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ABSTRACT

A review and summary of recent developments of the Green's function
method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic
and Supersonic Aerodynamics) are presented. Applying the Green's function method to
the fully unsteady (fransient) potential equation yields an integro-differential-delay
equation, With spatial discretization by the finite-element method, this equation is
approximated by aset of diffe.renﬁal—delay equations in time. Time solution by
Laplace transform yields a matrix relating the velocity potential to the normal wash.
Premultiplying and postmultiplying by the matrices relating generalized forces to the
potential and the normal wash to the generalized coordinates one obtains the matrix
of the generolized aerodynamic forces. The frequency and mode-shape dependence of
this matrix mokes the program SOUSSA very useful for multiple frequency and repeated
mode ~shape evaluations. The program SOUSSA is general, flexible, easy to use, and
accurate, Applications to aerodynamic design are also discussed. The user /program-
mer manual for SOUSSA-P 1.1 is presented in Volume 2 of th.is report (NASA CR-
159131).
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SECTION 1
INTRODUCTION

Presented here is a generoll formulation for steady, oscillatory, and unsteady
subsonic and supersonic, potential aerodynamics for complex aircraft configurations.
This formulation is the basis for the computer program SOUSSA-P, which may be used
for a variety of aerodynamic computations. These include, for example, the follow-

ing types of aerodynamic analysis:

) Unsteady State Applications
a)  Flutter or Gust Analysis,
b) Flutter or Gust Analysis with multiple sets of frequencies,

c)  Flutter or Gust Analysis with multiple sets of boundary~
condition modes and/or generalized-force modes,

d)  Flutter or Gust Analysis with multiple Mach numbers,
) Steady or Quasi-Steady State Applications

a)  Steady-State Pressure Distributions,

b)  Structural Design Loads.

c)  Aerodynomic Coefficients.

d)  Stability Derivatives,

e)  Static Aeroelastic Analysis.

Reviews of other methods in this field are given in Refs. 1 and 2 and, there~
fore, are not presented here, The method is based upon the Green's function method
(to transform the velocity-potential differential equation into an integral-differential-
delay equation) and the finite element method (to transform the equation into a set of

differential -delay equations in time).



A review of the development of the method is presented in the following'
subsection, The integral vequaﬂon used in SOUSSA-P is obtained in Section 2, whereas
the numerical formulation for the solution of the integral equation is presented in
Section 3. The boundary conditions are considered in Section 4, whereas Section 5
deals with the evaluation of pressure coefficients from the potential and the evaluation
of the generalized forces from the pressure coefficient. Section 6 discusses the matrix
relating the generalized aerodynamic forces to the generalized coordinates describing
the rigid-body motion and/or deformation of the aircraft, The use of the method in
aerodynamic design (find the shape given the pressure distribution) is also discussed in

Section 6, Concluding remarks are presented in Section 7,

Subtle points in the formulation are dealt with in the Appendices. In parti-
cular, the value of the function E for a point on the surface is obtained in Appendix
A. A discussion of Laplace transform and the truncation of the wake is given in Appen-
dix B. The effect of the motion of the surface of thé body is discussed in Appendix
C. Appendix D deals with the boundary conditions for a body-axis formulation. In

Appendix E the closed-wake phenomenon is examined.

1.1 REVIEW OF DEVELOPMENT OF METHOD

The method is based upon a formulation developed by Morino (Refs. 3 and 4)
in which the Green's function method is applied to the equation for the velocity poten~
tial, Use of the infinite-space Green's function method yields a representation of the
potential ¢ at any point, p, in the flow field (control point) in terms of the values of
the potential ond its normal derivatives on the surface, T, surrounding the body and its
wake. The integral equation is obtained b} imposing the requirement that the volué of
the potential at p approaches the value of ¢ on the surface if p approaches a point on

the surface. The wake is a natural byproduct of the method and is treated as a layer of



doublets. 1t may be noted that the integral equation is different from other ones cur -~
rently used in aerodynamics in that it does not require that the boundary condition on
the normal wash be satisfied, but rather makes use of the continuity of the pofeﬁfial as
the control point approaches the surface, o, The two boundary conditions are mathe-
matical equivalents, however, The tangency boundary conditions are automatically
satisfied by the type of representation obtained with the Green's theorem. A feasibility
analysis by Morino and Kuo (Refs. 5 and 6) indicates that the method is fast and accu-
rate. A general formulation for steady and oscillatory subsonic and supersonic flow is
given in Ref, 7. In that formulation the surface of the aircraft and its wake was
divided into small quadrilateral elements. Each element was replaced by a portion. of
-a hyperboloidal paraboloid (hyperboloidal element) defined by the four corner points of
the element. In this process, the continuity of the surface was maintained, although
discontinuities in the silopes were introduced, The unknown potential was assumed to

be constant within each element (zeroth-order element) and therefore, the integral

equation was approximated with a system of algebraic equations.

An extension to the fully unsteady formulation, both in the time and com-
plex-frequency (Laplace) domain, is presented in Ref. 8 for an arbitrary finite~element
representation. Evaluation of the matrix of the generalized aerodynamic forces is pre~
sénfed in Ref. 9. Modification of fhé theory for coplanar surfaces is discussed in Ref.
10. Numerical results for subsonic and supersonic flows have been obtained for wing~
body~tail configurations in steady oscillatory and full unsteady (transient) subsonic and

supersonic flows (Refs. 9 and 10).

More recently the computer time for the evaluation of the aerodynamic in-
fluence coefficients has been reduced considerably by using numerical quadrature to
evaluate the source and doublet integrals for "distant" elements (Ref. 11). Additional
work includes the wake roll-up (Ref. 12). An overall review of the method is given in

Ref. 13. An assessment of the method is given in Ref, 14,

1-3



1.2

THE COMPUTER PROGRAM SOUSSA-P 1.1

The method reviewed in Section 1.1 was originally imbedded in the general~-

purpose computer program SOUSSA-I (Steady, Oscillatory, and Unsteady Subsonic and

Supersonic Aerodynamics - Interim Version), which was first presented in Referece 9.

SOUSSA-] was at the time the most general code available for potential aerodynamic

analysis. However, SOUSSA-I was developed in an academic environment, for research

ond proof-of-concept purposes, ‘A more general and efficient version (SOUSSA-P) was

planned for "production" applications. The SOUSSA-P program possesses. the following

qualitites:

User Orientation ~ To enable its use without extensive specialized
training.

Generality - The program has been structured to facilitate the
analysis of aerodynamic problems involving a wide range of flight
speeds, arbitrary aircraft geometry, multiple sets of vibration and
deformation modes, and multiple sets of frequencies. Furthermore,
SOUSSA-P was designed to be compatible with most currently avail-
able geometry preprocessors.

Computational Efficiency ~ A premium has been placed on the con-
servation of central processor time as well as central memory so that
the program may be a useful tool for application to complicated con-
figurations such as complete aircraft,

Simplicity of Method - It provides a commonality between subsonic

and supersonic, steady and unsteady flows. Also, the expressions for
the coefficients are very simple due to the vector formulation of the
problem, Furthermore, the use of quadrilateral hyperboloidal elements,
described in terms of their corner points, allows for application to
arbitrarily complex configurations,

Accuracy - The method is accurate and fast, as indicated by the
results obtained thus far,

Modularity - To facilitate incorrorafing new or improved features of
the method or the computational algorithms,

SOUSSA-P employs the sophisticated data handling capabilities of the SPAR

Finite Element Structural Analysis, System Level I, computer program (Ref. 15), which

is in part responsible for realizing the aforementioned qualities,
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1.3 FORMULATION OF PROBLEM
The integral equation used in SOUSSA-P is derived in Ref. 3. For the
sake of clarity, a simpler derivation is presented in this report, assuming from the

beginning that the motion of the surface is infinitesimal, *

In this report, the isentropic inviscid flow of a perfect gas, initially
irrotational, is considered, Under this hypothesis, the flow can be described by the

velocity potential, ¢, such that the velocity VF of the fluid is given by

VF=V¢ (]"])

where g is the del operator (nabla), Consider a frame of reference i, i, k such that the
undisturbed flow has velocity U, in the direction of the 7 axis. Then the small-

perturbation, linearized equation of the unsteady aerodynamic potential is

& vip=
dr?

(1-2)

where q__ is the speed of sound of the undisturbed flow, v 2 is the Laplacian operator,

and

d d F)
g -9 4y 2 (1-3)
dt ot Pax

is the linear substantial derivative, Then, it is convenient to introduce the perturbation

potential ¢, such that

¢=Ux+¢ (1-4)

Note that

=0 (1-5)
in the undisturbed flow,
*This point is discussed further in Appendix C.
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A very general approach is considered in Ref. 3 by assuming that the body
immersed in this flow has arbitrary shape and is moving with arbitrary motion, including

deformation, Thus, the surface of the body is represented in the general form
S(x,y,2,1) =0 (1-6)

The no~flow-through boundary condition on the body is given by (see

Subsection 4-1)

°S
PV +96.95=0 onS =0 (1-7)
t

By using Equations (1-3) and (1-4), Equation (1-7) reduces to*

39S 3S
Vo VS =~f— +4 - 1-8
3t °°ax> (1-9)
or
- dS
o1 (1-9)
3n | vs | dt

As mentioned previously, a simplified gpproach is used here, in which the surface is
assumed to move only infinitesimally with respect to the frame of reference traveling at
velocity Uoo (in direction of the negative x-axis) with respect to the undisturbed flow,

Mathematically, it is assumed that the surface of the body is represented in the form

S(x,y,2z, 1 = SB(x, y, z) + eSU(x, y,z,t) =0 (1-10)

*This is the exact boundary condition: no small-perturbation assumption is used here,
A nonzero flow-through boundary condition can be easily included in the formulation
by adding the flow-through term in Equation (1-8).



with e<< 1, In Equation (1~10), SB represents the steady-state geometry while S

u

gives the unsteady perturbation,

Next consider the pressure distribution which can be evaluated from the

exact nonlinear Bernoulli Theorem for barotropic fluids

P .
f_‘_dp=-(§f£+uma_‘?+_‘_w-vcp (1-11)
P P ot ox 2
or if nonlinear terms are neglected,
P-P
c =2 =21 (2, iy 2)-_2 d (1
P12 2 \3t dx 2 dt
- pU”. U U
2 (o o] @ o0}

which is the form used in SOUSSA-P 1.1,

Then the nondimensional generalized aerodynamic force acting on the non-

dimensional mode Mh is given by
e = :;. @ C, 7+ My doy (1-13)
2 g '

where og is the surface of the body and £ is a reference length,

Finally, consider the boundary condition on the wake, i.e., that the pressure

discontinuity across the wake be equal to zero, Using Equation (1-11) one obtains*

3 3 1 .
—t U _  —+ — (Vo + Vo) V| (p, -, =0 (1-14)
[af ® 3 3 Py 7 ] Py =~ Py

*The subscripts u and £ indicate the upper and lower sides of the wake, They are
used even when the wake is vertical or rolled-up.
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or
— Ap =0 (1-15)

where - Ag = ¢y = @, and D/Dt is the substantial derivative, i.e., the time deriva-

tive evaluated by following a wake particle which by definition has velocity
Y rt 1 ,
V=u_7+ = (Vo + Vo,) (1-16)

Note that for steady state Equation (1~15) becomes

d

Ap = 0 - (1-17)
dSW

where s\ is the arc length along a wake streamline. Equations (1~15) and (1-17)
are exact, i.e., involve no small~perturbation assumption, Equation (1-15) may be

integrated to yield
A(P(-F;I t) = 'A(P(BTEI t - 1) (1-18)

where 1 is the time necessary for a particle in the wake to travel from the point, ETE
(origin of the vortex line at the trailing edge), to the point p. Small perturbation

hypothesis is used in SOUSSA-P 1.1 and hence 7 is approximated by
T= (x - xTE)/Uoo (1-19)

This is consistent with using the linearized Bernoulli's theorem for the evaluation of

the pressure since in this case Equation (1-12) yields



(-3_ u_ i) Ay = 0 (120
ot ox

or

Ap = Ag(x - Uoo t) (1-21)

An additional boundary condition is that the normal component of the

velocity is zero on the wake, i.e.,

% -9 (1-22)
on

This condition may be used to obtain the geometry of the wake,






SECTION 2
SUBSONIC AND SUPERSONIC INTEGRAL EQUATIONS

Considered in this section is the integral equation for unsteady subsonic
and supersonic potential aerodynamics for an aircraft having arbitrary shape, The rigid-
body motion and/or deformation of the aircraft is assumed to consist of small perturba-
tions (starting at t = 0) With respect to the .constanf-speed motion, The objective of
this formulation is to describe the functional relationship between aerodynamic poten~

tial and its normal derivative (normal wash, ¢ =3¢ /3n) on the fluid boundary.

The analysis presented in this section is based upon an integral formulation
presented in Refs, 3 and 4, which includes completely arbitrary motion, Note that
in order to perform a linear-system analysis of the aircraft, it is convenient to use a
general aerodynamic formulation, i.e., fully transient response for time -domain
analysis, and the aerodynamic transfer function (Laplace transform of the fully unsteady
operator) for complex-frequency~domain analysis. Consistent with this type of analysis,
the unsteady contribution is assumed to start at time t = 0, so that for time t < 0 the
flow is in steady state, Furthermore, the unsteadiness of the aircraft is assumed to

consist of small (infinitesimal) perturbations around the steady-state configuration.
In this section the subsonic formulation is presented in detail; the extension
to supersonic flows is also outlined,

2,1 GREEN'S THEOREM FOR POTENTIAL AERODYNAMICS

The purpose of this analysis is fo obtain a representation of the potential in
terms of its value (and the values of its derivatives) on the surface of the body and the

wake using Green's Theorem,



Note that the equation of the aerodynamic potential given by Equation (1-2)
is not valid on the wake, where discontinuities on ¢ exist, Thus, consider the volume V
in which Equation (1-2) is valid. At any instant of time, this volume is given by the
whole physical space except the volume, Vg: occupied by the body and the infinites-
imally thin layer, VW' representing the wake. As mentioned above, the volume V is

assumed to be time-independent, Define the function E (see Figure 2-1).

E(x, y, z) =1 inV

=0 CinVg+Vy (2-1)

This function represents the domain of validity of the equation of the potential and will
be called "domain function." Consider the surface of discontinuity of the function E,

that is, the surface, o, surrounding the volume VB + VW . Let

SV(x, y, z)=0 (2-2)

be the equation of the surface o.

Note that the surface o is composed of two branches, The first, o is the
surface of the body given by Equation (1-10) (with ¢ = 0 except for the boundary con~

ditions*), The second is the surface, oW of the wake
S\N(xl Y Z) = 0 (2"'3)

Note that this surface S\ is considered twice, since o is a closed surface. In other
words, the two sides of the wake are considered to be two independent surfaces

having the same equation (but opposite outwardly-~directed normals).

*In other words, the boundary conditions take into account the motion of the surface o,
but are applied at the mean (steady) position,
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Figure 2-1. Aerodynamic Nomenclature for Potential Flow.




As mentioned previously, the present formulation is based upon the Green's

function method. The infinite-space Green's function for the equation of potential is

defined by

2
V2G - -]2— 91—-—(—5 = 6 (X=X, YYsr Z7Z4, t-t,) (2_4)
95 df2

(where § is the Dirac delta function) with G = 0 at infinity.

Multiplying the equation of the aerodynamic potential, Equation (1-2), by

the Green's function G and subtracting Equation (2~4) multiplied by ¢, yields

2 2
G [Vo-L Lef o 2c-L IG5 (2-5)
o> df? o2 d
©0 oo
Making use of the identities
V' (%)= Va * Vb +avlb (2-6)
and
d db | da b . d%
a = +a (2-7)
dt dt dt dt dt2
Equation (2-5) reduces to
1 d d dG
V' (GVg-¢¥G) - — — [G 2~ 2| =-¢s (2-8)
e 02 dt dt ? dt ?
0

Multiplying Equation (2-8) by the domain function E, defined by Equation (2~1),
integrating over the whole four—dimensional space-time and noting that, for any

function g, (see Equation (2~1))

@ Egdv = _[_/Ug dv (2-9)

2-4



one obtains

f dt m V' (G - oG - %j—:— (Gig-p-’cpig) dv

dt dt
a,

oo
=- ”H E g6 dV dt (2-10)
-

Using the relations

%9 gt =g(oo) -~ g (<) =0 2-11)
t .

for g ( +o0) =0 and

W ag dv = @9“"d0~@9 lvsy TMde  (2-12)

and similarly

.m"' adv =@5 . 5d0=@5 'vS\,IVSVI-' do (2-13)
Y; S "

where a is an arbitrary three~dimensional vector and 1 is the outwardly—directed* -
normal to the surface

VSV
[vsy |

=1

(2-14)

*"Oufwardly" is understood as "going from the body into the fluid", that is, from the
region E =0 into the region E =1,



Equation (2~10) reduces to

T @[VSV.(GVQ) - VG)

3 i}
- Ly, Y (e g 98 \us |7 do at
o2 X dt dt
[e®)

= ﬁi EosdVdt (2-15)

Finally, making use of the definition of the Dirac delta function yields

o0
(G0e Got= [ Qs @76 - g70)

<}
1 Vo[ dp . dG -1
-y Y e -pCllws, ]| do dt (2-16)
2 o ( dt ‘Pdr) Sy

%o
Equation (2-16) is the desired Green's Theorem for potential subsonic and supersonic

small-perturbation aerodynamics, (Compare Equation (3-19) of Ref, 3.,)

2,2 SUBSONIC INTEGRAL EQUATION

Equation (2~1 6) is valid for both subsonic and supersonic flow. In this sub-
section the flow is assumed fo be subsonic, i.e., M = Uoo/aoo < 1. In this case the

Green's function is given by (Ref. 3)

G=- 5 2-17)
4ur ®



vhere

with

while

with

2.2.]

12
o = § () 4 87 [<y—y*)2 | <z-z*>2]} (2-18)
8= N1-m (2-19)
‘b =8 (t=t, +96) (2-20)
0 = ]2 [rs +M (x=x,) ] (2-21)
GOOB :

SUBSONIC GREEN'S THEOREM

Combining Equations (2-16) and (2-17) one obtains

o .
U_ 23S ‘
- - 1 -
4m E(p.) (P(P*,f*)= = L @E?S\/'V‘P -2V g%g] ”"6e|vsvl ]dO'df
-0 ¢ ago dx rg
oo 2
U- 3s
1 V 9
R e | KT
o r X Ox \r
o B a, B
oo
U asv dae ! 1
P i B R R i X I B T P
-0 © SV ® 2 x dt r SV
% B 2-22)



Next note that

98
0
Vg, =—— VO
° 3t
ds 35
) o) e} 0 BG ;
dt at Poax| st  ax 2-23)
Combining Equations (2-22) and (2-23) yields
4 E(E*)‘P(Eu"*) =
oo
U dS
J‘ @ vsv-v(p_f?. Vel T pus, |7 do dt
2 ax dt|r oV
-0 O cbo B
o6 2
U_. 3§
+f @vsvv -33__\_/.3__1_(96 |VSVl]dcdf
2 d r ©
S0 o | 8 & x dx \rg
oo
U_. 3 06
+I @ vsvve-_i‘f’_ _S_V_ 1+U 2 2 —° j9s |7 do at
2 3 r ot v
Soo & x x| rg
(2-24)



Performing the integration with respect to time, one obtains*

41TE(-F-)*) ¢ (f;* ) =

U BSV 8
2 o d ] 1
- @ VS, [vgl - — [———‘P] - do
a

g

8

2
U 3§
+ @_vsv.v(l_) -2 _V i(]_) [q;]e |V; do
o

U d )
- @ VSV - ._S_Y 1+y 2 [?EE] LI I
& 2 3x ax[{latl r, |vS

Equation (2-25) is the desired subsonic Green's theorem.

2,2,2 GENERALIZED PRANDTL-GLAUERT TRANSFORMATION

In order to obtain a formally simpler expression for Equation (2-25), con~

sider the generalized Prandtl-Glauert transformation and nondimensionalization

¢ = ¢/U Y

X = x84

Y = y/4

Z=z/4

T = U/s (2-26)

where £is a reference length,

* In Equation (2-25), the symbol [ 1% indicates evaluation at time = t, = 0.

9 _
[P=011,.,

2-9



Note that

1 do _ 1 dydz _ 42 dvdz _# &
A o5yl s lasy/x| R [as, x| R [V s, |

(2-27)

where v, is the gradient operator in X,Y, Z variables, and £ is the transformed o in the

space X, Y, Z, and R is given by

1/2
R = [ (X-X3)2 + (Y-Y,)? + (Z-Z,)°] /

Using Equations (2-26) and (2-27), Equation (2-25) reduces to

4nEF,) e (P, T,) = —@ [vosv K ]®
bY

. 1 ® ds
+ @ VstV (?) [3] Toe
o]

v

A
R VS,

z
6
_® VS, - V0 E%J _:; T%T
b o”V
where
[ 1°=1 J
T=T,-8
with
e=U_6/4=[M (X-X,)+R] M/B
and

9= [M (X,-X) +R] M/B

2-10

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)




Introducing the normal derivative

3 = s
— =N VS,V 2-33
ON ° | | ° ( )

Equation (2-29) may be rewritten simply as

4AnE (ﬁ*) % (F*IT*) == [\1I ]® —]“ dr + . —L (——]——-)[§1®d2
@ R @ N R

¢}
@ 1 28 [M } ds (2-34)
o7 | -

where

o8 (2-35)

indicates the component of the nondimensional velocity in the direction of the normal
N to the surface T of the X, Y, Z space (not in the direction of the normal, n, to the
surface o of the physical space) and is known from the boundary conditions (see
Section 4). The relationship between ¥ and { is given by

1 (asv 28, B o, O B_@)

|v s\ ax ax 3y 3y 3z 3z

8/, 3S 2
[ 2, 3y 3 , v

(1-M%) Y Y %
dx  Ox dy dy dz 2z

n

v v
L-SXL vcp.(E—Mz ni)= L J—SVJ (v—Mz n, %9 )(2-—36)

£
UOO 'V S ‘ Uoo lvos\/'

2-11



Equation (2-36) may be rewritten in a more interesting form by noting that

i can be decomposed into two vectors; the first one, -i.n =n_n, normal to £ and the

second one, i,, tangent to T, in the (7, n) plane

i=i 4T =n AT | (2-37)
Note that
1 n_} 1-n 2
R - X X
p=i=-nn={0} -n Nt = nxny =it (2-38)
0 n n_n
z X z
where
t=1./1%| (2-39)

is a unit vector tangent to T and

1/2
. < 2.2 2 2 2 2
't=|'t‘=[(]—nx) +nxny +nxnz]
1/2 1/2
2 2, 2 2 2 2
= [l =2n " +n " (n +ny +n, ):I =(l--nx )
(2-40)
Note also that
- W 1/2
o [25\V a5\ fas\2
v sl (-MY{—=] * ¥
o"VH _ ox 3% dz
|vsv| 3s N2 [3s 2 (35 \2
B ox ay oz R
= 0 (1-M2n2)/2 (2-41)

2 -12



Combining Equations (2-36) to (2~-41) one obtains

~1/2 1/2
1 2 2 L) o= 2 - 2 ~
Y= (I-M nx) Ve n-M nx{nxn+(l—nx) fJ

Y

2 ] 12
=1 a-Mnd) 7 vt | 0-MEn B - MPn, 10 D) T T

ngo X X X X

2 \1/2
1/2 1-n

S lamn Ty 2 M % | )

u X 2 2 X dsy

O 1-M n,

where s, is the arclength along the direction of the unit tangent T . Note that if

n, =1, then ¥ = 8Y/U_,, whereas if

~

Mn =0 (2-43)

then

Y = ) (2-44)

1
U
The approximation introduced in Equation (2-43) implies small-perturbation from free~

siream velocity for M > 0 and is consistent with the use of the linearized differential

equation for the perturbation velocity potential of Equation (1-2).‘

It should be noted that, in Equation (2~34) the surface £ is assumed to be

- fixed with respect to the frame of reference., However, the effect of the motion of
the surface is retained in the boundary conditions, which are considered in Section 4,*
Also note that (consistent with the hypothesis of small perturbation with respect to the
steady-state configuration) the surface of the wake is assumed to be the one of the
steady-state case, |t may be noted that since I is fixed, Equation (2-34) represents a

*This point is discussed further in Appendix C.
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linear operator, Hence, flow can be decomposed into steady and unsteady contributions,
which are decoupled and can be evaluated separately, As mentioned previously, the
flow is assumed to be steady-—state for T < 0, Therefore, the unsteady parts of the
potential and the normal wash, 3 and Yy respectively, are identically equal to

zero for T < O:

]

0, ¥,,= 0 (T<0) (2-45)

% U

These conditions are introduced to permit the use of Laplace transform, This point is

discussed further in Appendix B.4.

2,2,3 CONTRIBUTION OF WAKE

In order to understand the nature of the aerodynamic operator, Equation

(2-34), it is convenient to isolate the confribution of the wake,

Note that, as mentioned in Section 2,1, the surface £ is composed of two
branches, The first is the (closed) surface of the body, Zge The second is the (open)
surface of the wake, zw*: note that this surface is considered twice since & is a closed
surface. In other words upper and lower sides of the wake are considered to be two
independent surfaces, having the same equation but opposite outwardly-directed

normals, l:lu and N ot respectively, This may be expressed as

T =zB+2u+2£ (2-46)

N, = =N, (2-47)

*Note: In inviscid flows the wake has zero thickness, However, the method may be
used for finite~thickness woke with appropriate changes in the wake boundary condi-
tions, For a fuselage with a truncated base, inappropriate modeling of the wake as a
closed wake yields a nonunique solution to the integral equation, This phenomenon
is analyzed in detail in Appendix E,
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Combining Equations (2-34), (2-46) and (2-47) yields

4 EPLE(P,,T,)= - @ (v L dzg+
R .

&
g ( Joor O] 5 S
ﬁ (8917 —— any + ﬂ (4418 ag (_:.{..) dsy
[pay s i

Note that, according to Equation (1-22), A} =0. However, in general

AY # 0. For, using Equations (1-22) ond (2~42), one obtains

a2 |2

-n

AY = ] X M2 nx dASp (2__49)
Uoo ] - M2nx2 ds,f

Thus, excluding the case n, =1, which violates the small perturbation assumption,
AY =0 (2-50)

only if

Mo, L ag= (2-51)

i.e., only for

(1)  incompressible flow (M =0)

(2)  vortex-lines parallel to x~-axis (nx = 0)

(3) steady-state and small perturbations (i by = 4 Ao =0, see
dsf dsW
Equation (1-17)).
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Note that the small perturbation assumption (required for the linearization of

Equation (1-2))implies that n, =0, Therefore, AY = 0 and hence Equation (2-48) may

be approximated with

4nEP,) 8 (P, T,) =- @ [v1® L. d4»
£p R

@ ~
[]® 2 1 ). |2 120, 250
+ ﬂ — (——) [—-— Y ny 2-52)

3N,

where g is the closed surface of the body, while Ty s the open (i.e,, one side) sur~

face of the wake, and 48 is the potential-discontinuity across the wake evaluated in

i

the direction of the normal, l-\lu (i.e., 43 ¥, " %), It should be noted that the
value of A3 is not an additional unknown, since Equation (1-18) may be rewritten, in

nondimensional form, as
83 (P, T) = As (PTE' T=-1) (2-53)

where 11 is the nondimensional time necessary for a particle in the wake to travel
(along a vortex line, within the steady flow) from the point PTE (origin of the vortex
line at the trailing edge), to the point P, Small perturbation hypothesis is used for

the steady~state flow, and hence, 11 is given by the nondimensional form of Equation

(1-19), i.e,,

m=8sg(X- XTE) (2~54)

Equation (2-52) is the basis for SOUSSA-P 1,1,
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2,2.4 BASIC EQUATIONS USED FOR SOUSSA-P 1.1

It may be noted that, as shown in Appendix A, Equation (2-52) is valid

also on the surface % if the function E, defined by Equation. (2-1), is generalized as

m
il

1 outside EB

1]

1/2 on g (regular point)

0 inside Zg (2-55)

If the point l;* = Xy, Yu, Z,) is on the surface £, Equation (2-52) is an integral
equation (with differential~delay dependence upon time) relating the values of & and
9% on the surface & to the values of the normal derivative % with A¢ given by
?E;uaﬁon (2-53), This.is the equation used in SOUSSA-P l.'la.N(On the other

hand, if F-’* is not on &, Equation (2-52) is not an integral equation but s‘imply an

integral representation of the. potential & at any point of the flow field in terms of the

values of & and _E_q_s_ and the normal derivative 3.?_ on the surface % ,)
oT oN

2.3 SUPERSONIC INTEGRAL EQUATION

Equation (2-16) was derived without assuming the flow to be subsonic; there~
fore, Equation (2-16) is valid for supersonic flow as well, The supersonic Green's

function is also defined by Equation (2-4) which may be solved to obtain (see Ref. 3).

___H [s 45 |
G_-4rrr' (e+ 9-) (2-56)
B
where
1/2
= (e -pr [(y-y*>2+<z-z*>2] (2-57)
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with

while

with

and finally

HP) =1 x,-x>p' J(y—y*)2 + (z—z*)2

20 xy ~x=8' Y (yya)? + (22,2

(2-58)

(2-59)

(2-60)

(2-61)

Repeating the same procedure used to derive Equation (2-52) from Equation (2-16),

using B' instead of B in Equation (2-26), i.e.,

one obtains

X=x/'"4 Y=y/o Z=z/4 T=U_t/k (2-62)

+ -
4n E(ﬁ*)§ (F*IT* =- @([ ‘1"]® + [Y'-]® )i dzB
= R

-+ -
+ @([@1@ + [u@) 2 (..”_)dzB

g aNC \ R

(Equation continued on next page)
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(e

3T

B IN°®

S

j aM a®+ +[BA§]® 20

. aNc ST aNc
U

where E(P,) is given by Equation (2-55),

is the conormal wash, whereas
1/2
2 2
o CRESES -@-2.7]

and
~1/2
i

e]/Q
J

H=1 me*-X>[W-YQ2+Q-ZQ2

=0 fax*-XsEY-Yg2+a-zg2

2-19

g[a_@J {_ag}@ T 1,
J OAﬂ@F+[A¢@-)-ﬁ— (Ji)ﬁw

(2-64)

(2-65)

(2-66)

(2-67)



Furthermore

-+

"~
= + (2-68)
T,-8" |
indicates evaluation at time T =T, ~ oF with
e = [M (X, -X) £R'] M/p’ (2-69)
and finally
o8 = [M (X -X,)+R'] M/p’ (2-70)

Equation (2-63) is the basis for the supersonic SOUSSA and is presented here for the

sake of completeness and for future reference, The supersonic option is not available

in SOUSSA-P 1.1,



SECTION 3
NUMERICAL SOLUTION OF THE INTEGRAL EQUATION

Equations (2-52) and (2~-63) fully describe the problem of linearized unsteady
subsonic and supersonic potential aerodynamics around complex configurations, In
order to solve this problem, it is necessary, in general, to obtain a numerical approxi-
mation for Equations (2-52) and (2—63). The numerical formulaf_ion used in SOUSSA-P
is derived in this section, For the sake of completeness a general formulation for an
arbitrary finite~element representation is presented first, Then the zeroth order

formulation used in SOUSSA-P 1.1 is obtained,

3.1 SUBSONIC FORMULATION

Consider first the subsonic integral equation given by Equation (2-52). In

order to discretize the space integral operator over the surface =_ it is convenient to

B

*
use a finite—element representation for the normal wash ¥ and the potential 3.

3.1.1 SPACE DISCRETIZATION

Using a general finite-element representation, it is possible to write

(Ref, 8),
H
(P, T-0) = Z v (T-0) Nh(P')
h=1
H
P, T-0) = >, &, (T-0 )N (P) (3-1)
h=1

*Finite-element representation is meant here in a very broad sense: actually any inter-
polation formula of the type given by Equations (3-1) and (3-2) is consistent with the
formulation presented here. However, for arbifrarily complex configurations, only the
finite-element interpolation (including splines over patches) is sufficiently general to
be of interest here,

3=-1



where Yy (T —@h) and A (T - @h) are time dependent values of ¥ and § at the point,
—F-’h, on T, at the time T - 9, (where e, is the disturbance-propagation time from
f’h to P,); furthermore Nh(F) are prescribed global shape functions, obtained by
standard assembly of the element shape function (see for instance Ref. 16). The points
Fh will be referred to as nodes*; H is the total number of nodes on the body. For
simplicity the same shape functions are used for & and ¥, although this is not essential

to the method,

Next consider the integration over the wake, In order to facilitate the use
of Equation (2-53), it is convenient to divide the wake into strips defined by (steady~
state) vortex lines emanating from the nodes on the trailing edge, The sirips are then
divided into elements with nodes along the vortex lines, The potential discontinuity

can then be expressed as

N .
23 (P, T-0) = Z pe (T-e )L (P) (3-2)
n=1
where N is the number of nodes on the wake, A% n (T - ®n) is the value of A% at the
nth node 5(;/‘/) on the wake at time T - °, (where ® i the propagation time from

ﬁr(‘w) to P,), and Ln (P) is the global shape function relative to the nth node of the

wake. Note that according to Equation (2-53)

bs_ (1) = M(TE)) (T-1) (3-3)

m(n

*These nodes used to define the functions ¥ and & do not necessarily coincide with
the points used to define the geometry of the surface Tpe



where m = m(n) identifies the frailing—edge' node which is on the same vortex-line as the
nth node Fr(]W). Furthermore, ;s the time necessary for the vortex-point to be con-

vected from the trailing-edge node ﬁf:(i)) to the wake node FSN) . |t may be worth

noting that A% (TE) 3, -3 where h _and h | identify the trailing-edge nodes
m v by v )

(upper and lower sides, respectively) on the body corresponding to the mth node on the

trailing edge, Therefore, it is possible to write

H
sallD) = T s, (3-4)
h=1

where th =1 (th = -1), if h identifies the upper-side (lower-side) node i;h on the

body corresponding to the nth node EnSW) on the wake (i.e., ﬁh coincides with the node

Fg&ﬁg on the trailing edge), and th = 0 otherwise, Thus,
_ o5 _&(TE) . .
th = +] if Ph = Pm(n) is on the upper side of ZB
= -] if Fh = P-SJ(E])) is on the lower side of ZB
=0 otherwise. (3-5)

Combining Equations (2-52), (3-1) and (3-2) one obtains”

26608 (o) = 2 B ¥, (T-0))
+ %Chéh(T ~9))+ zh:Dh'éh(T—(@h)

+ ;Fn A§n(T-®n)+ zn:GnAér';(T-@)n) (3-6)

*For notational simplicity Ty is replacgd with T in this whole section,



where

1 1
B, = - @N (F) —— ds
h 2n Zy h R B
ch—_l_ @Nh(p)_?z__ 1 iz,
2q Zp 3N R
D, = s @ N, (P) L1 drg
2n Ip R 2
1 By O 1
F o= — HL(P)———————dz
"oo2n 5y T aN\R w
G = - J‘I L (P 138 dz,y (3-7)

and according to Equations (3-4) and (3-5)

A% (T—@n) = ;snhah(T-@)n-nn) (3-8)

Next consider, in particular, that P, coincides with the node | on Zp (P =-I5i). In this

case E = 1/2 and, using Equation (3-8), Equation (3-6) reduces to

§i(T) =2;,Bih‘1fh(T-@ih)+zh:cih§h(T-®ih)
+ZDh g, (T- @h)+ZZFIn iR (T o, , -0)

+ZZG S

in "n n

hep (T-0. -1) (3-9)

where

(Biiny Cih' Dih' Fin' Ginl ®ih) = (Bhl Chl Dhl Fnr Gn,- ®h) F :_.F
%*

(3-10)

3-4



3.1.2 LAPLACE-DOMAIN ANALYSIS

Equation (3-9) indicates the nature of the aerodynamic operator relating
potential and normal-wash as obtained by using finite-element representation to dis-
cretize the spatial problem. The operator is a linear differential-delay operator to
which the methods of operational calculus can be applied. In this section 3 and ¥
will indicate the Laplace transform of the unsteady part of the potential and normal
wash, respectively, with initial conditions obtained from Equation (2-45).* However,
before considering the Laplace transform of Equation (3-9), it is convenient to make
some remarks about the contribution of the wake. It may be noted that, according to
Equation (2-45), 2y is identically equal to zero for T < 0; therefore, according to

Equation (3-4),

(a3 0 (T<m) (3-11)

U)n =

Hence, if the analysis is limited to T < T ax’ only the contribution of
elements with I < T need be considered, because T =T represents the
n max n max
full extent of the physical wake, The elements with M, > T ax Would contribute to
the transfer function and thus to the fransform of § but not to the final solution in the
time domain for T < Tmcx . The advantage of deleting these latter elements is not
only that less computational time is used (since fewer elements are employed) but also

that the issue of convergence connected with the infinite wake (factors e " with

Real p) < O and 11~ o) need not be addressed, **

*See Appendix B.4.
**This problem is analyzed further in Appendix B.2,



Next, taking the Loplace transform of Equation (3-9) yields*

o i - Elf

where Sh and "I’h are the Laplace transforms of the unsteady parts of 8, ond ¥, whereas

~ _ _P®.h
-p@, +1)
- in n
2 (F inTPGy) e S (3-13)
n
and
~ _p @.h
Zip = Bpe ! (3-14)

In Equations (3-13) and (3-14), p is the complex reduced frequency (non-dimensional
Laplace parameter), given by p = (v + i)k, where k = o\),e/Uoo is the reduced fre~
quency and ¥ = Real (p)/ Imag (p). Note that for simple harmonic motion, p = ik

(see also Appendix B), In particular, steady-state is obtained with p=0.

Equation (3-12) is the desired numerical approximation of the subsonic
integral equation relating (in the Laplace domain) the transformed vector of the

potential Qh to the transformed vector of the normal wash {Yh} . It is the form

that is actually solved in the SOUSSA-P 1,1 program.

3.2 SUPERSONIC FORMULATION

Using Equation (3-1) and following the same procedure used for the sub-

sonic cose, one obtains the supersonic time-domain aerodynamic operator

*The same results are obtained for oscillatory flow (éee Appendix B.3). For a dis~-
cussion on the initial conditions see Appendix B.4.



where

2E() ¢ By 1= 308, (4 (T -6 45,7 - |

+

+

+

Zch[h(T -+, (T~ ®Q]

> By éy g+ 0 dy -]
h

> F; ‘:Aiin (T -@2) +ag (T -®;)]‘
n

Z [G: Aén (T -@:) + G; Aén (T -@r:)]

= - N () 2 ds g
2n ZB R!
2n Zp aNe R

1
¢ S S—
-
—
=
o/
——
|=
e [+ %
o,
™
=

(3-15)

(3-16)



with
2 2 271/2
vo= [ X0 - (- v -(z-2.7 ] (3-17)

In particular, if E* coincides with the node |, using Equation (3-8), Equation

(3-15) reduces to

} ' [ 1 + 1 - ]
@i(T) =Zh:Bih _Yh(T'@ih)”'h (T—@ih)~

+ ¢ [, (T-0f) +a (T-05)
i | 1
+ e + - -
+ z [Dih % (T - ®ih) + Dih 2 (T - ®ih)]
h

[ + -
+ %ZFin S [@h (M-8, -m)+e, (T-6 - nn)]
n

+ » + -— . -
+ ;Z [Gin th §h (T - ®in - Hn) + Ginsnh Qh (T - ®in - Hn)]
i n

(3-18)
where
] ] i' ] i i _ 1 1] i ] i i
(Bihl Cihl Dihr Finr Ginp@)ih)" (Bhr Ch' Dhr Fnr Gnr ®h ) _ _
P, =P,
l
(3-19)

Finally, toking the Laplace transform of Equation (3-18) one obtains*

KRR 620

*The same results are obtained for oscillatory flows (see Appendix B.3). For a
discussion on the initial conditions see Appendix B.4.
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where

+ -
-pB, ~-p@a.
_ - +y - PPih ' nmy PO

?

+
. +
@+ 1)

1 + "P
- ;(Fin+pGin)e S h

' _ =ple. +1)
_ in n
zn:(Fin+pGin)e Sh
+ -~
~ -p@. -pa,
Z., = Bi'h o o, P

ih ) (3"'2])

Equation (3-20) is the desired numerical qpproximafion of the supersonic integral
equation relating (in the Laplace domain) the transformed vector of the potential

gh to the iransformed vector of the conormal wash {"};] . Note that, for
supersonic trailing edges, Fin = G'I.:‘ = Gi‘n = 0, i.e., the contribution of the wake
is identically equal to zero, Note also that even if the trailing-edges are not completely
supersonic (i.e,, if a portion of the aircraft is contained in the Mach aftcone of any

trailing-edge point), the wake can be truncated at finite distance from the aircraft,

without any effect on the solution,

3.3 FORMULATION FOR SOUSSA-P 1,1

This section deals with the subsonic formulation used in SOUSSA-P 1.1,
This formulation is a particular case of the general formulation presented above, and
is briefly illustrated here. Divide the surface of the aircraft 2y info small
elements, o Consider the shape-function, Nh' equal to one inside oy and equal to

zero outside B iee,,

N, (P)

I
—-—

if Fezh

0  otherwise (3-22)



A point located on the element Z}, ond identified as the center of the element will be
designated as the point at which & and ¥ are evaluated. Equation (3-1) may thus be
interpreted as saying that, within the element Zy s the normal wash and the potential
are approximated with the values ¥, ond g ot the center, Fh , of the element, Z}, -
(Note that the shape functions given by Equation (3-22) may be called zeroth-order
shape functions, Therefore, the formulation presently used in SOUSSA~P 1.1 may be

called zeroth~order finite-element formulation.)

Next, note that using Equation (3-22), Equation (3-7) yields for instance

_ ” LI (3-23)
T, ARh
pX
¢ =-L [[ L R g (3-24)
h 2 2 N
T
] B@
D, = H dx (3-25)
h R aN D

If Zh is a quadrilateral element, then %, may be approximated with a

hyperboloidal element (see Ref. 7)

P =PootPip&+ Py M +PyyEN

] 1
Z Z P e ((1ge<); -1 )) (3-26)
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where £ and 7 are local coordinates with origin at the element center, POO’ and Pmn

are obtained in terms of the locations of the four corner points as

() ) 1 )
Poo 1 ] 1 1] P+s
p 1 1 -1 1| )P+~
10
< > = i , < > (3-27)
Por 1 - 1 1| P+
p ] -1 -1 1{\P--
\ 11/ I A

Note that quadrilateral hyperboloidal elements can be combined to yield a closed sur-

face, Using these elements, the coefficients Ch and Bh can be evaluated analytically

as (see Ref,17)

G, = Ip(1,1) = I(1,=1) = Ig(=1,1) + I5(-1,-1) (3-28)

B, = ls(1,1) = I(1,-1) = Ig(-1,1) + 1g(-1,-1) (3-29)

with [using -n/2 < fan;] ()< n/2]

b (g,1) = (1/2n) fanp-] (ﬁx:&] » Rx 2\2/|§|-R' . Z\] x 7\2) (3-30)

3-11



and

o s - ReAy
|s ,m = ~— "RXA] N sinh
2 c . - -
| 1A IRx Al
R.A
+ RxA, N sinh_l 2
1A, | |Rx A,
- - RxA, *RxA
+ R.N)_tan 7! ! & (3-31)
IRIR - A, x A,
where
E(%.ﬂ)=F-f"*=FOO+F]0§-+FO]T1+*-’”§TI~F* - (3-32)
Ay, ) =3R/3g = P+ 1Py, (3-33)
Ay(e, M) = 3R/31 = Py + € Py, (3-34)
NE D = A x A/]A x A, | (3-35)

and the subscript ¢ indicates evaluation at the element center (€ = 1 = 0),

If the values of R * N at the four corner points of the element do not have
the same sign, then the use of the principal value of tan"" is incorrect (Ref. 18).
In this case the tan™ term is evaluated by replacing the hyperboloidal element with
two triangulor elements: this is legitimate in view of the fact that the integrand in
- Equation (3~24) is the solid angle (see Ref, 3) which depends only upon the perimeter
of the element, not the actual surface shape, A more complete analysis of the problem

is given in Ref, 18,

3~-12



Next consider the coefficient Dh which is evaluated as

Dy = - ﬂ Eg‘gdzh“ “—:A; Hl(é‘&""“\')dzh

R \aN
o Zh

4

M U d2+—-—MN ﬂldz
2np D 2aN h™ ome h

1

R G, - MNxh B)M /8 (3-36)

where Ry and Ny are the values of R and Ny = N i at the center, i;h’ of the element
h
Z'ho
Similarly the wake is divided into elements, 2:‘, and the shape-functions,

Ln(F), are defined as

Ln(P) 1 if Pex

]

0 otherwise (3-37)

Hence the coefficients Fn and Gn are defined as
F o= -1 ﬂ 1 ?_Edz;r"
1
2m s R2 BNU

1 28 4 (3-38)
R aN, "
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The definition of F is identical with the one of <, (with %y, replaced by 2;‘) There-
fore, the evaluation of F_ is identical to the one of Cy,. For Gn’ assuming that the

wake has small inclination with respect to the X-axis (i.e., Ny << 1), the expression

is

G, =R F M/p (3-39)
where Rn is the value of R at the center of element Z;‘ .
Finally
ey = [MOX- X+ [Fy -Pul /6  (340)

is the propagation time from the center -Ph of the element %, to the control point P, .

Similarly
o, = [Mx{ =%y + 18- 7,1 ] ws (3-41)
and

mo=p [x,(‘W) - xh(n)] (3~42)

where h(n) indicates the center of the frailing~edge element from which the wake strip

W)

containing the point En

emaonates, In the User's Manual (Reference 15), ®  indicates

© = 8 +1 (3~43)
n n n
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SECTION 4
NORMAL WASH

In this section the relationship between the normal wash ¥ (or the conormal
wash Y¥') and the generalized coordinates, CI describing the deformation of the air-
craft, is presented, It should be noted that in this report the motion of the aircraft is
assumed to consist of very small (infinitesimal) perturbations around a steady-state con-
figuration which itself generates a small perturbation from free stream, In particular,
in defining the integral equation, the surface, Zpr of the body was assumed to be time
independent (see Equation (1-10) with ¢ = 0), However, as mentioned in Subsection
2.1, the unsteady contribution is retained in the boundary conditions which are con-
sidered in this Section, This point is analyzed in detail in Appendix C where it is
shown that in order to take into account the motion of the surface, ¥ in Equation (2-34)

is given by Equation (C,18), i.e.,

1581 x &80 |

Y= ‘PM
<o |a] X 52|

(4-1)

where the superscript (1) indicates evaluation with time-dependent surface (¢ # 0 in
Equation (1-10)). The vectors Ea are evaluated from the unperturbed surface (¢ = 0 in
Equation (1-10)). The subscript M on ¢ indicates that the modified expression for ¥

(including the motion of the surface) is used here (see Appendix C).

4,1 PHYSICAL BOUNDARY CONDITION

The boundary condition on the body is obtained by imposing the condition
that a fluid particle which is on the point p of the surface of the body at time t will
remain on the surface, i.e., will be on the point p + Ap (also on the surface of the

body) at time t + At, If the surface of the body is described by

S(p, 1) = 0 ‘ (4-2)



then it is also true that

(4-3)

S(+ap, t+4At) =0

is the velocity of the fluid, \7F = V¢. Taking the Taylor

with Ap =V gOt, where VF

series of Equation (4~3), and using Equation (4~2), one obtains

(§§ +vs-VF) At + 0 (af) = 0 (4-4)
ot
or, taking the limit as At goes to zero,
DS . (4-5)
Dt
where, using Equations (1-1) and (1-3)
Dt ot ot
(4-6)

3 d d
—+tU — +tyvp.9y=— +ve. V¥
ot = ax dt

Note that vS can be assumed to be directed as the outwardly directed nor-

mal n (eventually Equation (4-2) must be multiplied by ~1) so that
(4-7)

A = 5
|vs]

The superscript (t) emphasizes that the normal is evaluated at t since n indicates the

normal in the steady-state configuration,

Thus, the boundary condition, Equation (4~5), may be written as

__]_ﬁ-rv-_&:o (4-8)
lvs| dt lvs]



Qar

ds 1 [dS 35
ypm o= = sl =-—_ 2+ uy_ 22 (4-9)
M dt / |vs| (af & )

4,2 RELATIONSHIP BETWEEN NORMAL WASH AND DISPLACEMENT

Next note that while Equation (4-9) is the classical form for the boundary
conditions, here it is convenient to express the boundary condition in terms of the dis-
placement, U, Therefore, the surface of the body will be assumed to be given not by

Equation (4~2) but rather as

X = x(t) = pE™) + U(E, D (4-10)
where p gives the reference configuration rigidly connec;ted to the 7, j, k-space while
U is a small s;eady or unsteady displacement relative to this configuration. In Equation
(4-10), &% (@ = 1,2) are convected curvilinear coordinates, moving with the surface
of the body. The normal 7+ %6 then given by

A - _fi?_ififz_ (4-11)
a0 &) |

with

a(t) - Ox _ 3 , du
o

€ g% ag”

]
+

c
QI

(4-12)

where v =3u/RE%.
o

In order to rewrite Equation (4-9) in a form compatible with Equation (4=10),

introduce the velocity of the surface of the body



vy =X = X (4-13)
ot ot

AU is given by*

gt A = -Q/m 4-14)
ot

Note also that the x~component of the normal A is given by

n)(:) - 95 ﬁvsl (4-15)
ox

Therefore Equation (4~9) may be rewritten as

Then the component of VB along the normal n

¥, = (-UOOT + ‘73)' At | (4-16)

Finally combining Equation (4-1), (4-11) and (4~16) one o'bfains
. &{" x &)
Y= — ("’Uool tvgl  ———— (4-17)
|a] x °2|

Note that using Equation (4-12) one obtains
=n + An (4-18)

where

An = (G] X ay+a) xu, + G]xaz)/ua] x a, | 4-19)

Equation (4- ]4) may be obtained from Equation (4-5% written for a point movmg with
the surface, i.e., having velocity vg* This yields B VS vgn= =0 in agree~

ment with Equation (4-14). Note that Equation (4~ ]3) is valid only for a wind-axis
formulation, The extension to body=axis formulation is given in Appendix D,

J ' 4 -4



This yields

w=(—?+-l- o ) ~(n+an) =¥ +y, (4-20)

Y. = =i o n (4-21)

Yy = [_‘_ G . @+ aR)-T - AE} (4-22)
U
o ,
4.3 LINEAR RELATIONSHIP BETWEEN NORMAL WASH

AND GENERALIZED COORDINATES

Let the displacemenf u be expressed as
M -
-,
G(E%,1) =4 Z] q, () M_(g%) (4-23)
m= ,

where q,, ore the nondimensional generalized (Lagrangian) coordinates and Mm(g"’)
are prescribed nondimensional modes (ordinarily the natural undamped modes of vibra-
tion of the aircraft). In SOUSSA-P 1.1 the' motion is assumed to consist of small
perturbations around a steady-state motion, Therefore q,,, ore assumed to be small,

Then, to first order one obtains

M
ah = D q R (4-24)
m=1]
_ M, _ M .
An =4 5 X a, + a, x > /|a] X 02‘ (4-25)
13 =13



ond, again neglecting higher order terms,
M M
v, == 2 Mm—;.!.m-:[:, ioan o (4-26)

Next, taking the Laplace transform of Equation (4-26), one obtains*

M
5 - Z v - n - ~ -
O - -
P =Py,

(where s is the Laplace parameter) or

?hi =[ El(mlrr)n] le (4-28)

E}(]]n)l] = [pmm CR =T Aﬁm] (4-29)

with

where

p=s2/U_ ) | (4-30)

is the nondimensional Laplace parameter (complex reduced frequency).

Equation (4-29) is used in SOUSSA-P 1.1 for the evaluation of the normal-
wash matrix [E}(‘])] .
m

*It is assumed qn(O) = 0 (see Appendix B.4).




SECTION 5
PRESSURE COEFFICIENTS AND GENERALIZED
AERODYNAMIC FORCES

In this section the relationship between the pressure coefficient and the
potential is considered first, For the sake of completeness the formulation for arbitrary
finite~element representation is included here, The modifications necessary for the
zeroth order formulation used in SOUSSA-P 1,1 are then outlined, These include a
special definition of the shape functions (making use of the averaging scheme first
introduced in Ref, 9) and the special evaluation of the pressure coefficient for trailing-
edge elements (for both subsonic and supersonic flow), Finally the relationship between
generalized aerodynamic forces and pressure coefficient is presented for an arbitrary

as well as zeroth-order finite-element representation.

5.1 PRESSURE COEFFICIENT

The pressure coefficient is evaluated from the linearized Bernoulli theorem as

c - .2 d_wz-z_@_(ézwoo_az) 5-1)
U2 dt U, ot Ox
e e}

In order to-evaluate % , it is convenient to use the following procedure. Note that
Ix ‘

= =ys-i ' | (5-2)

and that v $ may be evaluated as

ve = 2% gly3% g2, % o (5-3)
agl 8§2 dn



where.

A R e
with

112 oy

21 22 ) <y 9 (“11"22""12 02]) (5-5)

The covariant components % of the metric tensor are given by

a = a °ca (5_6)

%@ T T (5-7)
o
ae%
Therefore,
Cp = =24 (_]__ 9% L 7.g! 2% ,7.52 3% ,7.;08 (5-8)
U, 3 o] 52 an|
Next note that, as with Equation (3-1)
H ~
8 (€, T) = ,,Z', 5, () N, (£ (5-9)

(where N, (€%) does not necessarily coincide with Nh)‘ Hence, the tangential deriva-

tives are evaluated as

= = 2 — | (5-10)



. d
Thus neglecting the termn % ond combining Equations (5-8) and (5-10) one obtains

X 3n
_ 0% _ |- ©°N - aI:l
Cp(pk,t)z- _'e__._k.—ZZi' 01 _..__h +o2 h &y (5-11)
U, ot h -Bg] a§2 o
P =Py
or in the frequency-domain
. ; e y oNy . oNy N
C = -20%, = i*la +a ] 5-]2
pPl) = PRy . o2 L. o 672
P =Py
'.e. .
. [-@] (-
with
N 3N oN
3 - o h,=2 ""h
) = 2ps, -27:]3d bad (5-14)
of of" - -
P =Py
5.2 FORMULATION FOR SOUSSA-P 1.1

Next it should be noted that the formulation for the evaluation of the pres-
sure as described in Section 5,1 needs modification in the case of zeroth-order form-
uvlation, for Equation (5-10) cannot be used in connection with Equation (3-22) unless
it is interpreted in terms of the theory of distribution (or generalized functions). In
order to avoid this problem, the followiﬁg procedure is used in SOUSSA-P 1,1; from
the values, L of the potential at the centers lﬁh of the elements, = , the values,
45;(, of the potential at the corners, Fl'<’ of the elements, are evaluated by averaging.

In other words



{a,} = [Ay] (5] | (5-15)

where [Akh] is a weighted averaging matrix defined as

(i.e., if the ﬁl'< is one of the corner points of the element Zh) and
AAkh = 0 otherwise, (5-17)

In Equation (5-16), the weights Wh are proportional to a typical length of
the element (which is assumed to be equal to the square root of the area of the element
%, ). Having evaluated the values of § at the corner points, the potential is expressed

as

EPIE SRS (519

where N/ are first-order global shape functions obtained by assembling local shape

functions of the type

GE - ]
NP = (€+g)(M+M) - (5-19)
k a5, k k

where g = +1 and My = %1 are the locations of the corners Pk of the element o

(€ and 1 are the coordinates over the element; see Equation (3-26)).

Thus, Equation (5-10) is replaced by

aNy aN! . |
3 N Tk O3 TR A s (5-20)
« Tk o4 H\K o) kKh'h
13 13 oE



Equation (5-20) is formally equal to Equation (5-10) with

3N N

Tho 0 Tk Ay (5-21)
o k n ’

og

de%

However, note that the averaging scheme cannot be used to evaluate the
value of the potential difference between upper and lower sides at the trailing-edge
nodes. Therefore, a different method has to be used to evaluate the pressure at the

centers of the elements adjacent to the frailing-edge.

Consider the subsonic case first, In this case the trailing edge evaluation
is based upon the Kutta condition, i.e., that the pressure discontinuity goes fo zero
like the square root of the distance from the trailing edge. Therefore, near the trailing

edge,

o /X ~ % : (5-22)

(@]
1
-
>
]
"

Noe that the average value of the potential (cpu + cpz)/Z, at the trailing
edge can be evaluated correctly using the averaging scheme. Hence, indicating with
C' the values obtained with the averaging scheme, kAmay be obtained from the values

of € atp. ond p. (assuming that x. = x. , see Figure 5-1), as
p i in iy~ T,

i
N
=~

1
o

(": + E = constant

5-23
o, " %, (5-23)

Note that, according to Equation (5-22), kD may be evaluated from the

values of C' at p. and p. (assuming that x. = x. ,see Figure 5-1), as
P l3 |4 | |4
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Figure 5-1, Geometry for Trailing Edge Evaluation



= p -1/2
(CP u- sz_) (XTE =) = constant =2k -y
) N X, x; -1/2
- C _ 3 4 .
~ (Cl;,i CP; ) e — (5-24)
3 4
Equations (5-23) and (5-24) yield
X, +x -1/2
k — ]_ NI - T 1 X '3 l4
D [ P, TE
2 i ig 2
(e € -
ka = 5 (CF" + C;). y (5-25)
o2
Equations (5-24) and (5-25) may be used to evaluate C and C {assum=
P;] .Pi2
ing that x. = x. ) as
"2
~ 1 ~ ~ ~ P
C =2 +C +pC ~%C) (5-26)
P2 Py P P Ry
C =_-(C + C - pC +5C ) (5-27)
Pi, 2 Py P, Py ig
where
- - 1/2
. 2x.rE xi] _ xi2 /
b = (5-28)
2xTE B xl3 B xi4



Note that Equation (5-26) together with

: - @
P; P;

may be rewritten as

H’ii i [Egim] ;EP.

|

(Zi not on trailing edge)

(5-29)

(5-30)

where the matrix EgE) is obtained from the unit matrix (see Equation 5-29) by replacing

the row corresponding to the upper-side elements . which are in contact with the

trailing edge (see Equation (5-26)), i.e., for i = iyr with

EgE) = 1/2  for

= 1/2 for i
= /2 for |
= =p/2 for |
= 0 otherwise

Similarly for the lower~ide elements z, , i.e.,

EgE) = 1/2  for

=2 o
= -2 for |
= 2 o
= 0 otherwise

for i =

(5-31)

(5-32)



This is easily accomplished in the program by introducing an index function

ih = iKuffc: (h, m) (5-33)

(where m ranges over all the trailing edge segments and h = 1, 2, 3, 4) which gives

the element numbers i], i2, i3 and i4 relative to the mth trailing edge segment,

The above results may be combined by noting that

Wl o) e

gives the proper values for 6p at all the element centers as

& 1 E @)%
%Cp,kz "[Ekh ¢, (5-35)
5.3 GENERALIZED AERODYNAMIC FORCES

Next consider the generalized aerodynamic forces e given by Equation
(1-13). In order to obtain the relationship between e and Cp , set, in analogy to
. ’

Equation (3-1)
H .
- o 3
C, = > <, n N %) (5-36)
h=0
Combining Equations (1~13) and (5-36) yields

H |
- -l iy .
e, = @ hz Co n Ny | 7 * M do (5-37)
~o

£ o]



Equation (5-37) may be rewritten as

1 = @ | _
le,? = LET {C 4] (5-38)
where
4) _ - @ Y .
Enh = —5 NI"I n Mn do (5 39)
£ o

In SOUSSA-P 1,1, in approximating Equation (1-13) and hence Equation
(56-39), the pressure is assumed to be constant within each element, i.e., the pressure
mode shapes are given in Equation (3~22), (This is consistent with the numerical approxi-

mation of the integral equation,) Combining Equation (3-22) and (5-37) one obtains

9.2 [ 5
Enh-——- n~Mndc
“h

2
Tl
-1 - . -
- = ﬂ a, x Gy« M_dg' d&’ (5-40)
P

or, approximating the integrand with its value at the center,

4 - 4 & <5 -yl - (541
Eoh = — G 28 - M)lp_p (5-41)
A

Note that Ea are the base vectors in the physical space, not in the Prandtl-Glauert
space. It should also be noted that the formulation presented in this subsection is

valid for both subsonic and supersonic flows,

5-10



SECTION 6
APPLICATIONS

In this Section the formulation developed in the preceding Sections is
applied to two specific problems: aerodynamic analysis (with emphasis on flutter

analysis) and aerodynamic design.

6.1 AERODYNAMIC ANALYSIS

For the sake of clarity matrix notations will be used throughout this

Section, For instance, Equation (4-28) may be written as

¥ =E q 6-1)
where

v ={%} ©2)

3 = {5} (63
and

E1=[%ﬁ] (6-4)

Ys =Z v (6-5)
e = E4 gp (6-7)



where ¥ is given by Equation (6-2), §= {.@n} , C_:_p= {Cp,k}' and e = {en}, whereas

AR N A Y (69
Eg - [ES) (6-9)
Eg = l}fﬁ? (6-10)

Combining Equations (6-1), (6-5), (6-6) and (6~7) one obtains

;_ = .E.Q] :?l; | (6-11)

C, = Ep g (6-12)

e-Eaq (6-13)
with

By = Ey E, (6-14)

E32] = :3 E.z E (6-15)

E. = E4 E3 E.z E.v] (6-16)
where

B, =Y Z (6-17)

6.1.1.  PHYSICAL MEANING OF E E2], Eoi AND E

Note that the nth columns of the matrices 52], E—32] and E give the vectors |
of the values of the potential, pressure coefficients, and generalized forces, respectively,
due to the nth boundary~condition mode (nth column of E]) This is apparent from
Equations (6-11), (6-12) and (6-13) by setting

6-2



= 0 m#n (6-18)

Finally, note that the matrix E given by Equation (6~12) is the matrix of the
generalized aerodynamic forces used, for instance, in flutter analysis. (This is apparent
from Equation (6-13).) Other applications for the matrix E include evaluation of

aerodynamic coefficients, stability derivatives and forces due to furbulence.

6.2 AERODYNAMIC DESIGN*

Consider the aerodynamic~design problem (also known as the inverse problem)
of determining the aircraft surface shape which will generate a desired (prescribed)
steady~state (p = 0) pressure distribution,

The problem may be solved using the procedure presented here, Let 5(0)
and B(]) indicate an initial-estimate shape and the revised shape, respectively, Let

the displacement U = E(]) - E(O) be expressed as

U

N _
E a, M(2) - (6-19)
The difference in pressure between initial and new shape is given by

o = ¢V -cO -ty (6-20)

where (p = 0, for steady state)

"~

E

E = Eq p=0 (6-21)

If the pressure is prescribed at N points, solving Equation (6~20) one obtains the
values q and hence the displacement U and from this the new shape,. If necessary

the procedure might be repeated until the iteration converges, (At any iteration a

*This option is not available in the version 1,1 of the program SOUSSA-P,

6-3



new geometry is considered: this implies re~evaluating the matrices E], E2 and E3,

which depend upon the geometry.)

Note, however, that the above procedure is likely to yield wiggly shapes.
Hence it is convenient to use few mode shapes and satisfy Equation (6-20) in a least-

square sense, i.e,*

(QT g ET) (E q- é) ) miniqmum 622)
1.€, |

EEq = E | 629
which yields

q =(EE)" E" (6-24)

Equation (6-24) may be used to obtain the values of q from the desired

(prescribed) change &, in pressure distribution,

*Smoothing between iterations is an alternative procedure.



SECTION 7
CONCLUDING REMARKS

A general formulation for subsonic and supersonic, steady, oscillatory and
unsteady aerodynamics for complex aircraft configuration has been presented. The
formulation is used in the computer program SOUSSA-P 1,1, A few comments about

' the present formulation are presented in this Section.

7.1 ADVANTAGES OF FORMULATION

The formulation presented here offers a unified approach to solve steady,
oscillatory and unsteady problems for both subsonic and supersonic flow, The formula-
tions for subsonic and supersonic are very similar and highly "compatible" from a
programming point of view. The formulation is such that very little human interven-
tion is necessary; each surface element is freated the same way.

~ ~

The formulation is very modular. The matrices E,, E,, E5 and E, are ob-
tained in a totally independent way, Note that the formulation is particularly advanta~
geous for multiple frequency evaluation, For, note that, comparing Equations (4-29)

and (4-30), it is possible to write
(-0 -
where EgO) and _E(]]) are independent of p. Similarly (see Equations (5-14) and (5-34))
Eg = E + pEY) -2

where EgO) and E_(sl)‘are independent of p. Also (see Equation (5-39)), Ey is
independent of p. Finally,



Tz (7-3)

1= 1

52:

where for subsonic flow Yih and Zih are given by Equation (3~13) where Sih, Cih'
*

Dih' ®ih' Fin' Gi“' ®in' m and th are independent of p,  Therefore, once the

above p-independent arrays are evaluated, the evaluation for multiple frequency

~ ~ o~

requires only the assembly of the matrices I_E_], Y, Z and ES and the evaluation of
E = B4 E5Ey (7~4)
where Enq is obtained by solving the system of algebraic equations

Eo

1< !

= ZE, 7-5)

In addition, calculations for updated sets of modes (as necessary in optimal
design where a different set of modes is used at each iteration, but geometry and Mach
number are not changed) arevgreafly facilitated by the modularity of the formulation,
For, only the matrices E] and E4 are mode~dependent, therefore, the matrices ?, '

Z and E_ 3 need not be reevaluated at each iteration,

The above features make the program SOUSSA-P 1.1 not only general and
flexible, but also modular, simple fo use and efficient, especially for calculation in-

volving multiple frequencies or mode changes.

7.2 WORK IN PROGRESS

While the program SOUSSA-P is the most advanced program for unsteady
aerodynamics for complex configurations, the Green’s function method covers cases
which are not included in the present version 1.1 of the program, In particular,

the method can be used to solve nonlinear subsonic unsteady flow in the time domain,

*Similarly, in supersonic flow, Yih and Zih are given by Equation (3-21) where all
the coefficients are frequency independent.

7-2



This work is now being completed, Preliminary results are presented in Reference 22,
The formulation is now being extended to unsteady transonic flow (Reference 23),
(The Green's function method is applicable to fully nonlinear unsteady transonic flow

with moving shock waves (see Reference 3).)

Additional work now underway includes a higher-order finite ~element
formulation, special -purpose elements (such as hinge-line elements), wake roll-up
and jet engine flow modeling, Finally, preliminary work for the inclusion of the
rotational part of the velocity flow field (for use in boundary-layer analysis) is also

underway.,
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APPENDIX A
THE VALUE OF THE FUNCTION E ON THE SURFACE

Consider Equations (2-52) and (2-63) which give (for subsonic and supersonic
flow, respectively) a representation of the potential &, anywhere in the fluid volume,
in terms of the values of § and 'ga% on the surface of the body and 4% on the surface
of the wake, The values of 38/0N on the surface of the body are given by the boundary
conditions but the values of & are not known, In order to solve the problem, it is thus
necessary to obtain first the values of ¢ on the surface, This can be accomplished by

letting the point F* of the fluid volume V approach a point ﬁo of the surface, Then

Equation (2~52) yields

4nE*<§(T3°,T)= lim {_@ [\1']@ _;_ dZB

P*"’Po ZB
+ @ [§]®——a— L3 dzg
5 oN R
B
® a
- @ 08" 1 26 dsp + ly (A-1)
oT R 3N
Zp

where

} d S\ (A-2)



is the contribution of the wake and

Ex= 1 f’-* outside Zp

E,= 0 P, inside xp (A-3)
A similar expression is obtained from Equation (2-63) for supersonic flow,

In this Appendix, it is shown that, in the limit, Equation (2-52) is still

valid if the definition of the function E is generalized as follows:

E =1 P, outside Zp
E = 1/2 P, on g (regular point)
E =0 P, inside Zg (A-4)

In order to simplify the discussion of the limitas P, - P, the steady subsonic
case is considered first. The results are then extended to the unsteady subsonic case.

The supersonic case is considered last,

Al STEADY SUBSONIC FLOW

Consider the steady incompressible flow first. By letting I;*——> Fo' the
integrands become singular in the neighborhood of Fo . Thus, it is convenient to
separate the contribution of a small neighborhoodl of i;o’ which will be indicated as
T The neighborhood . is a small circular element of the surface g with center

Fo and radius ¢. Thus, Equation (2-52) may be rewritten as:

%E*c*— H ¥ dzB ﬂ@ _(_)dzB+| + Iy (A-5)



where l€ is the contribution of the neighborhood of Po’ given by
_ ] ' s 1
I = - Y — dE, + ¢ — [—)dm (A-6)
€ B B
R aN R
Ze Ze

A.1.1 REGULAR POINT

Consider first the case in which Fo is a regular point of the surface Zp s
i.e., a point in which there exists a unique tangent plane to the surface zg. For
notational simplicity, the analysis is performed by assuming that the origin is located
at I;o and that the Z-axis is normal to the tangent plane and directed from E = 0 to

=1, i.e., parallel to the normal N. The point P, is on the Z-axis and therefore

m

E* = (0, 0, Z,). (The extension to an arbitrary element is obtained by replacing the

-~

" a -
coordinates X, Y, and Z with a local coordinate system X, Y and Z with Po located

A ~

at X =Y =Z =0 and with Z normal to the tangent plane and directed from E, = 0

to E,= 1.) Separating terms of order ¢ and noting that X, =Y, =0, Z = 0 and

3R ' 3R Equation (A6) red
— = quation =0) reduces to
-V A 7 -0 dZ, Z =0 ’
o= -y ﬂ — dXdY
2oy 2 X2+ Y2122
=% .” 2 ] dXdY + O(e) (A-7)
X242« 2 324 x2+Y2+23

where the subscript o indicates evaluatior at P_ . By using polar coordinates

R =%+ v2

1

= tan~] X -



one obtains

€
l€=-2n‘£’of ! RdR
o Rz+Zgr
€
-2nqs°f o ! RdR + O(e)
| oz, fiZ2, 22
Noting that
3
1 2 212 1
o ~
o R+ 22

Equation (A-9) becomes

r' €
| =20 §?+zz,]

€

L (o)
P ] e
-2me Z, | + O(e)
° 82, 2
+ Z,
(o]

Finally, by letting P, go to l‘so,(thaf is, Z 0), one obtains

P*"’Po Z*-—>0

-2ma Z, [ 1 -‘;‘ +0(e)
62"'23 *

[—2n‘1’°e+2n§o sgn (Z*):l + O(e)

i'2n§° + O(e)

A-4

(A-9)

(A-11)

(A-12)



where the upper (lower) sign holds for Z, > 0 (Z, < 0), that is, when 5* is located
outside (inside) the surface Zy ; correspondingly, the function E assumes the values
=1(E,= 0),
Finally, using this result in Equation (A-1) one obtains, for E* on Tp

(i.e., ‘§o = 3,),

N —
~———

4 (E* Zf_fz

ﬂ 8 ———(—)dz+ lW+ O(e) (A~13)

ZB—Z

Note that, in both cases (I;* inside or outside ZB),

1l
1

E = E, ¥ 1 1.1 ﬁ*oufside g
2 2 2

1

0+ -~ = P, inside Zp (A-14)
2

N |-~

Furthermore, R is the distance between the dummy point, P, and the control

point (on the surface Z'B), Eo . Hence, by letting ¢ go to zero, Equation (A-~13) yields
4nE s =- @ vLan+fhs > [L)az, +1 (A-15)
™% = — oy NV B W
R oN R
zg >p |

Note that for steady subsonic flow, Equation (2-25) yields

4rE B, = - @Y—E d):B @ (-:E) dzB+IW | (A-16)

g 2B



Note that Equation (A~16) must be used if E* is outside or inside the

surface, whereas Equation (A-15) must be used if l-’-o is on the surface. However,

by comparing Equations (A~15) and (A-16), it is easily seen that Equation (A-16) is

valid everywhere (outside, inside and on the surface ZB), if the convention is made

that E is given by Equation (A-4).

A.1.2 COMMENTS

It should be emphasized that in obtaining Equation (A~15) from Equation (A-13)

the limit e~ 0 is performed with F* on the surface Zpe This implies that the contribution

of £_ is now of order ¢. In order to clarify this point, consider the quantity

€
12 =f ° [V \ &4k
° % %« N §2+Zz
Zs € y4 yA

* : *
) m =/e2+23 A/ec2’+23
€
o .

and note that

. . € . Z Z
lim § lim Ieo }: lim AR —sgn(Z.,)
Z,~0 60"0 Z,~0 €2 + Zz lz*l

whereas

(A-17)

(A-18)

(A-19)



The difference between these two limits is due to the fact that, in the limit (as Z,—0),

the integrand of I: behaves like a Dirac delta function and hence, its contribution
o
for a domain which excludes the singular point is zero,

It is apparent that the sequence of limits as indicated in Equation (A-18) is
performed for Equation (A-12), whereas the one indicated in Equation (A-19) is used for

Equation (A-15). The above results may be restated by saying that the limit as P, - -Fo ofa

doublet is a generalized function, i.e.
lim 3 -1} _ 3 -1
l;* - ﬁo 3N {4nR dN {4nR

where the upper (lower) sign holds for Fo ouiside (inside) Zpe

- - 2
P

A.1.3 NON-=-REGULAR POINT

The above results may be generalized to non-regular points (i.e., points of
Zg in which there is not a unique tangent plane to ZB) if they are expressed in terms

of the classical concept of solid angle. Note that by definition, the solid angle, dQ, is

dz ds b~
daQ = _P =___[E cos oy = 5_‘_N. dZB
2 2 3
R R R
S L dz, (A-21)
aN |\ R

where dg, is the projection of dzp intoa plane normal to R (see Figure A-1),

Using Equation (A-21) one obtains

@ 2 [ ag =L g;ﬁ 40 = Q,/4n (A-22)
ON \4aR 44
Zp Zp



Figure A-1. Solid Angle.



where

Q. =0 P, inside Zp

]

27 P, on Zp (regular point)

4r P, outside Zp (A-23)
Next, note that using Equation (A-22), Equation (A~16) may be written as

5 R
B

+ g‘_ﬁ -5 2 (L) azy 41y, (A-24)
5 aN R
B
since, according to Equations (A-22) and (A~23)

AnE, - @i (l) dry = 4nE, + Q, = 4n (A-25)
3N | R
Zp

for };* outside and inside Zg- Note that the right-hand side of Equation (A-24) is

continuous because the Dirac delta function in Equation (A~20) is now multiplied by
-3)ls _5 =0 A~26
(3 Q*) |P =P, ( )
Therefore, Equation (A~-24) is valid for all cases, i.e., for F* outside Iy, inside Zy
as well as on Zy (for both regular and non-regular points). Finally, Equation (A-24)
may be rewritten as Equation (A=16), if E, is defined as

3N R

zg



Note that the above Equation is a generalization of Equation (A-4) in that it is valid

for non-regular points as well,

In SOUSSA-P the control point is always located.at a regular point (center
of the hyperboloidal element described in Subsection 3.3). Therefore, in the rest of

this report it is always assumed E = 1/2 on Ig.

A.2 UNSTEADY SUBSONIC FLOW

The results of the Subsection A,1.3 are immediately extended to unsteady
subsonic case by noting that, using Equation (A-25), Equation (2~52) may be rewritten

as

R
Zp
s @fuae®-ey 2 (—]-) dzp
3N
2B
3: 2 1 20
+ @ [___} —_— dzB+ 'W (A-28)
>T R aN
Zg

with ly given by Equation (A-2), Equation (A-28) is valid for P, outside and inside
Tp. In addition, there are no disconfinuities as P, approaches Zp since the Dirac delta
function due to the doublet distribution is multipled by zero. Therefore, the equation
is still valid in the limit as P, approaches the surface Tge This implies that Equation

(2-52) is valid on the surface Zp os well if E, is defined by Equation (A-27), or in

particular, by Equation (A-3).

A-10



A3 SUPERSONIC FLOW

Consider the steady supersonic case. For steady state Equation (2-63) re-

duces to *
AnE,8, = - @\y' 2R ds g
I R!
B
+ @§ o [2H) 45 4 (A-29)
c g B W
Zg oN
where IW is given by
hy = ff ps 0 (Z_H) dzy, (A-30)
c R?
Zw oMy -

A.3.1 SUPERSONIC SOLID ANGLE

Note that (see Equations (2-64) , (2-66) and (A-21))
d 2H
: (’E‘-’)dZB
oN
Ko} 1 <} ] ) 1
N __/__ Ny 2 (=N, 2 [ 2Hds
[ X 3% ‘\R') Y3y (R) Z3z (R)] B

- - 3
RN -4 dxg (il) 2HdQ (A-31)
'3

R

i

i
i

*All the integrals in this subsection are defined within the theory of distributions
or generalized functions, Therefore, the concept of the finite part of the integral
is considered whenever applicable: with this convention the derivative 3H/3N¢
is identically equal to zero,

A-11



Therefore, the analysis for the value of E, on the surface is facilitated by intro=

ducing the concept of supersonic solid angle defined by

s ,
ot = (_’3_) MHdQ = - 2 (Zﬂ) ds (A-32)
Rt c \ R B
3N
Note that
. ‘ _]
\2 (X -X,)? (X -X,)?
(_,__) _ ) 1 (A-33)
R ev -y +z-20%  |[(v-v)?+@z-2.)

Therefore, (R/R)° H depends only upon (X = X7 [ (Y - Y,)2 + (Z - Z,)2].

Hence, dQ* is independent of the distance. This implies that the integral

! R3
Q*=giﬁd§2' =g;6__ 2H dO
]
- Zp R

%
= - @ ° (_2_'1) dz, (A-34)
c \R'
Zy oN
is independent of the actual surface Ty but depends only upon the topological
relationship between P, and Zpe In particular, it is apparent that
(A-35)

Q, =0  P,outide T,
If P, is a regular point (as defined in Subsection A,1,1) of the surface

Zps the value for Q. may be obtained by replacing the surface zg with the surface

Eé , as indicated in Figure A-2, For notational simplicity the point F* is assumed

to coincide with the origin and the normal N to Zg is assumed to be normal to the

A-12
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- Figure A-2, Supersonic Solid Angle for F* on Zp.



Z-axis, (If this is not the case, the analysis can be repeated with a local coordinate

system satisfying the above requirements,) With these assumptions one obtains (see

Figure A-3)
QL = - @ 0 [ZH) 45
c \ R B
Ty ON
z x2 - 72
1 1 5
= - x| dzf o (__.
LIX aX, |
i ) X:]z_zz 1

where R'] = (X% - Y2 - 22)]/2.

Consider the rule for the integral of the distribution u3/ 2

L o 9 fdu 2 f(o)
du = lim -
o ,3/2 e0 | ,3/2 91/2

This yields, for |g'(0)|< o,

a a
f ._?._......9.__ du=f ug'-..]_g u-3/2du
0 3dvu u'l/2 0 2

- (2ug' ~9)
€ u=0

a 6-1/2:

= lim ’g v 1/2
eo-’O
It is convenient to rewrite Equation (A-36) as

Q= 4 lim I

e>0

where

A-14

(A-37)

gla)/V/a (A-38)

(A-39)

(A-40)



or, using Equation (A-38) to perform the integration with respect to Y,

= - [ ] oY d4z
R P S
1 Y=c¢
L= _Z]
= - fom-] ¢ Z
Xy /X3 - & - 72
Z=- X? - 62
TT -1 € Z]
=2 = tan (A-41)
2 2 2 2
. X'I - X] -¢ - Z]
Combining Equations (A-39) and (A-~41) one obtains
Qy = 2m P, on A (regular point) (A-42)

(It may be worth noting that if ¢ is replaced with zero, the integrand is equal to zero
except at Z = |Xl |. This indicates that as e goes to zero the integrand in Equation

(A-41) tends to w/2 times a Dirac delta function located at Z = - ]X] [.)

It is important to note that the value of Q, besides being independent of
X, (which is to be expected), is also independent of Z,, i.e., the "angle of attack",
a = tan”! (Z]/X]), of the tangent plane, as long as Z] < IX]| .

The case Z] = |X]| corresponds to the case of F* inside Zp s for in this
case the domain of integration in Equation (A-36) is given by the whole area inside the
circle in Figure A-3. In other words, if P, is inside Zp s Q, is given by Equation

(A-36) with Zl replaced by | Xll . Accordingly 'I; is given by Equation (A-40) with
Z, replaced by ,/ X? - . This yields l'e = 1 and

A-15
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Q. = 4n P, inside %, (A-43)

(Note the presence of a second Dirac delta function at Z = |X, ] .)

In summary

Q;=-§Q§ ° (A1) gz,
aN_ | R’

Zg

=0 P, outside Zg

= 2n P, on Zg (regular point)

4 I;* inside Ty (A-44)
A.3.2  VALUE OF E, FOR SUPERSONIC
Note that

AnE, + Q, = 4n (A~45)

for F* inside and outside gi therefore, Equation (A-29) may be rewritten as

4, = - @Y' —?El:'- dZB
Zg
+ @ @ -8,) 2 (ﬁ) dsy + ly (A-46)
c \R?
Zp 3N

Repeating the considerations presented in Subsection A.1.3 one obtains
that Equation (A-29) is valid for P, outside, inside and on Zp (for both regular and

non-regular points) if E, is defined as

A-17



E, = 1-0Q,/4n (A-47)

In particular,

E, = P, on Zp (regular point) (A-48)

1
2
is the value used in SOUSSA-P,

The extension to unsteady flow is easily obtained using the same procedure

used in Subsection A,2 for subsonic flow,

A-18



APPENDIX B
LAPLACE TRANSFORM IN UNSTEADY AERODYNAMICS

In this Appendix, issues related to the use of Laplace transform are examined.
In particular, the question of the truncation of the wake (its rationale and its advan-
tages) are examined in detail. Finally, the relationship between the Laplace -transform
analysis for unsteady flow and the complex éxponenfiulwnalysis for oscillatory flow is
examined; it is shown that Laplace transform results for Real (p) > 0 may be used to
study divergent oscillatory flow, whereas convergent oscillatory flows (of the type Pt
with - 0 < t < ) are "physically impossible" (the Loplace transform for Real (p) < 0

exists only for truncated-wdke analysis).

B.1 LAPLACE TRANSFORM

Consider a function () such that

ft) =0 (t < 0) (B-1)
and otherwise arbitrary, The Laplace transform of f(f) is defined by
py © -st
) =10 = [ fe™dar eppy (8-2)
0

where s is the Laplace parameter (complex frequency) and Dg is the domain of

convergence of the integral.

Note that f(s) is a function of a complex variable: the definition of this
function outside the domain Dg is obtained by analytic continuation. However, the

Laplace iransform of f(t) is only defined in the domain DE.



The inverse Laplace transform yields

~ 1 o io ~
() = L"Y(F) = — f 1 F(s) et ds (B-3)

i @, -ico

where the path of integration is in the domain Dp . Inorder to evalyate this integral,
it is convenient to use Jordan's lemma (Reference 24, p. 81): given a single valued

. i0
7 s
function such that |g(Re' )| -»0, as R—oo, then

lim j;_' gfs) eSTds =0 (B-4)

R—- o0

where t is areal constant and T is asemi-circular path with s = R eie, where
~1/2<8<r/2 for t<0 and /2< 6 < 3n/2 for t>0, Thus, the path of integra~
tion may be closed on the left-hand side of the plane for t> 0 (right-hand side for + < 0),
It may be worth noting that if ?(s) does not have singularities for Sp > % then Equations

(B~3) and (B~4) yield immediately f(t) = 0 for t+ < 0 in agreement with Equation (B-1).

For nondimensional time T = Umf/z, one obtains
~ (¢] -oT '
Fp) = [ KM e (-5)
0
where
p = st/U_ (8-6)
is the complex reduced frequency (nondimensional Loplace parameter),

B.2 TRUNCATION OF WAKE

As mentioned in Section 3, the wake is truncated at a finite distance from

the body. This point is examined in detail in this Subsection.



B.2.1 LAPLACE TRANSFORM OF TRUNCATED FUNCTIONS

Consider the "truncated functions" (see Figure B-1)

HORE ORI
f,(r) =0 t> ot ' (B-7)
and
f2(r) = 0 t< g
f2(f) = f(t) P>t (B-8)
where b > 0. Note that f](t) = fz(f) =0 for t < 0, The transforms of fi and f2
are given by
P f -st
f](s) = fo f(tye ™' dt
0
~ © ;
fols) = f f(r) e dt (B-9)
o
Note that
) = £,() + £f6) (8-10)

However, if one is interested only in the interval from 0 to t_ then replacing f with

-~

f] yields no difference in the response (since ?2 contributes only for t > to).

In order to clarify this point further, consider, as an illustration, the

function

O t>0

=0 t<0 (B~11)



, fo

f(t)_ = f] 0)

f(1) = (1)

£ (1) 0

Figure B~1, Truncated Functions.,



The Loplace transform is
1

;. ot st |
f= f e e dt = [Real (s) > o] (B-12)
0 s +a
Next consider
f](t) = f(1) b<
=0 t> ot (B-13)

The Laplace transform of f] is*

~ t 1 -(s+a)t
o= f° e Syt = (1 ~e °)
0

sto
= -1, (B-14)
where
F=_ [ Real (s) > o]
s +o
~ _ ~(s+a)t
fy = ! e ° [Real (s) > o] (B-15)
o sto

Using Equations (B-3) and (B-4) and the residue theorem yields

~ 1 o, +tioo 1
vl = f 1 etds = 0 t< 0
24i a]—ioo s+ —rt '
e t>0 (B-16)

and, using t=t instead of t in Equation (B-4),

ay+ioo ~s+alt,
° eds=0 1<y

=™ 1>, (8-17)

AR f
2mi al-ioo s +o

*Note that the infegral in Equation (B-14) exists for all finite values of s, Hence, DE

coincides with the finite s-plane (f] is not singular at s = ~a),

B-5



~

L“(f]) =0 cio <t <0
_ ot
= e 0<t<t
o}
=0 b, <t<® (B-18)

It is apparent, comparing Equations (B~16) and (B~18), that the use of fl
instead of f yields wrong results only for t > t . Therefore, if f, is simpler to use
than f, it is legitimate (and convenient) to use f] instead of f in order to obtain the

response for + <t .

B.2.2 RATIONALE FOR WAKE TRUNCATION

In order to understand better the rationale for the truncation of the wake
it is convenient to consider the Laplace transform of the subsonic integral equation (as
mentioned in Subsection 3.2, the problem of the truncation of the wake is limited to
the subsonic flow), For the sake of clarity a simple case is considered here, Consider
a wing (with straight trailing edge located on the Y~uxis) in incompressible flow.

Then Equation (2-32) for M = 0, yields ® = ® = 0 and Equation (2-52) reduces to

R JIE R

Zp
b/2
+ f Jyy dY (B-19) -
“b/2
where
o0 5] . 1
Jy = f A S (7] ex | (B-20)
(o] u [o



with

R =R
o “lz.0 (B-21)

Using Equations (2-53) and (2-54) with g = 1, i.e., T = X. Equation (B-ZO)

may be rewritten as

T ) 1)
S, = | as(y,T) 2 (1] ax B-22
W = [ a2 (B-22)

U vo

The upper limit on the integral is T instead of o because, according to Equation (2~45)
As(Y,T) = AQTE (Y, T-X) (B~23)

is equal to zero for X > T, The Loplace transform of Equation (B-19) is

AnE,5(P) = - @ y 1 -3 2 (1) |45
R 3N R
Zp

+ f 2 8w (B-24)
b2 W

where, using the convolution~integral formula
. .
L[ RT-% 600 dx] = 1A LE) (8-25)
0

one obtains, from Equations (B~22) and (B-23)

]W(Y) = Ay fm ° (L) -px ix | (B-26)
0 3N, R | ¢ |



Note that if the wake is truncated at X = To , Equation (B-20) yields

© _ [To > [
Jo) - As 2 [ 1) ax }
w fo : N (Ro) (®-27)

which yields, using Equation (B-23)

- T
J(\;’V) = f ° A% ePX 9 [1) 4x (B-28)
0 aN, (R |

It is apparent that if A L (Y, T-X) =0 for X>T, J(Wo) is equal to Jw
for T<T . Therefore, according to the analysis presented in Subsection B,2,1, the
truncated wake integral equation may be used for T< T, without any effect on the
results, This is the rationale for introducing the truncation of the wake; the Loplace
transform of the solution will depend upon the value of T , but the solution in the

time domain is identical to the infinite-wake solution for T< To’

It may be worth noting that j\(ﬁ)-»jw as T - co indicating that the infinite~
wake analysis may be obtained, in the limit, from the truncated-wake analysis, In this
case however, the wake integral is expressed in terms of a multivalued function (see

next subsection).

B.2.3 ADVANTAGES OF WAKE TRUNCATION

The integral over the wake is evaluated in Reference 3 for the case
p = ik. The procedure is briefly outlined here for the more general case pp =
Real {p) # 0, in order to show that the integral exists only for pg > 0 andalso
that the function obtained from the analytic continuation of the Laplace transform
is a multivalued function which requires the use of branch cuts for the evaluation of
the inverse Laplace transform, It is also indicated that these problems are eliminated

by the use of the truncated wake which therefore has the following advantages: -



first, the Laplace transform of the integral equation exists in the whole plane (therefore,

analytic continuation is not required); and second, it is a single valued function

Consider the wake integral in Equation (2-52)

H{[A@]g 9 ( ) [Aqs]® 2 R; dz, (B-29)

For simplicity, assume, in line with the small perturbation assumption, that
the frajectory of the points of the wake are composed of straight lines parallel to the
X axis. Then, using Equation (2-53), Equation (B~29) yields

> (1
ly = f de [A@TE(Y,T-(@—H) aNU(—E)

X1E

- Ab (Y, T-e-m 22 L fax (B-30)
aN, R

The Laplace transform of Equation (B-30) is

W = fTE Agr Iy dY (8-31)
where
~ (D 'A
hy =f ePO+M) | B (1) 2 1 gy (B-32)
3N, | R >N, R
XTE

or using for N, the unit vector in the direction of the positive Z axis and Equation (2-32)

- 1\ M R
(. -p(®+l'[) — | —_ = = (B-33)
'W‘f az<R>pp oz R | X



Note that according to Equations (2-31) and (2-54)

o+ =2 [:Mz(X—X*)+MR+52 (x;xTE):l
B

= 1 (X=Xt MR) + B (X, =X 1) (B-34)
B

and that

3Z B dZ
Hence, Equation (B-33) may be rewritten as

~ -pB (X, = Xor) ® ~P (X-X,+MR)

by=e TEif e BT T g (B-36)

Y4 X R
TE

This integral is of the same type as the one given in Equation (D-11) of Reference 3.

Using the classical transformation

u=A*tMR (B-37)
BR

where A = X - X, and

‘ 1/2
R = [(Y -Y)2 4+ (z-2)? ] 2 RZ - 42 (B-38)

and noting that

| 1/2
[1+ U2 = _1 [ﬁzRg + 12 + 2AMR + M2(I\2 + Rﬁ) :l (B-39)

B-~-10



or

1/2
/]+U2= ! [R3+A2+2AMR+M2A2:|

BR,
=1 (MA+R (B~40)
BR,
and
dv .1 (1+M£)=_‘ 1+ U2 (B~41)
dX R R R ‘
one obtains
o -B (X-X,+MR) o _PRU
[T e® la=["2_"_ a @w
X1 R Ure /1 + U2
where
X =X, + MR
Upp = ———] - (8-43)
TE oR |
o -

Next, consider the contour indicated in Figure B=2, and note. that

-ikR U
e )
Ic = é——————-——dU=0 ’ (B~44)
C 2
since the integrand is analytic inside C. Note that-using Jordan's lemma, Equation (B~4),
if the radius of C2 goes to infinity, the confribution of C2 goes to zero, Also, if the
radius of C 4 goes to zero, the contribution of C4 goes to zero. Also, note that in

the limit, the confribution of C3 tends to (using V = iU = cosh o)

B-11



i Imag (V)

branch_ 1;
ling. -
”

Real (U)

Figure B-2, The Contour of Integration.
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~ikR U
& dU = - A V.

BadVA TRt RV AV

o -k Rocoshcv
- J(; e da = -Ko(kRo) (B-45)

where K o i the modified Bessel function of second kind of order zero (see Reference

25), Therefore, Equation (B~44) may be rewritten as

o -ikRU . -ikRU
f _e____du=f g dU+K_(kR) (B-46)
U 2 U 2 o ©

TE J1+U TE J1+U

Combining Equations (B-36), (B=42) and (B~46) and noting that (Reference 25)

dK, @)
do

= - K](a’) (B-47)

(where K] is the modified Bessel function of second kind of first order) one obtains,

for p = ik, QR U
L ] -l
T ke Xe=Xg) | 3 f e ° du
W= ° 3z U 2
° € J1+U
3R
-K kR ) k —> (B-48)
dZ

The first term in the bracket can be easily evaluated numerically or analytically (an

analytical expression is obtained in Reference 3). However, (Reference 25)

B-13



11 | [ (849
2w (5) )

(where v is the Euler constant) is a multivalued function.
Furthermore, using the same contour of integration, one obtains (using V =i U)

P R, U ~pR_U

(e 0] -1
f du = f Y
U /14 U2 Ue J/1+u
ipR,V
+ f 1Y (B-50)
LV
only for
" Realp >0 (8-51)

If Real p < 0, Jordan’s lemma is not applicable, The contribution of C2
goes to infinity (while the integrals over C3, C4and Cs remain finite) indicating that

the integral over C.| does not exist,

Finally, it is worth noting that if the wake is truncated, then I\'N is given

by (see Equations (B~36) and (B-42))

B-14




~ ~pB(Xs~X1p) 3 u "o
= 2 du
°Z U /1412
-pB(X X ® U n n
= e Z _ai gf o _ U __4 ('P)'- (B-52)
= Yie V1402 n!

where the integrals may be easily evaluated by the procedure used.in Appendix D
of Reference 3. (The summation sign and the integral sign may be interchanged because
the exponential series is uniformly convergent in the interval of integration; this would

not be legitimate for the infinite wake,)

Equation (B-52) indicates that I\'N exists for any value of p, since the integral

of a uniformly convergent series is a uniformly convergent series,

In conclusion l\'N is a single-valued analytic function of p in the whole p
plane for the truncated wake, whereas it exists only for Real p > 0 for the infinite
wake, In this last case the use of analytic continuation is necessary to obtain the

function in the whole p-plane and this function is multi-valued.

B.3 OSCILLATORY AND STEADY FLOW
In this section is shown the relationship between Laplace-transform analysis
and oscillatory~flow (in particular steady-state) analysis. Consider Equation (3-9) and

assume ‘J’i and 3 to be of the type

¥() = \Iri kT (B-53)
and
8.(T) = &. ek T (B-54)

B-15



where
k = wg/Uy (B-55)

In particular if k = 0 one obtains the steady-~state analysis.

Combining with Equation (3~9) one obtains an expression similar to
Equation (3-12) with ?Y'i, 5" and p replaced by ;i,gi and ik. Therefore, the
formulation presented here for transient analysis (§i = 0 for T < 0) in the Laplace
domain is valid for oscillatory flow as well (-0 < T <), with the amplitudes of
the oscillatory solution given by

%. = hY'.
i

p =ik (B~56)

This is a wellknown relationship between the two types of analysis (the
same results hold for supersonic flow; see Equation (3-15)): as pointed out in References

26 and 27, any code developed for oscillatory flow (imaginary analysis) can be used for
Laplace-domain analysis (with zero initial conditions) simply by replacing k with
~-ip .
However, in Equations (B~53) and (B-54)
0 < T<ow _ . | (B-57)

Therefore, the truncation of the wake (which is based upon Equation (3-11); see also
Subsection B,2), is not applicable in this case. Hence, for oscillatory flows Equation

(3-13) must contain the complete wake.

More subtle is the relationship for exponentially growing or exponentially

damped oscillations; in this case, setting

B~-16
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T

—

& (T) (B-58)

and combining with Equation (3-9) yields Equation (3-12). This yields no problem for

divergent oscillations, i.e.,
Real (p) > 0 (B~59)

..pn
since the terms e~ " >0 as M =B (Xn - XTE)——»oo (note that Il increases with the

distance of the wake element, T, s from the trailing edge).
However, for convergent oscillations, i.é.,
Real (p) < O (B-60)
one obtains

P,
e - oo as I - o (B-61)

i.e., the solution does not necessarily exist. (The results of Subsection B.2.3 indicate

that indeed the Laplace transform of the wake integral does not exist for Real (p) < 0.)

It should be noted that this phenomenon is rot in contradiction with the physi~

cal model; for, if the amplitude of ‘lfi at t =0 is finite, then

¥ () = (B-62)

If ‘i’i (- o) has a "finite effect" at t = 0, then the solution is infinite,

B-17



B.4 INITIAL CONDITIONS

Note that for any arbitrary function f()

L(f) = sf - £(0) | (B-63)

In relationship to Equation (B=63), the question of what resirictions have

been used on the initial conditions is examined here,

The flow is assumed to be in steady state for time t < 0, This implies,

(see Equation 2-45))
$,, =0 (t< 0) (B-64)
and
¥y = 0 (t< 0) ~ (B-65)
At time t = 0 it is assumed
q,(0) =0 (B~66)
in order to obtain Equation (4-27) from Equation (4-26).

It is not necessary to assume however that égm(O) = 0, This implies, from

Equation (4-26), that in general

7,0 # 0 (B-67)

Equations (B~65) and (B-67) imply, from Equation (2~48) that

5,0 =0 (B-68)

B-18



if and only if @ # O (exceptat P=P ), i.e., for M # 0 (see Equation (2-31)).

However, in general

8,000 # 0 (B~69)

for M = 0,

Finally, consider the effect of the initial conditions in obtaining Equation
(3-12) from Equation (3~9), If M # 0, Equation (B-68) applies and therefore Equation
(3-12) is correct, since the last term in Equation (B-63) is equal to zero, On the
other hand if M = 0 then 8= 0 (see Equation 2-32)) and therefore Equation (3~12)

is still correct, since in this case

(see Equations (3-7) and (3-10)),

It should be noted also that the case in which Equation (B-64) and (B-65)
are not valid (i.e,, when the flow is not in steady state for t < 0) is exdmined in
Appendix F of Reference 3, where it is shown that the formulation is still valid if the

term given by Equation (F-2) of Reference 3 is added to Equation (2-16),
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APPENDIX C
INFLUENCE OF MOTION OF SURFACE

As mentioned above, in deriving the integral equation, the surface of the
body has been assumed to be fixed ( ¢=0 in Equation (1.10) ). The correct derivation
of the integral equation for time dependent surface is given in Reference 3, Such
derivation is not needed here with the only exception of a minor point, which is
important in deriving the boundary conditions. For, consider the normal-wash

integral in Equation (2-34)

- ;10 1
ly = -@[Y] ry ds

. ®
Vd§ leﬁz

- - i]§ A, x &, d=' ax? (C-1)
[A; x A2|
where 2 are the convected curvilinear coordinates (moving with the body surface) and
r _ 9P
o=

are the surface base vectors.

Note that if the surface is time independent then
1A xA,)|® = |A xA,| (C-3)

However, if the surface is time dependent the two factors are different, Since
Equation (2-34) was obtained under the hypothesis of time-independent surface, it
is impossible to determine what is the appropriate value of |/5:] x Z‘zl to be used,

Therefore, in order to obtain the correct interpretation of Equation (C-1) it is -



necessary fo make use of the results of Ref, 3, where it is shown that the correct

expression is (Equation (6-40) of Ref. 3)

v |vS|qe
o= - M Lo ds® (C-4)
¥ R 0
19,57 |
o
where YMis the normal wash in the modified expression of Iy, whereas 5@ is the surface

described by the equation

s = s(p, T-0) =0 (C-5)
or

(=), 5 =F@E!, =2 1-0) (C-6)
with @ given by Equation (2-31).

Note that the base vectors 7\3 of the surface 5° are given by

® L]
=8 _ dF° _ OIS =0 .
Ad-__;-[Aa-on@-Aa (C-7)
oH T-0
=(t) _ oP X 5 ) . rC
(where A,/ = gg—a— , P=03P/3T and v 0 A= -B—:»;& ) or, solving for Aa R
7\2 = [Z\g) - p ve: Kg) (1+F -v°®)'] ]T o (C-8)

This yields (using P as third base vector, ;‘(3”)

2, 20- A0 a0 - qabeove (A0 xBo, - A0 xFo, |
Al X Az—[A] xA2 (1+P Vo®) (A] xP@/2 A‘.2 xP®/])]T-®
- 5 TR0 &0 4P ey @) - A0 P M. 5
_[(]+P .Vo@)) (A] xA2 (1+P V°®) A] x P ®/2+A2 xP®/]):|T-®
*Note that, ;fB=B+E§-a, fhena-a=a-g/(]—5'a)and

a=b+cd.-b/1-¢.d).
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= E] +P Vo@))—] (Agf) X Ag) +5 Agt) X Ag)vo@)]T e

= [(I +p oVO@)’] \Agf) x Ag)l RN Vo) ]T- o (C-9)
(where © = v,e - Z\g)). Note that (see Equation (4-14))
o

®
[v,s |— V.S _as

lvs1® | 1Sl T lvsl ®

= 04 5. R0 (C-10)

T-0
Hence

-1
|V°S|® 0) =), 5 =0 @ 70| 1 2
-dg” = INY/ +P N v, @ 'IA]xAzl de’ d=
T-0

155°

_ |K$’) . Zg)|® ;

._ @
1+P -v°®]

Note that in the common case of a zero~thickness wing, at zero angle of

14=2 (C-11)

I

attack, with motion in the direction of the normal, Ve isin the plane of the wing,

whereas P is along the normal N and hence P V°® =0, In general for small~amplitude

oscillations at reduced frequencies of order one, one obtains

P - Vo®| <<1 (C-12)
This approximation is used in this report.

Combining Equations (C~4), (C-11) and (C-12) and noting that, for small~-

amplitude motion, RO R, one obtains



_ - 8
. @[(;A) A x A§*>|] (C-13)

or

BT

|A],x A2|

where R, ‘A] X Z‘Z‘ and d are evaluated at time T or, more conveniently in the

undisturbed configuration,

The results of this subsection may be summarized by saying that Equation

(C-1) is still valid if ¥® is defined as

« 30
_ Ay xAy]

v® = —_—
|A] xA2|

)
Yy (C-15)

where ¥ M has been introduced in Equation (C-4),. Note that Equation (2~44)

applies to ¥,, as well, and therefore
PP M '

1
v, =3y . (C-16
Mo )

Note also that

A xAl® & x5,|°
Ay x A7 18y x5, (C-17)

|A]x;&2| |'5] x G

Therefore in order to take into account the motion of the surface it is convenient to

retain Equation (C-1) with ¥ given by



1 x &)
y = VL (C-18)
o |3 x&l

In Equation (C-14) the superscript (t) is used to indicate evaluation with time~
dependent surface (¢ # 0) in Equation (1~10)). The base vectors aa are evaluated

from the time-independent surface (¢ =0 in Equation (1-10) ).






APPENDIX D
BODY-AXIS BOUNDARY CONDITIONS

In order to extend the formulation of Section 4 to the body-axis formulation
(which is used in flight dynamics, see for instance Reference 28), it is necessary fo
express the downwash in terms of the generalized coordinates and generalized velocities.,
This relationship can be obtained by using the Eoundary conditions as obtained by

combining Equations (4-16) and (4-18) to obtain

- VB - -
¥ = |-i+ —]¢< (n+ an) (D-1)
U
o
or
¥ o= ¥+ ¥y - (D-2)
where
Yo = -ien (D-3)

and, neglecting higher order terms

Yy h-i-an | (D—~4)

c" <t
(o)

(o2}

It should be noted that in the body-axis formulation U is the displacement
(of a point P on the surface of the body) evaluated with respect to the frame of

reference ?B’ -i-B’ kB' Therefore, including the motion of the body axes to Equation (4-13)

with U given by Equation (4-23) one obtains (see Reference 28)



6 M
= Uy Do v e e Y g M) (D-5)

n=1 m=1

where typically Mm are the nondimensional natural modes of vibration and q,, ore the
corresponding nondimensional generalized coordinates, whereas v, are the nondimen-
sional components of the translational and angular velocities of the body-axis frame of
reference whereas I\-Ar(f) are the nondimensional six rigid-body mode shapes. Note that
the nondimensional translational velocities are obtained from the translational velocities
by dividing by Uy (the corresponding modes areb already nondimensional), On the
other hand, the nondimensional angular velocities are obtained from the angular veloci-

ties by dividing by Um/z (the corresponding modes are made nondimensional by dividing

by 4).
Combining Equations (D~4), (D-5), and (4-24) yields
6 M
_ a(R) = L o .= - %
¥, = Z v, MB .5y Z - My cRE - 85 cTa, | (09
n=1 m = © '

The Laplace transform of Equation (D~6) is*
6 M
> aR), = o -y - - Ty
¥ = D Ml(q)'nvn+z:[pMn’n—Anm'llqm (D-7)

n=1 n=1

Equation (D~7) may be rewritten as (the subscript h indicates the evaluation at the

center Eh of the element Zh)

%1 = [Ef,LW] {91+ [E}(‘:n’O)] I (D-8)

*It is assumed qm(O) = 0; see Section B.4,



where

BV - [W0 7] 0-9)
P=Ph
and
E}(\IH;Q) = [ph7\m°?x —A?‘m‘?]l;;Fh (D-10)






APPENDIX E
CLOSED-WAKE PHENOMENON

Consider, for instance, the wake emanating from the perimeter of the base
of a truncated cylinder. This wake separates the flow field into two parts: one inside
the wake and one outside the wake, This type of wake will be referred to as a "closed
wake", In this Appendix a few mathematical details relative to the analysis of a
closed-wake configuration are discussed. It will be shown that in this case the integraf
equation (Equation (2-52) is singular (i.e., the homogeneous integral equation has a
nontrivial solution, and hence the nonhomogeneous integral equation has a non:uhique

solution), For simplicity only the steady incompressible flow is considered here.

The integral representation of the potential for steady incompressible flow is

given by (see Equation (2—5?))

e g ) 5

v f ACP.;;.(.}) a &
Sy v

If p, ison Zg, the function E(F) assumes the value E, = 1/2 and Equation

(E-1) reduces to an integral equation fobr‘ the potential on the surface of the body.

As previously mentioned, whenever the wake separates the flow field into
two separate regions, one inside and one outside the wake, the integral equation is
singular. This problem occurs in the formulation for bodies with a blunt back such as a
projectile or a fuselage with fruncated base, A similar problem occurs in the formulation

for building aerodynamics and actuator -disk aerodynamics,



In order to show that the integral equation for closed-wake configurations
is singular, it is convenient to obtain Equation (E~1) a different way. Consider Figure
Figure E-1(c), and note that the value E = 1 outside the body may be obtained as
the sum of the function Ei for inner flow (i.e., inside the wake) and the function Eo

for the outer flow (i.e,, outside the wake and the body) or
EG) = E() + E(p) (E-2)

Applying Green's theorem to the regions shown in Figures E~1(a) and E-1(b)

yields
4n (B0 o) = (P12 (Lo = (1)) ex, (E-3)
an, \r on., \r
i P\
and
ane, (o) = ()2 (l)-cp 2 (l) as, (4
on r on_\r
o o
Note that
. =h;h =" on Zp
Bi = —F‘u;?‘o =7\U on ZW (E-5)

Thus, adding Equations (E~3) and (E~4) and using Equations (E-2) and (E-5) yields

AnE@.Ie (L) = -@[:—q’ (]—) -~ ai (-1—)] dz

Zp

[ 6,0 g— (l) s (E~6)

r
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(c) Flow Outside the Body

Figure E~1. Geometry for Green's Theorem for Closed-Wake Configuration,



Note that Equation (E-6) coincides with Equation (E-1) with Ag = 9o =@; « Inorder
to show that the operator in Equation (E~6) is singular, it is sufficient to show that the

homogeneous equation (i.e,, with 3¢/dn =0)

4nEE,) o (B,) = cp—?-(-‘-)dm Acp—a—(‘—) dz ()
g 3n \r EJ‘W anu r

has a nontrivial solution,  In order to show this, consider the function

i
o
T

o @ p outside %,
NT '

il
pa—
Tl

inside I, (E~-8)

If 3p/3n = 0 (homogeneous problem), this function is a trival solution

(i.e., 0 = 0) of Equation (E~4), whereas for Equation (E-3) one obtains (note that

Ejont = E)

_ 3 [1 -
4nE, -@_a_;‘. (:) dz, (E-9)

which is identically satisfied, since (indicating with Q the solid angle)

@ —a— l dx, = Q
dn, r !
z

It

0 outside Zi

1l

i 2w on I,
i

41 inside z. (E~10)

Since g7 isa nontrivial solution for both Equations (E-3) and (E~4) with 3¢/3n = 0,
it is a nontrivial solution for their sum, Equation (E-7). Hence, the operator in

Equation (E-1) is singular; therefore, if c?) satisfies Equation (E-1), then



¢ = :P + C‘PNT (E-11)
(where C is an arbitrary constant) also satisfies Equation (E-1).

Finally note that in the numerical formulation, Equation (E-1) is replaced by
Equation (3-12) with p = 0. However, the doublet integral represents solid angles and the
solid angle is evaluated exactly with the use of the hyperboloidal elements. Thus the
discrete form of Equation (E-10) is still valid exactly, Therefore, even the discrete
system is singular, i.e., the determinant of the system given by Equation (3-12) with

p = 0 is equal to zero, This implies that the vector

NT — ,
{cp; } = {cpNT (p;)} | (E-12)
is a nontrivial solution for Equation (3~12) with right-hand-side equal to zero, or that

if ¢, is a solution to Equation (3~12), then

{‘Pi} = {‘?’i} ¥ CM\”} | (E-13)

(where C is an arbitrary constant) is also a solution to Equation (3-12) (i.e., if the

solution exists, it is not unique).
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