NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

$30 / 20 \mathrm{GHz}$ NET ACCESSIBLE MARKET ASSESSMENT

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA LEWIS RESEARCH CENTER NAS-3-21359

MARKET ASSESSMENT

FOR 30/20 GHz
SATELLITE SYSTEMS

BY: J. ROGERS, P, REINER WESTERN UNION TELEGRAPH COMPANY

FOR: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER
CONTRACT NAS3-21359

- For sale by the National Technical Iniormation Service. Springtield. Virginia 22161

TASK 9

TABLE OF CONTENTS

SECTION TITLE PAGE
1.0 12.02.12.2
Introduction 2
Objectives 2
Scope 2
3.0 Task Overview 3
4.0 Future Market Considerations 7
4.1 Market Specialization 7
4.2 Timing of $30 / 20 \mathrm{GHz}$ Systems 10
5.0 Computer Modelling 125.1
5.2Market Distribution Model12
5.3 12Parametric Crossover Distance Model
6.0 186.1Network Definition
6.2 Network Scenarios 18
6.3 Methodology and Approach18
6.4 Network Analysis Results20
7.0 Trunking Network $30 / 20 \mathrm{GHz}$. Market 367.17.27.38.18.28.39.0
Network Definition 36
Methodology and Approach 36
Network Analysis Results 38
8.0 Net Accessible $30 / 20 \mathrm{GHz}$ Market 43
Market Definition 43
Market Development 43
Common Network Market Forecasts 47
8.4 Trunking Network Market Forecasts 51
Conclusions 63
APPENDIX
Parametric Cost Model Results 64
MDM Market Values 64

SECTION 1

STATEMENT OF WORK

Starting with the potential traffic (voice, data and video) for 30/20 GHz systems developed in Task 6, the contractor shall estimate the actual traffic that would likely be implemented on such systems for the years 1990 and 2000. Eleven scenario variations shall be investigated: nine of a "common network" approach and two dealing with a "trunking network" approach. Each scenario element would represent a market demand based on certain network size and service price assumptions. The demand results for voice, data and video traffic shall be expressed in peak load megabits per second.

SECTION 2

OBJECTIVES AND SCOPE

2.0 INTRODUCTION

2.1 Initial 30/20 GHz Market Demand Assessment

This market identification study was preceded by a market demand assessment encompassing the telecormunications environment of the United States. The primary goal of that study, now referred to as Phase 1, was to estimate the market demand for $30 / 20 \mathrm{GHz}$ satellite systems over the period 1980-2000. Achieving that goal required completion of the following tasks elements within that study.

- Projection of communication traffic volumes to year 2000
- Assessment of the relationship of traffic volume to:
- Mileage band distance distribution
- Population density
- U.S. geographical distribution
- Price sensitivity
- Identification of service traffic volumes by major user category
- Analysis of traffic demand within a representative metropolitan area
- Comparison of present and future service costs
- Evaluation of the demand for communications services as a function of reliability and real vs. non-real time delivery

The study report provided by this document, now considered Phase II, is the follow-on study to the above Service Demand Assessment study completed by Western Union in July 1979. The purpose of these market studies conducted by NASA is to promote the commercial applications of 30/20 GHz band.

2.2 Objectives

The overall objective of the Task 9 study effort is to quantify the net accessible $30 / 20 \mathrm{GHz}$ satellite systems market demand through a series of scenario variations. From the eleven different scenarios which
consider differences in network type, network size and service price, an optimized approach for system implementation may emerge. This preferred approach should reflect the best matching of system size to an accessible market demand fill level.

2.3 Scope

The 11 market scenarios created as part of this study effort define two basic apprıaches to $30 / 20 \mathrm{GHz}$ system implementation: the common network or specialized carrier model, and the trunking network or public carrier model. Each approach includes an analysis of network characteristics which affect the accessible market demand and serving capabilities.

The market scenarios permit the conversion of the $30 / 20 \mathrm{GHz}$ systems net addressable market into the net accessible market over the 1990-2000 period. The net addressable market is that portion of the total satellite market which is capable of being served by $30 / 20 \mathrm{GHz}$ satellite systems.

It can also be defined as the resultant traffic volume after consideration has been given to user operating characterictics, system technical constraints on service applications, and economic advantages of satellite versus terrestrial means. The net accessible market is the portion of the net addressable demand which is likely to be implemented on $30 / 20 \mathrm{GHz}$ satellite systems.

It includes such factors as:

- Economic feasibility of particular networks
- Geographic coverage
- Service compatibility with network market objectives
- System availability and timing constraints with regard to services offered.

Market penetration by competing specialized carriers is the final element required to actually size a common network utilization. Penetration factors for individual carriers have not been projected in this study.

The common or specialized carrier network service denand is evaluated on the bas is of three different earth station networks: minimum, most efficient and, largest network sizes; with consideration given to three different service price levels: equal to Ku-band services, 20\% below Ku-band and 40% below.

Two trunking network configurations were evaluated, both based on the geographical market coverage provided by the network. One contained ten earth station locations, the other 20 locations, Additional variations were not considered to be particularly useful for the purposes of this analysis.

TASK OVERVIEW

The two major families of market scenarios, common and trunking networks, are based on distinctly different network types. The common network is characterized by services with limited geographic coverage due to the lack of extensive terrestrial distribution facilities.

The trunking or public network, on the other hand, will employ extensive distribution of Eraffic terrestrially on the type of facilities available only to a "Bell"-type network.

3.1 Cormon (Specialized Carrier) 30/20 GHz Network Market Models

Specialized comnon carriers do not have extensive terrestrial distribution systems augmenting a satellite network. These carriers must use a network approach which strategically locates a number of earth stations close to the major areas of market demand. Terrestrial distribution must be limited for economic reasons, linking subordinate areas of market demand within 50 miles. The terrestrial extensions are required to create the "critical mass" of market demand necessary for a viable network. Areas of market demand may include multiple corporate users, joint (shared) user groups and dedicated users. Earth stations may be equipped with small, medium or large antennas depending on the type and quantity of traffic projected to be handled.

A series of market models for this network approach were in. vestigated. The associated net accessible market demand for three distinct network sizes was developed: the market for the minimum number of earth stations representing something near the smallest viahle network; a number of terminal locations representing the most efficient size, and, a larger number of earth terminals representing the upper limits of marginal utility of the $30 / 20 \mathrm{GHz}$ system.

Each earth station location serves the local Standard Metropolitan Statistical Area (SMSA), plus terrestrial extension to all neighboring SMSA's of a minimum threshold market size. The number of earth station locations within a given network also provides insight into the point of diminishing return where the incremental traffic is insufficient to support an additional earth station.

The effer.t of user and operating requirements were included in the determination of the net addressable satellite markets developed in Phase I; however, these characteristics were reevaluated when determining the net accessible markets for the two discrete satellite carrier markets. Common networks normally seek to attract different market segments than trunking networks, therefore it was necessary to develop a new mixture of service traffic comprising each network.

The market addressable to $30 / 20 \mathrm{GHz}$ systems was assessed by examining the price relationship between Ku-band and $30 / 20 \mathrm{GHz}$ satellite systems. It was appropriate that at least three variations in price be analyzed. A price above that charged for comparable Ku-band systems will not yield practical results and was not considered. The three choices for pricing were: equal to Ku-band service; 20 percent less than Ku-band services; and, 40 percent less. These service costs are in relative termsno actual costing of systems were a part of this task. Ku-band service costs were developed via construction of a parametric satellite facility cost model, discussed in Section 5.2. Market issues not specifically included were: market inertia, the effect on market demand caused by slow user acceptance in the marketplace; and, the competitive marketplace influences.

The seiection of three pricing variations required each of the previous three network size scenarios to be further subdivided. The common network scenario thus contains nine subscenarios, each yielding a separate projection of the net accessible market demand. The flow of network sizing analysis and identification of the $30 / 20 \mathrm{GHz}$ net accessible market is shown in Figure 1.

3.2 Trunking (Public Carrier) 30/20 GHz Network Market Models

A "Bell"-type system requirement may influence a decision to offer $30 / 20 \mathrm{GHz}$ satellite systems transmission as an adjunct to the terrestrial distribution systen as well as timing of implementation. This possibility was evaluated through the creation of a scenario family with appropriate subscenarios.

The trunking network would require a limited number of high volume earth station locations serving large geographical areas. Two market coverage models for the trunking approach were investigated. The first is based on ten earth station locations, the second on 20 locations. Market coverage for each model was calculated through use of computerbased optimization algorithms. The choice of two market coverage models introduced two permutations into this basic scenario. Each permutation required separate analysis and estimates of market demand.

Market assumptions and constraints included in the trunking network addressable market are similar to those developed for the common network. Analysis of the $30 / 2 \mathrm{CHz}$ addressable market was somewhat different for the trunking network scenario due to the types of traffic expected to be carried. Each of the three or four major service categories now offered on the nationwide telephone system were analyzed to determine the quantities of traffic likely to be implemented on a $30 / 20 \mathrm{GHz}$ system. The categories include business and residential MTS and private line service.

Market demand projections for all eleven scenarios are expressed in the appropriate service units (i.e., channels, transponders and bits per second) for voice, video and data services, as well as peak load megabits per second.
30/20 GHz SATELLITE MARKET SIZING

FIGURE 1

SECTION

FUTURE MARKET CONSIDERATIONS

4.1 Market Specialization

There are a limited number of prime orbital slots for domestic satellites that serve the voice, data and video needs of business, government and private users. Congestion of the orbital arc will restrict the future entry of new major carriers into the satellite transmission market. The saturation of available C and Kuband capacity will promote the use of riew, higher frequency satellite systems in the $30 / 20 \mathrm{GHz}$ spectrum. A $30 / 20 \mathrm{GHz}$ system has less restrictive orbital spacing requirements than C and Ku -band systems, and will help towards satisfying the demand for wideband and specialiced transmission services.

The first domestic commications satellite systems were designed in the early 1970's to satisfy the needs of private line data users, as the primary market, and video/audio broadcasters, as a secondary market. At the end of the 1970's, satellite carriers tegan to establish dominance in several of the existing market segments based on marketing skills and strategies rather than the technical characteristics of their satellite system. Two of the best examples of market niche concentration and domination are RCA Americom in the CATV market, and American Satellite Corporation in both the government and commercial wideband data markets.

Opportunity exists for satellite carriers to expand into new market segments with high growth potential. Competitors will position themselves to capitalize on their marketing strengths. Each carrier will concentrate its efforts towards one, perhaps two, market segments only. Existing carriers have already begun to implement this strategy. New carriers will establish themselves in markets without a dominant comoetitor (e.g. Electronic Mail and Message Systems). To illustrate this point, Table 1 depicts the competitive market structure in the late 1970's ano the probable scenario for the 1980's.

There are four primary market segments, from a satellite transmission point of view, that exist today: conmercial private line, government private line, message toll service (MTS), and video/audio broadcasting. Electronic mail and message systems (EMMS) and teleconferencing will be added to this list in the 1980's. A seventh category, specialized applications, will include a variety of services most with low volume transmission requirements.

Competitive Satellite Service Market

			告	$\begin{gathered} \text { Gov't Private } \\ \text { Line } \end{gathered}$	$\stackrel{\sim}{E}$		
AT\&T/GTE		S			p	5	S
American Satellite		S		P			
RCA		S		S			p
SBS		p	p			5	
Western Union		S	p	S			p
XTEN		P	p			S	
Others	p						

[^0]Table 1

The two service categories with high growth potential between 1980 and 2000 are data and teleconferencing. Data services include the subcategories data transmission. EMMS, and EFTS/POS. Market demand for total data services will increase twentyriold between 1980 and 2000 . The demand for transponder space to satisfy teieconferencing applications will also increase significantly; tenfold over the same time period. Each of the four service categories may require a satellite system dedicated to satisfying market demand for the service. Available satellite capacity for each service may constrain the market demand. Latent market demand for high speed digital data transmission and teleconferencing can be partly attributed to the inadequate transmission facilities now in existence. Specially designed satellite systems may solve this problem.

There are several services not. nuw avallable, but that are expected to emerge in the late 1980's, that may require sperialized satellite system designs. Examples of such services include remote monitoring systems for flood, fire and environmental control, remote ana inobile emergency meaical communications, and transportable earth stations systems to provide emergency communications channels during times of catastrophe. Each of these services are likely to utilize portable or small aperture earth station antennas and high power satellite systems.

These service markets may not be large enough to attract the attention of major sateliite carriers. Small specialized carriers vould be able to enter a highly competitive market by providing these neglected transmission services. Other service categories ihat offer onportunity to specialized carriers are land mobile radio communications, secure voice, and bulk mall volume transfer for the USPS. Satellite systems dedicated to these services could be specially designed to satisfy the unique transmission requirements.

Satellite systems dedicated to a limited range of service capabilities, and carriers specializing in one or two market segments, may best serve the customer's needs. Desigring a single dedicated system, with a high degree of complexity is more economical than installing many high cost earth stations with complexity built into the ground segment. When market demand for a new satellite transmission service is sufficient it may be easier to design and develop a new sustem rather than attempt to adapt an existing one. Reliability and quality usually accompanies specialization in a given service or product.

4.2 Timing of $30 / 20 \mathrm{GHz}$ Satellite Systems

The time frame for the introduction of higher frequency satellite systems will be heavily influenced by a number of different factors. Among these factors are technology developments, service costs, competition, regulation, orbital slot availability and the overall growth in the nation's economy. Some of these factors are addressed below in fur ther detail.

The technology needs of a first generation $30 / 20 \mathrm{GHz}$ system have been identified in a preliminary manner by two systems contractors. Development of multiple spot beam antennas, variable powered spacer.raft amplifiers, large data handling capacities and low cost earth terminals are some of the technologies which system users nust overcome. Thus, the speed of 'echnological developments for $30 / 20 \mathrm{GHz}$ systems will play an importar role in the timing of its implementation. The use of these new technologies in actual satellite systems will help to reduce satellite service costs.

Likewise, market factors will influence the use of $30 / 20 \mathrm{GHz}$ satellite systems. Market saturation of the already large capacities for C and Ku-band satellites may occur much later than anticipated. Right now, the primary marketing advantage satellite delivery has over terrestrial delivery, is lower service cost. The success of planned direct-to-user systems will detemine the future demand and the rate of growth for high capacity wideband satellite systems.

Both competition and reguation have ways of influencing the timing of the introduction of new satellite systems. Bell Laboratories has reported research on scanning spot beam satellites and both AT\&T and GTE have conducted operating tests at 18 and 28 GHz frequencies. Other competing satellite carriers may also be thinking about their third generation of domestic satellites.

The results of the WARC ' 79 conference may establish new regilations for the use of higher frequencies. Nations are attempting to reserve parking space in-orbit for future national communications sate?lites. The United States may find itself, by the mid 1980's with few orbital slots to place additional satellites for optimum communication. Changes in the minimum number of degrees of orbiting satellite spacing will affect the availability of desirable slots.

Other competing approaches to $30 / 20 \mathrm{GHz}$ satellites may influence the timing, and perhaps even the eventual introduction of satellite systems. A new generation of satellites which may be used during the 1990's will provide area coverage by a large number of spot beams operating in several frequencies. Multiple frequency reuse on spot beams could lead to satellites with usable capacities equivalent to 300 present-day 36 MHz transponders. Others foresee the 1980's as a period of transition in satellite communications. The benefits of large capacity systems may result in the employment of large genstationary platforms by the 1990's with multiple carriers sharing its use.

Predictions for much higher fuel costs will add to the demand for all types of communications systems, at the expense of personal travel.

Rising real growth in the U.S. Gross National Product will create the economic environment necessary to support advanced satellite systems.

Thus, there are many factors which will influence the timing of the use of $30 / 20 \mathrm{GHz}$ systems. The most likely t iming for its introduction would be in the 1992-1995 timeframe, but this could vary if some of the factors discussed substantially change during the 1980's.

SECTION 5

COMPUTER MODELLING

The use of various computer models and operations research techniques permitted the evaluation of a number of alternative traffic models for each of the eleven market scenarios. The Market Distribution Model (MDM) was also used to analyze the various network parameters and to develop spec ific market values for eleven different network sizes. Market value represents a relative measure of communications traffic between all 275 SMSA's. This model was updated and enhanced to enable the projection of market values for the years 1990 and 2000.

5.1 Market Distribution Model (MDM)

Several new traffic indicator data bases were added to the MDM for this study. These included Population Forecasts, Effective Buying Income forecasts, and Equipment Shipment Values. Equipment Shipment Values are a Commerce Department indicator of manufacturing production within an SMSA. These data bases and several others were used after relative weightings, to determine the market values of the 275 SMSA's in the Model. A trend projection technique was employed to extend several data bases through the years 1990 and 2000. This served to influence the relative importance of all SMSA's over time. However, it should be recognized that several other data bases remained unchanged during the time forecast period. This is due to the static nature of the distribution of the data bases through time. The Market Distribution Model (MDM) provided a complete traffic distribution between all of the 275 SMSA's. This was accomplished by combining weighted static and dynamic flow data bases. The static data bases are converted to a dynamic flow by an algorithm employing a distance sensitivity measure. For an overview of this procedure, see Figure 2. The same process was used for both a common network market distribution and a trunking network market distribution.

5.2 Parametric Crossover Distance Model

For the specialized carrier network scenarios, the Parametric Crussover Distance Model developed in Task 5 was revised to reflect the different mixture of services and to facilitate the separation of terrestrial and satellite traffic. The crossover mileage distance it produced determined the distance at which the satellite pricing has a 20% advantage over the corresponding terrestrial service pricing.

Crossover distances were combined in a weighted form for both key years involved and the changing service mix of traffic. Variations to this mileage distance criteria, where satellite service was equal to Kuband service, were evaluated for alternatives of both 20% and 40% below Ku-band service.

MARKET DISTRIBUTION MODEL

Four kinds of traffic were considered in the specialized carrier network crossover distance model. Figure 3 shows the alternative combinations of traffic. The four traffic alternatives are known as satellite inter-station traffic, intra-cellular traffic, terrestrial inter-SMSA traffic and satellite inter-SMSA traffic. In the example, it is assumed that the distance between the two earth stations A and A is greater than the minimum crossover mileage. The circles surrounding the earth station locations represent the maximum SMSA hubbing distance (radius) of 50 miles. The satellite inter-station traffic between A and A^{l} is included in the network market values.

The SMSA marked as "B" is subordinated to the earth station "A" because it falls within the hubbing distance (50 miles) and its traffic called intra-cellular, is carried terrestrially.

A third type of traffic is between two subordinated SMSA's within different earth station cells. Traffic between "B" and "C" is considered to be terrestrial inter-SMSA if either: the distance between the two points is less than 100 miles or the distance between these points is, less than the mileage crossover advantage of satellite vs. terrestrial.

Traffic between two subordinated SMSA's such as "B" to "D", which are greater than 100 miles apart is called satellite inter-SMSA and its market value is included in the satelite traffic model.

5.3 Market Optimization Model

The market optimization method is a new technique developed with the objective of attaining the maximum market value by means of exclusion of the least amount of cormon network. This means that in any network of "N" earth station locations, a process of reduction (contraction) occurs whereby the station with the least incremental market value is eliminated until the desired threshold value for the total remaining coverage is achieved.

By subordinating SMSA's to their closest earth station locations within its area of coverage, the market optimization insured an optimal earth station network. In addition, it provided networks which met economic cross-over criteria for the common network scenarios.

The satellite market value of all locations are interrelated since half of the market value resides in the termination of traffic in another earth station or in a subordinate SMSA. The market optimization method is based on the fact that the earth station excluded at any points the earth station which exclusively serves the smallest market value. The graph of the incremental market values per location versus the number of earth stations included in the network is shown in Exhibit 1.

Exhibit 1

Through the development of minimum traffic thresholds for each earth station network model, the determination of the various network sizes were made. These criteria of minimum traffic levels for common networks are discussed in Section 6.

It was determined from the BDP. for instance, that with a total of 164 earth station locations $: 11275$ SMSA's could be served by a common or specialized carrier network. However, it is neither necessary nor economically viable to place $30 / 20 \mathrm{GHz}$ earth stations at all 164 locations.

Additional computer modelling was also utilized to develop the most important 10 and 20 trunking earth station locations. Through careful geographic analysis of major hubbing locations, a ranking of the most suitable locations for trunking earth stations was developed.

The use of computer modelling also enabled the translation of the cumulative market value of a certain network scenario into a traffic forecast of potential service demarid by network scenario type.

The results of these computer modelling efforts to analyze the various network size alternatives are displayed in a flow diagram in Figure 4.
TRAFFIC DISTANCE CRITERIA

figure 3

SECTION 6

COMMON NETWORK 30/20 GHz MARKET MODEL

6.1 Network Definition

A common network is generally provided by specialized common carriers using a networking approach which strategically locates a number of earth stations close to major markets. Lacking an extensive terrestrial distribution system, careful placement of earth stations to maximize market is vital.

For economic rezsons, :inking of subordinate market areas within a limited mileage radius must also be carefully analyzed. The terrestrial extensions which provide interconnection is required to create the critical threshold of market demand to justify serving any one location. Traffic distribution requirements will also require the lease of local loops to interconnect the earth station to the user's premises. Market demand within this type network will come from multiple corporate users, joint or shared facility users and individual, large dedicated users. These types of users may require direct transmission to their on-premises $30 / 20 \mathrm{GHz}$ earth stations.

There are likely to be variations in user demand for transmission quality levels as well as delivery time in common networks. Teleconferencing users, for example, will require point-to-point real-time transmission; electronic messages, on the other hand, may be delayed several hours before completing delivery. By far, the most common type of traffic on $30 / 20 \mathrm{GHz}$ networks will be private line voice and data.

One final characteristic of common networks is that the earth station size and capacity will vary significantly depending on the market to be served. Obviously, the earth station serving Los Angeles will have a vastly greater capacity than the one serving Cincinnati. The flexibility of the served network locations will have to be matched with the communication satellite.

6.2 Network Scenarios

A total of nine network scenarios were examined for the common network market models. First, it was appropriate to select models representing three distinctive network sizes. These are minimum, most efficient and maximum network size. These network scenarios were selected to provide a broad range to the net accessible market and the geographic market coverage.

```
OREStSM Wrat
```


The least number of earth stations represents the smallest network which could attain economic viability. This network is characterized by large earth stations serving a relatively small number of the 275 Standard Metropolitan Statistical Areas (SMSA's).

The largest number of earth stations identifies the broadest market coverage with the smallest earth station while still achieving the minimum market and economic criteria.

In between these two network models is a most efficient number of earth stations. This network size examines the effects of other carrior's competition to determine the smallest incremental location which meets minimum market and economic thresholds.

It was determined from both previous market analysis and a review of local access tariffs that terrestrial extension coverage could viably extend to all neighboring SMSA's within 50 airline miles of the earth station location. Where a particular neighboring SMSA was of a significant market size, this hubbing criteria was extended an additional 15 miles.

One of the most important considerations in the segregation of net accessible $30 / 20 \mathrm{GHz}$ market is the pricing relationship between Kuband and $30 / 20 \mathrm{GHz}$ satellite systems. Therefore, three price variations were analyzed for their price/demand relationships. The three pricing alternatives are:

- Equal to Ku-band service
- 20 percent less than Ku-band service
. 40 percent less than Ku-band service
The effects of these pricing alternatives have been reevaluated solely in relative terms - no actual costing of $30 / 20 \mathrm{GHz}$ systems has been done. The effects on market demand of service price variations is calculated through the parametric network cost model and its associated distance crossovers. This is discussed in more detail in Section 6.3.4.

The choice of three pricing variations for each of the three network scenarios caused a total of nine subscenarios to be created. The common network scenario thus contains nine subscenarios, each yielding a variation in the net accessible market demand.

6.3 Methodology and Approach

6.3.1 Approach

Development of the common network net accessible market involved a series of steps to generate the appropriate market sizing. The essential steps are shown in Figure 5 and indicate that the product of these efforts is the network market values. The market value represents a relative measure of communications traffic between all SMSA's.

The Market Distribution Model was used to establish a market profile for the specialized carrier market. A revised parametric network cost model was developed to reflect the competitive service pricing of a specialized carrier network. The application of mileage crossover distances resulting from the cost model yielded the satellite accessible market. The establishment of a common network terrestrial hubbing criteria indicated the market scope.

Sizing of the three distinct networks was accomplished through consideration of dynamic programming analysis, market yalue threshold criteria and adjustment for competition within geographic areas. The nine separate traffic forecasts, expressed in terms of cumulative network market values, were generated as a resuit of the market scenario service pricing and network sizing assumptions.

6.3.2 Market Development Methodology

The profile of the common network is based on the scenarios discussed in Section 6.2. There were four assumptions for the common network profile:

- Cost effective routes which met the minimum economic crossover distance threshold in comparison with terrestricl routes
- Earth stations were located at the largest (ranked by market value) SMSA's. The market value reflects the communications traffic distribution between a set of SMSA routes and is expressed in percentage form
- Earth station coverage extended to a 50-65 mile radius of cuverage
- Subordinate SMSA's were linked to principal earth station locations if within this $50+$ mile radius.

A parametric network cost model was developed for the specialized carrier network. The cost model produced the minimum crossover distances for each of the three pricing variations where satellite service is cost effective in comparison with terrestrial service. Orily those SMSA route pairs which met the minimum distance criteria were included in the accessible market.

Rather than locating an earth station in a small SMSA which had two or more larger SMSA's surrounding 1 t , the market profile assumed that earth stations would only be in principal SMSA's. Therefore, the earth station SMSA could not have a s!ngle subordinated SMSA which had a greater market value.

6.3.3 Market Distribution Model

The Market Distribution Model (MDM) contains a series of databases which reflect the relative demand for communication services by SMSA and route. Its geographic coverage includes 275 SMSA's in the contiguous U.S. and contains over 72% of the U.S. population and 37,675 possible route combination. It represent the entire market universe for this study.

The MDM was updated by the addition of more current information for existing databases and three new databases: population forecasts for 1980, 1990 and 2000. effective buying income by location for the same three periods and equipment shipment values for 1978-79.

Six principal databases were used in the MDM to reflect the common network market profile. They were weighted individually and combined statistically within the model. The six selected databases were:

- Business Telephones
- U.S. Population
- Computer Ma inframes
- Manufacturing Shipments
- TWX Messages
- Effective liuying Income

The total demand represenied by the MDM database indicators represents values for both terrestrial and satellite traffic. These market values were "normalized" to reflect only the satellite portion. That is, if the satellite demand represented 40% of the total, that 40% was adjusted to reflect 100% market distribution for the $30 / 20 \mathrm{GHz}$ satellite market.

Once completed, the MDM was seady for consideration of the distance crossover criteria which yielded a smaller geographic market coverage.

6.3.4 Parametric Network Cost Model

A Parametric Cost Model was developed uriginaily in Task 5 of the first phase of this study. In that study, a satellite system cost model for both C and Ku-band was constructed. Howeser, that model did not reflect either the earth station network size or service distribution of a specialized carrier network. To account for these changes, revisions were made to the original model for end-to-end Ku-band service costs. The revisions were:
. The number of earth stations were increased from 10 to 40

- Average earth station utilization rate increased from 6ux to 80\%
- A greater proportion of medium and high speed (9.6 and 56 Kbps) data channels over voice service's.

As a result of these model revisions, the service channel cost for the Ku-band TDMA satellite network was reduced for years 1990 and 2000. A 20\% premium was added to these basic service costs to provide the necessary incentive for conversion from terrestrial to satellite transmission. A sample output for year 2000 of the Parametric Cost Model is shown ill Table 2.

By weighting the model's crossover distances by the traffic distribution of each of the four services (voice, low, medium and high speed data) and average crossover distance for Ku-band (equal to $30 / 20 \mathrm{GHz}$) service in 1990 and 2000 was developed. The combined average crossover distance of the two key time periods in the base price case was 387 miles.

The Parametric Cost Model also produced crossover mileanes for reduction in price from Ku-band service. As a result, in each case, the average crossover distances for 1997/2000 were lowered. Comparison of the three satellite circuit costs and crossover distances derived from the specialized carrier network cost mode' is displayed in Tables 3 and 3A.

30/20 GHz Parametric Cost Model Comparison of Distance Crossover Mileages

Price	Crosscuer		
	$\frac{1990}{2}$	$\frac{2000}{25}$	Average
Equal to Ku-Rand	410	385^{*}	397
20\% Below Ku-Band	251	222	236
40\% below Ku-Band	107	87	97

Table 3
*Shown as example in Table 2.

MOIEL	TEAF:	E		Sts	EM	SFEEI	WEIGHT	ES+EL	CHAN/ES	SFACE	$\mathrm{CH} \operatorname{cost}$	total	TOTAL, ${ }^{\text {ar }}$	Loop	CH+LOOF	CROSSOVER DISTANCE (MILES)
40 E 5	2000	ᄃ	--	EAiti	trima	voice	49.98	6684383	204	1999020	569855	9253259	2268	1122	3390	310
$70 \mathrm{E}=$	2000	$=$	-	EAIIT	Frim	VOICE	18.90	2011366	204	1663454	2162400	5837220	1431	1122	2553	170
40 E S	2000	k	--	EANL	Trima	VOICE	49.98	5028195	204	4747673	636:00	10411868	2352	1122	3674	360
40 E 5	2000	k	-	EAMI	FIM	VOIEE	18.90	1388932	204	39507U4	2162400	02036	1839	1122	2961	240
40 E 5	2000	c	-	Fadic	trima	300 E	14.99	2005315	612	599706	63498:4	0754845	732	638	1370	20
40 E 5	2000	こ	-	EAIHI	FIMM	300 E	5.67	603410	612	499036	6838272	7940718	649	638	1287	10
40 ES	2000	K	-	EAMM	TrImA	300 E	14.99	1508459	612	1424302	6349824	9282584	758	638	1396	20
1- $=$	3n\%:	,		Falici	FITM	300 F	5.67	416679	612	1185211	6838272	8440163	690	838	1328	20
40 ES	2000	C	-	EAMIS	TLIMA	9.6KE	20.09	2686860	82	803528	2507366	5997754	3657	1996	5653	0
40 E 5	2000	-	-	EAMI	Fim	9.6 kE	7.60	808490	82	668643	3144384	4621518	2818	1996	4814	0
40 E S	2000	k	-	EANI	TTMA	9.6 KF	20.09	2021137	82	1908378	2533824	6463340	3941	7548	11489	830
40 E S	2000	K	-	EAMD	FIM	7.6 kE	7.60	558296	82	1588028	3144384	5290708	3226	7548	10774	$7{ }^{\circ}$
H0 E 5	2000	こ	\cdots	Earte	Trima	56 kk	14.94	1998762	01	597746	512870	3109378	2549	22580	25129	250
40 E S	2000	c	--	EATIS	FIM	56 kE	67.83	7217254	51	5968866	9005760	:2191880	18190	22580	40770	780
40 E 5	2000	к	-	FAMIM	Trima	56 ks	14.94	1503529	61	1419647	572400	3495576	2865	22580	25445	260
40 E 5	2000	$\stackrel{1}{ }$	-	EAWI	Frim	56 Kk	67.83	4983813	61	14176056	9005760	.8165629	23087	22580	45637	750

KEY
Space Segment, including launch costs
Cost of channelizing equipment
Sum of earth station, entrance link,
space segme.at and channel costs
Total cost divided by total number two-way system channels Local loop leased cost

Ch + Loop - Total annual cost per end-to-end chamel Crossover Distance - Mileage where satellite is lower

	$\underline{1990}$	$\underline{2000}$
Equal to Ku-Band	$\$ 6400$	$\$ 8200$
20\% Less Than Ku-Band	5100	6500
40% Less Than Ku-Band	3800	4900

Table 3A
As the incremental market value became progressively smaller until the last earth station location is included, it was necessary to identify the threshold where the incrementa! market value of adding $\mathrm{N}+1$ earth stations could not be economically justified.

A specialized carrier earth station site cost model was developed to serve this purpose. The operative premise was that the incremental revenue/traffic accessible by any principal SMSA had to be sufficiently large to cover the annual cost of capital and operations of a $30 / 20 \mathrm{GHz}$ earth station in that SMSA. Market penetration of that incremental traffic was not a factor at this point.

For the earth station site model, cost data was derived from the Hughes Aircraft Co. " $18 / 30 \mathrm{GHz}$ Satellite Communication System Study" of June 7, 1979. The direct to user, FUMA multi-beam network model was selected because it seemod to represent the clnsest available model for a common network-type earth station. The FDMA model was also used because it appeared to be more efficient for supporting a multi-beam interconnected network, especially voice traffic, and its cost was higher, so that a more conservative cost model would be used.

The minimum traffic requirement for each earth station location was derived from the following model elements shown in Table 4:

- Annual earth station cost ($\$ 873,000$)
- Weighted average bandwidth per circuit (2 Mbps)
- Average annual revenue per circuit $(\$ 103,500)$

The annual cost of an earth station was divided by the average circuit revenues to determine the minimum number of circuits which must be sold to justify the expense. The resultant 8.5 circuits when multiplied by 2 Mbps, as adjusted by a market inertia factor of 1.25 , produces a minimum market denand of 21 Mbps for each earth station location. The market inertia factor, which was first mentioned in the Phase I study, acknowledges that regardless of price, service or coverage only some of the customers in ary locations will ever switch from terrestrial service.

The final step in determining the minimum incremental SMSA traffic size involved transforming the minimum traffic size in Mbps to a market value or percent of the accessible market to be served. This was done by dividing the minimum traffic size of 21 Mbps by the overall net addressable $30 / 20 \mathrm{GHz}$ market demand. Section 8.2 discusses how the net addressable $30 / 20 \mathrm{GHz}$ demand was developed in greater detail.

Specialized Carrier Earth Station Site Cost Model

Earth Station Cost			(\$000)
FDMA Earth Station Installed Cost	ost		2167*
Return on Investment (22\%)			476
Depreciation (4 Years)			180
Operations and Maintenance			217
Total Annual Cost/E.S.			$\underline{873}$
Revenue Development			
Service \quad Distr	Distribution of Services	Annuâl Revenue/ Circuit*	Weighted Revenue
Voice/Data - 64 Kbps	52\%	\$ 6,700	\$ 3,500
High Speed Data - 1.544 Mbps	23\%	80,000	18,500
Video - 6.3 Mbps	25\%	326,000	81,500
Average Bandwidth Per Circuit - 2 Mups	Average An Per Ci	Revenue	\$103,500
Minimum Traffic Requirement			
Annual Cost/E.S. Average Revenue/Circuit	$\text { cuit } \frac{\$ 873}{103}$	8.5 circuid	uits
Therefore, 8.5 circuits @ $2 \mathrm{Mbps} /$ circuit $\times 1.25=$ 21 Mbps minimum market demand/earth station location			
*Hughes Aircraft Final NASA Study Report, June 7, 1979			

$$
\text { Table } 4
$$

The application of the average crossover distances to the total addressable $30 / 20 \mathrm{GHz}$ satellite market is instrumental in determining the accessible market for the three pricing scenarios.

6.3.5 Network Sizing Criteria

The previously outlined market analysis determined the total addressable market for $30 / 20 \mathrm{GHz}$ satellite systems. At this point it was necessary to select the geographic coverage provided by the three earth station network sizes and develop the corresponding market values.

As previcusly discussed, three network sizes were to be identified for the specialized carrier or common network: minimum, most efficient and maximum. Each network size represent a $30 / 20 \mathrm{GHz}$ system consisting of earth stations located in principal SMSA's and a number of subordinated SMSA's within a $50-65$ mile radius.

6.3.5.1 Minimum Earth Station Network

The minimum network size is defined as the smallest viable network based on geographical market coverage. From other common carrier experience it has become clear that a network serving only a few markets and offering limited market coverage could not remain viable. In the early years of the specialized microwave carriers, for exampie, it took time for them to expand their network coverage to sufficient geographical coverage to attract new customers. Large communications users have a need to communicate to most of the principal U.S. cities and normally will seek a competitively priced carrier which offers service to these largest 15-20 metropolitan areas.

From marketing experience, it was determined that the minimum required market coverage is 30% of the total accessible market. At a 30% coverage level almost all of the principal centers of business activity will be served. Accordingly, an analysis was conducted to determine the tota? number of SMSA market values necessary to generate a 30% market coverage. Results of that analysis are shown in Section 6.4.

6.3.5.2 Maximum Network Size

Determination of the maximum or largest earth station network involved consideration of econonic trade-offs. The dynamic programming techniques discussed in Section 5 (Computer Modelling) provided the foundation for the network sizing analysis. The computer modelling determined that with a total of 164 earth station SMSA's and the remaining 111 SMSA's subordinated to the 164 largest locations, 100% of the accessible market could be served.

The minimum market value th.reshold for each additional SMSA is shown with the three price alternatives.

Service Price
. Equal to Ku-Band

- 20% Below Ku-Band
- 40% Below Ku-Band

Minimum Market Value/Earth Station Location
$.11 \%$
. 10\%
. 10\%

The dynamic programming model which develoded the incremental market values for the 164 earth station SMSA's indicated how far it was possible to go into the ranking before the minimum incremental market value per SMSA was no longer achieved. At that point where the last incremental SMSA added a duplex market value equal to the network minimum market value, the earth station network size was defined for all three pricing variations. These results are displayed in Section 6.4.

6.3.5.3 Most Efficient Network Size

The earth station network which represents the most efficient size is the number of stations where each one incrementally generates sufficient traffic to economically justify it within a competitive carrier environment. An important element in this analysis was to attempt to define the extent of the competition in the 1990-2000 time period for $30 / 20 \mathrm{GHz}$ markets.

A competitive market scenario was created in which as many as four specialized carriers will be operating $30 / 20 \mathrm{GHz}$ satellite networks. It is foreseen that the need for greater capacity and the availability of this higher frequency spectrum may attract four major specialized carrier competitors.

A further effort is to define the relative market shares of each of these competitors for $30 / 20 \mathrm{GHz}$ traffic. In the absence of any perceived clear-cut advantage one carrier may have over the others, it was decided that their respective market shares would be divided equally in fourths or 25% of the accessible market traffic in all locations served.

Thus, given a market environment, where, due to competition, only 25% of the accessible market was available to one specialized carrier network, a minimum traffic requirement level could be established for the smallest SMSA.

For the maximum network scenario, the minimum traffic level per location was converted into minimum market value per end location required to economically justify locating a $30 / 20 \mathrm{GHz}$ common earth station in a SMSA. The most efficient network sizing minimum market value criteria was developed with the assumption that only one-fourth of the SMSA's accessible traffic would be available to justify locating the $30 / 20 \mathrm{GHz}$ earth station. Therefore, the minimum market value per end location has been increased by a factor of four:

Service Price

- Equal to Ku-Band
- 20% Be low Ku-Band
- 40% Below Ku-Band

Minimum Market Value/Earth Station Location

An analysis of the dynamic programming model of the 164 SMSA earth stations indicated the point at which the incremental market value of each SMSA could justify locating a $30 / 20 \mathrm{GHz}$ earth station. At that number of earth stations, which was different for each of the three pricing alternatives, the smallest earth station would still have sufficient accessible market traffic to support it in a competitive market environment. The resuits of this scenario analysis are displayed in Section 6.4.

6.4 Network Analysis Results

As a result of the previously outlined methodology, nine earth station network scenario sizes were developed. Fach network covers a varying number of earth station locations and subordinated SMSA's representing different geographical area coverage. The market coverage represented by these common networks is expressed in terms of the proportion of the served accessible market. The market coverage also represents the satellite communicarions activity in the SMSA's being served by the commion network earth stations. The $30 / 20 \mathrm{GHz}$ market forecasts by service and peak load can be found in Section 8.

6.4.1 Minimum Network Size

The minimum number of terminals for the smallest viable network was developed for the three service price alternatives to ku-band.

A thorough analysis of the economics of operating a communications network combined with the number of major market demand centers in the U.S., indicate that about 30% of the accessible market represents the minimum viable coverage.

A satellite network must serve this minimum portion of the market to attract a sufficient number of customers and subsequent traffic load to its network.

The Market Distribution Model criteria for the minimum network size were set at identifying the number of SMSA's and subordinate locations within a 50 mile radius of the earth station which will cumulatively represent a 30% market value. The resulting analysis indicates that all three price variations a total of 16 earth station locations representing 52 SMSA's will yield a market value approximating 30%.

Figure 6 is a map of the U.S. which identifies the sixteen $30 / 20 \mathrm{GHz}$ earth station selected locations. The Appendix contains the computer analysis for the minimum network model by principal and subordinate SMSA and their associated market values.

While the number of locations and the SMSA's are identical for all three crossover distances, there are two differences among the three networks. First, the SMSA order of ranking and individual market values change with the reduction in the crossover distance. For example, Houston is the 5th ranked ea.th station SMSA where the service price is equal to Ku-band (397 mile crossover) it dropped to 9 th place when the service price is 20% below Ku-band (236 mile crossover). In effect, as the crossover mileage shrinks with service price reductions, the SMSA's in the densely packed Eastern Corridor increase in market value.

The second difference is a slight change in the cumulative market values of the 16 SMSA's (plus subordinates) between 1990 and 2000. Table 5 summarizes the cumulative market values for the common model variations in the year and service price level.

Common Network Model

Minimum Network Size

1990		2000	
No. E.S.	Cumulative	No. E.S.	Cumulative
Locations	Mkt. Values	Locations	Mkt. Values

Service Price
Equal to Ku
16
31.07%
16
30.88\%

20\% Below Ku
16
31. 30%

16
31.14\%

40\% Below Ku
16
31.40\%

16
31.19\%

Table 5
$30 / 20 \mathrm{GHz}$ SATELLITE NETWORK COMMON EARTH STATION LOCATIONS MINIMUM NETWORK SIZE

6.4.2 Maximum Network Size

The maximum network size employed a market analysis methodology which involved creation of an earth station site cost model to determine the smallest amount of traffic in an SMSA location to economically justify placement of a specialized carrier earth station. The smallest market values were also developed and displayed in table 4.

Using the previously developed computer-based market model. the threshold point in the SMSA ranking was determined. The smallest market value for the last principal SMSA location was about $.11 \%$ for each of the three service price variations. This represented a different number of earth stations, total SMSA's served and cumulative market value as shown in Tables 6 and 7. The apparent trend in these results is that as the service price and satellite crossover distances decline, the number of viable earth station locations and cumulative market value served increases. Thus, at a service price 40% below Ku-band, more than 82% of the market can be served, with the smallest or last ranked SMSA still generating a sufficient amount of traffic.

Cormmon Network Model
Maximum Network Size
Year 1990

No. Of
Service Price
Equal to Ku
20\% Below Ku
40\% Below Ku

No. Of
Total SMSA's 174

189
203

Cumulative Market Value
60.30\%
73.04\%
82.26\%

Table 6

Cormon Network Model
 Maximum Network Size

Year 2000

No. Of	No. Of	Cumulative
Earth Stations	SMSA's	Market Values

Service Price
Equal to Ku
82
180
60.68\%

20\% Below Ku
90
191
73.16\%

40\% Be low Ku
99
203
83.15\%

Table 7

The individual names of the earth staiion locations are too numerous to display on a map but can be found along ith their subordinated SMSA's and market values in the Appendix. The ranked order is based on the total market value of the principal SMSA plus all of its subordinates located within a $50+$ mile radius for hubbing purposes.

6.4.3 Most Efficient Network

The most efficient common network has been defined as one in which the smallest incremental SMSA qenerates sufficient communications traffic within a competitive carrier environment. In the selected competitive market scenario for the $30 / 20 \mathrm{GHz}$ satellite market four carriers will be vying for an equal share of each principal SMSA. Therefore, the minimal amount of traffic per location will have to be four times larger than in the maximum retwork model. This roughly translates into a minimum market value for any SMSA of . 44% of the accessible market.

A simiiar market analysis of the previously discussed market model yielded different numbers of SMSA's, each of which overcame the minimal traffic hurdle. Assuming each specialized carrier obtained an approximately equal market share of all served SMSA's, the number of earth stations contained in the most efficient common network will ranoe from 28 to 36 , depending on the service price alternative. These market value results for 1990 and 2000 are
displayed in Tables 8 and 9. The earth station locations are shown in Figure 7.

Common Network Model Most Efficient Network Size			
Year 1990			
	No. Of Earth Stations	No. of SMSA's	Cumulative Market Values
Service Price			
Equal to Ku	28	95	35.46\%
20\% Below Ku	34	105	46.97\%
40\% Below Ku	36	113	53.47\%

Table 8
\qquad
Common Network Model
Most Efficient Network Size
Year 2000

No. Of
Earth Stations

No. Of
SMSA's

Cumulative Market Values

Service orice

Equal to Ku	28	95	35.38%
20% Below Ku	34	105	46.86%
40% Below Ku	36	112	53.30

Table 9
30/20 GHz SATELLITE NETWORK
COMMON EARTH STATION LOCATIONS
MOST EFFICIENT NETWORK SIZE

SECTION 7

TRUNKING NETWORK 30/20 GHz MARKET MODEL

7.1 Network Definition

A public carrier or satellite trunking network can be characterized as a system composed of a limited number of high volume earth stations serving as an adjunct to an extensive terrestrial system. Such a satellite system could be used by a Bell-type carrier to off-load terrestrial facilities, carry high volume or wideband traffic or provide other services best suited for such a system (e.g. Broadcast, Audio and Video).

The public carrier networl earth stations will have large traffic capacities, higher cost and location: only in the highest traffic volume areas.

The existence of extensive inter-SMSA terrestrial facilities will permit terrestrial extensions to a greater radius than was conomically feasible for the specialized carrier, which owned none of these facilities.

The public carrier will have message toll service as its largest proportion of nationwide traffic.

7.2 Methodology and Approach

Two market coverage models for the $30 / 20 \mathrm{GHz}$ trunking network approach were analyzed. The first market model contained 10 earth station locations, the second contained 20 locations. Calculations of the respective market coverages and net accessible markets for each model were made, taking into account the terrestrial extensions necessary to reach the maximum market. Variations in service price were not considered because a public carrier's justification for use of a $30 / 20 \mathrm{GHz}$ satellite system may have little to do with service price. For a public carrier, the use of a high capacity satellite system may be based on it providing network backup, the more efficient handling of specialized service, or competitive necessity.

The two key market parameters for the trunking network are the optimal selection of the SMSA earth station locations and the hubbing distance determination.

The Market Distribution Model was used for the earth station location selection and to rank the terminating traffic values for ail 275 SMSA's in years 1990 and 2000. The numerical descending order for the trunking model was based on the weighting of five market databases:

- Business Telephones
- U.S. Population
- Computers
- TWX Billing Messages
- Manufacturing Shipments

A selection of the first ten and second ten most important locations was based upon a minimum of 235 mile separation between all earth station SMSA's. This distance factor represented two times the subordinate SMSA hubbirg mileage (118 miles) and also permits separation of satellite beans if required. This criteria resulted in Philadelphia traffic hubbed to New York and San Diego traffic hubbed to Los Angeles.

The crossover distance for $30 / 2 \mathrm{CHz}$ satellite trunking traffic was based on a simplified economic model. All trunking network traffic was assumed to be grouped in $\mathrm{T}-1$ (1.544 Mbps) wideband channels. A comparison was made of the current satellite rate for a $T-1$ channel versus the projected year 2000 terrestrial T -i rate. The economic model was developed to yield the maximum mileage distance where terrestrial hubbing would be more economically attractive than satellite interconnection. That distance was found to be 118 miles and is based on the data shown in Table 10.

Trunking Network Cost Model

Table 10

[^1]The 118 mile cost crossover represents the internal cost with appropriate incentive for a public carrier to divert suitable terrestrial traffic to more cost effective satellite facilities. Therefore, in most cases, any SMSA within a 0-117 mile distance of an earth station location will be hubbed terrestrially to that station. An SMSA market value threshold was developed so that any SMSA with a higher market value which is within a $118-165$ mile radius would be included in the value for the earth station SMSA. The market value threshold was based on a minimum market size which warranted extension to an outer limit of 165 miles. This threshold was established at a 0.1% market value which was determined on the basis of market judgement of traffic thresholds.

Through this selection process of optimum locations for 10 and 20 trunking earth stations, along with extending coverage to the subordinate SMSA's, two carrier network models were created for years 1990 and 2000. The digest market value coverage of the accessible $30 / 20 \mathrm{GHz}$ market was ob ined for these network sizes as a result. The market sizing process for the putilic carrier network is shown in Figure 8.

7.3 Network Analysis Results

Two trunking earth station network models were created as a result of the previous methodology. The market coverage of these networks is expressed in terms of the proportion of the served accessible market. The market values also represent the satellite communications activity being served by the trunking network earth stations. The $30 / 20 \mathrm{GHz}$ market forecasts by service and peak traffic load is presented in Section 8.

7.3.1 Ten Earth Station Network

The ten earth station locations selected for the trunking network are displayed in Figure 9. These locations, representing the optimum market coverage, are:

1. New York
2. Los Angeles
3. Chicago
4. Detroit
5. Washington, D.C.
6. San Francisco
7. Boston
8. Cincinnati
9. Atlanta
10. Houston
PUBLIC CARRIER NETWORK MARKET SIZING

FIGURE 8

The 10 locations plus their subordinate SMSA's would provide market coverage for more than 34\% of the accessitle market. In addition to the ten principal locations, a total of 117 subordinate SMSA's would be interconnected to the trunking network. The market values for both 1990 and 2000, produced as a print-out from the Market Distribution Model, are in the Appendix.

7.3.2 Twenty Earth Station Network

The optimal 20 trunking earth station's approximate geographical coverages are shown in Figure 10. It was determined that the first 10 stations were identical in both the twenty and ten station model because of their very large market values. However, the market values for these top ten locations were greater in the twenty station network because their universe of communications (19 other stations plus their subordinate SMSA's) is larger than the ten siation network. For example, New York and its subordinate SMSA's have a market value of 7.5% in the ten station model and 9.8% in the larger model.

The twenty earth station locations selected for the trunking model are:

1. New York	11.	Pittsburgh
2. Los Angeles	12. Dallas	
3. Chicago	13. Miami	
4. Detroit	14.	Tampa
5. Washington, D.C.	15. Minneapolis	
6. San Francisco	16. St. Louis	
7. Cincinnati	17. Denver	
8. Boston	18. Buffalo	
9. Atlanta	19. Kansas City	
10. Houston	20. Seattle	

The 20 locations plus their 148 subordinate SMSA's provide market coverage of more than 56\% of the accessible satellite market. The market model printouts for 1990 and 2000 are in the Appendix.

SECTION 8

NET ACCESSIBLE 30/20 GHz MARKET

8.1 Market Definition

Development of the Net Accessible Market for $30 / 20 \mathrm{GHz}$ systems began with the net addressable market forecast presented in Task 6C and Appendix G of the Phase I study. That forecast incorporated a number of factors which rendered the total satellite traffic more suitable for a $30 / 20 \mathrm{GHz}$ system. Principal among them are operational characteristics such as weather induced service outages, technical considerations such as message distribution and economic decisions based on the comparative prices for all service alternatives.

It was recognized that the type of services likely to be carried on trunking networks is likely to differ from those carried on common networks. For example, a high proportion of MTS business and residentiai traffic will be carried on a trunking network, whereas the common network may carry little or none. Therefore, a different mixture of service volumes was developed for each network.

The existence of an operating $30 / 20 \mathrm{GHz}$ satellite system was assumed to have an impact on the market demand for such a system. This assumption has been validated by earlier satellite systems and services where demand was stimulated simply by the existence and user awareness of a new service mode. The effect of implementation and general availability of $30 / 20 \mathrm{GHz}$ systems during the 1990's was to lower the demand in 1990 and to increase it in the year 2000.

Application of these factors to the Scenario 2 net addressable market resulted in the traffic volumes shown in Table 10 for the specialized carrier and in Table 11 for the public carrier. The net accessible market for each type of network is very close in overall traffic volume but do exhibit variations in service mix. Conversion of individual service units to Megabits per second (MBPS) is based on the same criteria previously specified in Task 6C of the Phase I study.

8.2 Market Development

Both the specialized and public carrier accessible $30 / 20 \mathrm{GHz}$ markets were developed from the same source: the net addressable market traffic forecast prepared for Task 6C of the Phase I market study. In that task effort three market scenarios for the $30 / 20 \mathrm{GHz}$ satellite market were created. Scenario 2, which assumed a service price equal to Ku-band and a lower service quality, was selected as the basis for the accessible market development.
TOTAL ACCESSIBLE MARKET TRAFFIC

F!GURE 11

$30 / 20 \mathrm{GHz}$ Specialized Carrier
Total Accessible Market Demand Traffic

	$\overline{(\angle ७ 8 S S)}$			$\overline{(\varepsilon 828 \mathrm{~L}} \bar{\square}$		
$82 \cdot 9$	(S97£)	$\varepsilon \cdot 69$	\% $8^{\circ} 9$	(0s2t)	$0 \cdot \mathrm{SZ}$	TVIOL
		$\bar{*} \angle S$			$\overline{8} \cdot \underline{L}$	
		$9 \cdot 6$			$2 \cdot 9$	NIVJ
		9*I			8.0	ceuotseoso
		$L \cdot 0$			$2 \cdot 0$	Yiomzon
						(s.iepuodsuext) oəpli
\% L° I 8	(9]9St)	OOS S S D'T	\% 9° \& 8	(082SI)	OOS*LLD	TVLOL
		00S ${ }^{6} 0 \mathrm{~L}$			$000^{\circ} t$	snoəuritoosṭn
		$00 S^{\circ} Z 5 I$			$00 S^{\prime} \mathrm{i}$	ssəu!sng-SJW •
		$00 s^{\prime} 29 Z^{\prime} I$			$000^{\prime} 95$ ¢	วuTT ว ${ }^{\text {chentud }}$
						(satnoutj f[eh) ooton
\% I* 2 I	(99L9)	$8 £ I^{\prime} \mathrm{SI}$	$89 \cdot 6$	$(\varepsilon S L L)$	79SE	TVLOL
		¢69			9SI	snoəuerioustw
		SII			σI	xafsuex spunj دtuox
		$8 \varepsilon 8^{\circ} I$			022	
		L6t*			6997	
	sdqw			- $\overline{\text { sdqw }}$		(squqexti) eqed
		0002			$\overline{066 \text { I }}$	

Table 10

30/20 GHz Public Carrier Network
Total Accessible Market Demand Traffic
2000
13,879 $9 \angle S$
$969^{\prime} \varepsilon$
$\overline{18,845}$
$\underline{1990} \underline{2000}$
$\underline{ }$

(2291) 12.5\%

$\begin{array}{r}0.7 \\ 1.6 \\ 9.6 \\ 57.4 \\ \hline 69.3\end{array}$

$\begin{array}{r}0.2 \\ 0.8 \\ 6.2 \\ 17.8 \\ \hline 25.0\end{array}$

Voice (Half Circuits)
> - Private Line

- MTS-Business
- MTS-Public
TOTAL
TOTAL

Video (Transponders)都

[^2]6.9%

Table 11
$\stackrel{\infty}{\infty}$

.
Table

Figure 12 shows the final step in development of the $30 / 20 \mathrm{GHz}$ net accessible market. This step is the application of the market values obtained in the network sizing efforts discussed in Section 6 and 7 to the accessible market demand traffic. The addressable market assumes nationwide geographic coverage, whereas the cumulative market values for each network reflect only the markets actually served by the $30 / 20 \mathrm{GHz}$ earth stations and their subordinate SMSA's. By applying the market values, defined by specific geographic coverage for each of the eleven earth station networks, the net accessible market forecasts for 1990 and $: 000$ were developed.

8.3 Specialized Carrier Cormen Network Market Forecasts

A total of nine network scenarios were developed which dealt with variations in service price and earth station network size. The market values discussed in Section 6.4 (Network Analysis Results) were separately applied to the $30 / 20 \mathrm{GHz}$ common network addressable market demand in a similar manner by service. The result was a series of forecasts of the $30 / 20 \mathrm{GHz}$ common network's net accessible service demand. Service demand has been expressed in the associated service units of volume: terabits for data services, half circuits for voice services, and wideband channels for video services.

Analysis of the $30 / 20 \mathrm{GHz}$ specialized carrier indicates that voice traffic will be the dominant service for the foreseeable future. The specialized carrier voice traffic will contain a combination of MTS business traffic and switched private line services. These customers would be more likely to accept reduced quality (higher outages) service at considerably reduced prices. Consequently, voice channels (at 32 Kbps per half circuit) will tend to dominate the market accessible by cormon networks.

The accessible market forecasts for the nine cormon networks by service for year 2000 are shown in Table 12. It shows that the number of half voice circuits increases dramatically between the minimum network size (with a 31% market coverage) and the maximum network size (covering 60% of the addressable market). The impact of the service price reduction from the Ku-band service level is also shown. For the most efficient size network, a price 20% below Ku-band increases the market size by 50.7%. The relative proportions of the net accessible market where price is 20% less than Ku-band for the most efficient market is shown in Figure 13.

Conversion of the individual service units to Mbps was based on the same conversion factors explained in Task 5C. Phase I study. Re-
30/20 GHz NET ACCESSIBLE MARKET FORECAST

Video (Wideband Channels)

편
\%
" Net Accesssible Market Service Demand
3H2 Comwo Notw

Year 2000

Voice
(Half Circuits)
890,000
$1,008,000$
$1,729,000$

Table 12

4676
5356
9185

4700
8069 8069
12,587

FIGURE 13
sults of these conversions can be seen in Tabie 13 for the service price equal to Ku-band; Table 14 for price 20% below Ku-band. A summary comparison of the three common networks market traffic is displayed in Figure 14.

In Table 13, voice services represent the largest market traffic; 81.7\% of total Mbps demand. A comparison of the three network sizes indicates that tne maximum network size, which contains 80 earth stations, has about twice the net accessible market as the minimum network. This should be compared with the fact that there are five times the number of earth stations in the maximum network scenario.

In Table 14, the most efficient network has a net accessible market in year 2000 which is 50% greater than the minimum network, while its earth stations number 34, approximately twice as large as the smaller network. Table i5 indicates that the maximum networks' total demant is 167\% greater than the minimum network while the comparison of the number of earth ztations, 99 versus 16 , shows a much higher ratio. This analysis indicates tinat a significant fall-off begins to occur after the 20-25 largest markets are covered; incremental earth stations add proportionally smaller market traffic.

8.4 Public Carrier Trunking Network Market Forecasts

The net accessible market for the trunking network is heavily oriented to voice services, espectally Message Toll Service. It is also characterized as concentrated in large population centers because much of the craffic is between and among regional centers. There are also more subordinate SMSA's terrestrially connected to the SMSA's containing earth stations for satellite transmission.

Traffic forecasts for the truiking network are expressed in two measures of tratfic volume: specific service units (i.e., terabits, half circuits, widedand charinels), and in peak hour megabits per seconds. The cunversion fectors irom service units to Mbps are the same as those used in Task 5C, Phase 1 study.

The 10 trunking station market demand is displayed in Table 16 for the years 1990 and 2000. A large growth in tinis teri year apan is projected for the data services market segments, achieving almost a quadrupling in size. The voice services accessible market is growing at a smaller rate of 11% because MTS, while starting from a much larger base, is projected to grow at an annual rate of 8.5%. The impact of these relative service proportions is shown in Fioure 15.

Table 17 displays the 20 trunking station network market projections by service. Once again, the data services accessible market is the fastest growing segment. Note also, that the twenty station market is not twice the size of the ten station market. This happens because the additional ten earth station locations do not contribute a market value equal to the first ten largest locations. The total market value for the ten station model is 34.3%; the $11-20$ stations in the twenty earth station model have a total incremental market value of 12.8%.
MBPS

	Price $=$ Ku-Band		
Dota Services	Video Services	Services	Tota1 Demand
2090	14090	1065	17245
2394	16139	1225	19758
4105	27679	2104	33888

Table 13
Minimum Network
Most Efficient Netwoik
Maximum Network

Minimum Network
Most Efficient Network
Maximum Network
Common Network Net Accessible Market Year 2000 Service Demand

Minimum Network
Most Efficient Network
Maximum Network

$$
\begin{gathered}
30 / 20 \mathrm{GHz} \text { COMMON NETWORK } \\
\text { NET ACCESSIBLE MARKET TRAFFIC } \\
\text { YEAR } 2000
\end{gathered}
$$

$$
\text { Table } 16
$$ 요

Service
Data (Terabits/Year)
Voice (Half Circuits)
Video (Wideband Channels)

figure 15

\section*{| 8 |
| :--- | :--- |
 1，510，000}

か
Table 17
犭ルOMZON Gu！＞
20 Station Network

世
$\stackrel{y}{2}$

Service
Data（Terabits／Year）
Voice（Half Circuits）
Video（Wideband Channels）

The conversion of the net accessible market by service to peak hour megabits per second resulted in Tables 18 and 19 . Table 18 compares the 10 and 20 station networks for year 1990. Table 19 compares the same two network sizes for year 2000. Figure 16 provides a similar comparison. The $30 / 20 \mathrm{GHz}$ net accessible market for trunking networks is projected to triple between 1990 and year 2000. This is mostly due to the expected rapid growth in voice and data services. Voice services traffic is projected to grow at a 12.5% Average Annual Growth Rate, Compounded (AAGR) while data services traffic is projected to grow even faster, at a 16.5\% AAGR.

As was discussed previously, the total net accessible market of 10.3 Gbps (1990) or 30.9 Gbps (2000) represent a market that could be accessed by a $30 / 20 \mathrm{GHz}$ trunking system. The actual traffic carried on such a system by a public carrier may differ as a result of considerations other than market accessibility.

Voice
Video

10 Station
Network

2855
TOTAL
$\frac{14643}{18686}$
Table 19

Service
Data
Voice

Video

Several overview statements can be made as a result of performing this $30 / 20$ GHz satellite market study. These comments are derived both as a result of performing the research as well as examining the model's traffic forecast results.

1. The net accessible market, in total, should only be used as a rough measure of the potential amount of traffic placed on 30/20 GHz satellite systems. A number of non-marketing considerations may affect the actual size of a single satellite system. These considerations were previousiy identified in 4.2 .
2. Competitive factors may play a large role in the use of $30 / 20 \mathrm{GHz}$ frequencies and the amount of traffic any single carrier may have on its network.
3. Future service price for $30 / 20 \mathrm{GHz}$ satellite services will have a majur impact on market demand. Service price equal to or higher than Ku-band will delay demand for the higher frequency services, especially if service quality is lower than Ku-band.
4. It is interesting that the maxin:um common network market (with price equal to Ku-band) is only slightly larger (33 Mbps vs. 30 Mbps) than the larger trunking network's market. This is despite the fact the maximum common network contains 80 earth stations versus 20 trunking earth stations.
5. Regardless of the market penetration levels achieved by the common or trunking network carriers, the model's earth station locations are likely to be those selected by the satellite carriers. Whether a small network of 10-16 stations or a large network consisting of 80 stations, the market modelling efforts have produced the sites of greatest market value for future satellite systems.

APPENDIX

The purpose of the Appendix is to provide a level of in-depth information which is too detailed for the main report. The Aopendix contains two sections, both dealing with computer printouts which were developed by the two marketing models. The first section contains the satellite system service cost and crossover distance calculations derived from the parametric network cost model. The second section contains the individual network scenario market values for both the common and trunking network models. References to these reports have been made in the nain study volume.

Section I - Parametric Cost Model Results
A parametric cost model was created for the specialized carrier network scenarios to account for a larger number of earth stations and higher operating efficiency than was assumed in the Phase I study parametric cost model. The specialized carrier satellite cost model contained 40 earth stations which fits well into the size of the most efficient common network. Crossover distances were determined where terrestrial costs were 20\% higher than $30 / 20 \mathrm{GHz}$ system service costs for three cases: service price equal to Ku-band, 20\% below and 40\% below Ku-band.

The results of the service price distarce crossover model for year 2000 were displayed in the main report. The following charts show the details of the parametric cost model for both years 1990 and 2000 and the 20% and 40% below Ku-band ct sssover distance comparisons.

It should be noted that while it appears that the total cost for each end-to-end channel remains unchanged in the three price variation cases, internally the model adjusted the end cost to reflect the reduced satellite rate and the corresponding crossover distance.

Section II - Market Distribution Model Market Values
The Market Distribution Model was used to reflect a set of criteria established for both the specialized and public carrier networks. These criteria dealt with mileage distance crossovers and length of hutbing extensions for terrestrial interconnection to earth station location. The results were developed in the form of market values, the proportion of the total market served by the principal or earth station SMSA plus its subordinate SMSA's.

A. Trunking Network Models

There are four reports of the resulting market values shown on the following computer generated displays. These cases deal with the 10 and 20 earth station models for the two years 1990 and 2000.

Each report shows the principal or earth station location, ranked by its total market value, including the number of subordinates. The subordinate SMSA's and their distance to the earth station and their individual market values are also displayed. Also provided is the cumulative market value of the earth stations and subordinate locations as the ranking continues lower. The cumulative value shown for the last principal location is the total market values for the entire network.
B. Common Network Models

A total of nine common network market models were developed to generate the various network size combinations. The following reports are grouped by network size model: minimum networks, most efficient networks, and maximum networks. for each network grouping the three price alternatives have also been generated.

The market values increase in a corresponding manner to the growth in the size of the network. New York and its subordinate SMSA's, for example, have a market value of 3.7% in the minimum network model, a 3.9% market value in the most efficient retwork modei, and grows to a 5.1% value in the maximum network model.

As before, the cumulative market value for the ranked group of earth station locations is provided at each point in the ranking.

The sequential ordering of the nine computer generated reports are:

- Minimum Network
- Price = Ku-band
- Price 20% below
- Price 40% below
- Most Efficient Network
- Equal Ku-band
- 20% below
- 40\% below
- Maximum Network
- Equal Ku-band
- 20\% below
- 40\% below

APPENDIX

MGEEL	TEAK:	E 5	3 srst	TEM	SFEED	WEE IGHT	Es; ith	CHAM/ES	SFACE	ch cost	TOTAL	TCTAL/CH	LOOF	CH+LOOF	\%	LIST
40 1-3	1990	c	Eask	Troma	voice	44.94	9506905	265	2597403	922522	13080333	2469	1122	3591		350
40 L 2	1590	C	EAME	Ftom	Vorce:	34.37	3892843	265	2199455	3500640	9572939	1910	1122	2932		240
\% E S	1790	κ -	EAMD	trina	VoICE	64.94	7600675	265	6168831	1029600	14799106	2792	1122	3914		100
40 E S	1990	F-	EATD	FTM	VOICE	34.37	2861297	265	5223706	3500640	11585645	2186	1122	3308		300
40 E 5	1990	c	EAlte	TEMA	300 =	13.99	2061398	571	559667	7380173	10001238	876	638	1514		40
40 E S	1090	c	E:AITD	FLM	300 *	7.41	838798	571	473920	7947878	9260596	811	638	1449		30
40 E :	1990	k	EAIAE	TDuAA	300 E	13.99	1637730	571	1329209	7380173	10347112	906	638	15.4		40
tó ES	1970	K -	EAHE	Fro:	300 E	7.41	616529	571	1125561	7947878	. 7689968	849	638	1487		30
40 E 5	1990	C	Fiallb	TLmA	9.6 KE	12.99	1913382	53	519481	2016538	4449400	4198	1996	6194		0
40 E 5	1990	c	EAMr	FIM	9.6 KE	6.87	778569	53	439891	2528856	3747316	3535	1996	5531		0
40 E S	1970	K -	EAMD	TEMAA	9.6KE	12.99	1520135	53	1233766	2037816	4791717	4520	7548	12068		930
40 E S	1990	K-	EATHE	FDM	9.6 KE	6.87	572260	53	1044741	2528856	4145857	3911	7548	11459		830
40 E S	1990	C -	EAHD	TEMA	56 kE	8.0%	1191351	33	323450	337075	1851876	2806	22580	25386		260
$40 \mathrm{E}=$	$19 \% 0$	c	BCMI	FEM	56 NE	51.76	5817230	33	3286733	5918880	15022843	22762	22580	45342		940
40 ES	1990	\underline{N}	EGut	TLIMA	56 kE	8.09	94649 ${ }^{\prime \prime}$	33	768194	376200	2090893	3168	:2580	25748		270
40 E 5	1990	\cdots	EAlli	FDM	56 kE	51.36	4275752	33	7805991	5918880	18000624	27274	22580	49854		1160

FAGE 3

FAFAME GFIC FACILITY COST MNOL
 TEAF 2000

Fiolk	*its.	haidelfal.		$\begin{aligned} & \text { mar } n \\ & \text { HAB: } \end{aligned}$	$\begin{gathered} \text { T coutrat } \end{gathered}$	$\text { LUE } 5$	sues	Sinsia	EMBOFLPMATE		Drit	makket VALUE
u	1040	Chatricker	OH K.	0.5571	2.3654	31.4039	12	400	materson	14	93	0.0292
	.							1020	ELOOMxHGTO	12	109	0.0195
								1480	Chaflestort	w	164	0.0790
								1840n	columius	он	101	0.4343
								2000	ratroh	OH	49	0.3037
								3200	hamilithem	OH	21	0.0578
								3480*	THDIMMAF OL	$1{ }^{1}$	100	0.3579
								4520	Loursville	M6- 10	90	0.3172
								5280	murcte	1 H	89	0.0285
								7960	SFRTHGFIEL	OH	S8	0.0396
								4280	LEKIHGTOH-	kr	73	0.0961
								4320	C.ImA	-	115	0.0352
											1072	1.8283
4	520	atcautio	64	0.8589	1.8147	33.2236	9	1000	EIFMTIGGAM	AL	141	0.2888
					1.818	33.2236		450	AHHESTOU	al	84	0.0236
								1560	chattahoog	The-GA	104	0.1459
								1800	columbus	GA-AL	95	0.0637
								2880	gadstieh	AL	95	0.0232
								4680	macout	GA	77	0.0733
								3840	KHOXVILLE	TH	155	0.1361
								3440	HUHTSVILLE	AL	143	0.1085
								5240	моhtgomery	AL	147	0.0926
											1041	0.9558
10	3300	mouston	т:	1.2755	1.6790	34.9025	4	640	austim	TK	147	0.2202
								2920	GALVESTOH-	Tx	47	0.0545
								840	REAUHOHT-F	T	80	0.1051
								1260	ERTAN-COLL	TK	88	0.0238
											362	0.4035

fatik	SMSA	FRIMCIFAL		Mat	TOTAL	LUESS	suss	SmsA	SUPORDIHATE		DXST	GARIET varue
3	1600	chicago	12	2.8375	4.4143	16.2230	14	2960	GARY-hanmo	1\%	25	0.1464
								3000*	gramb rafi	${ }^{1} 1$	125	0.1328
								3720:	KALAMAZOO-	HI	109	0.0662
								38.90	KEHOSHA	${ }^{W}$	50	0.0510
								51,80	milmauke	${ }^{\boldsymbol{w}}$	82	0.5160
								5320	MUSKEGOM-H	MI	117	0.0336
								6120	PEORIA	12	130	0.1227
								6600	KACTME	${ }^{\boldsymbol{m}}$	59	0. 0548
								3740	*AMKAKEE	12	54	0.0194
								3920	LaFAVETTE-	14	108	0.0335
								6880	ROCKFORD	IL.	80	0.0888
								7800	SOUTH PEND	10	73	0.0664
								4720	HADISOM	${ }^{1}$	122	0.1256
								1960	DAVEHPORT-	1a-IL	154	0.1197
											1288	1.5769
4												
	2160	dethoit	Wz	1.5842	3.6788	19.9018	16	80	AKRON	0×1	118	0.1803
								440	ANH AREOR	${ }^{\text {Mx }}$	33	0.1292
								780	BATTLE CRE	${ }^{W x}$	110	0.0319
								1320	CANTOM	\bigcirc	137	0.0089
								1680	CLEVELAOMD	Or	91	0.6411
								2640	FLTMT	MI	58	0.1323
								3520	Jackson	${ }^{\text {mi }}$	70	0. 0567
								4040	LANSIHC-EA	${ }^{\text {ma }}$	82	0.1338
								4440	LORAIN-ELY	On	75	0.0760
						$!$		8400	TOLEDO	On-mI	54	0.2239
								9320	rouncstam		151	0.1080
								2360		Pa	153	0.0695
								4800	MAHSTIELD		112	0.0380
								2760\%	FORT mavoer	10	138	0.0955
								$\begin{array}{r} 800 \\ 6960 \end{array}$	-ar CITY SACIMAM	${ }_{N X}$	98 89	$\begin{aligned} & 0.0182 \\ & 0.0713 \end{aligned}$
												-
											1569	2.0945

N
N
O
N
$\stackrel{\Delta}{8}$
1.5342

$$
3.1207 \quad 23.0224
$$

\circ
N
N
frinctifal
1.3555

+
n

9

$2.3345 \quad 28.3587$
1.2117
$\frac{1}{8}$

0
0
0
0

1120

$$
\begin{aligned}
& \text { SACRAMENTO CA } \\
& \text { SALIHAS-SE CA } \\
& \text { SAH JOSE } \\
& \text { SANTA CRUZ } \\
& \text { CA } \\
& \text { SANTA ROSA } \\
& \text { STOCKTON } \\
& \text { CA } \\
& \text { VARLESO-FA CA } \\
& \text { MODESTO } \\
& \text { FRESNO CA } \\
& \text { CRE }
\end{aligned}
$$

0

앙
ミャロ \％

 v－19

M Mg

SUE ORDINATES

9	$\begin{array}{r} 1000 \\ 450 \\ 156 ?^{\prime} \\ 1800 \\ 2880 \\ 4890 \\ 3840 \\ 3440 \\ 5240 \end{array}$	DIRMymenam AONTSTON CHATTANOOG columbus GADSEEM MACON m moxville MuNTSVILLE montement	al AL TH－BA GA－AB． AL Ga TN ar AL

 AUSTID
EALVESTON－
EEAUNONT－
ERTAN－COLL

640
2920
840
1260
$1.8363 \quad 32.4930$

1.8363
1.805634 .2986
0.8743
1.3738

FHLE 592 －H1ASA
0.5237

3
x

8
6
6
8
8
品
8
8
5
5
5
σ
117/145 nasius
© $\stackrel{n}{n}$

葡
 9.7634 シ 8
8
8
sumonermates

GantK	Smse	Friserial		man Firger:	vorive	A. © E	suss	Smsa	Susondiomate		8157	manety varut
3	1600	chacaso	32	3.6536	5.7917	21.2204	14	2960	can r-atammo	100	25	0.1893
								3000:	crawe rac:	${ }_{\text {wi }}$	125	0.1803
								3720 :	Hal amazoo-	wi	109	0.0093
								3800	CE000sma	${ }_{* 1}^{11}$	50	0.003s
								5080	MJLCHMEEE	${ }^{11}$	82	0.6693
								5320	Nubatecom-M	${ }^{18}$	117	0.0458
								6120	Peonia	12	130	c. 1564
								6600	Raciome		59	0.0705
								3740	EAmMAREE	12	54	0.0250
								3920	Laratette-	30	100	0.0441
								6800	nocitome	12	80	0.1147
								\%000	SOUTH BENS	INK^{0}	73	-.090e
								4729	mabisom	± 1	122	0.158
								1960	Cavene ort-	10-14	154	-. 1507
											1200	2.0481
4	2180	extrozt	$\omega 1$	2.0163	4.1221	25.3424	12	440	anew arber	m:	33	
								780	Dattue cat	wI	110	0.10436
								1600*	chevelawe	0	91	0.7654
								2640	Flint	mi	58	0.1716
								3520	sacrson	${ }^{68}$	70	-.0746
								4040	Lanszmeren	${ }^{18}$	02	-. 1807
								4440	LORA10-ELY	00	73	0.0959
								9400	Toumbe	O00-101	34	-. 2912
								4700	mansficls	00	11.	0.0481
								2780	-ant city	${ }_{\text {M1 }}$	138	0.1296
								6960	sacr mam	${ }_{\text {WI }}$	98	0.0237 0.0929

											1019	2.1058
5	0640	mashzmentos	oc-mo	1.7351	4.0319	29.3744	-					
						27.3744	-	5600	mencont me	$w_{v a}$	36 137	0.9924
								5720	monfona-vi	va-me	148	0.1209
								6760	RICHmant	v va	97	-. 3507
								9164 :	WILMINETON	\%E-NSM	99	-. 1409
								9200,	Vork	Pa	76	0.0745
								42400.	Canctaster	-a	95	0.1642
									Cancaster Pa	-	8	0.0935
											736	2.2960

FILE 593- HASA T-20 TFUHKIHG HETWGRK-118 MILEAGE CROSSOVER-117/165 RADIUS											
Farlk	SMSA	FFIHCIFAL		$\begin{aligned} & M A F \\ & H \text { FIItC } \end{aligned}$	$\begin{gathered} \text { T... V } \\ \text { тоTAL } \end{gathered}$	LUESS	SUE5	SMSA	SUEORET		D15T
20	7600	SEATTLE-EV		0.6129	0.7867	56.5796	2	$\begin{aligned} & 8200 \\ & 9260 \end{aligned}$	TACOMA YAKIMA	$\begin{aligned} & \text { WA } \\ & \text { WA } \end{aligned}$	$\begin{array}{r} 26 \\ 111 \end{array}$

-

MARKET
VALUE

 000000

N
N
N2.1624

Finte	rot	crsid	SUES	Smse	SUEORETHAT	
3.570	5.3045	21.7369	6	$\begin{array}{r} 360 \\ 5000 \\ 6780 \\ 7320 \\ 7480 \\ 680 \end{array}$	AHAHEIH SA OXMAFD--sio FIVEFSILESAH DIEGO SGATtA BARE gAKERSFIEL	6 ca cA ca c. CA
2.0901	4.2525	25.9894	12	$\begin{gathered} 440 \\ 780 \\ 1680 \pi \\ 2640 \\ 3520 \\ 4040 \\ 4440 \\ 8400 \\ 4800 \\ 2760 \\ 800 \\ 6960 \end{gathered}$	AHIH AREOR BATTLE CRE GLEVELAHD FLIMT JACKSOH LAHSIHG-EA LOFAIN-ELY TOLEDO MAHSFIELED FOET WATHE EAY CIT' SAGIIIAW	MI MI OH MI MI MI OH OH-MI OH 14 141 MI

"O. FFIHLIFAL
HBU LGE AMGELE CA
$\underset{~ H}{H}$

0
0
0

MORE	MD
RICHMOHD	VA
WILMIHGTOH	LE-H
YOFK	FA
hinekiseufg	FA
LANCASTER	FA

```
A1UE
```


C91て.I
 0
0
0
0
0
 N
$\stackrel{+}{\sim}$
0
0

Nit
M
0.0
0.0
0.0 $\stackrel{ \pm}{\vec{m}}$ 0.4423
0.2195 N
-1
0
0
 5 en

1 goontilut
$H O L 5 \mathrm{rmH}$
HOLIHI
CnAWח:ios
goontilvh?
CO:-GMEU;
GAESEEH
MACOH
MACOH
KiHONVILLE
HIGTSUILLE
MOHTGOMET,
7 7
MOHTGOME:

sues
9

72.2001
$2.1192 \quad 44.3194$
1.6162
…s. W: F Fickifint

$: 1$ Ho1snot: 0ng!
16

HANKK	$\text { T } \tan { }^{2}$	L UE	Sues	SMSA	SUBORDIMATE		DI5T	WAFKET
1.2502	1.3745	50.5929	3	$\begin{aligned} & 2290 \\ & 6820 \\ & 6980 \end{aligned}$	EAU CLAXfe KOCHESTER 5 St Clouv	$\begin{aligned} & \text { WI } \\ & \text { Wht } \\ & \text { Mit } \end{aligned}$	$\begin{aligned} & 88 \\ & 77 \\ & 60 \end{aligned}$	$\begin{aligned} & 0.0362 \\ & 0.0470 \\ & 0.0411 \end{aligned}$
							225	0.1243
1.1084	1.2988	51.8897	2	$\begin{aligned} & 2040 \\ & 7880 \end{aligned}$	decatur SFFINGFIEL	$\begin{aligned} & \mathrm{IL} \\ & \mathrm{IL} \end{aligned}$	$\begin{array}{r} 107 \\ 86 \end{array}$	$\begin{aligned} & 0.0635 \\ & 0.1249 \end{aligned}$
							193	0.1884
0.6301	1.2947	53.1844	6	1140	ERALEHTOH	FL	33	0.0384
				3980	LAKELAND-W	FL	46	0.0819
				4900	MELEOURNE-	FL	111	0.1028
				5960	ORLAHDO	FL	79	0.2986
				7510	SARASOTA	FL	43	0.0817
				2700	FORT MYERS	FL	97	0.0612
							409	0.6646
0.9025	1.1692	54.3536	4	3060	GREELEY	co	50	0.0295
				6560	PUEBLO	co	104	0.0454
				1720	COLORADO 5	co	63	0.1339
				2670	FORT COLLI	co	58	0.0579
							275	0.2667
0.5257	1.0499	55.4034	2	$\begin{aligned} & 6840 \\ & 2360 \mathrm{~A} \end{aligned}$	ROCHESTER ERIE	$\begin{aligned} & \text { HY } \\ & \text { FA } \end{aligned}$	$\begin{aligned} & 66 \\ & 31 \end{aligned}$	$\begin{aligned} & 0.4215 \\ & 0.1027 \end{aligned}$
							147	0.5241
0.7220	0.0639	56.2674	3	4150	LAWREHCE	K 5	37	0.0167
				7000	ST JOSEPH	\cdots	48	0.0368
				8440	TOFEKA	$k 5$	59	0.0884
							144	0.1419

ERALEHTOH FL

0
0
0 0
$\underset{i}{i}$
ッ
ROCHESTER
ERIE

LAWREHCE
ST JOSEPH
TOFEKA

9
8

0
M
N
H

i
0
0
i
i
ET-
HAK~
1.1084
0.6301

0.5257
0.7220
file 583

$$
\begin{aligned}
& \text { file 5is } \\
& \text { or rocid Dagk oun }
\end{aligned}
$$

ORTEINAL PACR ID OF POOR QUALTTY

N

kark	SmSA	friticifal	FL	$\underset{\text { FFIUC }}{\text { MAG TOTAL }} \text { TOLUES CUM }$			sues	SMSA	SUEDRDIHATES		ExSt	mafiket VALUE
15	S000			0.6666	0.9426	30.2549	1	2680	fort laude	FL	24	0.2760
											24	0.2760
16	1640	CIMCIMHATI	OH-KY-	0.5171	0.8817	31.1366	2	$\begin{aligned} & 2000 \\ & 3200 \end{aligned}$	Datton HAMILTON-M	$\begin{aligned} & \text { OH } \\ & \text { OH } \end{aligned}$	$\begin{aligned} & 49 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.2883 \\ & 0.0764 \end{aligned}$
											70	0.3646

Fonts:	Sms.,	FFinctant		$\begin{gathered} m \text { afek } \\ \text { inglec } \end{gathered}$	ratal	1. UE ES	SuEs	SMSA	SUEOEDINATE		Dist	MARKET VALUE
1	5000	new rakk	Hitus	4.2561	5.8178	5.9178	8	3640	JERSET Cit	"	3	0.1167
								4410	Loug bealte	H,	31	0.0666
								5380	massau-suf	H	20	0.3786
								5460	HEW EFLUHSW	H,	30	0.1500
								5640	Hewakk	H,	10	0.5782
								5760	Horwalk	ct	39	0.0427
								6040	FATERSON-C	H.	16	0.1231
								8040	StAmFord	ct	33	0.1058
											182	1.5616
2	4480	los migele	ca	2.9043	3.5220	9.3398	1	360	AnAMEIM-sG	ca	25	0.6177
											25	0.6177
3	1600	chicago	IL	3.3019	3.4933	12.8331	2	$\begin{aligned} & 2960 \\ & 3800 \end{aligned}$	GARY-HAMMO KENOSHA	IH	25 50	$\begin{aligned} & 0.1421 \\ & 0.0493 \end{aligned}$
											75	0.1914
4	7360	SAM FRANCI	Ca	1.7363	2.5144	15.3475	3	$\begin{aligned} & 7400 \\ & 7500 \end{aligned}$	SAH JOSE SANTA KOSA	$\begin{aligned} & \mathbf{C A} \\ & \mathbf{C A} \end{aligned}$	43 49	0.7030 0.0403
								8720	VALLEJO--FA	ca	24	0.0348
											116	0.7781
5	1120	bostore	ma	1.3456	2.1286	17.4760	9	1200	skockton	MA	20	0.0362
								2480	FALL RIVEK	NA-KI	46	0.0321
								2600 4160	Fitchiurg-LAWRENCE-H	$\text { NA }_{\text {MA-HH }}$	42	0.0196 0.0811
								4550	LOMELL	MA-HH	24	0.0612
								4760	MAHCHESTEK	NH	49	0.0422
								5350	HASHUA	HH	35	0.0570
								6480	Froviderice	KI-ma	42	0.3311
								9240	WORCESTER	MA	39	0.1225
											322	0.7829
6	8840	WASHIMGTOM	Sic-mil	1.3935	2.1007	19.5767	1	720	SALTIMORE	MD	36	0.7072
											36	0.7072

N
Ffile

Fritk	Snca	frimetad			TOTAL	L " E E	sues	SHSA	SUbORDIHATE		Dist	MARKET VALUE
7	2150	teifort	mi	1.5487	1.6998	21.2755	1	440	athe areors	mi	33	0.1511
											33	0.1511
8	6160	fritabeleh	FA-HJ	1.2228	1.6894	22.9659	5	$\begin{array}{r} 240 \\ 8880 \\ 8480 \\ 8760 \\ 9150 \end{array}$	ALLEHTOWHEEADIHG TEENTOH VTHELAHD-K WILलIHGTOH	$\begin{aligned} & \text { FA-H. } \\ & \text { FA } \\ & \text { HJ } \\ & \text { HE-HIS } \end{aligned}$	49 49 29 33 26	0.1391 0.0721 0.1044 0.0256 0.1255
											186	0.4666
9	3360	houstoh	T\%	1.3474	1.4083	24.3742	1	2920	galveston-	T*	47	0.0609
											47	0.0609
10	1920	dallas-for	T*	1.1526	1.1526	25.5268	0					
											0	0.0000
11	1680	clevelahd	он	0.7402	1.0261	26.5529	2	$\begin{array}{r} 80 \\ 4440 \end{array}$	AKRON LOKAIM-ELY	$\begin{aligned} & \text { OH } \\ & \text { Oн } \end{aligned}$	$\begin{aligned} & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 0.1959 \\ & 0.0899 \end{aligned}$
											57	0.2859
12	5120	mitheafoli	Mh-w	0.9583	0.9583	27.5111	0					
											0	0.0000
13	1640	CThCimitati	Oh-Kr-	0.5244	0.9425	28.4537	2	$\begin{aligned} & 2000 \\ & 3200 \end{aligned}$	DAYTON HAMILTOH-M	$\begin{aligned} & \mathrm{OH} \\ & \mathbf{O H} \end{aligned}$	$\begin{aligned} & 49 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.3310 \\ & 0.0872 \end{aligned}$
											70	0.4182
14	7040	st Lours	HO- 12	0.8912	0.6912	29.3448	0					
											0	0.0000

\square
4
4
4

0	0	a
0		N
00		
0	1	1
00	0	

$\begin{array}{ll}M 1 \\ \cdots \\ 0 & \\ 0\end{array}$ $00 n$
10
0
0
0
000 0
∞
0
0
0 0.1435
0.1852 0.3287

M
\vdots
\vdots
\vdots

SUBORLIHATES	
JERSET CIT	H. ${ }^{\text {d }}$
LOUG EFGItC	HJ
HASSAU-SUF	HT
HEW EREUHSW	1.5
HEWAEK	HJ
MOKWALK	ct
FATEESOH-	4
AMFOET	

ANAHEIM-SA CA
RIVEFEIDE- CA

$\circ{ }^{\circ} \mathrm{O}$
MN
M
0
0
N
$8 O O$
KiN
NiN

440 8400

z $8258^{\circ} 8 \quad 08 Z G^{\circ} \Sigma$
11.9636

N
N
N

C
ω
AL.VE Cuin
TOTAL
5.3248
5.3248
0
2.7401
2.9974
3.1108
N
N
M
M
$1.6584 \quad 15.9843$
17.5347
"A AFBK
3.0757
1.5774
1.3297
\square
0
-
-
FIEESIS

i,OUU HEW rokk Hi-lls

	n．tus	Smisa	friteifat			T TGTAL.	LuEES	三日5s	Smsa	SUEOEDIHATE		Dist	MAF ：ET VALIEE		
	，	3360	hous rom	r＊	1.4642	1.5315	19.0663	1	2920	GALVESTOM－	T：	47	$\underline{0.0674}$		
												47	0.0674		
	8	1120	Eostore	MA	0.8923	1.4459	20.5122	9	1200 2480	EEOCKTOH fall fiver	MA MA-RI	20 46	0.0268 0.0238		
									2600	FITCHEURG－	34	42	0.0142		
									4160	LAWREMCE－H	WA－Hen	25	0.0554		
									4560	LOWELL	Ma－rih	24	0.0425		
									4760	MAHCHESTEF	${ }^{\boldsymbol{H}} \mathrm{H}$	49	0.0328		
									5350	MASHUA	HH	35	0.0346		
									6480	FROUIDEHCE	ki－ma	42	0.2382		
									9240	mofecester	MA	39	0.0854		
											．	322	0.5536		
	9	8840	mashimgtom	DC－mb－	0.8176	1.2945	21.8067	1	720	baltimofe	M ${ }^{\text {b }}$	36	$0.476 i$		
												36	0.4767		
	10	1920	dalleas－fok	r＊	1.2706	1.2706	23.0772	0					－－－－		
												0	0.0000		
	11	5000	mtami	Fi．	0.6631	1.0707	24.1479	2	$\begin{aligned} & 2680 \\ & 9960 \end{aligned}$	fort laude WEST FALM	$\begin{aligned} & \text { FL } \\ & \text { FL } \end{aligned}$	$\begin{aligned} & 24 \\ & 64 \end{aligned}$	$\begin{aligned} & 0.2765 \\ & 0.1311 \end{aligned}$		
					－							88	0.4076		
$\bar{\circ}$	12	520	atlahta	GA	0.9815	0.9815	25.1294	0							
응												0	0.0000		
	15	5120	midheafolis	Her－w I	0.9793	0.9793	26.1087	0							
人ぁ												0	0.0000		8
:---															
8															
8	a														

0
0
0
0N
0
0
0
HIST लีञ $\stackrel{0}{0}$
50
-50 숫융 品 ผั ベ 的密：留
SUSORDTHATES
AKROH
CAHTOH
OH
LORAIM－ELY OH
YOURGSTOWE OH

\circ
0.

27.8066

I

$\frac{8}{8}$

 9
$\frac{1}{2}$
5
5
2
2

\section*{| g |
| :--- |
| 0 |
| 0 |
| 0 |
| d |}

©
웅웅

$0.5341 \quad 0.8558 \quad 26.9644$
\ddot{M}
$\stackrel{\rightharpoonup}{\infty}$
$\dot{\circ}$
0.7786
$\circ \circ_{0}^{\circ}$
ㅇN
SUES
0
0
0
0
0

27.006

N
N
N
a
$-\quad \mathrm{N}$
es
0.689430 .0126

[^3]七
a
0
$\frac{6}{2}$
$\frac{4}{2}$
0.2426

$\begin{array}{ll}0 \\ \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$ ORIGINAL PAGE IS
OF．POOR OUALTTY

\circ
8
\vdots

0.01390
0
0
0
00.2789
0.1962$\overrightarrow{2}$
\vdots
0N

年
 o \square0

SIGEQRIMMATES

\hat{N}
N
N
N
N
0.5450
0.4104
RACTHE179：
音

$$
\begin{aligned}
& 38000 \\
& 6500
\end{aligned}
$$

$$
\begin{aligned}
& 1140 \\
& 3980 \\
& 7510
\end{aligned}
$$

EMOSHAGRADEHTOH FL
LARELAMEV FL
SARASOTA FL
M

0.48220 .579931 .9371
90
80
08
0.

90
M 0
N

\circ
O

0
0.497232 .9799

曹
0
0
N
ev
0
－
1

0.4959
0.4940

D
0
0
0
0

$0890^{\circ} 0$
0.0189
0.4831
0.4129
0.3765

$$
\begin{aligned}
& \begin{array}{ll}
400 & \text { ANHERSOH } \\
1020 & \text { SLOOMTHGTD } \\
3850 & \text { KOKOMO. } \\
5280 & \text { MUHCTE }
\end{array}
\end{aligned}
$$

hasek	2mat	nincrifal			'roral	$\begin{array}{rl\|l} \text { LUS } \\ \text { cun } \end{array}$	Sus. 5	Smsa	SUBORDIHATE		Dİ	makiky val.uE
7	ถusu	mashirection	ac-asi-	1.2238	1.8778	23.9757	1	720	EALTIHORE	ω	36	0.6492
											36	0.6492
8	1120	E0-1030	∞	1.1772	1.8735	25.8492	9	1200	*Rock tow	H	20	0.0351
								2480	FALL RIVER	ma-kI	46	0.0314
								2600	FITCHEURG-	ma	42	0.0183
								4160	LAmPEHCE-H	ma-the	25	0.0687
								4560	LOMELL	Ma-tht	24	0.0549
								4760	MANCHESTER	NH	49	0.0416
								5350	Hesheua	\% ${ }^{\text {b }}$	35	0.0438
								6480	PROVIDEHCE	R1-20	42	0.2914
								9240	morcester	ma	39	0.1112
											322	0.6963
4	3300	Houstom	\cdots	1.5597	1.6342	27.4834	1	2920	CALVESTOM-	rx	47	0.0745
											47	0.0745
10	1680	clevelaito	00	0.8329	1.4478	28.9312	4	80	amker	-6	31	0.2235
								1320	сант	$0 \cdot$	51	0.1263
								4440		O6	26	0.1048
								9320	Younsstown	ס4	61	0.1603
											169	0.6149
1.	1920	Bactas-fok	\%*	1.3570	1.3570	30.2882	0					
											0	0.0000
12	5120		me-ms	1.1440	1.1940	31.4822	0					
											0	0.0000
1.5	Suno	miami	FL	0.6797	1.1304	32.6127	2	2680	Fort lande	FL	24	0.292:
								9960	wist anm	FL	64	0.1368
											08	0.4314

WAREXET
val UE
0.0107
$6680^{\circ} 0$
F． 1066 8
8
6

10
0
0
0 $\begin{array}{ll}8 & 9 \\ 8 & \text { N } \\ 8 & 0 \\ 0 & 0.8 \\ 0 & 0 .\end{array}$ 9
+
0 SSEO
EIEO 02
$\stackrel{3}{3}$
0
0

26
26
20
49 θ
－MマN
M80 8 621
\cdots M

옹
020

BRAFEHTOM FL
LAKELANTW FL
SARASOTA FL
ミミミ ミ

89 8 8
8
λ
$\because \quad \rightarrow$＊$\because$
89.8517
3
0
0
0
41.2333
41.8471
M
0
N
N
N

\circ
8
8
0
0

π
$\%$
$\%$
5
8
8
8
8
0.7362
0.1163
0.6 .653
0.6138
π
i
0
0
0
$\stackrel{N}{0}$
0.5417
FERIC
0.6967
0.6648

0.0247

0.8138
0.4364
0.4664
0.5195
0.5417

$\frac{3}{3}=$

mathe	smis..	reititifal		的 H 以 FFITB	$=\mathrm{T}_{\mathrm{rothL}} \mathrm{v}$	ALuEs	Suts	5issa	Sthoerthat		bist	makKet VAL LE
24	6440	Forthame	or-wa	0.4381	0.49 .46	44.5914	1	7080	Salem	OF	44	0.0565
											44	0.0565
so	8120	stock tor	ca	0.0891	0.4736	45.0650		$\begin{aligned} & 6920 \\ & 5170 \end{aligned}$	/sack:amehto mONESTO	$\begin{aligned} & C A \\ & C A \end{aligned}$	$\begin{aligned} & 45 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.3342 \\ & 0.0504 \end{aligned}$
										-	73	0.3845
31	1280	buffalo	Hr	0.4568	0.4568	45.5218	0					
											0	0.0000
32	3520	FRUVO-OREM	ut	0.0466	0.4549	45.9767		7160	/salt lake	ut	38	0.4083
											38	0.4083
53	5560	HEW orleah	L4	0.4437	0.4437	46.4204	0					
		.									0	0.0000
34	6840	Rochister	Hr	0.4370	0.4370	46.8574	0					
											0	0.0000

F¢：＊	5．560	Frimespal			$\begin{gathered} \text { Pric } \\ \text { raral } \\ \text { ror } \end{gathered}$	$=A M 5$ hel レuモを сим	$\begin{aligned} & \text { Kut- } \mathrm{R} \\ & \text { sues } \end{aligned}$	ad	SURORTIHATE		atst	MAFKET VALLUE
i	Sivo	new rokek	ar．me	5.5332	7.5917	7.5917	3	3640	Jekser cit	H．	3	0.1547
								4410	Long bratic	HJ	31	0.0905
								5380	hassau－suf	Hi	20	0.4959
								5450	Hew pruhsw	以	30	0.2047
								5 5́40	mewafk	н，	10	0.7577
								5760	hokwal．	ct	39	0.0542
								6040	FATERSOH－C	M，	16	0.1626
								8040	stamfore	ct	33	0.1381
	．										182	2.0584
2	4480	los angele	ca	3.6961	4.7149	12.3066	2	360	Ahaheim－SA	ca	25	0.7644
								6780	fiversidie－	ca	55	0.2545
						．					80	1.0189
3	1500	chicaso	L	4．095，	4.2753	16.5819	1	2960	GAET－HAMMO	IM	25	0.1797
											25	0.1797
4	1360	Sail franici	ca	2.2110	3.1832	19.7650	3	7400	SAM Jose	ca	43	0.8761
								7500	SAITTA ROSA	CA	49	0.0510
								8720	VALLEJO－FA	ca	24	0.0451
											116	0.972 ：
s	8240	WASHIHETOM	Sc－Mr－	1.7517	2.6477	22.4127	1	720	baltimore	mb	36	0.8960
											36	0.8960
6	1120	Eustont	MA	1.6028	2.5564	24.9691	9	1200	Ercekton	KA	20	0.0447
								2480	FALL KIVER	ma－ki	46	0.0399
								2600	Fitcheleg－	ma	42	0.0238
								4160	LAWFEHCE－H	MA－HH	25	0.0974
								4560	LOWELL	MA－－ HH	24	0.0724
								4760	MAHCHESTEK	${ }_{1+1}$	49	0.0536
								5350	hashua	UH	35	0.0652
								6480	FROUIDEHCE	KI－MA	42	0.4071
								9240	WOREESTEE：	M ${ }^{\text {a }}$	39	0.1495
											322	0.9535

DIST MARKET | VALUE |
| ---: |

$\begin{array}{r}0.1903 \\ 0.2587 \\ \hline\end{array}$

and
and
ond
oso
oso
品
10
0
0
0 0.2362
0.1344
0.1136
N
0
0
0

$|$| 0 | 0 | | 4 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 4 | |
| 0 | 0 | 0 | 11 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | | |

sumile ka

ALLEHTOWI：FA－H．S
FEAI．IHG FA
3
3
0

$2.3303 \quad 29.6948 \quad 5 \quad 240$
TKEHTOH HJ
VIHELAHE－M H，J
WILMIHGTOH DE
2920 GALVESTOH－T\％
エ 士 I 号
O
OWH
戸
$\begin{array}{cc}2 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$

002ε
0002
WGLUE

$\%$	3300	noustore	T\％	1.6533	1.7291	31.4239	1
10	160	CLETELAHD	OH	0.9447	1.5970	33.0209	4
11	1720	vallas－for	I：	1.4492	1.4492	34.4700	0
12	－120	Hindeafoly	Hh－W I	1.2154	1.2154	35.6854	0
13	1240	Crathitati	Or－K．－	0.6673	1．1817	36.8671	2

	$\begin{array}{c:c} 0 & \text { an } \\ 0_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 00 & 0 \end{array}$	$\begin{array}{c:c} M & 0 \\ 0 & 0 \\ \hdashline & 0 \\ \dot{0} & \dot{0} \end{array}$			$\begin{array}{c:c} 0 & 0 \\ \bar{y} & \eta_{0} \\ 0 & 0 \\ 0 & 0 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		18	
$\stackrel{\text { E }}{\stackrel{5}{3}}$		ล：	moion	아 :	$\begin{array}{l:l} M \\ \hline \end{array}$		10			
9	$\stackrel{\square}{\sim}$	$\frac{4}{3}$		$\frac{4}{2} \frac{4}{2}$	I					
	\％ \％ 4 4 4 4 3 3 3									
$\begin{aligned} & \frac{5}{4} \\ & \frac{4}{2} \\ & i n \end{aligned}$	$\begin{aligned} & 88 \\ & 38 \end{aligned}$			ले	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \end{aligned}$					
$\frac{2}{5}$	©	\rightarrow	＊	N	\rightarrow	\bigcirc		0		m
$\begin{aligned} & n \\ & \vdots \\ & \vdots \\ & 2 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { à } \\ & \stackrel{y}{\infty} \\ & \dot{\ddagger} \\ & \dot{\ddagger} \end{aligned}$		$\begin{aligned} & \text { ö } \\ & \text { ले } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{3}{H} \\ & \vdots \\ & \dot{N} \end{aligned}$	$\begin{gathered} \mathbb{N} \\ \stackrel{\rightharpoonup}{2} \\ \dot{\sim} \end{gathered}$				$\begin{aligned} & \text { Q } \\ & \text { 第 } \\ & \dot{q} \end{aligned}$
$\begin{array}{r} 3 \\ \vdots \\ - \\ \vdots \end{array}$	$\begin{aligned} & \text { S } \\ & 0 \\ & \dot{0} \end{aligned}$	\％	¢	0 0 0 0 0	$\begin{aligned} & \text { No } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \vdots \\ & \vdots \end{aligned}$				4 0 0 0 0
- \vdots $=-$	$\begin{aligned} & \text { 首 } \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{H} \\ & \underset{j}{0} \\ & \vdots \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { M } \\ \underset{\sim}{6} \\ \vdots \end{gathered}$		管		$\begin{aligned} & \hat{8} \\ & \stackrel{6}{5} \\ & \vdots \end{aligned}$

WIFVET WIEVFTEUTTON HOLEL (MDIA)

F.ats	= M	FFIMCIFAL		$\begin{aligned} & \text { M UF K } \\ & \text { FF: } 1 \text { ! } \end{aligned}$	rotal.	L. 1 E G cun	sues	Smin	EUEOFEIHHTE		EIST	HAFKET VALUE
,	11: ${ }^{\text {a }}$	Hostohe	inn	1.2431	2.0242	25.0866	9	1200	FFOCKTOH	no	20	0.0382
								2480	FALL FIVEK	Ma-E. 1	46	0.0342
								2600	FITCHEUEG-	dia	42	0.0209
								4160	LAWREHCE-H	Mn-idit	25	0.0769
								4560.	LOWELL.	MA-HH	24	0.0577
								4760°	MAMCHESTEF.	HiH	49	0.0445
								5350	HASHUA	HH^{2}	35	0.0461
								6480	FROVIDEHCE	FI-MA	42	0.3377
								9240	WORCESTEF	MA	39	0.1199
											322	0.7762
8	3300	HOUSTOM	T×	1.8466	1.9336	27.0203	1	2920	GALVESTOH-	T\%	47	0.0870
						.					47	0.0870
9	8840	WASHIHGTON	LC-mio.	1.1580	1.3096	28.8299	1	720	EALTIMORE	Mb	36	0.6516
											36	0.6516
10	1920	TOLLLAS-FOR	r\%	1.6196	1.6196	30.4495	0					
											0	0.0000
11	5000	MIAMI	FL	0.8354	1.3594	31.8089	2	$\begin{aligned} & 2680 \\ & 8960 \end{aligned}$	FORT LAUDE WEST FALM	$\begin{aligned} & \text { FL } \\ & \text { FL } \end{aligned}$	$\begin{aligned} & 24 \\ & 64 \end{aligned}$	$\begin{aligned} & 0.3539 \\ & 0.1702 \end{aligned}$
											88	0.5241
12	5120	MTHHEAFOL	NSH1-W I	1.2049	1.2849	33.0939	0					
											0	0.0000
13	520	atlanta	GA	1.2234	1.2234	34.3173	0					
												0.0000

	r otat	LUES CUM	SUE 5	5450	SUEORXIHATE		2xst	MARKET value
0.7024	1.1451	35.4623	4	80°	AKFOH	OH	31	0.1550
				1320	CAHTOHI	OH	51	0.0876
				4440	LORAIH-EL'	OH	2.6	0.0934
				9320	TOUNGSTOWH	OH	61	0.1067
							169	0.4426
1.0561	1.0561	36.5184	0					
							0	0.0000
0.9715	0.9989	37.5174	1	3060	GREELET	co	50	0.0274
							50	0.0274
0.3341	0.9535	38.4708	9	1160	BRIDGEFORT	ct	49	0.1314
				1170	PRISTOL	ct	16	0.0164
				1930	DAMBUFY	ct	48	0.0403
				4960	MERIDEN	ct	18	0.0113
				5440	HEW BRITAX	ct	9	0.0358
				5480	HEW HAVEN-	cr	35	0.1384
				5520	HEW LOHDOH	Ct-RI	42	0.0319
				8000	SPRIHGFIEL	CT-MA	24	0.1397
				8880	WATEREURY	ct	25	0.0743
							266	0.6193
0.5235	0.9496	39.4204	2	$\begin{aligned} & 2000 \\ & 3200 \end{aligned}$	DAYTON HAW1LTON-M	OH OH	$\begin{array}{r} 49 \\ \cdot 21 \end{array}$	$\begin{aligned} & 0.3326 \\ & 0.0935 \end{aligned}$
							70	0.4261
0.7285	0.8580	40.2784	1	8200	tacoma	WA	23	0.1294
							26	0.1294
0.7976	0.8427	41.1211	2	4150	LAWREHICE	us	37	0.0124
				7000	ST POSEFH	mo	48	0.0326

f...." 14	$\begin{aligned} & 3+54 \\ & 1 \leq 80 \end{aligned}$	Hemicifal clevelatio	$0 \cdot 4$
	7040	5t cours	*O- EL
16	2080	nehver-bou	co
17	3290	hak tfoted	ct
18	1640	cimerimati	On-s\%
19	7600	seattle -EV	wa
20	3100	kantsas cxt	mo-ks

1-0.4.4	Si4t.a	F6itacifome		$\begin{gathered} \text { M H K } \\ \text { HRIGC } \end{gathered}$	$\begin{array}{r} \text { routal } \\ \text { rot } \end{array}$	L U E S COH	sues	5 msA			D157	MARKET VALUE
21	Suso	milthuike	$\omega \mathrm{I}$	0.6296	0.7585	41.8796	2	$\begin{aligned} & 3800 \mathrm{~A} \\ & 6600 \end{aligned}$	KEHOSHA Fanctre	$\begin{array}{ll} \mathrm{HI} \\ \text { WI } \end{array}$	$\begin{aligned} & 32 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.0603 \\ & 0.0586 \end{aligned}$
											56	0.1289
コ2	6283	+1tiseungh	FA	0.6155	0.6620	42.5417	2	$\begin{aligned} & 8090 \\ & 9000 \end{aligned}$	STEUREMVIL WHEELIHG	$\mathrm{OH}-\mathrm{WV}$ WV-OH	$\begin{aligned} & 33 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.0267 \\ & 0.0198 \end{aligned}$
											79	0.0466
$\therefore 3$	7320	SAM DIEEGO	CA	0.6414	0.6414	43.1831	0					
											0	0.0000
24	2200	FICOEAET	$A z$	0.6353	0.6353	43.8184	0					---
									-		0	0.0000
25	1300	EUELIHGTOH	HC	0.0241	0.6348	44.4533	2	$\begin{aligned} & 3120 \\ & 6640 \end{aligned}$	Greensboro FALEIGH-DU	$\begin{aligned} & \mathrm{HC} \\ & \mathrm{HC} \end{aligned}$	$\begin{aligned} & 20 \\ & 49 \end{aligned}$	$\begin{aligned} & 0.3551 \\ & 0.2557 \end{aligned}$
											69	0.6108
26	1280	Tamea-st	FL	0.5370	0.6291	45.0824	2	$\begin{aligned} & 1140 \\ & 7510 \end{aligned}$	ERADEHTOH SARASOTA	$\begin{aligned} & \text { FL } \\ & \text { FL } \end{aligned}$	$\begin{aligned} & 33 \\ & 43 \end{aligned}$	$\begin{aligned} & 0.0276 \\ & 0.0646 \end{aligned}$
											76	0.0921
\therefore	$3+260$	1 MEi 16tiAAF OL	$\mathbf{I H}$	0.4841	0.5995	45.6819	4	$\begin{array}{r} 400 \\ 1020 \\ 3850 \\ 5280 \end{array}$	AHDERSOM FLOONTHGTO кокомо MUNCIE	$\begin{aligned} & \text { IH } \\ & \text { SH } \\ & \text { IH } \\ & \text { IH } \end{aligned}$	$\begin{aligned} & 34 \\ & 46 \\ & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.0359 \\ & 0.0256 \\ & 0.0197 \\ & 0.0341 \end{aligned}$
											179	0.1154
28	6440	FOF TLAUS	On-wn	0.5273	0.5974	46.2793	1	7080	SALEM	OK	44	0.0701
											44	0.0701

0.0473N
\vdots
\dot{c}

$\underline{0.3114}$

0
$10=17$

10

$0.3575 \quad 51.65940$
0.353752 .01310

0

0
0
0
3
0
0
0
0
0

$\overline{3}$
0.3630
0.3575
侖

n
0

8
0
0

苃

SouO sACMSORVIL FL
!
tsol Clokesvich wea,
1200 but tian
. .'. aio

OF POOR QUALITY

fage

0
0
0
0

M	
\vdots	
\dot{O}	

3
0
0
0
0

\circ
0
0
0

0
0
0
0
10
\circ
8
0
0
\circ
0.
0
0
8
8
0
0
8
8
0
0
0
号 号 思
$\overrightarrow{7} \vec{\square}$

10

\circ

refiti：		Fratcrial			$=r \frac{1}{\operatorname{Total}}$		5uss	Smia	Suegrd ${ }^{\text {a }}$	Es	r．ist	mafket value
59	（3is）	arthayfiel	11.	0.1206	0.1856	57.9812	1	2040x	he：catl．	${ }^{1}$.	313	0.0650
											38	0.0650
－	1720	coldofalo s	co	0.1375	0.1778	58.1550	1	6560	fueklo	co	41	0.0403
											41	0.0403
60	8520	tucson	$A 2$	0.1752	0.1752	58.3342	\bigcirc					
											0	0.0000
6	1560	chattamogs	TH－GA	0.1727	0.1727	58.5069	0					
											0	0.0000
88	200	hlazurueray	nm	0.1717	0.1717	58.6786	0					
											0	0.0000
（i）	2320	el fasu	T\％	0.1710	0.1710	58.8495	0					
											0	0.0000
\cdots	3640	kno：\％ille	TM	0.1596	0.1596	59.0091	0					
											0	0.0000
71	840	behumort－af	r：	0.1588	0.1588	59.1680	0					
											0	0.0000
2	2160	toret watile	11	0.1536	0.1536	59.3215	0					
												0.0000

ORGML PAGE is
OF POOR QUALITT

katik	Smati	Frincifal		MAKK FF:IMC	rorat	$\text { LUE } \mathrm{CU}$	sues	Smse	Sugdrdimates		dist	MARKET VALUE
14	3040	sf Louis	Mo-12	1.3850	1.3056	42.1843	0					
											-	0.0000
15	520	atlahta	GA	1.3280	1.3280	43.5123	0					
											-	0.0000
16	1640	Cincinhati	On-K「-	0.7004	1.2208	44.7331	2	$\begin{aligned} & 2000 \\ & 3200 \end{aligned}$	DAYTOH HAMILTOLR-M	$\begin{aligned} & \mathrm{OH} \\ & \mathrm{OH} \end{aligned}$	$\begin{aligned} & 49 \\ & 21 \end{aligned}$	$\begin{aligned} & 0.4055 \\ & 0.1149 \end{aligned}$
											70	0.5204
17	6280	Fittseluggh	fa	1.0539	1.1373	45.8704	2	$\begin{aligned} & 8080 \\ & 9000 \end{aligned}$	steuezhivil WHEEL YMG	OH-WV WV-or	$\begin{aligned} & 33 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.0479 \\ & 0.0355 \end{aligned}$
											79	0.0834
16	3280	hartatid	ct	0.3962	1.1167	46.9871	9	1160	bridigefort	ct		0.1519
								1170	Bkistol	ct	16	0.0192
								1930	Dahzury	ст	48	0.0461
								4960			18	0.0133
								5440	HEW beitat		9	0.0422
								5480	HEW HAVEH-	ct	35	0.1644
									HEW LOHEDOH	ст-кi	42	0.0372
				.				8000	SPRIHGFIEL	ct-mA	24	0.1589
								8830	watereufy	ст	25	0.0873
											266	0.7206
19	2080	nemiver-buu	co	1.0038	1.0320	48.0192	1	3060	GREELET	co	50	0.0282
											50	0.0282
20	5080	milwaukee	wr	0.7942	0.9518	48.9710	2	$\begin{aligned} & 3800 n \\ & 6600 \end{aligned}$	KEHOSHA FACTHE	${ }_{W I}{ }_{W I}$	$\begin{aligned} & 32 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.0736 \\ & 0.0840 \end{aligned}$
											56	0.1576

IEAK OO

FAGE:

fage

OFK WODEL FON MBN ZUQS W／23S EEDSSOVERS

$\left|\begin{array}{ll}0 & 0 \\ 0 & 7 \\ 0 & j \\ 0 & 0\end{array}\right|$
$\frac{0}{5}$

$\left|\begin{array}{ll}8 & -1 \\ 8 & \text { W } \\ \dot{\omega} \\ \dot{0} & 0\end{array}\right|$認
$0000 \cdot 0$
0.0498

8－ Cl $\stackrel{-}{-}$

－
17
10

简会：男

3720＊KALAMAZOO－MI
$5360 \mathcal{J}_{\text {HASHVILLE－TH }}$
8600 tuscaldoosa al．
5720 hokfolk－vi va－he
$\begin{array}{lll}9280 & \text { ORK } & \text { FA } \\ 4000 & \text { LANCASTEK FA }\end{array}$
103
5
5
$0.46920 .4692 \quad 50.4310$
$0.4010 \quad 60.8921$

0
0
0
0

$0.4555 \quad 61.8075$
N్W
N゙
N
N
n
n
0
0
0
0
0
0
0
0
0
n
no
no
$0.4284 \quad 63.9611$
NagnE
0.0501
0.0685
0.4555
0.4555
0.0472
0.4306
0.3805
$\begin{array}{ll}0 & 0 \\ 0 & \text { N } \\ \vdots & 0 \\ 0 & 0\end{array}$

5830 OKLAHOMA \mathbf{c} ok
Ax－m1 0991
1520 CHARLOTTE－HC
1000 EIENITHGHAN al
GGBO MEWFORT HE vA
3240 HARAIGEUEG FA
范
un gunasuaiza otio
780 battle cen mi
\vec{F}

10.e: ${ }^{\text {a }}$	Sm..	FFr.actitat			$=\text { corat }$	ALUES	sues	Smse	SUEOEPithates	Hist	makKet value
4:	Soun		1	0.3402	0.3962	64.3574	0				
										0	0.0000
43	$3: 20$	TM. SA	ok	0.3766	0.5736	64.7340	0				
										0	0.0000
49	2240	Samt ahtome	TK	0.3701	0.3701	65.1640	0				
										0	0.0000
50	a160	stracuse	nr	0.2388	0.3230	65.4270	1	8680	utica-kome nit	47	0.0842
										47	0.0842
51	160	atbatr-sch	"	0.2767	0.3113	65.7383	1	6320	PItticield ma	29	0.0345
										29	0.0345
5.	1040	hroamritio	12	0.0639	0.3032	66.0415	2	$\begin{aligned} & 6120 \\ & 1400 \end{aligned}$	$\begin{aligned} & \text { PEOKIA } \\ & \text { CHIGHFPSGH- IL } \end{aligned}$	$\begin{aligned} & 35 \\ & 47 \end{aligned}$	$\begin{aligned} & 0.1775 \\ & 0.0619 \end{aligned}$
										82	0.2394
5	0.40	A-'srin	1*	0.2042	0.2942	66.3357	0				
										0	0.0000
54	0000		ca	0.1463	0.2274	66.6131	1	7480	SAHTA SAER CA	34	0.1291
										34	0.1291
S	3000	gincute ionex	mr	0.2094	0.2672	66.8804	1	5320	MUSKEGO*-H MI	35	0.0578
										35	0.0578

MGINAL PAGE IS
of FOOR QNAUTN

-

$$
0
$$

茹
wivet alsthrourion woot (invor)

cratk	S6450	forucifat		PR IJEC	rorat	cum	sues	smesa	SUBOEDTHATES
74	2760	:ont marbe	tot	0.1719	0.1717	70.9144	0		
ros	340	benumont-p	Tx	0.1717	0.1717	71.0061	0		
76	1960	DAveref orv-	10-12	0.1699	0.1699	71.2560	0		
77	3440	omatisvilete	a	0.1889	0.1689	71.4249	0		
7	1360	cemar rami	14	0.1136	0.1605	71.5855	1	8920	matmeloonc 1a
74	4640	a vascheines	va	0.0614	0.1567	71.7421	1		Danore va
80	5745	Hok themest	ma	0.1498	0.1496	71.8917	0		
at	4120	cas vegas	ano	0.1386	0.1386	72.0303	-		
32	3560	sacksore	*5	0.1377	0.1377	72.1680	-		

$$
0.1325 \quad 72.3605
$$

race 11
AND 50 MXLE n
maket

5	0	0
5	8	8
0	8	
0	0	

8	8
8	8
0	0

8	8	8	8
8	8	8	8
0	0	0	0

8	0	0	8	8
8	8	8	8	8
0	0	0	0	0

 THOESSONER WHEEAGE
VEAR 2000

 8

N
N
N
N
®
N
N

0
N
N
0
8
8
8
8
8
8
7465

MARKET
VALUE
0.2028

$60 \angle 9^{\circ} z$
0.9321
0.3263
I
0
10
N1
N1
0

2	

资给
N
等合范 $\stackrel{\square}{7}$
36
$-\cdots 36$
 N

SMSA	SHEORDTHATES
3640	JERSET CIt a
4410	homg meahic me
5380	HASSAL－sur Mr
5460	HEW EFUHEW
Só40	Hewask m．j
5760	Hor：walk if
6040	FATEFSOM－C MJ
8040	Stamf oed

360 AHAHEIM－5A CA
6.780 RIVER\＄IDE－CA

 Maximum Network
Price $=40 \%$ below Ku－Band
 ఱ
N

4.4936	5.7520	15.4208
5.0933	5.3189	20.7396
2.6279	3.8078	24.5474

$\begin{aligned} & \text { N } \\ & \text { N } \\ & \dot{0} \\ & \dot{\sim} \end{aligned}$	

$\stackrel{1}{2}$
0
0
0 ．

a
A
N
N
0
0
N
os
\vdots
0
0.0965
$5960^{\circ} 0$
-1
N
N
-
0

N
N
0
0
0
0
0
0
0
0
$\left\lvert\, \begin{array}{ll}0 & M \\ 0 & M \\ 0 & 0 \\ 0 & 10 \\ 0 & 0 \\ 0 & 0\end{array}\right.$
∞
0
0
0

--․․
M

 \(2 \pi |\)\begin{tabular}{l|l}
 0

\hline 10
\end{tabular}

 47
 20

a
0
10
N
NiO

T:4
ざ吉吉
首
LATTOM
HAMILTOHF-M
AKFOH

$5 H 540$
240
6680
8480
8760
9160

0262
옹
9
+9
+9
OOZE
$0 G 0 Z$
WFA MODEL FOF TEAR 2000 w/
Ef WCEESAELE MGFKE: VALUF
ink 2000
QIST0
-1
\square0－

ALLEHTOWH．． READIHG	$\begin{aligned} & F[A-H, S \\ & F A \end{aligned}$
OH	H．${ }^{\text {a }}$
HEL Aito－-	H
WrLMxhGTO	

 O
 2
 $\frac{1}{2}$
$\frac{3}{3}$
$\frac{1}{3}$
$\frac{1}{4}$
$\frac{1}{3}$OOZE
$0 G 0 Z$

3.057534 .0516
(4)
N

2.4655	3.0284	37.0800
2.0757	2.1722	39.2522
1.1765	2.0000	41.2522

1.8444	43.0966	0
1.5228	44.6194	0
1.4640	46.0834	2

2.4655	3.0284	37.0800
2.0757	2.1722	39.2522
1.1765	2.0000	41.2522

1.8444 1.5228 0.3222
CiSM FhimCIFAL
LISU GHILADELFH FAMS
2.1931
N

WILE ATE WHO 50 HILE KA

raik	SMEA	FFithifat.		"AGF	iotal	$\begin{aligned} & \text { L. UE }= \\ & \text { CUM } \end{aligned}$	sues	5 mba	Sumerdihate		HISt	MAF:KET value
$\therefore 1$	3\%0	katsens eit	mo.ki	0.9094	0.9599	56.1311	2	$\begin{aligned} & 4150 \\ & 7000 \end{aligned}$	LAWbFHCE St Josefh	$\begin{aligned} & k 5 \\ & \text { Mo } \end{aligned}$	37 48	$\begin{aligned} & 0.0138 \\ & 0.0367 \end{aligned}$
							1				B5	0.0505
22	3460	Suithatafot		0.7394	0.9029	57.0339	4.	$\begin{array}{r} 400 \\ 1020 \\ 3250 \\ 5280 \end{array}$	AHEERSOH FLOOMTHGTO кокомо murcie	14	34	0.0513
										14	46	0.0386
										IN	49	0.0759
										x 4	50	0.0477
											179	0.1635
23	7600	SEgTtLE-EV		0.7621	0.8750	57.9239	1	9200	tacome	wa	26	0.1328
											26	0.1328
24	1300	burimegtoh		0.0327	0.8523	58.7812	2	$\begin{aligned} & 3120 \\ & 6640 \end{aligned}$	GFEEMSBORO		20 49	$\begin{aligned} & 0.4890 \\ & 0.3306 \end{aligned}$
											69	0.8196
$\div 5$	1840	columeus	OH	0.7797	0.8338	59.6150	!	7960	SFERTHGFIEL	OH	43	$\underline{0.0541}$
											43	0.0541
26	6200	FHOE:II\%	$A z$	0.7676	0.7676	60.3827	0					
											0	0.0000
27	7320	Sait diego	ca	0.7644	0.7644	61.1470	0					
								\because			-	0.0000
23	3280	taman-st f	fl	0.5753	0.6732	61.8202	2	$\begin{aligned} & 1140 \\ & 7510 \end{aligned}$	BFADENTOH SAFASOTA	$\begin{aligned} & \mathrm{FL} \\ & \mathrm{FL} \end{aligned}$	$\begin{aligned} & 33 \\ & 43 \end{aligned}$	$\begin{aligned} & 0.0292 \\ & 0.0687 \end{aligned}$
											76	0.0979

fage

OFPGINAL PAGE is
OF POOR QUALITY

,er	- ${ }^{\text {a }}$	6natem		roma		Supi	5×56	sudordithtes	G15t	HAKKET VRLUE
± 1	430	takesatitet in	0.1292	0.1292	82.17*	\checkmark			0	0.0000
2	7680	shameiont ma	0.1203	0.1203	82.3012	0			--	0.0000
93	3120	sam mas-se ca	0.0739	0.1245	82.4257	1	7485	smeta cruz ca	$\begin{array}{r} 30 \\ \hline 30 \end{array}$	$\frac{0.0457}{0.0457}$
94	25.30	farctrevil an	0.0514	0.1234	82.5491	1	2720	fort smith ar-ok	$\begin{array}{r} 49 \\ -\quad 49 \end{array}$	$\begin{array}{r} 0.0720 \\ -0.0720 \end{array}$
\%	3010	vHLFEM-TE T:	0.0558	0.1231	82.6722	1	8300	waco \mathbf{x}	$\begin{array}{r} 46 \\ \hline 46 \end{array}$	$\begin{array}{r} 0.0673 \\ \hdashline 0.0673 \end{array}$
\cdots	5.40	mortioneti me	0.1215	0.1215	82.7937	0			0	0.0000
$\%$	000	anousta gase	0.1210	0.1210	02.9147	0			--	0.0000
$\%$	$1+10$	[M.atestor sc	0.1205	0.1205	83.035.2	0			\cdots	0.0000
\because	1630	comas cha \mathbf{N}	0.1187	0.1187	83.1539	-			0	0.0000

[^0]: P: Primary Market
 S: Secondary Market

[^1]: *Estimated T-1 30/20 GHz based on a parametric cust model prepared previously for NASA-LRC.

[^2]:

 Network CATV

 TOTAL

[^3]: 1540 CIMCEMEATI OH－MR－

