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FOREWORD

This is the interim report on work being performed by Rohr Industries -
Design and Fabrication of Titanium Multiwall Thermal Protection System
(TPS).

This program is administrated by tre National Aeronautics Administration
Langley Research Center (NASA LaRC). Mr. John Shideler of the Thermal
Structures Branch, Structures and Dynamics Division, is Technical
Monitor for the program.

The following Rohr personnel were the principal contributors to the
program during this reporting period: Winn Blair, Program Manager;

T. C. Atkinson, Manufacturing Technology; J. E. Meaney, Structures;

R. M. Martinez, Project Engineer; H. A. Rosenthal, Thermal Testing;

R. H. Tinms, Preliminary Design; and L. A. Wiech, Engineering Labora-
tory. Overall program responsibility is assigned to the Rohr Aerospace
R&D Engineering Organization with U. Bockenhauer, Manager.
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SUMMARY

A Titanium Multiwall Thermal Protection System (TPS) panel conceived by

NASA was designed. An acceptable fabrication process was developed, and
the panel design was verified through mechanical and thermal testing of

component specimens.

INTRODUCT ION

Rohr Industries was awarded a contract January 1979 to design and fabri-
cate titanium multiwall thermal protection panels for testing by NASA.
Progress, current activities, and future milestores are shown in Figures
1 and 2.

The primary objective of this program is to design and fabricate metallic
multilayer sandwich panels for test and evaluation by NASA. The program
consists of two tasks:

Task 1 - Design Definition
Task 2 - Test Model Design and Fabricaticn

Task 1 consists of a preliminary design of panels and tools, fabrication
of test panels and testing in face tension, flexural strength, creep,
thermal conductivity and aanittance.

In Task 2, a nine panel array shown in Figure 3, will be fabricated for
testing in the Langley Research Center 8-foot High Temperature Struc-
tures Tunnel., A two-panel array shown in Figure 4 will be fabricated
and delivered to the Langley Research Center for vibrational and
acoustical tests. A second two-panel array will be delivered to
Johnson Space Center for radiating tests.

Only the activities of Task 1 will be described in this report.
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DESIGN DEFINITION

The configuration and constructicn details for a titanium multiwall
panel is shown in Figure 5. The panel is a nine-sheet sandwich struc-
ture consisting of an upper and lower face sheet, four dimpled sheets,
three septum sheets, and clips for attachment to the test fixture. The
material for all detail parts is Ti-6A1-4V. The joining system used is
a Rohr proprietary process :n which the interfaces of the parts to be
joined are plated with two or more elements. When put in contact with
each other and heated to approxime*aly 1214K (1725°F), the plating
material melts creating a short time eutectic with the Ti-6A1-4V. MWhile
holding at this temperature for a specified time the plating material is
diffused into the Ti-6A1-4V creating a bond et ail plated interfaces.

DESIGN

Panel Design - The panel assembly shown in Figure 5 was designed from a
cketch and information supplied by NASA Langley Research (enter, Hampton,
Virginia. Particular attention was given to the fabrication problem
encountered with forming of the dimpled sheets. The design in Figure 5
chows a 25.75 angle on all sides of the panel. The angle slope is in
the flow direction and also parmits the use of a common dimpled sheet
used in each of tne four layers. The desiygn is also unique inasmuch as
the outer skins are formed on the 25.75' engle and are joined to each
other by Liquid Interface niffusion bonding to close out the panel's

four sides. The panel sides cre corrugated to give stiffness and to
allow the panels to nest during the time they are being thermally
expanded during service.




Skin Forming Tool Design - The tool design shown in Figure 6 takes into
account the possibility of mass producing the skins. The design allows
for multiple loading parts into mirror image die halves and forming as
many as six skins simultaneously. Argon gas is used as the pressure
media for superplastic forming the skins.

Dimpled Sheet Forming Tool Design - The design shown in Figure 7 takes
into account Ti-6-4 material size availability, thermal expansion and
part quantity. The die plates were designed to permit economic installa-
tion of a large number of pins., A shim plate was added to permit some
adjustment of the dimple height by adding to or removing from the plate.

TEST PANEL FABRICATION

Panels for Structural and Thermal Tests - The dimpled sheet shown in
Figure 8 was superplastically formed in a vacuum furnace using 8.27 KPa
(1.2 pounds per square inch) dead weight pressure. Figure 9 shows the
dimpled sheet forming tool being loaded into the vacuum furnace. After
it was formed, the dimpled sheet was trimmed by chem blanking, (see
Figure 10), and was plated on the nodes only using the Rohr proprietary
process. The plating parameters were established using full sized sheets

305 mm (12") by 610 mm (24"). Figure 11 shows a plated sheet with cut-
outs made for microexamination.

The layup for LID bonding was accomplished by aligning the nodes opposing
each other through the septum sheets, and by resistance welding at each
of the four corners. This procedure held the dimpled sheets, septum
sheets and skins in position for LID bonding. For LID bonding, the

layup 's placed on a flat graphite reference block, with 18 mm (.7")
thick b. cks placed on each of the four sides. The side blocks control
the panel height and prevent the panel from being crushed by a graphite
block that was placed on top of the layup for bonding pressure. The
assembly was then placed into a vacuum furnace for LID bonding. The
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furnace was evacuated to 1 x 1072 torr, heated to 1214K (1725°F), and
held for a specific period of time. During this period the plated
material is melted and diffused into the Ti-6A1-4V creating a bond joint
at all plated interfaces.

A1l panels were fabricated without ciips and doublers. A1l panels for
testing in flatwise face tension, beam flexure, creep and thermal con-
ductivity were LID (Liquid Interface Diffusion) bonded in sizes of 152
mm (6") by 305 mm (12") and 305 mm (12") by 305 mm (12"). Figure 12
shows three of these panels.

After the panels were LID bonded a layout for cutting of all the test
specimens was made. The layout for the structural test specimens is
shown in Figures 13, 14 and 15. The test specimens were cut using an
electric discharge Saw. Specimens for static creep test were taken from
each material gage used in the sandwich. Two thermal conductivity test
specimens were cut to a size 1.8 by 203 by 203 mm (.7" x 8" x 8"). The
emittance test specimen, .076 by 5C by 100 mm (.003" x 2" x 4"), was
polished to a very high luster on one end and processed through two
thermal cycles, duplicating the fabrication process, then checked for
emittance on both the pol ished and unpolished areas. One specimen was
oxidized for 30 minutes at 810K (1000°F) and checked for emittance.

yggggm_ljghj;fgpgj_fgpngp;jgn_- This was a test to determine if a
vacuum tight parel can be produced. The dimpled sheets and septum
sheets were producec in the same manner as for the otructural test
panels. The skins which also close out the vacuum tight panel sides
shown in Figure 16 were superplastically formed two at a time in a
mirror image die, shown in Figure 17. The forming was also accomplished
in a vacuum furnace using 34.5 KPa (5 pounds per square inch) argon gas
pressure, The skins for the vacuum tight panel were plated around the

periphery 5.1 mm (0.2") wide shown in Figure 18.

 —————EN WYt . -




After plating had been accomplished the skins, septum sheets, and
dimpled sheets shown in Figure 19 were assembled for LID bonding. The
nodes were aligned opposing each other through the septum sheets, and
resistance spot welded five places at each corner. This procedure held
the detail parts in place until the joint had been achieved by the LID
bondi:g process. For LID bonding, the assembly was placed on a flat
graphite raference surface shown in Figure 20. Also shown in Figure 20
are the graphite aids that are used to control the panel height and
bonding pressure. The panel was isolated from the graphite by commer-
cially pure titanium slip sheets. The assembly was then placed into a
vacuum furnace for LID bonding. The furnace was evacuated to 1 x 10"5
torr, then heated to 1214K (1725°F) and held for a specific time. During
this time period the plated material is melted and diffused into the
Ti-6A1-4V creating a bond joint at all plated interfaces. Figure 21
shows a LID bonded panel for vacuum tight evaluation,

THERMAL TESTING

Emittance Tests - The samples tested were:

Sample #7910 - as received foil.

Sample #7911

foil run through sandwich manufacturing process.

Sample #7912

foil was polished, ther run through sandwich manu-
facturing process.

Sample #7904

foil oxidized at 810K (1000°F) for 30 minutes.

These samples were supplied to General Dynamics for wavelength-reflectivity
measurements in their test apparatus described in the appendix. Al1l tests
were made at room temperature. Reflectivity data were entered into their
computer program which de‘ermined total normal emittance at various temp-
eratures. Results are given in Table I and graphed in Figure 22. Note
that the term emissivity is the same as total normal emittance.




For the most part only minor differences are shown between the samples.
There appears to be a slight increase in emittance when the sample goes
through the manufacturing process, i.e. compare 7910 and 7911. But
polished foil 7912 shows an even smaller diffarence. As expected, the
foil oxidized for 0.5 hours at 810K (1000°F) has a higher emittance.
Additional tests have shown that emittance continues to increase as
oxidation time increases above G.5 hours.

In summary, one can conclude that little is gained by polishing the
foil, and that manufacturing the sandwich out of as received foil is
satisfactory. Furthermore, additional data will be required to deter-
mine emittance as a function of oxidation time,

Conductivity Tests - Thermal Conductivity testing was subcontracted to
General Dynamics Convair Division. Tests were performed on two panels
having approximate dimensions of 17.3 by 203 by 203 mm (.68" by 8" by 8")
using a guarded hot plate apparatus, see Appendix A.

The test results showed higher conductivity than had been predicted.
After analyzing the test data and test conditions, it was concluded that:

1. The test panel was too small.

2. Tests should be re-run by Rohr using a larger test panel, 17.3 by
305 by 305 mm (.68" by 12" by 12").

3. The test should use a standard material (MIN-K) with a known thermal
conductivity next to the test panel.

4. The heating instrument should be capable of holding finite tempera-
ture control over the test area.

(Data from these Rohr tests have been added to the figure in the Appendix.
This data fall about 10 percent higher than that predicted from NASA
CP-2065).




STRUCTURAL TESTING

Flatwise Tension Tests - Test specimens were approximately 50 by 50 mm
(2" by 2") and consisted of full depth sandwich and individual layers.
These specimens were bonded with Hysol EA934 adhesive to aluminum load-
ing blocks. The blocks with the specimen were loaded into the test
fixture as shown in Figure 23. This fixture was Tocated in the instron
test machine. This sec-up has swivel joints at both ends to account
for misalignments of load. However this device must overcome friction
loads and these small loads can be very significant if they apply peel
loads to this sandwich configuration (see test results). Therefore for
future testing it is recommended that fixtures more sensitive to align-
ment be used.

The test results are summarized in Tables 2 and 3. The lower values in
the full depth sandwich (Table 3) are indicative of predominant LID bond
failures rather than node metal failures. However the three very low
values in the individual layer testing (specimens 16-2, 22-2, and 24-4)
are not indicative of weakness in the bonding. These specimens had
significant metal failures, and it is suspected that their premature
failure was caused by a peel load introduced by the loading fixtuve (see
above discussion). There was a range in the number of nodes per specimen,
however there did not appear to be any correlation between their number
and the failure stress.

Basic Face Sheet Tension Tests - The specimens are standard ASTM E8 size
with a 12.7 mm (.50") wide test area. The specimens were of three
different thicknesses: .038, .076 and 0.i0 mm (.0015", .003" and .004"),
and were tested in three physical conditions: a) as received from the
mill, b) after being run through the LID thermal cycle 1200K (1700°F)

for approximately 90 min., and c) sheets taken from actual bonded
sandwich panels. These tpecimens were tested at room temperature in

the Instron test machine and the following properties were determined:




yield and ultimate stress, percentage elongation, and modulus of elas-
ticity.

The test results are summarized on Table 4. As shown, the as received
strength properties are significantly higher than those for standard
annealed Ti-6A1-4V sheet. These increases are attributed to the rolling
operations these sheets received before being sz2nt to Rohr. The speci-
mens after the LID thermal cycle produced strength properties close to
annealed sheet values. The low elongation value in the 0.038 mm (.0015")
foil indicates some contamination during the thermal cycle. The .038 mm
(.0015") and .076 mm (.003") specimens from the LID bonded panels exhibi-
ted lower strength and very low elongation properties. This did not

occur in the 0.10 mn (.004") sheet. It is surmised that the .10 mm (.004")
sheet is not as sensitive to surface contamination from the furnace and to
the dif€usion bonding as the thinner sheets.

Beam Flexure Tests - The seven test specimens had the following approxi-
mate dimensions: 305 by 76 by 17 mm (12" by 3" by .65"). A1l seven
specimens were tested in the test setup shown in Figure 24. This setup

was designed to provide a temperature gradient across a specimen while
it is being subjected to a four point beam flexure test. As shown, the
hot side of the specimen was heated by quartz lamps whiie the other
side was cooled by shop air. The heat in the lamps may be regulated by
altering the input current and shop air flow is metered by a valve.
Ti-6A1-4V pads 12.7 mm (1/2" wide by .050" thick) were used to distri-
bute applied and reaction loads into the specimens. Two of the
specimers were tested at room temperature and did not require thermo-
ccuple instrumentation. Each of the other five specimens had eight
thermocouples installed.

40 room temperature specimens were loaded in 89.0 N (20 1b.) increments
with a return to zero load after each increment. The loads were applied
with a crosshead movement of .05 in/minute and the load was held for




30 sec. Deflection readings at the center of the specimen were taken at
each loading and unloading.

Four of the five remaining specimens were tested to failure in the same
manner as described above except a temperature gradient was imposed.

Two specimens had a 422-700K (300°-800°F) gradient and the other two had
a 422-811K (3C0°F-1000"F) gradient. These specimens were brought to
temperatures before the loads were applied. The seventh specimen was
brought to a temperature gradient of 422-811K (300°-1000°F) and then a
total load of 120.0 N (27 1bs.) was imposed and left for one hour. There
was a negligible anount of creep during the test.

The results are shown in Table 5. Note the very small temperature
gradients along the lengths of the specimens. The disbond failure mode

on the room temperature spec imens occurred only after very severe buckling
waves took place in the face sheet. Deflection readings jndicate that
permanent set and creep values were negligible.

Creep Tests - A total of eight specimens were tested for elevated
temperature creep. The specimens were 076 mm (.003 in,) foil which had
been diffusion bonded to corrugated core. After the core had been cut
away, the foil was cut into tensile specimens. The specimens were dead
weight loaded and a portable wrap around furnace supplied the tempera-
ture. Deflection was measured using a dial gage and a microscope.
Three of the eight specimens were tested at 811K (1000°F) and 68.95 MPa
(10,000 psi) for 100 hours without failure. The other five specimens
were tested at higher stress levels and the results are piotted on
Figure 25. Comparison of the data for LID bonded foil with published
rupture data for annealed sheet indicates about a 25 percent reduction
iy creep rupture due to the LID bonding process and loss of work
hardening imposed on the material by the rolling operation.




CONCLUSIONS

A design was completed which takes into consideration fabr
techniques,

ication

thermal properties, mechanical properties, and material
availabilaty,

An acceptable fabrication process was developed.

The design was verified through mechanical and theymal testing of

the materials and sandwich test specimens,
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Figure 4. Design, Two-Panel Array R
(Construction Details) 1
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Figure 23. Test Fixture for Flatwise Tension Tests
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Figure 24. Test Setup for Hot Beam Flexure Tests
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TABLE 3
FLATWISE TENSION TESTS
FULL DEPTH SANDWICH

SPECIMEN FAILURE W--'Y}A}[UEE*.---’Q LOCATION OF
NO. LOAD N, (LBS.) ISTRESS KPa (PSI) FAILURE
1 400 (90) 157 (22.7) Septum 1/Core 2
2 367 (82.5) 143 (20.8) Septum 1/Core 2
3 351 (79) 137 (19.9) Septum 2/Core 3
4 371 (83.5) 145  (21.0) Septum 2/Core 3
5 291  (65.5) 114 (16.5) Septum 2/Core 3
6 378 (85) 148  (21.5) Septum 1/Core 2
7 287 (64.5) 112 (16.3) Septum 1/Core 2
8 222 (50) 88 (12.7) Septum 1/Core 2
.28 | 267 (60) [..104 __(15.1) | Septum 1/Core 2
Avg. 326 (73.3) 185 (18.5) J |
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INTRODUCT ION

Thermal conductivity of a titanium foil sandwich panel supplied by Rohr
Industries was measured in air at four temperatures from ambient to 800F
on a guarded hot plate apparatus. Measurements were made by General
Dynamics Convair Divisions' Physical Properties Laboratory.

TEST SPECIMENS

- .. . ——— - -

The test specimens consisted cf two panels 8" x 8" x approximately .68".

They were composed of a multi-layer convoluted titanium foil core wiih
titanium foil face sheets. Edges were open,

TEST METHOD

Measurements were made on a guarded hot plate apparatus custom-built for
the measurements. The apparatus is shown schematically in Figure 1. It
consists of a pair of identical test panels with a thin guarded heater
sandwiched between, The outer face of each panel is in contact with
another heater assembly. Both faces of both panels and all four heaters
(center, guard and 2 cold-face) are instrumented with thermocouples for
temperature measurements. The entire assembly is lightly clamped together
and encased in several layers of glass fabric insulation.

Measurements are made by adjusting electrical power to all heaters to 1
establish the desired hot and cold face temperatures. Power to the guard
heater is adjusteu to establish the same temperature in the center and
quard areas of the hot face to prevent lateral heat flow.




When equilibrium has been reached, conductivity is calculated from the
center heater power, the center area, the specimen thickness and the
temperature difference between the hot and cold faces using:

K = .(.,‘.ﬂ <£./g.)- ......t. -
A . AT

A-4




TEST RESULTS

Conductivity values measured are shown in Table 1. They are reportedly
higher by approximately 50% than analytical values provided to the requester.
Excessive air flow through the specimen was suspected and points were
repeated at ambient and 750F with tighter edge insulation and with the

stack vertical instead of horizontal. As the date shows, there were no
effects significant enough to explain these differences.”

TABLE 1. TEST RESULTS

Mean T AT K
(F) (F).__|(BTU/HR-FT-F) | Comments

83.3 18.€ .035 Horizontal, loose fiber glass insulation
on edges

255.3 24.7 .067 Horizontal, loose fiber glass insulation

on edges

500.0 20.0 .100 Horizontal, loose fiber glass insulation
on edges

746.0 50.0 .128 Horizontal, loose fiber glass insulation
on edges

93.8 14.5 .039 Horizontal, tight dynaquartz insulation
on edges '

93.2 13.3 . 041 Vertical, tight dynaquartz insulation
on edges

733.5 32.0 .126 Horizontal, tight dynaquartz insulation
on edges

736.0 30.0 .133 Vertical, tight dynaquartz insulation
on edges

. ot b s o - . - e - .- - - -

— ———- e | A

- -

*liote: Subsequent to the tests by General Dynamics reported in this Appendix,
conductivity measurements were made by Rohr Industries on a 305 x 305
mm (12 x 12 inch) panel. Results from these additional tests have
been added to the figure in this Appendix. Also shown {is an analytical
curve calculated from HASA CP-2065.
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Mean T AT K
(F) (F) (BTU/HR-FT-F) Comments
83.3 18.6 .035 Horizontal, loose fiber glass insulation on edges
255.3 24.7 .067 Horizontal, loose fiber glass insulation on edges
500.0 20.0 .100 Horizontal, loose fiber glass insulation on edges
746.0 50.0 .128 Horizontal, loose fiber glass insulation on edges
93.8 14.5 .039 Horizontal, tight dynaquartz insulation on edges
93.2 13.3 .041 Vertical. tight dynaquartz insulation on edges
733.5 32.0 .126 Horizontal, tight dynaquartz insulation on edges
736.0 30.0 .133 Vertical, tight dynaquartz insulation on edges
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