

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19800018615 2020-03-21T17:19:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42864442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA TEDHNICAL HWRADD H
	 NASA Ri4-76243

HIGH LEVEL IANGLAGE FOR MEASUREMENT CObOM CONTROL BASED ON THE CONPUrER E-1001

B. V. zubkov

Translation of "Yazyk vysokogo urovnya dlya upravleniya izmeritel'nym
kcnpleksan na baze EVM E-10OI", Academy of Sciences USSR, Institute
of Space Research, Moscow, Report Pr-404, pp 1-32,197 9

(NASA-IM-76243) HIGH LEVEL LANGUAGE FOR	 N80-27114
MEASUREMENT COMPLEX CCNIRCI PASEL ON '1HE
COMPUTER E-100I (National Aeronautics and
Space Administration) 34 p HC A03/MF A01	 Unclas

CSCL 098 G3/61 27965

0	 '

R^C4^ FP \fit
BPS p^

^p.P^^SS f c

NATIONAL AEfONAUTICS ADD SPACE ADMINISTRATION
WASHINGTON D.0 .	 JUNE 1980

A description is given of a high level language designed to control thor
process of conducting an experiment using the canputer "Elektronika-100I." P-,.3,-
gram examples are given to control the measuring and actuating devices. The
procedure of including these-programs in the suggested high level language is
described.

1

HIGH LEVEL LANGUAGE FOR MEASUR30C COMM CONTWL BASED ON THE CCMn!ER E-100I

By B. V. Zubkov

Introduction	 /3*

Currently there is a fairly large fleet of small computers of the type

"Elektronik-100," and Saratov. A considerable part of this fleet is used in scien-

tific research to control the process of conducting an experiment. It is well

krxywn that the efficient use of a computer is determined to a very great degree by

the program support. Despite this, clearly insufficient attention is now being

focused on the program support of small computers.

It would be much easier for the experimenter who desires to automate his exper-

iments if he could write the controlling programs in a natural language, for exam-

ple, in Russian. Unfortunately as yet there is no computer that could interpret

it sufficiently effectively. On the other hand, caYmunication with a machine in

a language that is understandable to it requires great efforts on the part of man.

The high level programming languages (HLPL) were developed as a compromise.

These languages (FORTRAN, BASIC, FOCAL, and so forth) permit the programmer to

concentrate attention precisely on program dng, i.e., on the compilation of an

*Numbers in margin indicate pagination in original foreign text.

2

algorithm, and not on a detailed study of the system of commands employed by the

computer. However, the mentioned languages were mainly developed to support mathe-

matical calculation, and are not completely convenient for the prograamtiing of the /4

control of an experiment in small systems based on domestic small computers of the

aforementioned type.

In this work we will be concerned with the HLPL EXPRO-77 (EXPERIMENT PROGRAM-

MIU3) developed as a result of a modification of the interpreter "FOCAL-69", and

with its possible uses on the small computer "E3.ektronika-100I" [1]. During the

writing of this work it was assumed that the reader is familiar with programming

in the machine language of the well computer of the indicated type. These rules

are stated fairly completely in [2] and [3) .

The goal of the work is to show in specific examples the inclusion in the sug-

gested HLPL of programs to control measuring and actuating devices. Attention should

be drawn to the fact, that the use of program interfaces in many cases will permit

changes to be avoided in the previously employed and well checked-out programs.

This will considerably facilitate the translation into use of the suggested HLPL of

the already active measuring complexes. For the experimenter who is automating

measurements for the first time, its use will be especially valuable, since out-

lays of time are considerably reduced for writing and checking out the programs,

i.e., it will save him many months for more interesting work.

L. Certain REequirements for the Language Designed to Program the Process of
Conducting an FA^iment

What interferes with the use of available HLPL for programni.ng an experiment?

3

,,

means that they include as standard many procedures that are often encountered in

calculations. For operations of information input-output a comparatively limited

set of devices is used both in type and in number. These devices were created in /5

the space of a long time. They have been well checked out. In the majority of

cases their control has been placed on the equipment of the devices themselves,

and does not require ocmplex control programs.

In an experiment one has to face the fact that diversity and the number of

employed devices for information input and output is considerably wider. Often

the experimenter does not have the necessary equipment, and the lacking devices

are created under laboratory conditions based on universal interfaces. It is clear,

that under such conditions control of these devices is mainly placed on the program-

ming resources. As a result, the HLPL must include a large number of diverse and

fairly cumbersome programs to control these devices. Besides these differences

in the requirements for the WL, we will cover certain shortcomings that follow

from the features of the HLPL of varying classes.

At present a generally accepted form of writing instructions and cammands to

control the measuring and actuating devices has not yet been formed, not to mention

their inclusion in the HLPL. Further, the use of compilers (FORTRAN, PL/1 and

others) requires an excessively large volume of the memory in order store simul-

taneously the compiler itself, the original program and the object (compiled)

program. otherwise, the process of checking out the program and even making the

slightest changes in it is drastically complicated.

The problem-oriented languages (BASIC, FOCAL and others), for their part oper-

ate very slowly, which restricts the rate of information collection to several tens

4

of results per second. The restriction in capacity is also significant; thus,

no more than 100 numbers can be contained in the memory of the small computer E-100I

(with the use of the HLPL FOCAIr69-8K), including the results of measurements,

constants and intermediate results. Publication [4] discusses the problem of set- /6

ting up a special HLPL to control the equipment. Here we will only state that the

development of such a language in a nonspecialized organization is hardly justified

today due to the great complexity of this task; in particular, if one considers that

the extant languages themselves are far fran exhausted.

Currently several versions of the languages BASIC and FOCAL are known [5], [6],

that make it possible to organize experiment control. However, nothing is said of

the elimination of the shortcomings named above. This, naturally, suggests to mind,

that they have not been overcame. Here one should again note that we are concerned

with the small computer with word length of 12 digits that is not equipped with a

disc memory.

The experimental operation of a small control-arnputer complex (CCC) that was

set up in our laboratory [7], made it possible to formulate a number of requirements

for the HLPL used for the small cxxmputer E-100I. We will name the chief of than.

1. The HLPL mast be (in the case of the absence of a disc memory) the inter-

preter.

2. The HLPL must permit inclusion in it of programs to fulfill a large number

of new functions (NF) and commands, written by the user himself (or from the library

of standard programs) on an assenbler or procedure-oriented language. The procedure

of including the NF and commands must be standard.

3. The interpreter of the HLPL must permit the possible use of its large

program modules in programs of NF.

5

4. The quantity of numbers simultaneously stored in the small computer

memory must be the greatest possible. In the limit case it is desirable to place

these numbers in the entire free memory of a small computer.

5. It is necessary to be able to enter files of measurement results in the

memory accessible for IWL, by-passing the HLPL interpreter from the program to

fulfill Imo'.

2. Main Features of the Suggested Language	 /7

Zb realize the indicated requirements the only possible path was selected,

modification of the available language FOCAL. Publication [5] cites the compara-

tive characteristics of the languages BASIC and FOCAL. Among the advantages of

FOCAL the following are indicated: tae possibility of more convenient modification

of the program and the possibility of using abbrevis ticns in writing the program.

One should add here the more convenient form of entering numbers in the floating

point block (FPB) .

Thus, in the creation of EXPRO-77 the interpreter FOCAL-69 in the version 8K

with ten-digit accuracy was selected as the base. In BXPRO-77 the majority of the

aforementioned requirements were successfully satisfied. We will name features.

1. The created interpreter mainly made it possible to preserve the grammar

of the FOCAL-69 language and the possibility of simple modification of the program.

2. It permits the inclusion of 77 NF, whose object programs are written on

the assembler or procedure-oriented language.

3. A standard procedure has been developed for including programms for ful-

fillment of IF, that can be available in any free fields of the memory.

4. The NF programs, if necessary, can use the FPB of the interpreter EXPRO--

77 directly from its memory field.

6

,__.,^,.nw°^.^+w.-^.^	
Allq Ml..le I111M^11.IwRl^.l 	 M^iY€	 e

5. The interpreter makes it possible to simultaneously store in the memory

3,150 numbers in the "floating point" format.

6. Of the programs of NF fulfillment simple entry is permitted of files of

experimental information in the memory, that is carman to the HLPL, by bypassing

the HLPL interpreter. This permits collection (output) of information in the

necessary canponents of the controlling program with a velocity that is restricted

only by the small camputer characteristics, but not by the HLPL interpreter.

7. The pattern of "interruption" is not used.

In the process of modifying the base language interpreter it is desirable not

to make unsubstantiated changes or restrictions, i.e., to preserve if possible, the

semantics and syntax of the language, that were verified and sharpened over a long /E

time. The changes made in FOCAL only concern the forms of entering NF, the assign-

ments for the format of number output into print, and the designations of the vari-

ables.

The number of variables was expanded by means of strict distribution of the

memory. Now they are entered into registers and randan designation is not permitted.

Here, the memory is used more econanically, since there is no longer any need for

storing the variable identifier. Such regulations have been preserved for the use

of variables in FOCAL, that roughly cover 90 variables. One should not confuse

the term introduced here "register" with the term that designates the apparatus

register.

The newly introduced variables (registers) are designated R(N), where N can

have an integral part from 0 to 3,071. Designation by the variables R0, R1(N),

BR(N) and so forth, will be interpreted as the designation accepted in FOCAL; the

number of such variables does not -.xceed 90. The introduced registers are designated

7

N.

by caw letter R, after which the index immediately follows in parentheses.

It was decided to change the arranganeat of the printing format "floating

point," since arbitrary reduction in the number of printable signs represents

certain conveniences. Thus, in the original, the E-format was assigned by the

operater T%, in our version it is assigned by the operater T%N, %; here N indi-

cates the number of printable digits after the period. For example, in the case

of fulfilling the operater T%2, %, 1 the following will be printed: _ . 10E+01.

The potential user, of course is interested in how to include in the suggested

HLPL the program for fulfillment of his NF; we will examine below, in examples, the

realization of inclusion in the HLPL of different functions.

To enter the NF the following form is used: FR(A, B, ...H); here FR is the

name of all the NF; the contents in the parentheses are the function descriptors.

The number of these descriptors umt not exceed eight. The descriptors are separ-

ated by commas. The first descriptor is interpreted as the number of the function

(conventional address of the device that fulfills the function). The remaining

descriptors are interpreted as the number of the register R(B), that contains the

parameter or as the parameter directly. There are no restrictions here. Tt:e

selection of the method for using the function descriptors is presented to the

programmer who compiles the program for fulfillment of the NF.

we recall, that the FOCAL grammar, as a result of fulfilling the function,

includes not only the fulfillment of operations (calculated or controlling), but

also the numerical results. This number needs: a) to be substituted into the

wthematical or logical formula, b) to be assigned to a variable (sent to the

register), c) to be open.

8

q
It

This number has a real meaning in the fulfillment of functions of collecting

information of calculation. If the controlling functions for output of information

are fulfilled, whose primary result is the triggering of the external device, this

numerical result reflects the response of the actuating device. If a response is

not provided for by the instrument designed, then the numerical result can be an

arbitrary number. This arbitrary number can simply be sent to one of the registers,

and there it is "rubbed out" by another number. In the examples below the utility

of this number will be shown.

3. Brief Description of Certain New Functions and Example of Their use

We will now describe the main characteristics of certain NF included in the

HLPL. FR (1, B) is the function for controlling key 1 (device with conventional

address 1). B designates the number of the register R(B) that contains the argu-

ment. The positive side of the argument causes the key to be closed, the negative--

to be opened, while the equality of the argument to zero--printing of an error. 	 1'1G

The numerical value of the function is equated to the contents of the register R(B)

after fulfillment of the controlling operations of the function. FR (2, B) is the

control function of key 2. The rest is unchanged. FR (3, B) is the function to

delay fulfillment of the program. The clock has the conventional address 3. R(B)

contains the time in seconds. The numerical value of the function is equated to

the contents of the register R(B).

Now, by using the described functions, we will write a program for switching

the valve (the valve controls key 1) 20 times in 1.5 s.

OLIO SET R(I) =1.5;SET R(2) =1;SET R(3)=0

0I.20 FOR N= 1,20;SET R(2) =-FR(1 9 2) ;SET R(3)=R(3)+FR(3,1)

0I.30 T %3.01,R(3),1;Q

9

hhen line 01.30 is fulfilled, the full time of waiting between valve switdsing

will be printed. If in line 01.10 the assignments are fulfilled in addition: S 9=1;

S 0-2; then line 01.20 can be rewritten in another form, which does not result in

dames in the prag;wn operation:

OT.20 F N=ls20;S R(C) =-FR(1sC);S R(3)=-,R(3)+FR(3,B)

In the cited program the numerical value of the functions is efficiently used.

The numerical value FR (3, B) is used to compute the full delay time of fulfillment

of the program. The numerical value of the function FR (1, 2) is used as follows.

With the first passage of the line 01.20 the argument (contents of register R (2))

is positive at the moment the function FR (1, 2) is fulfilled. •tlnis causes engage-

ment of the valve. As a result of adoption the sign of the number in the register

R(2) becomes negative. With the second pass the negative argument causes disengage-

ment of the valve, and so forth.	 /11

L. Language Versions of E}PRO-77

We will dwell on the distribution: of the operational memory of the small can-

puter E-100I between individual components of the interpreter FAR?-77. There are

three versions: 12K, 16K and 20K. Here the numbers indicate the minimum accessible

memory volume that is required only for placement of the interpreter and the vari-

ables. The interpreter of the IF and the programs for fulfillment of the IF are not

arranged in the indicated fields, but require an additional memory. The memory

field from 0 to 7 is distributed for different versions as follows.

F .

10

TAME.

Omiponents of Interpreter EGW-77 12K 20K

f

Main interpreter of HLPL
Discharge of interpreter HLPL, 90
variables buffer registers

Programs in MM
Registers (0)- (1023)
Registers (1024)-(2047)
Registers (2048)-(3071)
NF interpreter
NF programs

0	 I	 0	 1	 0

0 0 0
1 1 4
2 2 2
- 3 3
- - 1
3 5 5

3-7 4-7 5-7

5. Procedure for Inclusion of the NF Programs

7b write programs for fulfillment of the NF it is necessary to observe cer-

tain rules. Before beginning the NF fulfillment, i.e., before transmitting control

to the program fulfilling it, the descriptors of this function entered in the paren-

theses are carrputed and entered (1 per register) in the following order: 	 /12

0017--number of NF descriptors,

0020--first descriptor,

0021--second descriptor,

0027--eighth descriptor.

The descriptor that is entered into the corresponding register is the whole part

of the descriptor indicated in parentheses in the NF. The descriptor must be

positive and not exceed the value 4095. One should recall, that in parentheses

the descriptor is entered in a decimal representation, and in the register,

naturally, in eight representations.

The beginning address of the program to fulfill the NF is placed in one of

the registers of the address table for the NF program. The number of the register

11

must correspond to the number of the NF. The address table begins with register

4210 !1nd ends with register 0324, i.e., the maxbm number of NF equals 77. For

example, the address for the beginning of the programs to fulfill the function FR

(1, B) is placed in register 0211, the address for the beginning of the program to

fulfill the function FR (6, ...) --in register 0220 and so forth. The output from

the program for fulfillment of the 14F is implenented by the unconditional transfer

of control indirectly to the 0176 register. All the indicated register numbers

correspond to that field of the memory in which the NF interpreter is located.

The program for NF fulfillment, as an rule, is located on a separate punched

tape. This punched tape must contain:

1. directly the program for NF fulfillment;

2. the constants necessary for operation;

3. the program mUress in the table of NF addresses.

6. Use of the FlrAtiN Point Block in Programs of New Functions

The floating point block (FPB) of the base interpreter has been considerably

modified. Its main purpose eonsistei of creating that FPB that would permit dir- 	 /13

ect turning to it from the NF programs located in any memory field of the small

computer. The need to create such an FPB is exceptionally large size (the FPB

occupies roughly 4,000 registers in the octuple presentation). It would rot be

wise to introduce a second such block into the free memory field for its use in

the NF programs.

The system of commands for the FPB has been considerably expanded, which will

permit a reduction in the volume of NF program, and will facilitate the use of

the FPB in then. The FPB has been altered such that it makes it possible to work

12

only with the contents of the registers R W , as well as several buffer registers.

The buffer registers are designed to store intermediate cargutation results; it

is impossible to turn to it from the HLPL. The FPB caRnands can use only indirect

addressing. The absolute addresses of the registers R M are formed by the ser-

vice subprogr:-i (according to the number of register), and are generally entered

on the zero and current pages of the memory. The absolute addresses of the func-

tion registers and certain important constants are entered on the zero page of the

current memory field. One should stress once again, that the FPB operates only

with operands located in the memory fields of the small oarqut:er "Elekt mnika-1001"

from zero to three.

If tiie constants necessary for calculation are located on the cuzoait memory

field from 4 to 7, then they should be prelimi narily rewritten into buffer regis-

ters, by using the service subprograan.

We will became acquainted with the purpose of the FPB crxrtna-ds in an example.

Ass,me that it is necessary to process the measured amount according to the formula

(((A1-A2+A3)*A4)/A5)AA6.

In this formula Al, A2 and so forth are the operand addresses; (Al), (A2) and so

forth are the contents of the addresses, i.e., the operands themselves; (A5) is

the measured amount entered into A5 previously without normalization.	 /14

The canputation program will look like

62u2 between 6202 and 4407

4407 input into FPB

0435 (A5)) FAR

13

woo normalization (FAR)

6435 O'AR) *)A

043I (Al) >,FAR

2432 (FAR) - W2) --WAR

1433 (FAR) + W3)-AFAR

4434 (FAR) x (A4)-AFAR

3435 (FAR) / (A5) --iFAR

54W (FAR) r (A6) r-? FAR

output from FPB

Here, (AS) - WAR designates the operation of entering the address components A5 into

the floating accumulation register (FAR). The previous contents of FAR are erased.

The contents for the address A5 are preserved.

(FAR)--x115 is an inverse operation. The previous (A5) is erased, and the (FAR)

is preserved.

The input and output from the FPB do not alter the FAR contents; if there is

no turning to the FPB, then the (FAR) is preserved unchanged with the use of the

service subprograms. In the given example it was assumed, that the registers 0031-

0036 contain the address of the corresponding operand Al-A6. The operand address

Al, A2 and so forth is the address of the first of four successively arranged regis-

ters. The order of the number in the three subsequent mantissas of this number is

entered into the first register.

Besides the FPB commands given in the example, there is a set of eannands of

conditional and unconditional transmission of control in the FPB limits.

14

.wi

n

74I0	 unoonditional transmission of control,

7440	 omission of next register C'AR) =0,

7450	 omission of next register if (FAR)#o,

?500 omission of next register if MM) L 0,

75I0 omission of next register if (FAR)? 0,

7540	 omission of next register if (FAR)L- 0,

7550	 omission of next register if (FAR) > 0.

with the fulfillment of these camarxL- the (FAR) is not altered. The purpose

of these catmands is to obtain a branching in the course of computations in accord-

ante with the obtained results. We will examine their use in an example

0400/7440

0401,'7750

0402/74I0

04,&3/0040

Assume that the moment the cmuond is fulfilled according to the address 0400 (FAR)=

0, then register 0401 will be amitted, and unconditional transfer of control will be

implemented (since (0402) =7410) for the address 0403•r0040=0443. If (FAR)^i0, then

the control will be transferred according to the address 0401 +7750=0351. It is

apparent from the given example, that in the register following after the command

for transfer of control, a shift is indicated in the address (where the control will

be transferred to) in relation to the address of this register. Such a method of

addressing makes it possible to have Imo' programs that are not "linked" to specific

memory registers, and it is easy to transfer then to any free place.

Two commands have been introduced that make it possible to turn from the FPB

to the subprogram written in the system of FPB canmands.

15

1560 turning to the subprogram,

7570 return from the subprogram.

The address of the subprograi:that we have turned to, is indicated in the

registers following the command to turn. One should focus attention on the fact

that here the absolute address is indicated, and not the shift, as in the c muands

for transfer of control. The subprogram must end with a command to return, i.e., /1(

command 7570. Within the subprograms written in the system of FPB can,wxis, re-

peated turnings are not permittedd to any subprogram that is written with the use

of the FPB command; however outlet from the FPB and subsequent input into it is

permitted. The use of the FPB subprogram makes it possible to eaimpute the basic

functions whose argument is the (FAR).

The operations on the FAR contents also fulfill the following FPB connands.

7420 inversion of (FAR) , i.e., (FAR}—AFAR

7430 deletion of fractional part of (FAR)

codes of FPB commands

7460

7470

7520

7530

reserved for purposes of future use.

In conclusion of this paragraph we would like to stress, that one should not

confuse FPB commands with the commands of the central processor. Despite a certain

purely external similarity (especially for the commands for control transfer), these

commands operate with a floating accumulation register, and not with the apparatus

accumulation register.

16

7. Service Subprograms for Use in W Program

In addition to the NF interpreter service subprograms (s/p) were written. We

will give the main ones.

1. 4564--rewrites the file of numbers that occupies the successive registers in the

current field, into successive buffer registers. In registers that follow after

the command to turn to the s/p, it is indicated respectively: absolute address for

the beginning file on the current field, absolute address of first buffer register, 47

number of registers (length of file.). Each
number of the file occupies four suc-

cessive registers. During input into the s/p (AR) is any one, and during the outlet

fra , s/p (AR)=0; (FAR) is maintained unchanged.

2. 4565--rewrites the file made of successive buffer registers into registers of

the current field. After command to turn the following are indicated: absolute

address of first buffer register of file, absolute address of register on current

field (register for beginning of file), number of registers (length of file).

3. 4566--camases printing of information on an error; -after this control is trans-

ferred to the EXPRO-77 interpreter for input of introductions by the programmer.

the number of the report on the error is determined by the address of the register

that contains command 4566. During input into the s/p (AR) is any one.

4. 4567--forms according to the ember of the register R M the absolute address of

the register. During input into the s/p (AR) is equal to the number of the register,

during output from the s/p AR contains the absolute address. (FAR) is maintained

unchanged.

5. 4571---verifies the number of NF. If their number equals 1, control is trans-

ferred to the next register. Otherwise, a report is printed on an error "number of

descriptors does not correspond to the required", and control is transferred to the

programmer. During input into the s/p (AR) is any one, during output from the s/p

17

(AR) equals 0, while FAR is maintained unchanged.

6. 4572 is the same as 4571. Continuation of the NF program is possible with

the indicated number of descriptors of the NF equal to 2.

7. 4573 is the same as 4571. Continuation of fulfillment of the Imo' program is

possible when the indicated number of NF descriptors equals 3.

8. 4574 forms in the FAR a whole number (fixed point) from the previous (FAR);

after this the result is rewritten in register 0044-0047 of the current memory field.

0044-0027,	 /is

0045--sign of the number and significant digits of the number,

0046--least significant digits of the number,

0047-0000.

If the whole number cannot be entered into the FAR (the number is large), then

a report is printed on an error, and control is transferred to the programmer.

During input into the s/p (AR) is any one, during output (AR) =0, and (FAR) equals

the previous value.

9. 5576--this command implements output from the NF program after its fulfillment.

At first, a number must be entered into the FAR that will also be the numerical

result for the fulfillment of the new Yunction.

8. Example of NF Program that Realizes Kerr Control

The algorithm for the program i-- given in Figure 1, and the listing in Figure

2. In selecting the program it is necessary to remember, that in register 0021 the

second descriptor of the function is written, which for the given function is the

number of the register that contains the function argument.

18

UpUt FR (1 I B)	 3004 3040 Input FR(2, B)

NiGy7 into working 3004-3007 Entry into workingiegis
registers of addresses 3040-3044 tens of addresses of key 2
of kM 1

3010
3010	 no

Nurber of descri Printing of error
- ? number of descriptors"

ou	 t into EXPRD--77
yes

Formation of absolute address
c	 function argument 3011-3013

En	 of argument into FAR 3014-3017

Entry of argument into current 3020-3023
field

3027
yes 3030

3024 t =0? Printing of error "wrong i
3025 t" output into

3034 RO-77
3036 no
3037	 no

Openi V of key t	 0?	 yes Closing of key

3033
Output for execution of 3034C

function	 3035

I

i
	 Figure 1. Algorithm for Progrmn to Fulfill Functions FR (1, B) and FR (2, B) .

19

Since the program of the functions FR (1, B) and FR (2 1 B) are distinguished

only by addresses of the controllable keys, then initially (for each function) the

addresses of the corresponding key are written into the working registers, after

which the general part of the program is fulfilled. The beginning address of the

program FR (1, B) (address 3004) is entered into the corresponding register of the

NF address table, i.e., into register 0211. The beginning address of the program

FR (2, B) (address 3040) is entered into register 0212. A description of the em-

ployed subprogram has been given in section 7. The interface for connection between

the key and the small camputer is constructed such that in order to open or close

the key it is necessary to enter into the AR the address (code) of the operation,

after which the eanTand to turn to the external device 6071 is fulfilled. In

register 3016, by command 0430 the value of the function argument is written into

FAR, which is not changed until the end of the program. With this value (FAR) the /19

output from the program of the Imo' occurs, i.e., it is also the numerical value of

the function.

9. Example of Program that Realizes lag in the Fulfillment of the ILiput Program

The algorithm for the program is given in Figure 3, the listing in Figure 4.

For the given function it is assumed that the second descriptor is the address of

the function argument. For the given program it is necessary to translate the num-

ber of argument seconds into the number of cycles of turning to the oanputer memory.

Here certain details given in section 8 have been anitted. The difference fran the

previous example is determination of the equality of the function argument to zero.

In the previous example the argument at the manent of verification was presented in

the format of a floating point, therefore it was sufficient to verify the contents

of register 0045. In the given example, at the moment of verification the argument

20

3000 /0013 address of key 1 closing

3001 /0000 address of key 1 closing

3 002 /v014 address of key 2 closing

3003 /0015 address of key 2 opening

3004 -/12 00 beginning address of program FR (1, B)

3005 /3022
3006/1201;

3007 /3023
3":0 /4572 number of descriptors of function -2?

3011 /1021 number of register—)AR

3012 /4567 absolute address of register—BAR

3013 /3030
3014 /6202 input into

305 /44 07 FP.B

3016 /0430 argument—,SFAR

3017 /0000 output from FPB

3020 /4565 re-entry of registers from field 0 to current field

3021 /0044 address of register on field 0

3022 /0044 address of register on current field

3023 /0001 number of registers

3024 /1045 sign of number and significant digits BAR

3025 /7440 number equal to 0?

3026 /5231 no

3027 /6203 yes

3030 /4566 printing of report on error

3031 /7700 ! number -0?

3032 /5236 no

3033 /1022 yes.	 address of opening of key-- -AR

3034 /6071 execution

3035 /5576 output for execution of program

3036 /1023 address of key closings AR

3037 /5234 transfer to execution

3040 /1202 beginning address of program FR (2,B)

3041 /3022
3042 /1203

3043 /3023

3044 /5210 transfer to fulfillment of general part of program

Figure 2.	 Listing of Program that Fulfills the Function FR(1,B) and FR (2,B)
i

21	 R•

,-

i

<Input FR L3, B)	 3051

M	 minting of error "wrong'
3051	 of descri	 number of descriptors" put-

t to FXPRD-77

yes

Re-entry of constant from curren
field to buffer recxister 6174 	 11 3052-3055

Recovery of argument of function
and its entry into the FAR	 1 3056-3063

Translation of the number of
seconds of the argument into the 	 3064-3066
number of cycles of the computer

entry of the number of cycles
computer memory to the cur-	 3066
t field

3067
3070	 ?
3110-
3112	 no

Loading of cycle counter of

I
Set of necessary numbers of i
ow=ter memory cycle

Entry of function argument into
FAR

inting of error "wrong
V output into

RC-77
3113
3114

3072-3076

3077-3102

3103-3106

Output from program for execution
. of function

Figure 3. Algorithm of Program that Realizes a Delay in the Fulfillment of the
Program

22

3051 /4572
3052 /4564
3053 /j045
3054 /6174
3 05 50 10.001
3056 /1021
3 ,057 /4567
3060 /3030
3 *161 /6202
30U /4407
3063 /0430
3064 /4654
3065 /0000
306 /4574
3 067 /1045
3070 /7550
3071 /5310
3 072 /7 04 0
3073 /3045
3 074 /104 6
3075 /7040
3076 /3046
3077 /2046
3100 /5277
3101 /2 04 5
3102 /5277
3103 /6202
3104 /4407
3105 /0430
3106 /0000
9107 /5576
3110 /1046
3111 /7640
3112 /5272
3113 /62 03
3114 /4566

number of descriptors of function equals 2?
yes; reaYite constants from currant field into buffer

address of buffer register
number of registers

argument of function--RAR
(FAR) x oonstant.->FAR

translation into format of fixed point

argument 4- 0?
yes
loading of time delay counter

counting of assigned number of cycles
canputer memory

entry of function argument into FAR
output after fulfillment of program
printing of error "argument-O"

Figure 4. Listing of Program that Realizes Lag in Fulfillment of Program 	 23

is presented in the forrwl of a fixed point, thtrefoure it is necessary to verify

the content of bo+h registers 0045 and 0046.

In order for the numerical value of the function to be equal to the funct'm

argument, before output from the program the value of the initial argument (Mmber

of seconds) is sent to the FAR. For this the number of cycles in the eoagxiter marr

cry was in the FAR.

The address for the beginning of the program (3051) is entered into register

0213 of the NF address table.

10. Emile of NF P	 an Realizingairye Qontrol

In order to move the sensor in our experimental unit we use a drive by direct

current engine (7J. The program of engine control is comparatively complicated

(it occupies roughly one page of memory); it was written in the very beginni»g of

the work on automation, when a -:citable HLPL was not available. However, the use

of a simple program interface: makes it possible to use this program without the

slightest changes in it.	 /2G

The algorithm for the program interface is given in Figure 5, the listing in

Figure 6.

The subprogram of engine control uses (AR) as the code of the deflection angle,

(ER)--as the code of rotation direction. If (ER)-O, rotation is clockwise; if (ER)-1,

the rotation is counterclockwise.

Engine control from the HLPL is realized by the operater FR (4, B). Here 4

is the conditional address of the device, B is the address of the function ar+rT went.

24

-T

3115	
Input FR (4, 81	 3115

Printing of error S=—
of descri	 number of descriptors"

n̂o	 ou t into EOP40-77

Entry of argument into FAR 3116-3124

Translation of argument into format of
fixed point and rewriting of it into cur-
rent field	 3125

0 —) ER
	

3126

3127	 no
3130	 rguirent <

yes
3132-3134

of code of deflec

3137

Ll -^ ER

Code of angle--4AR

no
yes

Engine cx^ntrol

Output from procrramn

3135

3136

Printing of error "wrong
argument" output into
FXPRJ-77

3144
3141	 3145

3142

Figure 5. Algorithm of Program Interface for Realization of Function to Control
Engine

25

311 S /4 STZ number of descr4*='sn2?
3116 /1021

3117 /4567
fonntion of arguaent address

312 ^, /300

31 21 /6241

$122 /44 07

"123 /0430
access of argument

=124 /0000

1125 /4574

it 26 /7100
translation (FAR) into fort of fixed point

k27 /i 04S 0--70t

$130 /7700

J131 /5336 argument-o?

11 32 /1046 110

3133 /7041 Y'

3134 /3046	 inverting of argument

3135 /7120

3136 /1046	 1-"ER

3137 A45 0 argument AR

3140 /5344 ate?

3141 /4743	 no

3142 /5576 Yes ; turning to subprogram of engine control

314) /2 014 Yes; output

3144 /6203 address of subprogram

3145 /4566 printing of error "wrong rrgument"

Figure 6. Listing of Program Interface for Engine Control huction

f!

26

L^--

The sign of the argument determines the rotation direction of the engine; "+"--

clockwise, "-,"---counterclockwise. 7he mhole part of the argument equals the number

of deflection pitches (one pitch corresponds to 10°). During output from the pro-

gram of 1F, after its fulfillment, (FAR) =whole part of the argument, it will also

be the numerical value of the function. Zhe beginning address of the program (3115)

is entered into register 0214 of the NF address table.

11. Examples of Pr am that Realizes Measurement of Counter Int 1s

To measure the number of impulses received during an assigned time, a program

is used that is turned to from the HLPL by the operator FR (6, B). Here 6 is the

conventional address of the device, and B is the argument address.

The number of seconds of measurement time is entered into register R(B). The

subprograms for counter control that was previously written, with the help of the

program interface was linked to the HLPL. This subprogram uses as an input para-

meter the code for the number of impulses of the time counter (24 binary digits),

that is located in the registers 0045 and 0046 in the format of "fixed point". The

measurement results (24 binary digits) in the same format is written in the same 	 /21

registers.

The algorithm of the program interface is given in Figure 7, the listing in

Figure 8.

The function of t`+e program interface consists of preparation of the argument,

its txanLslation into the required format, and entry according to the required address.

After turning to the subprogran,.for control of the counter the program interface

rewrites the measurement result (number of impulses) into FAR. This result will

also be the numerical value of the function. The address for the beginning of the

W

27

3152	 (Input FR (6, H)

J Output for error
3152	 der of descriptors=-2r--- no

. 	 Yes

Rewriting of constant from current
field into buffer register 6174 	 3153-3156

Entry of argument into FAR	 3157-3164

Translation of number of seoonds of
argument into number of impulses of
time counter	 3165-3167

Rewriting of number of impulses into
current field	 3167

Measurement of number of impulses
opping frar Vi- sensor	 i	 3170

!Rewriting of result of measurement I
into FAR	 3171-3174

output	 3175

Figure 7. Algorithm of Program Interface for Function "Measurement of Intensity"

28

3146 /0011

3147 /2426

5150 /1505

310 - /0754

3152 /45 T2

3153 /4564

2154 /3146

3155 /6174

3156 /0001

3157 /1021

3160 /4567

3161 /3030

3162 /6202

3163 /4407

3164 /0430

,165 /4654

3166 /0000

3167 /4574

3170 /4776

3171 /4564

3172 /0044

3173 /0044

31?4 /0001

3175 /5576

3176 /2200

number of descriptors=2?

rewriting of translation constant

formation of argument address

access of assigned argument

translation of argument into number of impulses

obtaining of whole part of translated argument

turning to subprogram of control of counter

rewriting of measurement result into FAR

output

address of subprogram for counter control

Figure 8. Listing of Program Interface for Function "Measurement of Intensity"

29

program, (3152) is entered into register 0216 of the W address table.

12. Additional List of NF Included in HLPL

Besides the NF described in sections 8-11, there are three more.

1. FR(5)--numerical result of function equals the code established on the key

register of the small computer E-1001 at the moment of function fulfillment.

2. FR(7, X, Y, N, T)--by means of this function the graphic information is

displayed. Here 7--conventional. address of display; X--address of first number of

file X; Y--address of first number of file Y; N--number of points of file (size of

file); T -time of lighting up of graph (in seconds). 7he numerical value for the

function equals the maxinam number of the file Y.

3. FR(9, N, Y) --the function is used to measure the distribution of intensity

density in the cross section of the particle flux. Here N is the number of measure-

meet pitches (one pitch corresponds to 10° of the deflection angle of the engine).

The result of fulfilling the function is filling of the N registers, beginning with

R(Y), number of impulses is accepted as 20 ms, at the corresponding pitch. The

numerical value of the function equals the number of pitches, i.e., N. 	 /22

Conclusion

In conclusion we note that despite the convenience of using the proposed lang-

uage, is requires further perfection. of great importance is the inclusion into the

language of operaters of a turning to the storage devices on magnetic tape, which

will significantly increase the power of the controlling complex. one also feels

the need for the operater to work with several devices of input/output of alphabet-

digital and graphic information, which also requires the introduction of additional

operaters to the HLPL. The need for such devices follows from the fact that the

30

rw+ 	 .rwifn^u+srfM
^t

Interaction of the experimenter with the unit, that does not require documenting,

is implemented considerably more conveniently without display. Docunenting of the

initial condition of the results of the experiment, for its part, requires the use

of teletype and a graph plotter. Currently we document graphic information by a

technique suggested in publication [8], or by photography from the graphic display

screen.

References /31

1. Akushskiy, I. Ya.; and Trcyanovskiy, V. M. Progrannirovaniye na "Elektronike-
100" dlya zadach ASU TP ["Programming on 'Elektronik-100' for Automatic Con-
trol system Tasks TP'% Moscow, Mir, 1978.

2. Flores, A. Organizatsiya vychislitel'nykh mashin ["Organization of Computers"],
Moscow, Mir, 1972.

3. Souchek, B. MINI-EVM v si.stemakh obrabotki informatsii ["Mini-Computer in the
Systems of Information Processing"], Moscow, Mir, 1976.

4. Giglavyy, A. V.; et al. "Certain Aspects of Developing Languages for Controlling
Production Processes," Upravlyayushchiye sistem y i mashiny, No 5, 1977.

5. Khrapchenko, T. S. "C=iparative Characteristics of Dialogue Languages BASIC and
FOCAL," Moscow, Trudy 1ELIM, No 55, 1976.

6. Angelov, A. Kh.; and Dubovik, L. V. "Control of Moduli KAMAK from the Computer
TRA-1001/1 with the Help of the FOCAL Programming Language," Pr	 i_ tekhnika
eksperimenta, No 5, 1977.

7. Zubkov, B. V.; and Kalinin, A. P. Izmeritel'no-upravlyayushchiy kompleks dlya
avtamatizatsii issledovaniy a ,_ stolknmmiy ["Measuring-Controlling Ccnr
plex for Automation of Study on Atomic Collisions"], preprint of the Institute
of Space Research of the USSR Academy of Sciences, Pr- 366, 1977.

8. Zubkov, B. V.; and Khromov, V. N. Scpryazheniye MINI-EVM "Elektronika-100I" i
NR-9821A ["Joining of Mini-Computer 'Elektronika-100I' and NR-9821A"] preprint
of the Institute of Space Research of the USSR Academy of Sciences, Pr-312, 1976.

31

Table of Contents

Introduction
	 2

1. Certain P.equirements for Language Designed to Program Process of
Conducting E^cpeximent	 3

2. The Main Features of Proposed Language	 6

3. Brief Description of Certain New Functions and Example of Their Use 	 9

4. Versions of the Language	 10

5. Procedure of including Programs of New Functions 	 11

6. Use of Floating Point Block in Programs of New Functions 	 12

7. Service Subprograms for Use in Programs of New Function	 17

8. Example of NF Program that Realizes Key Control 	 18

9. Emile of Program that Realizes a Delay in Program Fulfillment 	 20

10. Example of NF Program that Realizes Engine Control	 24

11. Example of a Program that Realizes Measurement of Counter intensity
	

27

12. Additional List of NF Included in the HLPL
	

30

Conclusion
	 30

32

	1980018615.pdf
	0006@00.TIF
	0006A02.TIF
	0006A03.TIF
	0006A04.TIF
	0006A05.TIF
	0006A06.TIF
	0006A07.TIF
	0006A08.TIF
	0006A09.TIF
	0006A10.TIF
	0006A11.TIF
	0006A12.TIF
	0006A13.TIF
	0006A14.TIF
	0006B01.TIF
	0006B02.TIF
	0006B03.TIF
	0006B04.TIF
	0006B05.TIF
	0006B06.TIF
	0006B07.TIF
	0006B08.TIF
	0006B09.TIF
	0006B10.TIF
	0006B11.TIF
	0006B12.TIF
	0006B13.TIF
	0006B14.TIF
	0006C01.TIF
	0006C02.TIF
	0006C03.TIF
	0006C04.TIF
	0006C05.TIF
	0006C06.TIF

