General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DESCRIPTION AND TEXTS FOR THE AUXILIARY PROGRAMS FOR PROCESSING VIDEO INFORMATION ON THE YeS COMPUTER. PART 3. TEST PROGRAM

V. I. Borisenko, G. G. Naan, Z. A. Stetsenko

Translation of " Opisaniye i Teksty Vspomogatel'nykh Programm Obrabotki Videoinformatsii na YeS EVM. Chast' 3. Programma Testa", -- Polucheniye Statisticheskikh Kharakteristiki Mnogokanal'noy Videoinformatsii, Academy of Sciences USSR, Institute of Space Research, Moscow, Report Pr-426, 1978 pp. 1-25
(HASA-TM-76252) DESCRIETICN AND TEXTS FOR taf auxiliary prograns fce paocessing videc IHFORMATION ON THE YES COMPUTER. PABT 3: TEST EROGRAM 2 (National Aeronautics and unclas Space Administration) 30 p HC A03/HF A01 G3/61 27974

> NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON D.C. JUNE 1980

CONTENTS

Page

INTRODUCTION 1
2. Wicription of the functions implemented in the program 3
3. Instructions for working with the program 14
4. Suggested ways to modify the program 16
APPENDIX 19
REFERENCES 23

The problems involved in studying the earth's natural rescurces, fust as any other problem, are connected with the processing of large files of information needed primarily in the visual representation of this information. The quasi-photography of video information obtained on the alphanumeric printer of a computer [l] gives the researcher a convenient opportunity not only to evaluate the content of the incoming information, but also to identify the data recorded on magnetic tape and the image of the earth's surface with a precision down to the element of resolution.

However, even at the very beginning stage of research, it is necessary to study the material numerically. Such a study is impossible without an extensive use of computer technology. The construction of graphs, histograms, digital print-outs, computation of elementary statistical characteristics, etc.--this is far from a complete enumeration of the problems which the researcher has to know how to solve when processing large data files.

The data recorded on magnetic tape from remote sensing of the terrestrial surface are color vectors assembled in a line [2]. The number of vectors in a line can vary--this depends on the properties of the recording apparatus. Each sequence of lines recorded on tape is an image.

Each color vector $a_{i j}=\left(a_{1}^{1}, \ldots, a^{\rho}\right)$ can have up to eignt components which sharacterize the intensity of the electromagnetic radiation reflected from an element of resolution in one of the spectral ranges. During recording of the radiation, the signal is modulated in such a way that each of these components a^{j} can have a maximum value of 255 nominal units, i.e., it can be placed in a single byte.

[^0]The position of an element of resolution from an image is determined by the number of the line and the number of the color vector in the line. Thus the entire image can be regarded as a matrix whose elements are the color vectors $a_{i j}$.

The proposed program makes it possible to obtain a chart of the change in the signal (along a line or a column of the image) in digital or graphic form; to calculate the vector magnitudes of the mathematical expectation and dispersion; to construct histograms of the distribution of the signal in each spectral range. The program consists of several blocks written in the languages ASSEMBLER and FORTRAN for the Disk Operating System of electronic computers of the Unified Series ($100 / \mathrm{EN}$) [3]. The reading of magnetic tape (烦), storage, rearrangement of files and the development of charts is carried out by blocks written in the ASSEMBLER language. This makes possible more complete use of the machine's capacity. The storage files are transferred for subsequent processing by FORTRAN modules, which facilitates programing processing.

Preliminary processing in the ASSEMBLER language results from the fact that an element of information on \quad occupies one byte, and a minimally addressable field from the problemoriented language (nOM) FORTRAN occupies two bytes. The program admits an increment of the functions being executed both at the stage of file formation, as well as after the storage procedure is completed.

The results of the operation of the program can be used to determine and compare the statistical characteristics of various fragments of an image, and also for qualitative and quantitative analysis of materials obtained from remote sensing of the earth's surface.

We shall call a set of elements from several neighboring lines which includes elements with the same number of columns an oriented image fragment. The program makes it possible to process an arbitrarily chosen oriented fragment of any magnitude, up to the entire image.

In the version of the program to be described the following functions are implemented:
R - executes successively digital read-out of the values of the signal in all spectral ranges for all lines of the given fragment;
C - constructs a chart of the line-to-line change in the mathematical expectation of the color vectors for the elements which are between the extreme columns of the given fragment;
S - interprets graphically the change in the color vector of each element along the lines of the given oriented rragment, beginning with its first line.

M - computes the vector value of the mathematical expectation of the signal for the entire given fragment;
r - executes digital read-out of the files for the frequencies of the intensities of the fragment in all spectral ranges;
x - computes the components of the vectors for the mean value P^{e} and the dispersion D^{e} of the signal in the eth channel in the given range involved in the signal change;
F - graphs the frequencies k_{i} and the relative frequencies 1 i. involved in the intensities of the elements of a fragment in any given channel;
Q - prepares a file with elements of the type zursisiz representing a line of a fragment or its part;B - computes the self-covariational and self-correlationalfunctions of the line.

The program described consists of three sections of ASSEMBLER (Testam, 天ntise ,maccus) (file]) and several modules of the type sunotizne written in the поя FORTRAN (Fig. 1). In order for the program to begin operating, initiation on the part of the calling program is necessary in whose function there is also a storage reservation for the operating file mar. The scale of the file is determined by the number of spectral ranges. It must be determined for the functions mex.E by the formula $255 \sim \mathrm{kcman}$, and for the function G--the formula is the length of the part of the line xKCNAN , where kCNAN is the number of channels of video information. The file sar for the functions X, F must be described as anrocgat , and the file for G, as intrifraz . From the operator cau vistam (IAR) control is transferred to the section restam which reads the M, searches for and isolates the given fragments, implements the functions R, C, S, M, r, and also prepares the files used by the algorithms of the functions F, B, X and G. The sequence of operations for the blocks and modules testam (Fig. 2) is determined by the symbol for choosing a function which together with the coordinates of the fragment being processed must be printed on the control punched card. The coordinates of a fragment are the number of the initial and final lines ctponnestr and Nestr and the columns wisto and wistn . The control parameters of this punched card also include the number of spectral ranges (channels) xemant.

Let us consider in more detail the possibilities represented by the program. To implement all the functions of the program after entering the control card, the next line is read and the given initial number is compared with the number which is in the first four bytes of the line on $W I$. If the number read is less than the given number, then reading proceeds until the numbers coincide. If the initially read number is greater than the given number, then fictitious reading of a group of lines backward occurs (the number of lines is determined by the formula and the group is read once in the forward direction in the standard mode (checking the numbers).

When the symbols R, C, S are given, printing on the afly begins immediately after the next line of the given oriented fragment is read.

In the case of the function G, the subprogram transforms the multi-spectral data of a single line into the form JNTECER. 2 and returns control to the initiating program for further processing of the file $i A R$. In this case the length of the output file is determined by the formula (Nr.Nb) mad (here virinn characterizes the number of color vectors of the initial line). The file created is organized as rollows: the first wiony elements correspond to the first spectral channel, the second, to the following channel, etc. To implement the remaining functions, files are accumulated for all the given fragments.

By means of the function R in one line on an $N W y$ are printed the digital values of the elements of a line in the first spectral range (but not more than 30 items); in the following line, the values of the elements of the next spectral range, etc. If the number of elements in a line of the fragment under consideration exceed 30, then again the keum of the lines is printed, etc., until all the elements of the line are printed out. The

Fig. 1. Hierarchy of the blocks and modules of the program.

Transfer of control of work progran

*Illegible in foreign text.

Fig. 2. Microenlarged block diagram of entesTAM,
number of the line and the number of the initial column are printed before the beginning of the line corresponding to the first spectral range. Then from the it the following line is printed, and the process is repeated until the last line of the given fragment has been read. After this, control is shifted to the input block of the next control card.

As a consequence of the function S each line of the duly is a mapping of a color vector for the given fragment. Since the width of the hify belt makes it possible to accommodate only 128 symbols (and the value of an element, as stated above, can amount at most to 255 conventional units), the values of all the components of a color vector are divisible by 2. Before the first multi-channel element of each line of a fragment is printed on the $A 4 \mathrm{~L}$, the numbers of the mapped line and the initial column of the fragment are printed. In the positions determined by the values of the components of a color vector, from 1 to 8 symbols are printed. If the intensities of the signal in various channels coincide, then on the print the symbols are superimposed on each other. Thus all the elements of one line are printed, then all those of another, etc., until the last element of the last line in the given fragment is printed out. To facilitate inspection of the material, a coordinate network is printed over the graph (through 20 elements along the axis of abscissas and 40 conventional units along the axis of ordinates of the graph). In the nodes of this network, on the ayes of coordinates along the perforations are printed the numbers designating the number of the color vector in a line, and in the perpendicular direction, its intensity. During a single access to the function S it is possible to map graphically an arbitrary number of lines of a fragment.

Implementation of the function C after reading through the next line in the module risram the rile:
is stored, and the value
is printed out on the ury.

The range of change of each component $c(e)$ also cannot exceed 128 convertional units (i.e., the entire width of the Mily belt is used). Reading the next line of information calls the ally to print one line, analogous to the function S. The number of a line is printed only on the axis of abscissas, and before the entire graph is printed, the number of the element is printed with which averaging begins. The number of elements of a line which can be averaged is arbitrary, and the number of iines is limited only by common sense in the consumption of paper.

As regards the function M the Niny print out the text "the mathematical expectation of a color vector of the fragment", and in succession all the knN of the components of the vector for the mathematical expectation s^{\prime} are printed. These components are found by means of the formula

The results of executing the function r is the digital mapping of the file x_{i}^{2}, prepared by the module respan . This file contains the frequencies with which particular values of each component of all the color vect:rs involved in a given fragment appear. A single line of such a file contains 255 numbers, corresponding to the entire intensity range for each channel. But during printing on the wiv the quantity of these
numbers may be reduced by preliminary averagivig with any multiplicity kAT . The value of the multiplicity is determined by the positions on the control card.

Each element rif of the file being mapped is calculated by means of the formula

The prepared file is printed on the noy , channel by channel, and the spectral channels are separated from each other by a line consisting entirely of the letters $\mathbf{7}$. For the eth channel, the values of the file it are printed successively in a line by the 1 , and for each element *. If the number of file elements 112 exceeds 30 , then the remainder are transferred to the following line, etc., until all 256 sur values of the flle fi are withdrawn. To make it easier for the investigator to study the distribution of the intensities, the values of the intensities corresponding to the first element j of sach ine are printed in the first four positions of that line. They are separated from the digital values of the frequencies by the symbol * .

In order to implement the function X (calculation of the mathematical expectation and the dispersion) we begin by storing the file x_{i}^{i} which determines the frequency with which the intensities of the corresponding components for the color vectors als appear. Then in the subprosram wivi we compute the components of the vectors of the first and second moments, usinp, the formulas

$$
\begin{equation*}
\left.r_{1}^{c}=\dot{C}_{1}^{[} \frac{\sum_{i=1}^{r} s \cdot k_{0}^{c}}{\sum_{i=0}^{m} H_{i}^{2}}\right] \text {, } \tag{5}
\end{equation*}
$$

[^1]and

Here \mathcal{E} denotes the integral part of the given expression, and 2 is the number of the channel.

When calculating the characteristics of the change in the signal in a selected part of the intensity range, rather than in the entire range, we take as the lower and upper limits of summation, the minimum and maximum values of the signals for the portion of the intensity under consideration. The subprogram vasty uses the following additional control parameters:

NEman - the number of the spectral range;
manual, maxval - the minimum and maximum values of the intensities of the chosen signal change range.

The fUlly prints the line in which appear the number of the spectral range of the channel, the limiting values of the signal, the value of the mathematical expectation and the dispersion (together with the explanatory text).

The result of executing the function F is the files of histograms which make it possible to analyze the probability density distribution functions of the signal with respect to the intensities.

For the width of the sill belt, the program permi:a the output of one, two, three and four histograms. The printing error is determined by the width of the field removed for the histograms. Just as in the case of the function X, it is possible to
put out a selected part of the signal intensity range, rather than all of it, and to construct histograms with an average relative to a given parameter. Here as the quantum for a histogram we take the average value with respect to several quanta, the number of which is given by the averaging parameter rsest. During operation of the algorithm for the function F, the module Testam, after forming the histogram files, transfers control to the subprogram vinfs. which is the control program for printing histograms. This subprogram uses the following control parameters which assign the mode for constructing graphs:

NGIST - the number of histograms for the ADY belt width;

NNNNC - the number of spectral ranges which must be mapped on the algy simultaneously according to NGIST;

NBEG ${ }^{c}$, NEND ${ }^{\mathrm{e}}$ - the beginning and ending quanta of the mapping ($8-1, \ldots$, кснм) .

ISRED - the averaging parameter;

VIDG - the type of histrograms (the frequency of impact (A) or the relative frequency (F)).

When constructing histograms reflecting the frequencies x_{i}^{8}, the i-ro quantum represents the number of elements of the given fragment with an intensity of i units. The quantum 0_{i}^{c} in a histogram of relative frequencies is calculated by normalizing the quanta $x_{i}^{\text {s }}$ so that

$$
\begin{equation*}
O_{i}^{c}=\frac{k_{i}^{l}}{\sum_{i=0}^{M} x_{i}^{c}}[4] \text {. } \tag{7}
\end{equation*}
$$

The moly prints the number of the channel, the greatest frequency in the file and the number of this quantum, and also a digit on the axis of ordinates. The intensities are printed along the
axis of abscissas (the conventional unit of intensity is a quantum of a histogram). The digital network is laid off on the axis of ordinates. The frequency in the chosen quantum can be calc lated by multiplying an ordinate digit by the number of pad symbols, " ${ }^{\prime \prime}$. For example, in channel 1 (cf. Russian P. 23) on the histogram constructed by means of the parameter VIDG=F an intensity of 88 has the frequency $9 \times 0.004313=0.03882$.

As the result of executing the function B (which determines the self-covariant and the self-correlational functions of a line of a fragment or its part) the line with number d which has been read forms a file with elements intecran (Cf. function G) and control shifts to the module VINFG, written in FORTRAN. The following are computed: the average signal m^{2} for a given portion of the line (cf. formula 3) and the values of the selfcovariant function, using the formula

$$
c_{i}^{e}=\frac{1}{N} \sum_{i=1}^{N-k}\left(a_{i j}^{e}-M^{e}\right) \cdot\left(a_{i-1, i}^{e}-m^{e}\right) .
$$

The self-correlational function is calculated from the formula

$$
r_{i}^{e}=\frac{c_{i}^{e}}{c_{i}^{c}}
$$

where

$$
5,0,1, \ldots, k \quad .
$$

On the control card the user assigns the limiting value of the delay K and the portion of the line along which the characteristics are calculated. The amy prints: the number of the line, the number of the column between which the portion of the line is located, and the values of the functions for all delays from the Oth to the Kth. Control is returned to the module
[estam for input of the coordinates of the following fragment and the new function.

In an appendix we present examples illustrating the mapping of the results obtained by processing several fragments. In a separate appendix we give the complete text of the section in the ASSEMBLER language, together with the necessary commentaries and the texts of all subprograms, written in HOR FORTRAN.

3. Instructions for working with the program

The program TECTA is controlled by means of symbols and numbers fed in on punched cards.

Each control card represents a sequence of whole numbers, arranged in succession, beginning with the leftmost position on the punched card.

To implement any of the functions, it is necessary to specify on a card the coordinates of a fragment, the number of spectral ranges and the symbol of the chosen function. The data are printed in the following sequence, each of the first five involving 4 positions per punched card:

```
NBSTR - the number of the beginning line of the fragment;
NBSTO - the number of the initial column of the fragment;
KCHAN - the number of spectral ranges;
NESTR - the number of the final line of the fragment;
NESTO - the number of the final column of the fragment;
* - the symbol indicating that in the next position a func-
        tion will be given (l position per card);
```

$$
\begin{aligned}
& \text { VIDFUN }- \text { for the choice of a function (one of } R, c, S, M, Q, \\
& X, r, F, B) .
\end{aligned}
$$

In the case of the functions X and F, additional parameters must be fed in.

The function X (for computing the mean value and estimating the dispersion of the signal in the given spectral range) uses the following parameters:

```
NCHAN - the number of the spectral range (l position);
MINVAL - the minimum intensity in the chosen signal change
        range (3 positions);
MAXVAL - the maximum intensity (3 positions).
```

All these parameters are printed on one punched card. There can be any number of such punched cards (with additional parameters). In order to shift to feeding in the coordinates of a new fragment and/or specifying another function, it is necessary to insert a punched card with a zero in the first position. When executing the function X, if the next card in the first column is the digit 9 , then the program concludes the operation.

The control punched cards determining the functions F and r (graphical or digital output of histograms) have a format different from that of other punched cards: in position 21 is printed the averaging parameter ISRED (for F or KPAT) (for r) (each occupying 4 columns), rather than the service symbol ",". Next comes the symbol *, characterizing the conclusion of the numbers; then the symbol of the chosen function (F or r), and, in the case of the function F, the additional symbol of VIDG, which determines the form of the histogram. This is the symbol (A), if the frequencies k_{i}^{l}, and $F--$ in the case of the relative frequencies -- are calculated and mapped. Next comes the punched card which successively determines the initial noćc,
the final N(N) quanta of the mapping, beginning with the first channel. Each of the parameters ans and mass occupy 4 positions. Then comes the punched card on which is given: the 117 number of histograms on the width of the NIII belt NGIST, and the number of the channels relative to which histograms must be constructed. After the parameter NGIST comes a space; all the parameters of this punched card occupy 1 position.

The results of processing the fragments presented in the Appendix were obtained by means of the pack of control cards pictured in Fig. 3 (p. 18).

4. Suggested ways to modify the program

In the version described, the initiating program, written in חol FORTRAN, executes only a function reserving storage for preparing files accumulated during the operation of individual modules. From our standpoint it is advisable to extend its capabilities, committing to it the semi-automatic processing of results obtained during implementation of other functions. For example, it may be necessary for a user to compare the characteristics of individual fragments (coefficients of correlation, moments, etc.) in order to decipher thematically the information obtained. Therefore it is necessary to make provision for transmitting an initiating program for calculating the characteristics of fragments. They can be processed by means of algorithms written in nor FORTRAN in the form of subprograms called by an initiating program after the next fragment has been processed by the module TESTAM (or one of its auxiliary modules-the file, VTNFX + UINEG).

An even higher degree of automated processing under the supervision of an initiating program can be achieved by means of the following modification of this program: the section TESTAM is altered so that the file of control parameters (coordinates

Fig. 3. An example of a pack of control punched cards.
of an oriented fragment and a type of processing function) are also transmitted by the initiating program. This makes it possible to form these parameters immediately in the initiating program (without feeding them in from punched cards).

One of the simplest methods for modifying an initiating program is to enlarge the function G. This can be achieved by adding an arbitrary processing program. (In the version described, a processing subprogram is nominally present). Such a subprogram obtains from the module TESTAM a file of lines of the type swrigese and then it may implement any processing algorithm which is conveniently programmable in FORTRAN.

Besides enlarging the function G, it is advisable to modify it so that a transmitted file of the type integrnz will contain information about the entire fragment, and not about an individual line of the fragment. This makes it possible to process immediately the entire fragment by means of a problem oriented language (for example, to apply a binary processing file for comparing the textural characteristics of various fragments).

The set of implemented functions must also be supplemented by a function for constructing two-dimensional histograms: the plane sections of multidimensional histograms will make it possible to analyze the correlational connections of various spectral channels.

6）
18e
7） 5
80 暏
13世日最解

11कtagevergatedececogos

4324日もE
13 thenetes
140tEERE
144ten
148e5
9520
456
100 胡
964 解
19
if
i？ 9 영
986
It
1）

809
200

28 ㄹ

Value of the quantum of the ordinate

Has the maximum frequency
Value of the guantum ordina

0009000900040199030

04334
Math．Expect．of Color Vector
111 133 143
134

092300270006

Channel 2
sum 900
the maximum frequency
0.001774
ff the quantum of the ordinate

$$
\text { 5 } 10.00191920 \quad 25
$$

官
早品品
70pad
P0000日
GOQ日G06D日

3000000000000日ロロロ

 300000000000000000000

 3000日60008000900

 מロ00 Fロ00050日0 0 日昭 F0日00060000日ロ togerggaporg
 ＊gdpogrpgrpa pobagbigagea
 －abupubrada
 tEBagpabag ＂ppopgrob时最昭
totybyo
00日G
阳
300

Quantum Channe
Has the maximum frequency
Value of the guantum ordinate

86
8840
9＊晶品
甲6tabuan
100 ogabarga
104

148 ＋ 0 0000000000000000

964＊0000008000800
168t日6pgapopag

176＊日00006日昭
180400680日6

192也日0日6

200t日旬
20640
$208 \cdot \square$
21 相
220t日
2264
228＊
232 ＊
236 ＊
${ }_{2}^{2} 40$
246
248%
2452
2568
$556 \pm$
660

268

Channel
Quantum
130
Has the mof mum frequency
Value of the quantym grinate 0 10．013 80 es

T

8 6 8 18 1 1 1 1

6寠
8 8 䗉
Ot日年日
10）0008p：

164\％ 6 ogean
1负中品品
176明昆
1 1 C
18＊要
18＊
18
18

58
81
8
解。
30．
46
6）

0009000900060407050
Crameln Dosk is

$$
919 \quad 133 \text { 143 } 934
$$

092300270004

REFERENCES

1. Borisenko, V. I., Chesalin, L. S. Opisaniye 1 teksty vspomogatel'nkh program obrabotki videoinformatsii na YeS EVM [Description and Texts of Auxiliary Programs for Processing Video Information on Computers of the Unified Series]. Part 1. Preprint of the Institute for Space Research of t_{1} USSR Academy of Sciences. Preprint-372, Moscow, 1977.
2. Zolotukhin, V. G., et. al. Opicaniye sistemy program matematicheskoy obrabotki na. EVM Yedinoy Serif (YeS) fotigrafucgesjujg uzibrazheniy Zemli, poluchennykh s moskicheskikh apparatov (kompleks SOFT) [Description of a System of Programs for Mathematically Processing on Unified Series (Yes) Computer Photographic Images of the Earth obtained from Space Vehicles (Complex 'SOFI')]. Preprint-336, Institute for Space Research of the USSR Academy of Sciences, Moscow, 1977.
3. Yedinaya sistema EVM [The Unified System of Computers]. Moscow, "Mir" Publishing House, 1977.
4. Zaks. L. Statistical observations. Moscow, Mir Press, 1977.

[^0]: *Numbers in margin indicate foreign pagination.

[^1]: "Illegible in foreign text.

