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..	 ABSTRACT

Cumulative slant path rain attenuation statistics at 28.56 GHz

,-	 are given for the year period 1 April 1977 through 31 March 1978 for

Wallops Island, Virginia. These results were arrived at using direct

s	 measurements of a beacon signal emanating from the CONSTAR geosynchronous

i	 satellite. Yearly, monthly, and time of day fade statistics are presented

and characterized. In addition, a 19.04 GHz yea:-ly fade distribution,

corresponding to a second CONSTAR beacon frequency, is predicted using the

concept of effective path length, disdrometer, and rain rate results.

Specifically, it is shown that the yearly attenuation and rain

.	 rate distributions follow with good approximation log normal variations
.^,	

for most fade and rain rate levels, respectively. Attenuations were

exceeded for the longest and shortest periods of times for all fades in

--	 August a^:d February, respectively. These months thus represented the

"worst" and "best" months at all attenuation levels. The eight hour time

$,	 period showing the maximum and minimum number of minutes over the year for

which fades exceeded 12 d8 were approximately between 1600 to 2400, and

0400 to 1200 hours (local time), respectively.

In employing the predictive method for obtaining the 19.04 GHz

fade distribution, it is demonstrated theoretically that the ratio of.

attenuations at two frequencies is minimally dependent on raindrop size

distribution providing these frequencies are not widely separated (such as

28 and 19 Gliz) .
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CUMULATIVE SLANT PATH RAIN ATTENUATION STATISTICS

ASSOCIATED WITH THE CONSTAR 13EACON AT 28.56 GHz

FOR WALLOPS ISLAND, VIRGINIA

1.0 INTRODUCTION

The need to amass long term slant path fade statistics for

various geographic locations in the U.S. at frequencies above 10 GHz

resulted in the stationing of the CONSTAR satellites in geosynchronous

orbits [1]. These satellites which have beacons at 19.05 and 28.56 Gliz

were built by Hughes Aircraft, are owned and controlled in orbit by C^ISAT

General Corporation, and are leased to ATF^T and GT$E Companies for domestic

U.S. communication service.

In the design of high frequency earth-satellite communication

systems, it is desirable to have a knowledge of the attenuation distribution

or the expected percentage of the time the attenuation due to rain exceeds

certain levels. Such information may be used in establishing transmitter

power margins and receiver sensitivity requirements. In addition, it is

desirable that the designer be equipped with a knowledge of monthly as

well as time of day fade statistics. Using this information, for example,

transmitter power margins can be temporarily adjusted to handle the

increased fades during certain months of the year or periods of time during

the day.

From 1 April 1977 to 31 March 1978, the CONSTAR beacon signal at

28.56 Gilz has been received contin.sously at Wallops Island, Virginia (loca-

ted 180 km southeast of Washington, D. C., off the mid-Atlantic coast).

lluring periods of rain the signal is monitored down to approximately 30 dB

below the free space level and these data are digitized and recorded on

tape for later reduction and analysis. Ancillary measurements such as rain

drop size distributions and rain rates are also obtained continuously with

nearby disdrometers and raingages, respectively. In addition, a High

resolution, S-band radar monitors the rain reflectivity along the earth-

satellite path during selected periods of rain.

Employing the 1.977 summer data base, it has been den ►onstrated

previously that radar and disdrometer measurements enable the prediction of
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	 individual fade events and long ^.erm distributions with good accuracy

[2,3,4]. In this report we present and characterize the cumulative fade

statistics for the 1977-78 year period. Also presented are the month and

{
time of day statistics as well as the raingage rain rate distribution.

	

}	 The concept of effective path length usir.,I the 28.56 G}iz fade and measured

rain rate distribution are employed to predict the 19.04 GHz fade distri-

bution. Predicted distributions for the year period are arrived at from

	

_	 disdrometer data, radar results [2,4], as well as from the distributions

	

E	 of Bergmann [5] obtained using the 2$ and 19 GHz CONSTAR beacons.

2.0 EXPERIMENTAL CONFIGURATION

As the details of the radar and receiver experimental configura-

tion have been presented previously, we give here only a brief description.

The experimental configuration consists of a phase locked loop

receiving system operating at 28.56 G}iz, an S-band radar (f = 2.84 GHz)

located approximately 30 m away, and a system of three raingages and two

disdrometers located in the immediate vicinity of the receiving antenna.

Both antennas are fixed and point in the direction of the CONSTAR geosny-

chronous satellite (95°W longitude + O.I°) with elevation and azimuth angles

of 4I.6° and 210°, respectively.

The rJertinent parameters for the CONSTAR receiving system are

given in Table 1.

3.0 CUMULATIVE FADE STATISTICS

In this section we describe the yearly, monthly, and time of day

cumulative fade statistics for Wallops Island, Virginia, region as measured

at 28.56 Gli^ for the period 1 April 1977 through 31 March 1978. These

data were originally retarded on tape and later reduced and analyze using

an lIP 9825 minicomputer.

3.1 Year Fade Distribution

In Figure 1 '.s plotted on a semi-log scal the overall measured
^u ^t ^ t ^: ;t ^

28.56 Gltz exceedance probability as a function of -reitr-ra^tt These results
.	 constitute the fade statistics for 82 rain days during the year period.

___
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Table 1

PERTINENT COMSTAR RECEIVING SYSTEM PARAMETERS

Antenna Gain 52.7 dB

Bedwidth 0.4°

Antenna Diameter 1.83 m (6 ft)

>;ree Space Power Received -106 dBm

ERP 55.8 ^:3m

Path Loss -213.4 dB

Line Loss -0.5 dB

Sky Loss -0.3 dB

Phaselock liold-in Threshold -138 dBm

Phaselock Acquisition Threshold -133 dBm

Dynamic Range (minimum) 32 dB

Predetection 3 dB Bandwidth 50-100 liz

Post Detection 1 dB Bandwidth 10-20 Nz

Amplitude Measurement Error +	 1 dB

Noise Figure 18 dB

t 4
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1Nf JOMNf NO►KIN9 UNiVERSIIY
APPLIED PHYSICS 1A80RATORY

" °	 IAUREI M^a r^^Np

Page Five

_. During this interval, the receiver operated continuously with negligible

down time. The times for which the fades exceeded 3 and 25 dB were 3814

and 312 minutes, respectively.

^^

	

	 In Figure 2 the seine distribution is plotted on a log-normal

scale and we note that an excellent fit exists down to about 17 dB. The

deviation from log normal at higher fades may be due to an insufficient

data base. This result is consistent with the contention of Lin [6J that

long term distributions should follow a log normal variation; a notion not
._	

universally accepted. It is interesting to note that the year period rain

rate distribution also follows with good approximation the log normal

-°	 distribution over most of the rain rate intervals (Fig. 13).

3.2 Monthly Statistics

In Figures 3 through 5 are plotted the individual monthly distri-

butions for the given year period where the ordinate represents the percen-

tage of the month the attenuation exceeds the abscissa value. We note that

for all fades, August and June represent the "worst" and "next worst" months,

respectively, and February was the "best" month during which fading times

were minimum. In Figure 6 we summarize these results in the form of histo-

grams; the ordinate representing the percentage of the month the fade

exceeds 5 (white), 15 (black), and 25 (grey) dB and the abscissa represents

the month of the year. We note that in August, fades of 5, 15, and 25 dB

were exceeded 393, 132, and 98 minutes, respectively.

The above results are consistent with the long term monthly

rainfall measurements presented in Figure 7 and taken by the U.S. Navy and

U.S. Weather Service for the Wallops Station. The ordinate represents the

total number of millimeters of rainfall and the abscissa is the mo.tth of

the year. The monthly averages are taken over a period of 25 to 28 years

and are denoted by the center horizontal lines. Also indicated are the

plus and minus standard deviations taken about the respective average.

The rainfall amount for the individual months of the 19?7-78 year period

are also given (solid dots). We note that the August rainfall was well

above the average plus its standard deviation and June was well above its
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average. On the other hand, February was well below its average minus its

standard deviation. Specifically, in August and June of 1977 there were
l

205 and 116 mm of rainfall as compared to the respective monthly averages

,. of 102 and 78 mm. For February of 1978 the precipitation measured 24 mm

	

^°	 as compared to the monthly average of 69 mm.

^_
It is interesting to note from Figure 7 that August represents

	

''	 the "worst" month from the rainfall standpoint (highest average monthly

	

]^-	 rainfall) and this is identical to the worst month from the fade statistic

standpoint for the 1977-78 period. This agreement suggests the possibility

of using long term average mthly rainfall 3ata as an indicator of the
^_

	[^	 worst month for the higher fades.

	

,-	 For seven months of the year, the rainfall amounts were within

	

..	 the long term monthly averages plus and minus the respective standard

{	 deviations and for five months the monthly rainfalls were outside these

	

•'°	 ranges. Based on these results, we note that the overall monthly rainfall

values measured for the 1977 - 78 period are not representative of those for

- =	 the long term average year.

3.3 Worst Month Statistics

The cuiwes given in Figure 8 characterize the worst months fades

relative to the yearly fade. The upper curve describes the ratio of the

monthly to the year exceedance proba b ilities (left hand scale). This ratio

has been characterized by Crane and Debrunner [ 7] for the case in which the

denominator corresponds to a multiyear data base. This quantity is bounded

	

'-	 between 1 and 12 for a 1 year return period; the lower bound representing

	

-	 the case where the number of minutes the fades were exceeded for each month

	

-	 of the year are the same and the upper bound corresponds to the case where

	

_	 fades are only experienced during the worst month. Crane and Debrunner

have demonstrated that if an exponential distribution is applied to the

expected occurrence of the monthly probabilities, the ratio should be less

than 4.4. We note from Figure 8 that the ratio for the year period is

smaller or equal to 3.74 over the given fade range.
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The lower curve in Figure 3 gives the percentage ratio of the

aoathly to the yearly times for which the abscissa fades are exceeded.

For exa^eple, of the 25 d8 or granter fades that occurred during the entire

year we Hate that 31# of these occurred in August;

3,4 Time of Day Statistics

In order to establish the periods during the day in which earth-

satellite co^wii.cations ^y be most and least influenced by rain attanu-
ation, we present the fade distributions and histograms depicted in

Figures 9 and 10. In these figures are given the percentage of the time

of the year various fad depths are exceeded during six four-hour periods

of the day. We note that the six distributions in Figure 9 tend to group

into three distinct pairs for fades exceeding 12 dB. Two of these group-

ings represent eight contiguous hours each. We note, for example, that

between the hours of 2000 to 0400 GMT (approximately 1600 to 2400 local

time) the number of minutes for which fades of 12 dB or more are exceeded

are greater than during any other period. The eight-hour period showing

the minimum number of minutes is between 0800 to 1^^0 GMT (approximately

0400 to 1200 local time). These two eight-hour periods of time most likely

represent the periods of maximum and minimum convection, respectively,

caused by ground heating.

4.0 PREDICTION OF THE 19.04 GHz FADE

In this section we describe the method by which the 19.04 GHz

fades may be predicted. This method uses the concept of effective path

length applied to measured fade and rain rate distributions and has been

successfully employed using the 1977 summer data base [2,4].

4.1 Predicted and Measured Ratio of Fades

Describing this technique in a somewhat different fashion, we

assume that a cumulative rain rate and fade distribution at frequency, fl,

have been measured, and it is desired to establish the fade distribution

at frequency, f2 . We initially define attenuations Ail and Ai2 as the

respective frequencies, f l and f2 , for a given exceedance probability, Pi,

by,

s

^`

^_w 4
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(2)

R Dividing Ail by Ail we obtain,

Ail = x RiY
it

where,

a2x=--
al

Y = S 2 ^ S1

Hence, Riven a knowledge of the fade distribution at the frequency, fl,

the rain rate distribution and the assumed or calculated parameter values

of al , a2 , B 1 , and 62 , we may arrive at the fade distribution for the fre-

quency, f2 . For example, the fade Al2 (at frequency f2 ) may be calculated

from (3) for the exceedance probability, P i . The entire distribution at

frequency, f2 , may be obtained by repeating the procedure for various

exceedance probabilities. This method was employed during the summer of

1977 to obtain the 19 . 04 GHz distribution from that corresponding to 28.Sb

(2) and agreement was found to within 0.3 dB rms of the radar measured

distribution j4^.

We here use Eq. (3) to arrive at the 19.04 GHz fade distribution

for the entire year. The values of a and B in Eqs. (4) and (5) are those

(3)

(4)

(S)

.^.
^,



,^-
)-
^:

^^

,g

E

calculated using the overall summer data base of disdrometer measurements.

'these correspond to 460 minutes of disdro^ter sampling over S rain days.

At a frequency, fl 28 . 56 GHz,

al = 1.76 x l0ii

B1 = 1.021

and at f2 19.04 GHz,

a,	 7.64 x 10-2

s2 = loss

Substituting (6) and (7) into (4) and (5), (3) becomes,

Ai (19.04)	
.034

Ai 28.5 = 0.434 Ri

We note that because 8 2 and 8 1 are close to unity, their difference is

small and the ratio of attenuations as given by (8) is only weakly depen-

dent upon rain rate or exceedance probability.

In Figure 11 is plotted the predicted 19.04 GHz fade distribu-

tion (triangle points) using the formulation (8), the 28 . 56 GHz fade! and

the measured rain rate distributions (Figs. 12 and 13) , for Lhe year period,

The rain rate data was obtained with a nearby tipping bucket raingage and

recorded during approximate simultaneous times that fade data were

received. Also plotted (circles) in Figure 11 is the predicted 19,04 GHz

attenuation deduced from radar derived 28.5b and 19 . 04 GHz fade distribu-

tions and rain rate distributions measured during the summer of 1977 [2,4].

The calculated best fit power ratio obtained from these measurements is,

Ai(19.04)	
036

Ai (28.56 = 0.451 Ro'

(6)

(7)

(8)

(9)
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Also shoxn in Figure 11 (squared) is the pr^icted 19.04 {Diz

distrib^ion obtaiasd fra y the avera=s of the attenuation ratios obtained

from BerBmann's 28, 5b and 19.04 GHz distributions measured at Palmetto,

^^	 Geordie, fry June 19Th to July 1977 [S]. This awra^e xas found to be

Ai(19.04)

Ai	 ^	 O.SZb

AI^G
xith an associated standard deviation of ,014.

Sy► a^rsumin8 the above ratio to be invariant, the 	 ^.cted 14.04P^

t^iz distribution far Maiiops Island xas obtained usin8 the cor=Fspondin8

28.56 GHz fade distribution. It mr ►y be rested that the various gredicted
19.04 GHz fades in FiBwce ii deviate fret one another by, at sost, 0.T d8

rms. Close a8reement of the attenuation ratio taken from 8er8mann's data

xith that found at Ntaliops Island does not at ail idly a similar DSD but

the relative invariance of the attenuation ratio to DSD, at the frequencies

consi^red here, as pointed out in the next section.

._
^.2 The Approximate Invariance of Attenuation Ratio Moth Drop Siza

Distribution

ire demonstacate here by theoretical aeons the approximate invari-

ante of the 19 to 28 GHz attenuation ratio with DSD. The attenuation coef-

ficisnt may be th^reticaliy expressed by,

M

	

k ` ^ Cext (
D)H (D) dD	 [dslkm]

^_.
o

where CeXt (D) [(dsJkm) x cm3j is the extinction factor for a raindrop of

diameter, D [cmj and at a propa8ation frequency, f. Also, N(D)dD [cs^; 3]

is the drug size distribution representin8 the number of drops between

^.	 diameters, D and D+dD, per cubic diameter. The extinction factor is a Mie

theory related quantity characterizin8 the attenuation cross section ► and

tabulated in Hedhurst [8j as a function of frequency. It may also be

approximately expressed by,

]`	 n^^	
Cext ` C' D

,

(10)

(11)

(12)



(17)

(18)

^s^

	

^^	 A^l^,1#0 ^litlslp ^11AT^ly
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where C' and n as a fimctiat of frequency suy be obtai^ ►ed fray the tabula-
tion and plats Biwa by Arias and Ulb^d► [9]. it should ba sated that a

coefficient C is actually charactsrised by thy, however, becausa of the

difference betwe^ our Waits and theirs, ^'' = 4.343 x 105 C,

As ^ approxi'ation, w aawe the drop size distribution nay be

represented by,

	_	 where No [csi {] and A [csi 1 ] are arbitrary paraaeters.

Substitutin= {12) and {13) into (li) and inta8ratin8,

k=C' NoT^+1
A

where T (n+1) is the 8assu function for rum- iate8er ar8uients. Frog the
plots 8iven by Atlas and Ulbrich [9], we obtain far 19 . 04 and 28 . Sb GNz,

k18 n 5.39 x lOb
 No T S:li

A

k n 7.b9 x 106
 N T 4.18

	

^^	 28	 o A4.18

and we note that both k 18 and k28 are proportional to No and also

depend ^ A in approximately the sa^u + way. It is therefore apparent that

their ratio will have a minisal depe^^dence on drop size distributl^^,

Specifically the ratio of (1S) to (lb) reduces to,

k
n 1.10 A-0.3

2$

A: examples, we consider the Marshall -Palaer (hereafter referred

to as M-P) distribution [10] and Joss distribution for thunderstorms [11]

which have A-R (rain rate) relations 8iven by,

A ^* 41 R 0.21	 (ui 1 }	 (M-P}

t13)

C14)

(15}

(lb}

^,.

^___-_—	 --	 - - - -
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A • 30 
R-0.21	

{csi-1)	 (Joss) {19)

jo+^w na^N u^rrt+wtr
a^^ao ^ utso^t+^^r

lit iiMn^wO

and

i
t
f
t
I

fi

^,

^_

^^

^.̂.

r`
i

^.

^,.

where R is in ss^Ihr, It is interesting to note that although the values

of Ho for N-P (.08 ai ^) and Joss ( .014 pi ;) are quite dissimilar, these

parameters in no way enter into the ratio (17). Substituting (18) and (19)
into (1T),

k^=	 .361 R♦ •062

2a N-P

a^

k^	 • .397 R; . ^2
28 Joss

The ratios (8), (10), {20), and {21) far the various DSD's are
depicted in the plots of Figure 14 and we note that thay are close in value

exgeciaily at rein rates exceeding 10 m^jhr where they are within approxi-

aately 201 ► of one another. These results thus substantiate the contention

that the attenuation ratio for the frequencies considered is only weakly

dependent on DSD.

It is interesting to note frog the results of Atlas and Ulbrich

(9], that between f n 20 aad 60 Gtiz, n follows with excellent approximation

(coefficient of deteraination, r2 • 0,9992) the frequency dependence given

by

n 4.82 exp(-8 . 38 x 10`3 f]

whore f is given in GHz and where negligible temperature dependence exists

between 0 to 40`C, The parameter, C, on the other hand gasses through a

sharp peak in this interval end has a slight tesiperature dependence, It

is apparent from {14) mid (22) that the gx^+ater the frequency excursion in

the ratio. the greater the dependence on DSD.

(20)

(21)

(2z)
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Figure 14. Ratio of 19.04 to 28.5G Gllz effective attenuations
_ ^ as a fwiction of rain rate for f^PL [2,4], Joss [11)

anJ b!-P [10] drop size distributions. ;11so plotted
is the a^^erage^ ratio of attenuations obtained from
the fade distributions of Bergmann [5).
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	 The relative invariance of the attenuation ratio with DSD at two

frequencies (not too widely separated) suggests a useful mechanism for pre-

diction of the fade distributions at a series of other frequencies and at

other geographic locations. That is, given a fade distribution at a

single frequency as well as a measured rain rate distribution at the same

locality, the fade distribution at other frequencies may be determined by

use of theoretically derived expressions of the form (20) following

methods identical to that described in this section. In the absence of a

rain rate measurement, the average ratio of attenuations obtained from

measured distributions at one locality may be generally applied at a

second locality with small uncertainties of the kind described in this

section.

S.0 SU1^IARY AND C^iCLUSIONS

The results presented here stem from an experimental data base

for the climatology of Wallops Island, Virginia, and could be used by the

designer of earth-satellite communication systems to establish (a) fade

margins, (b) transmitter power and receiver sensitivity requirements,

(c) the necessity for space diversity systems, and (d) further predictive

methods [12,13]. in the rollowing, we summarize the major results and

conclusions of this work.

(1) The cumulative fade and rain rate distributions for the period

1 April 1977 through 31 March 1978 are presented (Figures 2 and 13,

respectively) and are shown with good approximation to follow log normal

variations over most of the ranges considered. Hence predictive methods

of the type described by Lin [6J may, therefore, be employed more con-

veniently given the ability to describe complex fade distributions

analytically.

(2) Attenuations were exceeded for the longest periods of time in

August which represented the "worst" month (Figures 3 and 6) for all

fades. February was found to represent the "best" month for all fades

showing the smallest periods of times that all fade levels were exceeded

(Figures 5 and 6). Based on the monthly results, substantially more

fade margin would be required for an earth-satellite communication system
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fox the Wallops island climatology from May through December than during

the balance of the year {Figure b).

{3)	 The long tare {greater than 2S years) average monthy rainfall

data {Figure 7) showed a highest average rainfall month identical to the

fade statistics "worst" month {Figure 7). This suggests the poasiblo

use of long term rainfall data as an indicator of the worst month for the

higher fades.

(4)	 The eight hour slot of time showing the maximum and minimum

number of minutes for which fades exceeded 12 dB are between the hours of

2000 to 0400 GMT' (approximately 1500 to 2400 local time) and hetaeen 0800

to 1600 GMT (approximately 0400 to 1200 local time), respectively (Figures

9 and 10). These periods represent appropriate time intervals over which

satellite transmitter power levels might be enhanced or reduced to compen-

sate for increased or reduced fade periods.

(S)	 A method is employed using the concept of effective path length

applied to the measured 28.56 fade and rain rate distributions to obtain

a predicted 19.04 GHz for the year period (Figure 11). This method, which

has boen previously checked against radar measured distributions [2,4],

could be used to predict distributions at other frequencies not too widely

separated in frequency.

(6)	 The ratio of attenuations (not too widely separated in frequency)

which are obtained from their distributions at a fixed probability is

practically independent of drop size distribution (Figure 14). Hence one

may theoretically calculate or measure such a ratio (Section 4) and apply

it to the locality in question to arrive at the fade distribution a^ a

second frequency and small uncertainty (e.g., less than 20^). In the

absence of rain rate data, one may use the average of the ratio of attenu-

ations for a series of probabilities obtained at one locality to arrive at

the fade distribution at the second frequency and at another locality

(Figure 11). The influence of different effective path lengths at the

various localities does not play a role as the path length cancols out

when taking the ratio of attenuations.
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