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VISCOELASTIC ANALYSIS OF ADHESIVELY 

BONDED JOINTS* 

by 

F. Delale and F. Erdogan 

Lehigh University, Bethlehem, PA 18015 

Abstract 

In this paper an adhesively bonded lap joint is analyzed by 

assuming that the adherends are elastic and the adhesive is linearly 

viscoelastic. After formulating the general problem a specific example 

for two ident}cal adherends bonded through a three parameter visco

elastic solid adhesive is considered. The standard Laplace transform 

technique is used to solve the problem. The stress distrIbution in 

the adhesive layer is calculated for three different external loads 

namely, membrane loading, bending, and transverse shear loading. The 

results indicate that the peak value of the normal stress in the 

adhesive is not only consistently higher than the corresponding shear 

stress but also decays slower. 

(*}This work was supported by NASA-Langley under the Grant NGR 39-007-011 
and by NSF under the Grant ENG 78-09737. 
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1. Introduction 

In its simplest form an adhesively bonded structure consists of 

three, components of different mechanical properties, namely the adhe

sive and the two adherends. Because of the nonhomogeneous nature and 

of the geometrical complexity of the medium, even for the linearly 

elastic materials the exact analytical treatment of the problem regard

ing the stress analysis of the structure is, in general, hopelessly 

complicated. The existing analytical studies are, therefore, based 

on certain simplifying assumptions with regard to the modeling of the 

adhesive and the adherends. The adherends are usually modeled as an 

isotropic or orthotropic membrane (e.g., ['1]), plate (e.g., [2,'3]), or 

elastic continuum (e.g., [4,5]). The primary physical consideration, 

used in the selection of a particular model is generally the ratio of 

the thickness of the adherend to the lateral dimensions of bond region'. 

For example, for adherends with a very small relative thickness the 

bending stiffness may be neglected whereas if the thickness of the 

adherend is not small even the plate assumption may be erroneous. As 

for the adhesives, generally the thickness variation of the stresses 

is neglected and the adhesive layer is modeled as a linear shear or a 

tension-shear spring. 

In most applications of structural adhesives the operating temper

ature is such that the adhesive remains in its initial glassy stage 

through the entire loading period and hence it is not necessary to con-

sider the time-dependent behavior of the stress-strain relations in per

forming the stress analysis of the joint. However, in certain appli

cations, the temperature and the load duration may be such that the 

rheological behavior of the adhesive may no longer be negligible. In 

this paper the adhesively bdnded joint problem is considered by assum

ing that the adhesive is a linear viscoelastic material. 

2. Formulation of the Problem 

In formulating the adhesively bonded joint problems unless the 

thickness of the adherends is at least' two orders of magnitude smaller 

than the length characterizing the bond region the generalized plane 

stress or the membrane assumption does not seem to be very realistic. 
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On the other hand in an adhesive joint between relatively thin adherend~, 

even if it were possible to formulate the problem by assuming the adher

ends as elastic continua, the numerical analysis involve such severe 

~onvergence problems that the accuracy of the results may be highly 

que~tionable [4]. In such problems the plat~ assumption in modeling 

the adherends appears to be a fairly good compromise. Thus, in this 

paper the problem will be formulated under the following primary assump

tions: (a) the adherends are treated as linear elastic plates and the 

transverse shear effects are taken into account; and (b) the adhesive 

is considered as a viscOelastic ~olid in which the in-plate strain as 

well as out-of-plane strain and shear strain are assumed to be nonzero. 

The secondary assumptions under which the specific problem is formulated 

and solved simplify the analysis quite considerably but do not affect 

the character of the solution. These assumptions are: (a) the problem 

is one of plane strain, that is, the bonded joint is very ··wide ll and 

undergoes cylindrical bending; (b) the adherends have the same thick

ness and are made of the same material; and (c) the structure is a 

single lap joint. The elastic version of the problem neglecting the 

transverse shear effects in the adherends was considered in [2]. The 

solution of,again,the elastic problem for different adherends with a 

somewhat simpler adhesive model may be found in [3]*. 

The geometry of the problem under consideration is shown in Figure 

lea). From the equilibrium of the plate elements for the adherends 

and 2 the following differential equations may be obtained: 

(1 a-c) 

(2 a-c) 

where N Q M are respectively the membrane, transverse .shear, ix' ix' ix 
a·nd moment resultants, the index i == l,2 referring to the adherends 1 

(*) Needless to say, the problem has been very widely studied. Some 
references to further analytical work and to finite element type 
soluti.ons may be found in [3]. 
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and 2, hl , h2, and ho are the thicknesses of the adherends and the adhe

sive as shown, and a(x,t) and T(X,t} are the interface normal and shear 

stresses. In modeling the adhesive it is assumed that the stress com

ponents ay{x,y,t) = a(x,t) and TXy(X,y,t) = T(X,t) in the adhesive layer 

are independent of the y coordinate. 

Assuming cylindrical bending, €lz = 0, €2z = o. The stress resultant

displacement relations may then be expressed as 

aU l --= ax (3 a-c) 

(4 a-c) 

where l-v· l l2{l-v. 2 ) I I c· = -=--:-- 0 = --=--~,..-
I E.h. ' i E.h.3 I I I I 

5 B. = -6 lI·h~ , (i=1,2) I I I (5 a-c) 

E., 1I., 
I I 

v., (i=l,2) are the elastic constants, u.(x,t) and v.(x,t), I I . I 
(i=l,2) are x and y-components of the displacement vector and S. , (i=l,2) IX 
is the rotation of the normal to the midplane of the adherends. 

It may be seen that as stated the problem has 14 unknown functions, 

namely, a, T, u., v., S. , N. , Q. , M. , (i=l ,2). Equations (1-4) I I IX IX IX IX 
provide 12 relations. The remaining two relations necessary to complete 

the formulation of the problem are obtained from the continuity condi-

tions for the displacements in the bond region. To do this the mechanics 

of the adhesive layer, specifically its constitutive relations need 

to be considered. 

Referring to Figure Ib the average strains in the adhesive may be 

expressed as 

€y = (vI - v2)/ho ' 

aU l hl as lx aU2 h2 as2x 
EX = ( ax - T ax + ax + Tax) /2 (6 a-c) 
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Noting that all the remaining strain components in the adhesive are 

zero and defining 

e = (EX + Ey)/3, 

the strain tensor for the adhesive may be decomposed as follows: 

y /2 xy 

o 

o 

o = 
o 

e o 

o e 

o o 

o 

o 

e 
[

E -e 

+ yX /2 
xy 

o 

y /2 xy 

E -e 
y 

o 

Similarly, noting that ~y = a, Txy = T, the stress tensor for the 

adhesive may be decomposed as 

o s o 

T a 0 = 0 s 

o o o o 

o a -s x 

o + T 

s o 

T 

a-s 

o 

o 

o 
a -s z 

(7) 

:] (8) 

-e 

where, the hydrostatic component of the stress tensor s is defined by: 

( 1 0) 

The constitutive equations of linear isotropic viscoelastic mater

ials may be expressed in terms of either hereditary integrals by using 

creep compliance or relaxation functions, or differential operators* [6-8J. 

In this paper the latter approach is adopted and it is assumed that 

Pl(s .. ) = Ql(e .. ), (i,j) = 1,2,3, 
IJ IJ 

(11) 

(12) 

(*) The two formulations are, of course, related through Laplace trans
forms. For example, the creep compliance J(t) is the inverse Lap
lace transform of p(s)/sQ(s) where P and Q are the related differ
ential operators operating on a and E, respectively and s js the 
transform variable • 
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where' s •. and e •. (i ,j) = 1,2,3, are the deviatoric components of 
IJ IJ 

stress and strain tensors, respectively, as given by (8) and (9), s 

and e' aredefinedby(lO) and (7), and PI' Ql' P2, and Q2 are differential 

operators of the form ~ ak(t) ak/atk, the coefficients ak being generally 
o 

functions of temperature. More explicitly, from (7)-(12) it may be 

seen that 

PI (2ox - 0 - oz) = Ql(2€x - Ey) , 

Pl (20 - Ox - oz) = Ql(2Ey - EX) , 

PI (2az - Ox - a) = - Ql(E~ + Ey} , 

Pl(~) = ~ Ql(Yxy) , 

P2(ox + ° + oz) = Q2(EX + Ey) • 

(14) 

(15) 

(16) 

(17) 

Since ~ s •. = 0 and ~ e .• = 0, equations (13-15) are not' 1 inearly inde--
1 II 1 II 

pendent. Equation (14) may be obtained by adding (13) and (15) and 

will, therefore, be ignored in the remainder of the analysis. 

Practical experience indicates that under a hydrostatic stress 

state most viscoelastic materials behave elastically. Hence, it may 

be assumed that 

(18) 

or 

o +0 + ° = 3K(E + E ) 
X Z x y 

(9) 

where K is the bulk modulus of the adhesive. Eliminating ax and Oz from 

(13), (15) and (19) and using (6 a-c), the constitutive equations may 

now be written as 

1 aUl hI as lx 1 aU2 h2 as2x v l -v2 
3P l{K['2Tx-Tax-+'2Tx+Tax-"+ ho ]-o} 

1 aU l hI as lx 1 aU2 h2 as2x 2 
= Q1 {I ax - Tax + I ax +'Tax .. ho (v~-v2)} 

1 hI h2 
PI (T) = '2 Ql{(u l - T SIx - u2 - T S2) lho} 

-6-
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Equations (20) and (21) with (1-4) provide the system of 14 relations 

necessary to solve for the unknown functions cr, L, uo., vo., S N ix' ix' 
Qix and Mix' (i=1,2). 

3. Example 

As an example we consider a single lap joint which consists of two 

identical adherends bonded through an adhesive layer which may be repre

sented by a three-parameter viscoelastic solid (Figure lc). For the 

adherends we have 
1-,,2 

=C=EfY 

For the adhesive, referring to Figure lc it may be shown that 

where 

'(22) 

(23 a,b) 

(24) 

For a nondecreasing strain under sustained load the following inequality 

must be satisfied: 

<.25) 

Generally, the coefficients a l , bo and bl are functions of temperature, 

hence implicitly functions of time, if the temperature does not remain 

reasonably constant during the period of loading. In the example con

sidered, it is assumed that these coefficients are constant. 

Through a relatively straightforward elimination, the gover~ng; 
equations (1-4), (20) and (21) can be reduced to a pa~r of differen~ial . , . 
equations in the unknown functions cr(x,t) and L{x,t) 0, :.B~ carrying out . ' .. 
this elimination, using (22) and the operators defined 'b,y C!3) we obaain 

.' . ., 
• • . " 
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a4a aSa h 2 ala 
3ai4 + 3a l ax~at + [ ~(3K~bo) - h

o
B(3K+2bo)] ~ 

h 2 a3a 
+ [~(3Kal-bl) - hlB(3 Ka l + 2b l )] ax2at 

o 

(27) 

Assuming that no external transverse shear load is applied to the composite 

plate in -l < x < l and noting that T(X,t) is the average shear stress act

ing on the adhesive, referring to Figure la the equilibrium of transverse 

shear resultants gives 

(28) 

Equation (28) has been used in deriving (26). 

The differential equations (26) and (27) are uncoupled and may easily 

be solved by first reducing them to ordinary differential equations through 

the use of Laplace transforms defined by 

F(s) = I_ f(t)e-st dt , 

o 

f(t) 

c+iCXI 

= __ 1 __ . I F(s)est ds 
21f1 

c-iCXI 

(30) 

where F(s) is called the Laplace transform of f(t) and the constant c is 

selected in such a way that all the singularities of F(s) lie to the ieft 

of the line of integration Re(s) = c. Assuming that the bonded joint is 

initially stress-free, the functions a(x,t) and T(X,t) are zero for t<O 

and from (26) and (27), we find 

-8-



(31 ) 

where F(x,s) and G(x,s) are the Laplace transforms of T(X,t) and a(x,t), 

respectively and 

hDQ (b + b1's) o 0 

Y2 = 1 {2 (3K + 2b) h D (3K b) 6 ( 1 +a s) hB . 0 - 2" - 0 
1 0 

+ s[,,2B (3Ka 1 + 2b 1) - ~ D(3Ka 1 - bl )]} , 
o 

(33) 

(34) 

. (3S) 

(36) 

In the example it is assumed that the external loads are given by (see 

Figure la) 

No(t) = NoH(t), MI(t) = MIH(t), M2(t) = M2H(t), Qo(t) = QoH(t) 

(37 a-d) 

where H(t) is the Heaviside function. For example, the nonhomogeneous term 

a which appears in (31) and which is given by (34) is obtained by using 

(37d) . 

The general solution of (31) and (32) may be written as 

F(x,s) = Al sinh(ax) + AZ cosh(ax) - ~ 

G(x,s) = A3 sinh(<P 1x) + A4 cosh(<P lx) + AS sinh(<P2x) 

+ A6 cosh(<P2x) 

-9-
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where 
tit 1 

~ - [ 2 + (4 4)~JZ ~ -_ [y2 - (y4 - (4)~J~ , ~l - y y - w , ~2 (40) 

and the,unknown functions Al(s)" A6(s) are determined from the boun-

dary conditions. 

The problem is solved under three separate loading conditions shown 

in Figure 2. 

(a) Membrane loading (Figure 2a). 

For this case the boundary conditions for plates 1 and 2 are given 

as follows: 

. C41 a-c) 

h+h 
Nlx(:-t,t) = NoH(t), Mlx(-t,t) = -No T Het), QlxC-t,t) = 0, 

(42 a-c) 

C43 a-c} 

(44 a-c) 

Considering the symmetry of the problem in geometry and materials, after 

some lengthy manipulations it can be shown that (41-44) are equivalent to 

the following conditions: 

t 
Tex,t) = T(-x,t), J T(X,t) dx = - NoH(t) , 

-t 
(45 a,b) 

t 
a(x,t) = a(-x,t), J a(x,t) dx = a , 

-t 
(46 a,b) 

(47) 

-10-
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In this problem since Q = 0, S = 0 and substituting from (38) and o 
(39) into (45-47) we obtain 

Al(s) = 0 A2(s) 
ex No 

= - sinh (exl) 2s 

A3 (s) = 0 A4 (s) 
(h+ho)Now4sinh(~2i) 

= - 4s~2l1a (s) 

A
5

(s) = 0 A6(S) = (h+ho)Now4sinh(~]i) 
4s~llla (s) 

(48) 

where 

(b) Bending (Figure 2b) 

For this problem the boundary conditions are 

(50 a-c) 

(51 a-c) 

(52 a-c) 

(53 a-c) 

Again, considering the symmetry of the problem conditions (50-53) may be 

shown to be equivalent to the following: 

-r(x,t) = --r(-x,t) , 

cr(x,t) = -cr(-x,t) , 

rtcr(x,t)x dx = MoH(t) 

-.t 

-11-
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( ) hD hD a 
3K-bo T cr(l,t) + (3Ka l -b l ) Tat cr(l,t) 

- ~o(3K+2bo) [~ cr(l,t) + D MoH(t)] 

1 2 a . 
- ~o (3Kal+2bl) [8 at cr(l,t) + 0 Mo oCt)] 

a2 a3 
+ 3 axr cr(l,t) + 3a l ax 2at cr(l,t) = o. (59) 

In this problem, too, a = 0, and substituting from (.38) and (39) into 

(54-59) we obtain 

, A2 (s) = a , 

A
3

(s} = _ w4Mc COSh(t~l) 
2 5 <1>2 Llb 5) , 

A4(s) = a 

A5(s) = w4Mc COSh(p~l} 
2 5 <l>lLlb(S 

, A6 (5) = a 

(60) 

(c) Transverse Shear (Figure 2c) 

For the loading given in Figure 2c the boundary conditions may be 

expressed as follows: 

N2x (-l,t) = 0, M2x (-l,t) = 0, Q2x(-l,t) = o. 

These conditions are equivalent to 

T(X,t) = T(-X,t), IlT(X,t} dx= 0, 

-l 

-12-
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(63 a-c) 

(64 a-c) 

(65 a ,b) 



.e. 
cr(x,t) = cr(-x,t), I cr(x,t)dx = - ~H(t), (66 a,b) 

-.e. 

+DQolH(t)] - *o(3Kal+2bl)[~ '}t cr(.e.,t) + DQo.e.o(t)] 

a2 a3 
+ 3 axz-cr(.e.,t) + 3 a l ax2 at cr(.e.,t) = 0. (67) 

In this case a is given by (34) and. the functions Al (s), ••• ,A6(s) are 

obtained as follows: 

'A l (s) = 0, A2(s) = a.e. 
a sinh(a:t) , 

A3(S) = 0, A4(s) = ~[w2~Jcosh(~2.e.) - w4.e.sinh(~?.e.)] 
2 s ~2 £lceS) 

AS (s) = 0, A6(s) = - ~[w2~2cosh (~J.e.) - w4 .e. s inh (~J.e.)J 
2 s 1> 1 £l (s) c 

4. Solution and Results 

After determining the functions Ai(s), (i=1, •.• ,6) the unknown func

tions T(X,t) and cr(x,t) may be obtained by substituting from (38} and 

(39) into the inversion integral (30). In each case the constant c giving 

the line of integration is determined by analyzing the singular behavior 

of the functions F(x,s) and G(x,s) in the complex s plane. Because of 

the existence of a number of branch points in the complex plane the exact 

inversion of F and G becomes very complicated and, in light of the fact 

that the inversion integrals can be evaluated in a straightforward manner 

numerically, does not seem to be worth the effort. Thus, making the 

following change in variable 

s = c + iy, -m < y < m 

-13-



the functions. and a may be expressed as 

CXI 
1 I ( .) t (c+ i y) .(x,t) = 2~ F x,c+IY e dy , (]O) 

(71) 

It can be shown that the imaginary parts of the integrands in (]O) and (71) 

are odd functions in y and th~refore the integrals give real results. 

Examining the functions F and G in" the complex plane it is found 

that s=O is a simple pole and all the remaining singularities lie in the 

left hand plane. Hence c is a positive constant. To evaluate the inte

grals in (70) and (71) first they are expressed in (O,CXI) as follows: 

fCXIf(Y)d Y = fCXI[f(y) + f(-y)]dy. (72) 

-CXI 0 

Even though there are routine techniques for evaluating infinite integrals, 

it is generally a good practice to obtain the asymptotic behavior of the 

integrands for large values of the argument before selecting a particular 

technique. In the problem under consideration the integrands do not decay 

exponentially. Consequently, the numerical integration requi~es more 

care. One way to insure that no significant accuracy is lost due to the 

slow decay of integrands is to evaluate the integral in closed form for 

large values of the argument. For example, in the lap joint under mem

brane loading No (Figure 2a), after analyzing the asymptotic behavior of 

the function F, the shear stress. may be expressed as 

where 

.(x,t) = i~ J.A[F(X,c+iy)et(C+i Y) + F(x,c-iy)et(c-iY)]dY 
o 

No ct 
- - Im/a e 

2~ 1 

cos h (x~) fCXI 
sinh (.elriilal ) 

A 

-14-
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(74) 



and A is a "large" number. The second integral is known in closed form 

and the first is evaluated numerically. The proper selection of A 
requires some trial calculations. In this problem A selected in 20 to 

30.range gives good results. It may also be pointed out that the numer

ical calculations show the results to be insensitive to the choice of 

the constant c. 

In the numerical example considered it is assumed that the adherends 

are aluminum alloy plates with the following elastic constants and dimen

sions (Figure 2) 

E = 107 psi = 6.895 x 1010'N/m2 , " = 0.3 

h = 0.09 in -2 
= 0.229 x 10 ·m , l = 0.5 in -2 = 1.27 x 10m. 

In the t"hree parameter viscoelastic solid adopted for the adhesive the 

coefficients which appear in the operators Pl and Ql (see eqs. 23a,b) 

are related to the constants shown in Figure lc by (24). To relate these 

constants to somewhat more conventional material properties consider the 

response of the model given in Figure lc to an input '( = '(oH(t) which is 

found to be 

1 '(0 -tit -tit bl A2 
;r;"V (t) = - [t (l-e 0) + a e 0], t = - = - , 
t. . b 1 0 lobo k2 

(75) 

where to is called the retardation time. Now defining 

'( 0 '(0 

II 0 =:yrcfF) , II <XI = yr;r (76) 

from (75) it is seen that 

(77) 

Thus, the moduli II and II and the retardation time t may be selected o <XI 0 

as the three parameters representing the viscoelastic solid. 

For the particular epoxy used as the adhesive the properties at 

teO are assumed to be 

-15-



-4 ho = 0.004 in. = 1.016 x 10 

E = 5.797 x 105 psi = 39.968 x 108 N/m2· 
o 

~o = 2.225 x 105 psi = 15.341 x 108 N/m2 

The bulk modulus K is assumed to be constant and may, therefore, be cal

culated in terms of Eo and the shear modulus ~o as 

Eo~o 
K-~~~~ 

- 30~o -Eo) 

In the example it is also assumed that 

~ = ~ /3 , t = 4 hrs. 
co 0 0 

(78) 

If it is assumed that the adhesive layer is linearly elastichavin~ 

the constants Ea and va' with the adhesive model used in this paper the 

solution may be obtained in a straightforward manner. For example, in the 

case of membrane loading described by (41-44) the adhesive stresses are 

found to be 

Te(X) = -
NoCLe cosh (CLeX) 

2 sinh (CLl.) 

B4 = - €14No(h+ho)sinh(m2l)/(4m26) , 

B6 = €14No (h+ho)sinh(m1l)/(4m16) , 

6 = m2cosh(mll)sinh(m2l) - mlsinh(mll)cosh(m2l) 

20Ea(1-va' 
€ 4 = .,...---r:;---::-

1 ho(1-va-2va
2 ) 

-16-
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(80) 

(81) 
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of 
On the other hand, in the case~viscoelastic adhesive the elastic 

response for t=O+ and t=oo may also be determined by using the limit theorems 

for the inversion of Laplace transforms. For example, again for the case 

of membrane loading, from (38) and (48) the shear stress in the adhesive 

may be obtained as 

and 

'l"(x,+O) 

a 2 
o 

= -
N a cosh (a x) o 0 0 

2 sinh (a l) o 

N a cosh(a x) o 00 00 

'l"(x,m) = - 2sinh(a l) , 
00 

(83) 

(84) 

(85) 

(86) 

Note that at t=+O II =E /2(1+v ) = II and E = E , and from (77), (80), a a a 0 a 0 

and (84) it follows that ao = ae • Hence, the initial response given by 

(83) is the expected elastic solution given by (79). Similarly, at t=oo 

II =ll , and (77), (80) and (86) shows that a = a , and hence 'l"(x,m) = a m me· 
'l"e(x). Also, it can be shown that a(x,oo) corresponds to the elastic solu-

tion obtained by using II =ll and the bulk modulus of the adhesive which a 00 

is assumed to be a time-independent constant. 

For the three types of loading shown in Figure 2 the calculated results 

for 'l"(x,t) and a(x,t) are shown in Tables 1-6. To visualize the variation 

of the stresses in time and along bond region some sample results are also 

given in Figures 3-5. Figure 3 and 4 show the distribution of shear and 

tensile stresses in the bond region in a single lap joint under membrane 

loading for some fixed values of time. As expected, there is a certain 

redistribution of stresses with increasing time. This may also be seen in 

Figure 5 where the variation of the maximum values of 'l" and a is given. 

From Figures 3-5 and Tables 1-6 it may be observed that the peak values of 

the tensile stress a in the adhesive are not only higher than the correspond

ing shear values but also decay slower. The values, 'l" and a given in Tables 

1 and 2 for t=O and t=m are obtained from the elastic solutions (J9) and 

(81) by using the bulk modulus K which is assumed to be independent of time 

and the corresponding llo and llm· 
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Figure 1. Geometry of the bonded joint and the viscoelastic adhesive model. 
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Figure 2. The loading conditions. 
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Figure 3. The shear stres~ Txy = T(X,t) in" the adhesfve layer. 
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Figure 4. The normal stress cry = cr(x,t) in the adhesive layer. 
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