rear of the Telemetry Data Processor system (Figure 1-1). Tlue mes-
sage "RSZ BASIC 1.3" will appear in the upper left corner of the display screen followed by a
system prompt character ">" in the next line. The user interacts with the system by entering
data through the keyboard.

X1+2
3

X1/2
0.5

X 1*2
2

As the illustration shows, the terminal can be used as a desk calculator. We can assign a value to
a variable and ask the system to execute the RSZ BPL Statement.

>X = COS (45)
>PRINT X

0.25

k

A

rt

f

The system responds with the value of X.

The system is comprised of three levels; Command, Edit and Execution.

The Command mode is invoked by turning on the power switch. It is also entered upon comple-
tion of Edit or the Execution mode. In the Command mode the system responds to System and

1-1

F'

-	 il

NR2-1 0	 rIM[
1	 2	 3	 4	 5	 t,	 1	 8

I-lk cum

e	

' • '	 9	 10	 1;	 !	 13	 1.4	 IS	 16

17	 18	 19	 20	 21	 22	 73	 24

S- 1	 'S 26 27 78 ?9 V.	 11	 32

Figure I - I. Telemetry Data Processor Prototype Rear View

Terminal commands and the RSZ BASIC statements. A list of all Systems and Terminal com-
mands and their description is provided in appendices B and C respectively.

File Edit mode is invoked by entering the DL:F statement. The RSZ. BASIC editor pro .pram is

described in Chapter 8. The Edit mode is terminated by pressing, the ESC key.

The Execution mode is inv oked by entering the CALL statement. The CALL statement ii, de-
scribed in Chc:pter 7. It allows us the ability to call upon functions previously stored in the sys-
tem workspace. The Execution mode is terminated by either a RETURN from the p lain function

or by pressing the ESC key.

i

Nk

r

0

G

ORIGINAL PAGE IS
OF POOR QUALI'T'Y

1.3 LINE NUMBERS

In the standard BASIC language program, the assignment of a line number to each statement is
done by the program author. However, in the kSZ BASIC language, this assignment is a com-
puter function.

1.4 THE REMARK STATEMENT (REM)

The REM Statement enables the program author to insert explanatory comments into the program.
Such remarks can and should be used freely throughout a program. Not only do they inform
others about the intent of the program but they may also help the programmer if he attempts to
modify the program some time after writing it. Each remark statement c: insists of REM followed
by the remark itself.

REM THIS IS A REMARK STATEMENT

The computer will ignore any information that follows REM. The single quote character (,) may
be used in place of the ley word REM when typing in the remark statement. Note that the re-
marks describing the action of the various steps can be included along with the program state-
ments. RSZ BASIC language allows for more than one statement on a line with the use of a
colon (:) between statements.

LET C 1 = 0 : REM INITIALIZE COUNTER

1.5 LET STATEMENT

The principal computational statement is the LET statement, which takes the general form

LET <Variable> _ <Expression>

The = symbol is not a mathematical equality sign. It means "replaced by". Therefore, this state-
ment is interpreted to mean, "the value of the arithmetic expression on the right of the (_), or
"replaced by" sign, replaces the value of the variable on the left.

LET N=N+1

This statement results in the value 1 being added to the value N in storage. The new sum replaces
the original value of N. , Note that the key word LET is optional.

E

i

1-3

Chapter 2
Ct	VARIABLES, TYPES, OPERATORS AND EXPRESSIONS

2.1 CONSTANTS

A constant is a number like 2, 5, 19, 10.3E - 3, and does not change in value during program ex-
ecution. There are two types of constants: Integer constants and Real (floating point) constants,
An integer constant is a string of digits which does not contain a decimal point, for example,
9999. The range of an integer constant is ±32767. A real constant is a decimal number with
precision to seven digits, as represented in one of the following forms:

tint, ±.Fra, ±Int.FraE±exp

where Int, Fra, exp are each a string of digits representing integers, fractions and exponents re-
spectively. The exponent value range is ±127.

2. 1.1 Hexidecimal Constant

A hexidecimal constant is represented in the form:.

#n

where n is a string of hexidecimal characters. The hexidecimal characters include digits 0 through
9, and A through F. A hexidecimal constant may be used in an assignment statement or expres-
sion. The constant is right justified and zero filled,

for example

A! = #002F

can be written as

A! _ #2F

2.1.2 Binary Constant

t A binary constant is represented in the form:

##n

where n is a string of zero's and one's. A binary constant may be used in an expression or assign-
ment statement. The constant is right justified and zero filled. For example,

A# = ##00011010

`	 can be written as

r`	 A# _ ##11010

2-1

G,.

R l

2.2 VARIABLES

A variable represents a storage unit that may take on a different value during the execution of a
program. In the RSZ BASIC, the variable name is restricted to a single letter or a letter and a
digit, for example:

A, BO, G, S2, X9

Note that in the RSZ BASIC, a single letter variable name, and a single letter plus digit 0 variable
name with the same single letter, share the same storage unit. For example, B and BO are inter-
changable within a program. Variables are of four data types as shown in Table 2-1.

Table 2-1
Variable Type

Type Format and Description

Integer Byte A variable name followed by a #, for example, Al#.	 It is a 8-bit
unsigned integer, negative numbers are undefined.

Integer A variable name followed by a !, for example, Al!.	 It is a 16-bit
signed integer.	 Negative numbers are represented in two's
complement.

String A variable name followed by a $, for example, A1$. A string vari-
able takes on a value of a string enclosed in quotation marks, for
example, Al$ _ "THIS IS A STRING". There is no limit on the
length of a string.

Real A variable name not followed by #, ! or $ is a real variable, for
example, Al, B9, Z.

2.3 ARITHMETIC OPERATORS

The RSZ BASIC has four arithmetic operators. They are as follows:

+ Addition
- Subtraction
* Multiplication

Division

Note that the current version of RSZ BASIC does not have an exponentiation operator.

2.4 RELATIONAL AND LOGICAL OPERATORS

r
The relational operators are:

f

2-2

The logical operators are:

;. y

= is equal to
< is less than

)r = < is less than or equal to
> is greater than

)r = > is greater than or equal to
< > is not equal to

AND bitwise AND
OR bitwise OR

NOT one's complement of a 16-bit integer
BNOT one's complement of a 8-bit integer

XOR bitwise Exclusive OR

2.5 EXPRESSIONS

An expression consists of constants and variables connected by operators. There are three types
of expressions: Arithmetic expressions, Logical expressions and Relational expressions. An arith-
metic expression consists of constants and variables separated by arithmetic operators, for
example:

A + 4 * B ! - 16.3E-3*C2 + D * (C2!/C3!)

A logical expression consists of constants and variables separated by logical operators, for example:

NOT ((A! AND (B! OR C!)) XOR D!)

A relational expression consists of constants and variables separated by relational operators, for
example:

X1! > 20
X 1 ! > X2!

Chapter 3
ARRAYS AND SUBSCRIPTED VARIABLES

3.1 THE DIM STATEMENT

An array is a group of values of the same type. There are three types of arrays in RSZ BASIC.
A one-dimensional array, a two-dimensional array and a three-dimensional array. In mathemat-
ics, an element of an array is denoted by a lowercase subscript attached to the symbol for the
array. In the RSZ BASIC the subscripts are written in parentheses following the variable name

•	 for the array. For example, X(N) in the RSZ BASIC is equivalent to the mathematical notation
Xn denoting element n of the array X. Subscripted variables may be used in the same way that
a non-subscripted variable is used in the RSZ BASIC. Since a subscripted variable refers to many
storage locations, we need a statement which will let us define the size of this array. The DIM
statement does this. The general form of DIM statement is

DIM Name, (d ,, - -, d3), - - - - - - -, Namen (d,, - -, d3)

where the name is a subscripted variable name (integer, real, or string) and the d's are positive
integer constants which indicates the number of subscripts. to be used in the program. For
example,

DIM Al$ (2), B9! (3), A2# (2, 3, 2)

In the RSZ BASIC, the array subscript always starts at zero, so the elements of A1$ are Al $ (0),
Al $ (1). Note, in the RSZ BASIC the number of subscripts are limited to a maximum of three
and the subscripted value to 255. All subscripted variables must be defined in a DIM statement
prior to their first use in a program. An array dimension with a zero value in a DIM statement
will generate a syntax error. For example,

DIM A1(0)

is not allowed.

3.2 STORAGE ALLOCATION FOR ARRAYS

In RSZ BASIC arrays are stored by rows, that is with the second of their subscripts varying most
rapidly; for example, a two-dimensional array X1(2, 2), would be stored in ascending locations as
follows:

Xl (0, 0) X1 (0, 1) X1 (1, 0) X1 (1, 1)

Storage Addresses

A three-dimensional array X2 (2, 2, 2), would be stored in ascending locations as follows:

3-1

B(0,0)=0 B(0, 1)= 1
B (1, 0) = 2 B (1, 1) = 3

3-2

t

1

X2(0, 0, 0)X2(0, 1, 0) X2(1, 0, 0) X2(1, 1,0)

X2(0, 0, 1) X2(0, 1, 1) X2(1, 0, 1) X2(1, 1, 1)	 t

S	 Storage Addresses
	 i

3.3 INITIALIZATION OF ARRAYS

In RSZ BASIC, an element of an array or the entire array may be initialized by using the assign-
ment statement (LET Statement). Let us initialize a previously specified 3 element array B9! (3)
as follows:

B9! (0) = 10
B9! (1) = 20
B9! (2) = 30

This can be written instead as

B9! () = 10, 20, 30

Two comments should be made regarding the initialization of an array. First, if there are not
enough values in the assignment statement to initialize the entire array, the system goes back to
the start of the first assigned value on the right of "=" in the assignment statement and starts
over. For example, an array A (2, 3) initialized as follows

A ()= 1 , 2

will result in

A(0,0)= 1 A(0, 1)=2A(0,2)= 1
A(1,0)=2A(1, 1)= 1 A(1,2)=2

If the array A (2, 3) were initialized as

A()=0

then each array element is filled with zero.

Second, if there are too many numbers of values assigned to an array, only those needed are used
and the rest are ignored. For example, an array B (2, 2) initialized as follows:

BO=0,1,2,3,4

i

Chapter 4
CONTROL STATEMENTS

The control statements of a language determine the flow of a program. In this chapter we will
discuss the several statements that allow the programmer to specify the sequence of program
execution.

4.1 GO TO STATEMENT

This statement causes transfer of control to some designated statement (line number) at any point
in the program. The statement has the general form of

GO TO <LINE NUMBER>

Example of the GO TO statement follows:

1 INPUT X
2 LET Y=Y*2+3
3 PRINT Y
4 GO TO 1

After printing the value of Y, the control is transferred to statement 1.

4.2 IF—THEN—ELSE STATEMENT

The IF-THEN—ELSE is used to make decisions. The statement has the general form

IF <Expression> THEN <Statement-1> ELSE <Statement-2>

where the ELSE part is optional. The expression is then evaluated, and if it is "true", statement_l
is executed. If the expression is "false" and if there is an ELSE part, Statement-2 is executed,
otherwise, the next statement in the program is executed.

The statement can also be written without the key word THEN as follows:

IF <Expression> <Statement_I> ELSE <Statement-2>

Examples of this statement and their meanings are as follows:

IF X > = 0 THEN GO TO 10	 If the value of X is positive, transfer program con-
trol to line number 10. If not, continue with
next in—line statement.

IF X < 0 RETURN ELSE X = X— l If the value of X is negative, transfer control to
the calling function. If not, decrement value of
X and continue with the following statement.

4-1

4.3 FOR AND NEXT STATEMENTS
E^

The FOR and NEXT Statements are used in constructing a program loop. The general format of
the FOR statement is

FOR <variable> = <a> to STEP <c>
y

where the variable is the index, a is the initial value of the index, b is the terminal value of the
index, and c is the positive or negative value by which the index is to be modified for each iter-
ation. When c is 1, the general form may be simplified to

t

FOR <variable> _ <a> to 	 {i
i

The general form of the NEXT statement is
p

NEXT <variable> or
NEXT <list of variables separated by commas>

where the variable must be the same as that in the corresponding FOR statement.
i

Note that every FOR statement must have an associated NEXT statement; that is, each FOR and
NEXT Statement must form a pair.

A general format for the loop using, FOR and NEXT follows:

FOR I = 1 TO 100
Statement_ 1

y

i

Statement_N	 s
NEXT I

Examples of FOR and NEXT Statement: i
1 FOR N = 1 TO 5 STEP 0.5
2 PRINT N;
3 NEXT N

prints the following
1

1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1 FOR N = 1 TO 5
2 PRINT N;
3 NEXT N

4-2

a^

i

y' i

prints the following values of N

1 2 3 4 5

1 FOR I=XtoY
2 FOR J=AtoB
3 T# (I, J) = R# (I, J)/25
4 NEXT J, I

executes both loops with one NEXT statement.

k	 .

Chapter 5
INPUT AND OUTPUT

The RSZ BASIC provides the programmer with INPUT and PRINT Statements for sending infor-
mation to and from the processor,

5.1 INPUT STATEMENT

The general form of this statement is:

INPUT <@(Expr_l, Expr_2)> <"Any String of Characters"> <Var_1, ... , Var_n>

The first argument positions the cursor to a row and column specified by Expression -1 and Ex-
pression-2. The value of Expression -1 and Expression-2 must not exceed 31 and 63 respectively.
The second argument proviues a message identifying the information the user is to input, and is
comprised of any string of characters in quotes. The third argument is a list of variables of any
type. The first and/or second argument in the statement is optional. For example, the statement

INPUT "NEXT VALUES OF TEMPERATURE Tl, T2" TI, T2

would prompt the user as follows:

NEXT VALUES OF TEMPERATURE TI, T2?

Now the user may enter the temperature values requested, followed by RETURN. Each value in-
put must be separated by a comma. A colon is used to separate entries into an array. Note that
the question mark was provided by the execution of the INPUT statement.

5.2 PRINT STATEMENT

The general form of this statement is:

PRINT <@(Expr_l, Expr_2)> <% Format specification %> <Var_1, ... , Var_n>

The @(Expr_l, Expr_2) positions the cursor to a row and column specified by Expr_l and Expr_2.
The format specification between the characters % defines the Output format of the variables.
The format specifications and their descriptions are as follows:

I - Format Specification

Form: Iw.d

It may be used for printing an integer or real data. w is an integer constant defining the field
width in number of digits excluding any decimal point. d is an integer constant specifying the
number of digits appearing to the right of the decimal point. For example,

5--1

Format	 Internal Output
Specification	 Value (b = blank)

12	 15 b15b
I3.1	 15.1 b1 5.1b
14.2	 15.1 bl5.lOb
110.2	 -678.4 -bbbbb678.40b
12	 100 b***b

E - Format Specification

Form: Ew

Real data is printed using this conversion. 	 w is again an integer constant defining the field width.
For example,

Format	 Internal Output
Specification	 Value (b = blank)

E3	 30.5 b3.05E 1 b
E2	 30.5 b3.lElb
E4	 -35.53 -3.553E1b

X - Format Specification

Form: Xw

It causes all types of data to be printed in hexidecimal. w is an integer constant specifying num-
ber of hexidecimal digits to be printed.	 For example,

Format	 Decimal Output
Specification	 Value Type	 (b = blank)

X4	 22358 Integer	 b5756b
X4	 -35.53 Real	 bFEDCb
X2	 22358 Integer	 b56b

If the specified field width is smaller than the number of hexidecimal digits that the variable holds,
the leftmost hexidecimal digits are truncated.	 Line 3 is an example of this data loss. Note that if
the field width is not defined, the default value is 4.

B - Format Specification

Form: Bw

It causes all types of data to be printed in binary.	 w defines the field width.	 For example,

t,

i^

F ^^

Format	 Decimal	 Output
Specification	 Value	 Type	 (b = blank)

B4	 15	 Integer	 b 1111 b
B16	 ?..2358	 Integer	 b0101011101010110b
B8	 22358	 Integer	 b01010110b
B	 -35.53	 REAL	 b1111111111011100b

If the specified field width is smaller than the number of binary digits that the variable holds, the
leftmost binary digits are truncated. Line 3 is an example of this data loss. Note that if field
width is not defined, the default value is 16.

H - Format Specification

Form: H

It causes the output of the print statement to be printed on the line printer. Note that the line
printer has 128 columns per line (twice as many as the CRT).

F - Format Specification

Form: F

There are twenty-six special characters stored in the system in addition to the standard ASCII
character set. The F format specification, followed by an alpha(s) and/or @ character(s) in quo-
tation marks, will output a corresponding special character(s). Thus, alpha characters and the @
character in quotes access an additional set of 26 special characters. For example,

PRINT % F % 66A

will output

-1
PRINT % F % "@C"

will output

F__j

The @ and alpha characters and their corresponding special characters are listed below.

ASCII Special
Character Character

@ r
A -1

B -
C J
D L

^

5-3

u

ASCII	 Special
Character	 Character

E	 I
F	 I—
G	 T
H
I	 -1
i	 t
K
L
M
N	 •
O	 •
P	 n

Q	 n
R
S
T	 r
U	 •
V	 n
W	 n
X	 n
Y	 n
Z	 Not Defined

Note that the Z character does not have corresponding special character.

Aside from the H declaration, a previously defined format specification remains in effect until re-
defined by another format specification in a PRINT statement. The % % characters without the
format specification in a PRINT statement results in data being output as follows:

* An integer data value is output as an integer.

• A real data value is owl.iIA,: as exponential.

• String data is printed as alphanumeric.

5.3 SOME ADDITIONAL INFORMATION ON PRINTING AND INPUTING DATA

At sign-on the RSZ BASIC system sets the printer tab at columns 16, 32 and 48. A comma in the
PRINT statement signals to the system that the preset tab is to be used for printing values. For
example, the statement

PRINT "NUMBER", 15, 25, -35

will output in columns 0, 16, 32, and 48 respectively (b = blank)

NUMBER	 bl5b	 b25b	 -35b

5-4

If the statement contains more than four values to be printed, then the next four values will be
printed on the next line. Suppose we want to print values next to each other. The use of a
semicolon in the PRINT statement signals the system to print the actual number of digits in the
values, each separated by a blank, for example, the statement

PRINT "NUMBER"; 15; 25; -35

will output (b = blank)

fi	 NUMBERbl5bb25b-35b

Let us illustrate a simple program in several variations to show the results of writing a PRINT
statement in different ways.

I FORT=0TO30
2 PRINT I
3 NEXT I

This program will print numbers 0 through 30, each number starting at columli 0 on a separate
line. If we modify line 2 to

2 PRINT I,

The program will print

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30

If we modify line 2, this time to

2 PRINT 1;

k

The output is (b = blank)

b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
b18 19 20 21 22 23 24 25 26 27 28 29 30

All characters in the field bounded by quotation marks are recognized as string data by the RSZ
BASIC interpreter. The upper case @ (SHIFT-@) and / (SHIFT-/) display a quotation mark on
CRT. How is this quotation mark different from the standard quotation mark? It is not recog-
nized by the RSZ BASIC interpreter because of different value, thus can be part of a string of
characters bounded by standard quotation mark. The exception is the SHIFT-@ quotation mark
which is recognized by the RSZ BASIC interpreter when it is read from CRT memory block. For

5-5

example, the statements

PRINT @ (l, 16) " "X" "
INPUT c., (1, 1) "CONTINUE "Y/N" " A$

(note that the quotation marks embedded into the PRINT AND INPUT statements were generated
by entering SHIFT (and SHIFT-/ respectively) would outpu': as follows;

CONTINUE "Y/N"?"X"

Now the user positions the cursor at X and enters Y or N followed by RETURN. The RSZ
BASIC interpreter recognizes the quotation mark after the question mark and accepts the entered
character Y or N as string data. Note that this quotation mark was generated by entering SHIFT-
(a) in the PRINT statement above.

5.4 THE TAB STATEMENT

The general form of the tab statement is

TAB C, Cn

where C is an integer constant specifying the position in the line where the value is to be printed.
For example, the statement

TAB 10, 20, 30, 40

would set 4 tabs at a specified column. Thus a comma in the PRINT statement will print the
values starting at columns 10, 20, 30, and 40.

Chapter 6	 !
SOME ADDITIONAL RSZ BASIC STATEMENTS

i

6.1 CLEAR STATEMENT

The CLEAR statement is used for initializing the symbol table in the user's workspace. The gen-
eral form of CLEAR statement is

CLEAR

Whenever the CLEAR statement is encountered, the computer removes all variables listed in the
symbol table.	 i

6.2 DROP STATEMENT a

The DROP statement is used for freeing memory space in the user's workspace by removing the
subscripted and/or unsubscripted variables from the symbol table. The general format of DROP
statement is

DROP <Variable-1, - - - - - -, Variable-N>

Example of DROP Statement
i

LET S=0
FOR N = 1 TO 100	 j
S = S + N
NEXT N
DROP S, N

when the DROP statement is encountered in the program, the computer removes variables S and
N from the symbol table.

6.3 FIELD AND CFIELD STATEMENTS
i

The system CRT display device is 32 rows by 64 characters with the origin at the top left corner
of the display screen.

COLUMNS
0	 63

0

ROWS

if

31

6-2

_	 r'

,

a	
The display screen can be set to two levels cf brightness, white on black (Normal) and black on
white (Reverse), with or without the cursor. Each level of brightness, with or without the cursor,
can be set by the FIELD statement. The general form of FIELD statement is

FIELD

	

	
FieldFirst Row	 Last Row	 /Field

^Identifier>' C Number / ' C Number/ ' ^Type>

where the Field Identifier is a positive integer value from 1 to 4. The First and Last Row Num-
bers are positive integer values from 0 to 31 defining the field width. The Field Type is a posi-
tive integer value from 1 to 4, and these field types are:

1 — Normal with cursor

2 — Reverse with cursor

3 — Normal without cursor

4 — Reverse without cursor

After issuing a FIELD statement, control is passed to the defined field, i.e., any subseque?it out-
put of a PRINT statement will appear in the last defined field. For example, let us def►jie field
type 2 as rows 16 to 31.

FIELD 2, 16, 31, 2

The output of the next PRINT statement

PRINT A

would appear at the next available line of FIELD 2.

Suppose we want to direct the output of the PRINT statement to a specific row (18) and column
(10) number of display screen. The reference to a row number in the PRINT statement must be
relative to the first row number of the last defined field. Since the last defined field (FIELD 2)
starts at row 16, and we want to output to row 18, the referenced row number in the PRINT
statement will now be 2, rjr the difference between 18 and 16. As a general rule, we can always
determine the row number of the PRINT statement as follows:

Row Number of PRINT Statement =
Row Number of Output — First Row Number of Defined Field

c	 The output of the following PRINT Statement

PRINT @ (2, 10) A

would appear at row 18 and column 10 of the display screen. Note that field identifier 1 can
only be type 1 (Normal with cursor).

When several fields are defined, control can be passed from one field type to another by the
E	 CFIELD statement. The general form of CFIELD statement is

a

F^

CFIELD <Field Identifier>

where Field Identifier is a positive integer value from 1 to 4. For example,

FIELD 3, 10, 20, 3
CFIELD 2

Would cause the output of subsequent PRINT statements to appear in FIELD 2.

6.4 REVERSE STATEMENT

The REVERSE statement is used for generating a mirror image of a variabie (8 or 16 bit length).
The general form of the REVERSE statement is

REVERSE <VARIABLE>

Examples of the REVERSE statement and its meaning

REVERSE X1 ! 0000000000111010 X1 ! Before Reverse

0101110000000000 1 X1! After Reverse

6.5 ROTATE STATEMENT

The ROTATE is used for shifting the contents of variable (8 or 16 bit length) without losing the
most significant bits (MSB) or the least significant bits (LSB) (depending on the direction of the
shift). The general format of the ROTATE statement is

ROTATE <Number of Bit Positions> <R or L> <Variable>

where R is for right and L is for left shift. The number of bit positions to rotate is an integer
number and is taken module 8 or 16 depending on the type of variable. Examples of the
ROTATE statement and its meaning

	

ROTATE 13L Al! [1000000000000101	 Al ! Before Rotate

	

1011000000000000	 Al! After Rotate

6.6 SHIFT STATEMENT

The SHIFT statement is used for shifting the contents of a variable. Unlike the ROTATE state -

ment the MSB's or LSB's are lost during the shift (depending on the direction of the shift). The
general format of SHIFT statement is

SHIFT <Number of Bit Positions> <R or I> <Variable>

A y

where R is for right and L is for left shifts. The number of bit positions to shift is an integer
number, and is taken modulo 8 or 16 deperriing on the type of variable. Examples Of the SHIFT
statement and its meaning

SHIFT 5R Xl# 10100011 Xl# Before Shift

00000101 Xl# After Shift

6.7 XDIM STATEMENT

Suppose we are interested in making a data transaction between memory or I/O devices. The
XDIM statement assigns a subscripted variable to a location in memory. The general form of
XDIM statement is

XDIM <(Name (d l , , d 3)> <Integer Constant>
F

' where the name is a subscripted variable name, and d's are positive integer constants which indi-
cate the number of subscripts. The Integer Constant is the memory location of the first element
of the array. Let us illustrate a simple program to transfer a block of data betw^-ien memory
locations:

EXAMPLE(]

1 XDIM A# (256) #400
2 XDIM Al# (256) #600
3 FOR I=0to255
4 Al# (I) = A#(I)
5 NEXT I
END

This program would transfer a block of data from memory locations #400 - #4FF to #600
#6FF.

6.8 PSCRN STATEMENT

The PSCRN statement will output on the line printer a copy of what is on the display screen.
The general firm of PSCRN statement is

PSCRN

Note that since the display screen only takes up half a page, two copies of the display screen may
be printed on a single page.

6.9 EJECT STATEMENT

The EJECT statement causes the line printer to skip to the top of the next page. The general form
for the EJECT statement is

EJECT

6-4

r r	 •_

j.

t

k;

4 1

Chapter 7
FUNCTION DEFINITION

7-1

7.1 DEF STATEMENT

In RSZ BASIC, a function is equivalent to a subroutine in FORTRAN or a procedure in PL/I,
Pascal, etc. A function is defined by the DEF statement. The general form of DEF statement is

DEF <Function — Name> [<A ggument list]

where function name may be any alphanumeric characters. The argument list allows communica-
tion of data between functions. Note that the argument list is not necessary, but the function
name must be followed by "[] ". Any function may be ended with the statement

END

However, the END statement is not necessary since by pressing the ESC key the system automat-
ically inserts an END at the physical end of each function. Let us illustrate the mechanics of
function definition by writing a function AVERAGE [A, Al(), N] which computes an average
of N numbers in array Al() and return the average value in A. The following functions, AVE-
RAGE and MAIN program, excercise the above computation.

DEF MAIN[]

I DIM X (100)
2 FOR I=0to99
3 X(1) = I
4 N=I
5 NEXT I
6 CALL AVERAGE [A, X(), N]
7 PRINT "AVERAGE _ ", A
8 DROP A, X(), N
9

DEF AVERAGE [A, Al(), N]

I S=0
2 FOR I=0toN-1
3 S=S+AI(I)
4 NEXT I
5 A S/N
6 RETURN
7

The CALL statement in the MAIN program passes the program control from function MAIN to
AVERAGE. The general form of this statement is:

CALL <Function — NAME> [<Argument List]

.	 0

The number of parameters in the argument list must agree with that of the called function, and
the parameters in the argument list must be variables. If no argument list is needed, the function
name must be followed by "[] ".

The RETURN statement in the above function causes control to be returned to the calling pro-
gram. The general form of this statement is

RETURN

Unlike FORTRAN, in RSZ BASIC a function (Subroutine) need not be ended by entering a RETURN
statement, since the system simply inserts a RETURN at the physical end of each function.

7.2 LIBRARY FUNCTIONS

The RSZ BASIC has ten library functions (see Table 7-1). A .library function takes the general
form,

Function - Name (Argl...... Arg N)

Where function name is that defined in Table 7-1. To make use of a library function one needs
only to write the name of the function followed by parentheses enclosing the arguments. For
example,

Y = SQR (X + 5)

will cause square root of X + 5 to be computed and the result to be assigned to Y.

Table 7-1
Library Functions

Function Description

SQR (arg- 1) Square Root of arg-1. 	 Argument value must be positive.

MOD (arg- 1, arg-2) Remainder of Arg- 1 divided by Arg-2.

FIX (arg_ 1) The fraction part of the real number is truncated.
FIX (2.7) = 2; FIX (-2.7) = -2.

CINT (arg- 1) Ceiling, the next largest integer CINT (2.7) = 3;
CINT (-2.7) = -2.

INT (arg- 1) Floor, the next smallest integer INT (2.7) = 2;
INT (-2.7) = -3.

LEN (arg- 1) Length of the character string in arg-1.

SIN (arg-1) Sine of arg-1.

COS (arg- 1) Cosine of arg-1.

TAN (arg- 1) Tangent of arg-1.

ARCTAN (arg- 1) Arctangent of arg-1.

7-2

4

T

7.3 ANGLE STATEMENT

The measure of an angle, represented by numerical value of arg_l in the library trignometry func-
tions, can be expressed in degrees, radians or grads. The choice of units is selected by the ANGLE
statement. The general form of ANGLE statement is

ANGLE <D or R or G>

where D, R and G are symbols expressing the measure of an angle in degrees, radians or grads
respectively. For example,

ANGLE D

will signal to the system that all subsequent angle values in the trignometry functions are expressed
in degrees. Note that in RSZ BASIC the system default measure of angle value is expressed in
radians. Also, the R in

ANGLE R

is optional; that is

ANGLE is equivalent to ANGLE R.

Chapter 8
;i	 FUNCTION EDITING

In the previous chapters we examined how we can write a function in the RSZ BASIC. We will
now consider how we might change a function after it has been entered into the workspace. The
RSZ BASIC editor program provides such capability. To examine the different ways of editing a
function using the RSZ BASIC editor program, we will first enter the following function SUM
into the works:,ice;

DEF SUM []

1 REM - - INTEGER SUMMATION PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0
5 FOR I=0TON- 1
6 INPUT "NEXT VALUE" K(I)
7 S=S+K(I)
8 NEXT I
9 PRINT "SUM = ", S

This function will be used in our discussion of various ways of editing a function throughout this	 }
chapter.

8.1 DISPLAYING A FUNCTION

An entire function or , only part of a function can be displayed by entering the following command;

LIST <NUMBER OF LINES>

Let's suppose we want to display the entire function. How is this done? The first step is to
open up the function by entering DEF <Function name>, followed by depressing the RETURN
key.

>DEF SUM[]
10

Now enter the LIST command without the number of lines.

10 LIST

The system will display the entire function.

SUM[]

1 REM - - - INTEGER SUMMATION PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0

8-1

c ..

5 FORI = OTON— 1
6 INPUT "NEXT VALUE" K(I)
7 S = S + K(I)
8 NEXT I
9 PRINT "SUM = ", S
END
10

Suppose we are, interested in only a single line, say, 4? The display command is very simple.
Just enter 4 on the current line as follows (the system is currently pointing to line 10):

104

The system will display line 4.

4S=0

To display the next line, simply press RETURN. Suppose we are interested in displaying-only a
part of a function, say, 3 lines? Simply enter the LIST command with the number of lines fol-
lowed by a blank as follows: (the system is currently pointing to line 4)

4 LIST 3 (Type over the current text)

The system will display three lines starting with the current line.

4 S=0
5 FORI=OTON-1
6 INPUT "NEXT VALUE" K(I)

Notice that the text of line 4 was not altered by the list command.

8.2 ADDING ALINE

The nine lines of the function as presently written gives the sum of integers entered by the user.
Let's suppose we have decided to add a tenth line which will give the average value of the inte-
gers entered by the user. How is this done? The first step is to open the function by entering
DEF SUM [] followed by a RETURN.

> DEF SUM[]
10

Notice that the system responds with 10. In general the next available line number will be re-
turned. Now enter:

10 A = S/N: PRINT "AVERAGE" _ , A
11

k and the system has responded with a 11, waiting for the next line input. Since we don't want to
add anything further, the ESC key can be depressed to signal the end of the function. A display
of the function now shows that line 10 has indeed been added.

SUM [

1 REM - - - INTEGER SUMMATION PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0
5 FOR I=0TON-1
6 INPUT "NEXT VALUE" K(I)
7 S = S + K(I)
8 NEXT I
9 ' PRINT "SUM = ", S
10 A = S/N: PRINT "AVERAGE _ ", A
END

8.3 REPLACING A LINE WITH ANOTHER LINE

We have expanded our function to provide the average of the integer values entered by the user.
To reflect this change we need to replace our remark on line 1. As before, to replace line 1 we
need to open up the function by entering

> DEF SUM[]

The system responds with 11, which we override by entering 1

11	 1

After pressing RETURN, the system displays statement 1

1 REM - - - INTEGER SUMMATION PROGRAM

Simply press SHIFT - RUBOUT keys; the system erases the current line, and we can now enter
the new remark

REM - - INTEGER SUMMATION AND AVERAGING PROGRAM

Having accepted the change to line 1, the system replies with the next line. Since we do not want
to make any further change, we simply press the ESC key to close out the function. A display of
the function now shows that line 1 has indeed been replaced.

SUM(]

1 REM - - INTEGER SUMMATION AND AVERAGING PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0

5 FOR I=0 TON -1
6 INPUT "NEXT VALUE" K(I)
7 S = S + K(I)
8 NEXT I
9 PRINT "SUM = ", S
10 A = S/N; PRINT "AVERAGE _ ", A
END

8.4 INSERTING A LINE BETWEEN TWO OTHER LINES

Suppose we want to insert between lines 8 and 9 statements whose purpose is to print input
values in array K. This can be accomplished in the following way. First open up the function
and type in some number between 8 and 9, say 8. 1, after response 11:

> DEF SUM[]
11 8.1

Any number will do as long as it falls between the number of the two lines where the insertion
is to be made. The system returns 8.1 and we can enter the code, which when encountered dur-
ing execution will cause the values of array K to be printed.

8.1 FORI = OTON- 1
8.2 PRINT K(I)
8.3 NEXT 1
8.4

The next line number provided by the system is "one greater" in its last significant digit, to pro-
vide for still other entries between line 8 and 9. Since there is to be no additional entry at this
time, we close out the function by pressing the ESC key. In response to the ESC key, the line
number and references of all GO TO statements are automatically renumbered by the computer,
as seen in the following display:

sum[

1 REM - - - INTEGER SUMMATION AND AVERAGING PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0
5 FOR I=0TON-1
6 INPUT "NEXT VALUE" K(I)
7 S = S + K(I)
8 NEXT I
9 FORI =OTON- 1
10 PRINT K(I)
I 1 NEXT I
12 PRINT "SUM = ", S
13 A = S/N: PRINT "AVERAGE _ ", A
END

G

8-4

.A

8.5 DELETING ALINE

Suppose we want to delete line 12. As usual, we first open the function, and then list line 12.

> DEF SUM[1
14 12
12 PRINT "SUM = ", S

The computer is now waiting for us to do something with line 12. Pressing the SHIFT - RUBOUT
keys, followed by a RETURN key removes the text on line 12. Next we ask for the display of the
function.

LIST

1 REM - - - INTEGER SUMMATION AND AVERAGING PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0
5 FOR I=0TON-1
6 INPUT "NEXT VALUE" K(I) .
7 S=S+K(I)
8 NEXT I
9 FOR 0TON-1
10 PRINT K(I)
11 NEXT I
12
13 A = S/N: PRINT "AVERAGE _ ", A
END

Notice that line 12 is still there, but is blank. To get rid of a blank line, we simply close out the
function by pressing the ESC key. The blank lines are removed and the line numbers and .refer-
ences of all line numbers are renumbered. A display of function now shows that the blank line
indeed has been removed.

sum[]

I REM - - INTEGER SUMMATION AND AVERAGING PROGRAM
2 DIM K (100)
3 INPUT "NUMBERS OF VALUES" N
4 S=0
5 FOR I=0TON-1
6 INPUT "NEXT VALUE" K(I)
7 S=S+K(I)
8 NEXT I
9 FOR I=0TON-1
10 PRINT K(I)
I 1 NEXT I
12 A = S/N: PRINT "AVERAGE a ", A
END
13

8-5

8.6 EDITING OF PART OF A LINE
d

F^

	

	 How do we change or add a few characters in a line without having to retype the entire line?
For example, suppose we want to print the summation of input integers on line 12. Again, we
open the function and then list line 12.

> DEF SUM []
13 12

12 A= S/N: PRINT "AVERAGE _ ", A

To print the summation of input integers we want to add "SUM = ", S between the PRINT and
"AVERAGE _ " on line 12, we first move the cursor onto character

12 A = S/N: PRINT "AVERAGE _ ", A

Next, press BREAK key to move all characters, including the one over the cursor, one position
to the right. Press BREAK key several times to open up enough space to enter "SUM = ", S.

^.	 Now enter

12 A = S/N: PRINT "SUM = ", S, "AVERAGE _ ", A

Next press RETURN. A display of function now shows that line 12 has indeed been updated.

SUM[]

1 REM - - - INTEGER SUMMATION AND AVERAGING PROGRAM
2 DIM K (100)
3 INPUT "NUMBER OF VALUES" N
4 S=0
5 FORI=OTON- 1
6 INPUT "NEXT VALUE" K(I)
7 S=S+K(I)
8 NEXT I
9 FOR I=0TON-1
10 PRINT K(1)
11 NEXT I
12 A = S/N: PRINT "SUM = , S, "AVERAGE _ ", A
END

8.7 EDITING THE HEADER

The header of a function can be changed in exactly the same way as any other line by using the
line number 0. Suppose we want to add an argument to the header. As usual, we open the
function and then list line 0.

> DEF SUM[]
13 0

sum[

8-6

Simply follow the same procedure used for editing part of a line,

0 SUM [A]
1 REM - - - INTEGER SUMMATION AND AVERAGING PROGRAM

and close out the function.

8.8 DELETING A FUNCTION

How do we remove a function from the workspace? The first step is to open up the function

> DEF SUM[]
13

and then enter the DELETE command followed by a RETURN.

13 DELETE

Now any reference to function SUM will result in an error.

L,

Chapter 9
f Vi
	

MANAGING THE WORKSPACE

The user is assigned a clean workspace by the system at sign-on. In this workspace the system
maintains a list of all active functions and variables entered after sign-on. In this section, we will
follow a series of exercises designed to demonstrate how the workspace can be manipulated by
you, the BASIC user. We will accomplish this by the use of system commands. An alphabetical
list of all system commands is given in Appendix B.

9.1 WORKSPACE CONTENTS

As we pointed out earlier, the workspace is empty at sign-on. To verify that this workspace is
empty, we L an use the following commands:

> FNS
> VARS

and we see there is nothing in the active workspace.

The FNS command produces a listing of functions available in the workspace. The VARS com-
mand produces a listing of the active variables in the workspace.

Since the purpose of this chapter is to teach you how to save functions and variables for future
use, we will need some example functions. To begin, let's enter the function CIRCLE:

> DEF CIRCLE [D]
1 REM - - - COMPUTE AREA OF A CIRCLE
2 A = 2 * PI * ((D/2) * (D/2))
3 PRINT "AREA OF A CIRCLE _ ", A, "OF DIAMETER ", D

Our listing of the functions now shows

> FNS
CIRCLE [

Let's enter a second function,

> DEF RECT [H, W]
I REM - - - COMPUTE AREA OF A RECTANGLE
2 Al H*W
3 PRINT "AREA OF A RECTANGLE ", Al

Anew listing of functions,

> FNS
CIRCLE [RECT [

now indicates that RECT indeed has been stored.

9-1

Now let's set a couple of variables,

>W= 10
>H=20

A listing of variable shows that W and H are in storage.

> VARS
WO HO

9.2 SAVING AND RECOVERING A WORKSPACE

Suppose we are finished entering functions and variables and now want to preserve them for later
use. The system co nmand SAVE accomplishes this. The SAVE command reserves the current
workspace under the specified file name on disk 0 or 1, overwriting any previously entered file
with the same name. The general form of the SAVE command is

SAVE <file name>

To save the previously entered functions and variables, we'll use the file name BPL1

> SAVE BPL I

Now, we need a list of all the saved workspaces so that we know what we have in our library.
The LIB command does this. The LIB command lists the names of all files saved on disk 0 and 1.

> LIB
BPL1

Note that what we saved on disk is an image of the active workspace.

Let's now get a clear workspace without having to sign-off and then sign-on. This can be ac-
complished simply by pressing the CLR key. Care should be taken when pressing theCLR key,
since everything in the workspace is thus erased.

Suppose that on a following day we are ready to do some work with CIRCLE and RECT func-
tions. Remember that we have an exact image of our previous day's workspace stored on disk
with the name BPLI. To recover this image, enter the system command

> LOAD BPL 1

The LOAD command reads the specified file from disk and replaces the contents of the active
workspace with the material in the workspace being loaded. A listing of functions and variables,

> FNS
CIRCLE, [RECT [
> VARS
WO HO

i#

9-2

shows that our function and variables are still available to us.

Let's check the values of our two variables to verify that they are unaltered:

> ?W,H
10	 20	 #

1.
Note that we can access only one workspace at a time using the LOAD command.

9.3 DELETING A SAVED WORKSPACE

Suppose we want to delete a workspace in our library. The DELETE command does this. The
general form of the DELETE command is

DELETE <file name>

The DELETE command scans the directories of disk 0 and I for the specified file name and re-
moves it from disk.

> DELETE BPLI

BPLI is now gone, as shown by

> LIB

9.4 THE WSID COMMAND

Suppose we have forgotten the name of the workspace we started out with. If so, the WSID
(workspace identification) command will remind us.

> WSID
BPLI

Note that the SCRATCH is the default name assigned to the workspace by the computer at
sign—on.

9.5 THE SIZE COMMAND

The workspace size at sign—on is 16k. However, the size of the workspace continues to shrink as
we enter material into it. Suppose we need to enter a large function into our workspace. The

r
'	 SIZE command will tell us how much available memory remains in the workspace.

+	
> SIZE
3116

vi

Note that the number is hexidecimal. Let's pretend that we don't have enough memory to fit
the size of our function. We can generate additional workspace by removing some of the func-
tions and variables.

> DROP 1:1, W

Variables H and W are now eliminated from our workspace

> DEF CIRCLE []
I DELETE

and the function CIRCLE is now gone from our workspace, as shown by

> FNS
RECT [

Thus our workspace has increased in size, as shown by

> SLE
31793

9.6 THE CONTINUE COMMAND

The CONTINUE command is like the SAVE command, except that it always saves the active
workspace under the file name CONTINUE. So you can save a workspace with this command,
but care must be taken since it always replaces its prior contents.

9.7 THE MEM COMMAND

At sign-on, the lower and upper memory locations of the workspace are defined as #4000 and
#7FFF respectively. Suppose we have forgotten or want to redefine the lower and/or upper
memory locations of the workspace. The MEM command

> MEM
4000 7FFF
FIRST ADDRESS

will display the current lower and upper memory location of the workspace, which are #4000 and
#7FFF respectively, followed by a system message "FIRST ADDRESS." Let's suppose that we
want to lower the current upper memory location from #7FFF to #5FFF, and retain the lower
memory location #4000 of the workspace. By pressing the RETURN key, the system will retain
the current lower limit and will respond with

LAST ADDRESS

F

p

Yp`e

G
9-4

.:,

s
d

ocation value #5FFF, followed by a RETURN key

> 5FFF

ine lower anu upper memory locations of the workspace are now #4000 and #SFFF respectively,
as shown by

> MEM
4000 SFFF

Note that the lower and upper memory location values must always be between #4000 and
#7FFF.

Appendix A
SUMMARY OF RSZ BASIC PROGRAMMING LANGUAGE STATEMENTS

An alphabetical listing of RSZ BASIC Programming Language statements and their general form
appears in Table A-1.

Table A-1
Listings of RSZ BASIC Statements

STATEMENT GENERAL FORM

ANGLE ANGLE <D or R or G> D - Degree; R - Radians; G - Grads (R is
optional)

CALL CALL <Function-Name> [<Var-1........ Var-n>]

CFIELD CFIELD <Field Identifier'

CLEAR CLEAR

DEF DEF <Function-Name> [<Var-1....... Var-n>]

DIM DIM <Variable> (<Int-l....... Int-3>)

DROP DROP <Var-l........... Var-n>

EJECT EJECT

END END

FIELD FIELDField	 First Row	 Last. Row>C	 > Field
' C Number	 '	 Number	 pe6dentifier/ 	Tŷ>

FOR FOR <Unsubscripted Var.> = <Expression > TO <Expression>
STEP <Expression>

GO TO GO TO <Line Number>

IF-THEN-ELSE IF <Expression> <Relational> <Expression> THEN <Statement>
ELSE <Statement>

INPUT INPUT <@(<Expr-1, Expr-2>) <"Any String of Characters">
<Var-1, Var_n>

LET LET <Variable> = <Expression>

PRINT PRINT <@(Expr-I, Expr-2)> <Format Specification>
<Var-1............ Var-n>

A-1
	

I

t

G
	 c j'

V

Table A-1
Listing of RSZ BASIC Statements (continued)

STATEMENT GENERAL FORM

PSCRN PSCRN

REM REM <Any String of Characters>

RETURN RETURN

REVERSE REVERSE <Variable> 8 or 16 bit Integer Variable

ROTATE ROTATE <Integer> <R or L> <Variable> 8 or 16 bit Integer Variable
R - Right; L - Left

SHIFT SHIFT <Integer> <R or L> <Variable> 8 or 16 bit Integer Variable
R - Right; L - Left

TAB TAB <Int-1....... Int-n>

XDIM XDIM <Letter> (<Int-1....... Int_3>) <Expression>

•n

l
Appendix B

SYSTEM COMMANDS

An alphabetical listing of RSZ BASIC system commands and their description is given below:

System Command Description

CONTINUE Save active workspace under the file name CONTINUE in library.

CPDISK Copy the content of disk #0 to disk #1.

DELETE <file name> Remove the particular file from library.

EJECT Advance line printer to top of next sheet.

FORMAT Format the disk to allow storage of files. 	 Note all disks must be for-
matted before use on the RSZ BASIC system.

FNS List names of all defined functions in the active workspace.

LIB List the names of workspace in the library.

LOAD <file name> Replace the current active workspace with the workspace stored under
the particular file name in the library.

MEM Redefine or check the memory boundaries of the active workspace.
Depressing the RETURN or the ESC key retains the current limit.

PSCRN Generate hardcopy of CRT screen.

SAVE <file name> Store the active workspace under the particular file name in the library.

SIZE Displays in hexiclemical the available memory remains in the active
workspace.

VARS List the names of active variables in the workspace.

WSID Displays the name of the active workspace.

Appendix C

TERMINAL COMMANDS	
4

i

^t	 An alphabetical listing of all terminal commands and their description is given below:
R

Terminal Command Description	 ?

BACKSPACE Positions the cursor one space to the left. i
BREAK Inserts a blank between characters.

CLR System initialization.

C/S Clears CRT display screen.

CNTL—@
i

Prints a copy of what is on the display screen on the line printer.

CNTL—N
4

Signals the line printer to skip to the top of the next page.

CNTL—H Positions the cursor one space to the left.

ESC Terminates the previously entered command.
i

HOME
i

Positions the cursor to the upper left corner of the display screen
(row 0, column 0). 	 3

LF
i

Linefeed.

RETURN Enters current line and positions the cursor at the beginning of the
next line.

RUBOUT Replaces the character with a blank.

REPT Repeats the character entered in conjunction with REPT key on the
current line.

SHIFT-RUBOUT Deletes the current line.

F-^-y Moves the cursor one space in the indicated direction.
y

E

f
F
4

G
f

C-1

E

Appendix D
RESIDENT CONSTANTS

5

A list of all resident constants and their value is given below:
	 j

	Name	 Value

	

PI (7)	 3.141593

	

EPS (e)	 2.718282

BIBLIOGRAPHIC DATA SHEET

6

1. Report No.
TM 80690

2. Government Accession No. 3. Recipient's Catalog No,

4. Title and Subtitle 5. Report Date
The RSZ Basic Programming Language June 1980

6. Performing Organization CodeManual

7. Author(s)
R. J. Stattel, J. K. Niswander, A. K. Kochhar

8. Performing Organization Report No.

9. Performing Organization Name and Address 10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

NASA/Goddard Space Flight Center
Code 743.4
Greenbelt, MD	 20771 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
The RSZ Basic interactive language developed by NASA/GSFC Sounding
Rocket Division Instrumentation Branch is described.	 The RSZ Basic
interpreter is resident in the Telemetry Data Processor, a system
dedicated to the processing and displaying of PCM telemetry data.
A series of working examples teaches the fundamentals of RSZ Basic
and shows how to construct, edit and manage storage of programs.

17. Key Words (Selected by Author(s)) 18. Distribution Statement
ground support equipment, BASIC,
interpreter, telemetry, micro-
computer, data processing`

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price"
Unclas, 50

rui ante uy 1.11e 1.auUna1 i ecnmcal inrormanon aervice, aprmgrneia, virgin la zzioi.	 GSFC 25-44 (10177)

	1980017555.pdf
	0001A01.tif
	0001A02.tif
	0001A03.tif
	0001A04.jpg
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.jpg
	0001A13.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif

