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ABSTRACT

The energization process of magnetic pumping, a combination
of time-dependent magnetic mirror fields with pitch-angle scatter-
ing, is applied to trapped charged particles B x B drifting in
corotating, azimuthally nonsymmetric neutron star magnetospheres.
When particle energization is balanced by synchrotron radiation
loss, it is found that protons, rather than electrons, reach con-
siderable kinetic energies and radiate, in the x-ray regime, at

rates up to the 10° MeV/proton/sec.

Subject headings: plasma processes -~ X-ray binaries -=

magnetospheres -~ neutron stars
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I. INTRODUCTION

Seversl compact x-ray sources are known to be members of
clore binary systems (Gurskey and Schreir 1975). We propose that
the environment of a magnetized neutron star in a close binary sys-
ten is favorable for the energization, by the process of megnetic
pumping, of the magnetospheric charged perticles, and that these
particles will be capable of emitting, with considerable power,
synchrotron radiation in the x~ray region of the spectrum,

The magnetic-pumping mechanism for the energization of
charged particles in magnetic-mirror geometries was first proposed
by Alfvén (1954). In his simple model, described in Alfvén and
F4lthammar (1963, Sect. 2.7.l4), cyclic variations of the magnetic
field strength are combined with isotropization of the particle dis-
tribution functions when the field strength reaches a maximum or a
minimum. As the field strength is increased, the mean perpendicular
(to ﬁ) momentum of the distribution increases, conserving the first
adiebatic invariant of each particle, while the mean parallel momen-
tum remains constant. Isotropization when the field is at a maximum
turns some of the Ligh perpendicular momenta of the distribution
into high parsllei momenta, which do not decrease with the decreas-

ing of the megnetic field. This leads to an increase in the mean
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momentum of the distribution with time. In the Alfvénic model, the

momentum affier one cycle is given by

1l/2
P=P 3 [5 + 2k + 2/k] ) (1)

Vi

where Po is the initial momentum and k 1s the magnetic ratio of the

cycle,

k=B /B , (2)

the BO values being the field strength in the magnetic mirror mid-
plane (equatorial region for magnetospheres). Equation (1) results
in a variation in time for the mean momentum, if the magnetic

pumping is not balanced by another mechanism, which is of the form

t/T
P=Poe/E ) (3)

where TR is defined as an energization time.

More realistic, but not simple to solve, is the case of
pitch-angle (momentum-conserving) scattering of particles occurring
consfantly as the magnetic field varies, in contrast to the infinite

pitch-angle diffusion imposed at times of magnetic field maxima and
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minima in tne Alfvén model. In order to solve this problem, we have
developed formalisms to follow the adiabatic motions of particles in
the magnetic-mirror topology of an asymmetric magnetosphere and to 1
solve a diffusion equation representing the pltch-angle scattering
of particles.

As the magnetic field varies we numerically follow, in i

momentum-pitch-angle phase space, the evolution of n(p,O%), the num-

ber of particles in a flux tube with momentum p and equatorial (at

|

|

& i
| the mirror midplane) pitch-angle ao’ calculating the new phase-space t
coordinates. In our relativistic treatment, particle motion con- f

serves the first adlabatic invariant
2
h=p/B (%)

i (no lbnger the magnetic moment), the total energy

E=y mc2 +ev |, (5)
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and the second adisgbatic invariant

J = § p“ ds , (6)
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where L and j are with respect to the magnetic field, V is an elec-
tric potential, and y is the relativistic factor (1 - Va/ce)'l/e.
In order to simplify the treatment, a special shape for the
magnetic-mirror field is chosen (Goertz 1978; Borovsky et al. 1980),
with the magnetic-pumping results found to be quite insensitive to
the choice of magnetic field topoleojgy. For a more detalled discus-
gion we refer the reader to the paper by Borovsky et al. (1980)
where a similar mechanism was applied to the case of Jupiter.

In order to describe the diffusion, caused by particle
scattering in the distribution, in pitch-angle space, we solve the

"bounce=-averaged" Fokker-Planck equation

3n _ 3 -9
i 30 [T(ao)sin a cos & ﬂ(ab) 5o
X {n(aé)/T(ab)sin o cos ab}] , (7)

vwhere T(ag) is the angular dependence of a particle bounce period
and s(ab) ig the "bounce-averaged" diffusion coefficient. BRBounce
averaging allows the description of off-equatorisl (away from the
midplane) scattering in terms of equatorial parameters. The time
asymptotic solution to the diffusion equation is an isotropic dis-
tribution function f(ao) = constant, where f(ao) and n(ao) are

related by
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f(ao) = n(ab)/T(ao)sin a cosa . (8)

Combining the adiabatic motion with the pitch-angle scatter-
ing allows us to simulate magnetic-pumping processes. For the
numerical procedure chosen, it is easily shown that alternately
solving for the sdisbatic motion and for the pitch-angle diffusion
is equivalent to solving the Boltzmann equation for particles under-
going the magnetic-pumping process. 1In conforming our simulation
parameters to the special case of the Alfvén model, we find very

satisfactory agreement between our results and analytical theory.
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II. THE MAGNETIC FIELD

The model magnetic field chosen is a rotationally allgned
(magnetic moment parallel to angular momentum) dipole with a slight
compression (increase) on one side. The equatorial field strength

on the dipolar (noncompressed) side is given by
‘ M
D~ 3

where M is the megnetic dipole moment. For the form of the

compressed-dipole side, we choose

/

=

(10)

rol

M
B =—7% +
c r3

e

A measure of the magnetic field distortion is TooMp? the radius
where the compression amounts to a 10% increase in the equatorial

field strength, i.e.,

B,=11By &t r=roun (11)
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yielding, from (10),

L
Toowp 6 M (12)

Ml
Thus, the values of M and ry, . will define a value for M’

We assume that the potentials in the inner magnetosphere
arise from corotational electric fields (we discuss corotation
below) and we will require that the potentials of both sides be
equal at the stellar surface, r = Ty On the dipolar side we have

(by integrating E = 1/¢ ¥ X BD),

<4

i
olo
BIx

’ (13)

vhere Q is the angular frequency of stellar rotation, and on the

compressed side we have

. r
v, = % [% + M 1ogK?s>] , (k)

which 1s equal to VD at r = T
The adiabatic motion of charged particles conserves (Equa-
tions (4), (5), and (6)) the first adisbatic invariant p, the

second adiabatic invariant J, and the total energy E. For particles
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with much less kinetic energy than potential energy, the drift
orbits will lie almost exactly on equipotential surfaces and the
particles will drift through regions of differing magnetic field
strength, (The violation of “his will provide a limit for the
energlzatic. process, discussed below.) Since we know the magnetic
fields B(r) and potentials V(r) on both sides of the star, we may
calculate the ratio k = BOMAX/BOMIN for particles in orbits follow=
ing equipotentials. Hence, for cholces of diffusion coefficients
(see below), we may calculate the magnetic-pumping energization
times, T, as functions of radius.

We estimate, for the parameters of our model, the regions of
the magnetosphere in which the model will be plausible. We take the
(neutron) stellar radius to be 10 kilometers (rS = 106 em), This
will be the inner limit for the validity of the model. We do not
expect corotation of the magnetosphere out to the light cylinder
(redius at which the corotational velocity equals the velocity of

light), which for our rotational period r = 2 sec, is

ROT
r, = 95,500 kn = 9.55 x 107 cm. Corotation might be expected (Lamb
et al. 1973) to hold out to the distance where the corotational

velocity is equal to the Kepplurian orbital velocity (r > r,

Voor VORBIT>' This Kepplarian radius is given by
(G ny /2 3480 kn (ms\m (15)
r = (=2 = ) ,
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where m_ is the stellar mass. For m, = 1 my we find T, = 3480 km

and for m = .1 my we find », = 1615 km. A relativistic plasma

k
theory for pulsar magnetospheres (Hinta and Jackesn 19Th4) predicts

the outer limit of corotation to be

by

2/5
cor = 72 & - 2o (26

which, for our model, is r... = 391 km = 3.91 X 107 cm. At these

limiting radii the corotational velocitles are nonrelativistic

(r = 291 km = Voom = ¢/250 andl r = 300 km = Voor = c/320), so we may
assume the particle drifts to be adiabatic, and in particular, may
be confidert that the second adiebatic invariant, J = § P“ ds, is
congerved.

As an agent for the pitch-angle scattering of the charged
particles we assume the presence of plasma waves, excited by
anisotropic particle distributions produced by the adiabatic motion.
In calculating the energization times as functions of the equatorial
distance from the star (k(r)known), we use the continuous diffusion
model and assume that the mechanlsm runs at its optimum diffusion
rate (TDIF/TROT = 1, where T,.. is the diffusion time and Tp.. is
the rotation period, see Borovsky, Chap. V; Borovsky et al. 1980).
This choice is not critical since diffusion rates an order of magni-
tude above or below this value give energization times differing by

at most, a factor of three.
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III. RESULTS OF THE MODEL

We now have the information neceassary for the construction of
a model which energizes particles in the asymmetric magnetosphere.
Without additlonal processes we would expect the energy of particles
to increase indefinitely. There are, however, two phenomens which
limit particle energy. The first is the condition that a particle
have less kinetic energy than potential energy. If this requirement
is met, a particle's drift orbit will approximate an electrical
equipotential and the drift will carry the particle through reglons
of differing magnetic field strength, essential for the success of
the energization process. If, instead, a particle's kinetic energy
exceede its potential energy, then the drift path will follow con-
tours of equal magnetic field strength and no energization will
occur (k » 1). To estimate this kinetic-energy upper-limit, we
cailculate the difference in electrical potential, AV, along & con-
tour of equal equatorial magnetic-field strength and require parti-.
cle kinetic energies to be less than e AV. Thus our limit appears

as

(7L - l)mc2 =e AV , (17)

I
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where 7 is the relativistic factor (1 - v’?/caa)"l/a and the L sub~
seript pertaine 4o the value at the limit. This limiting kinetic
energy appears (in terms of 7L) in Flgures 2 - 6 as the hollow
circles.

But even when 7y < 7L the energy does not necessarily increase
because energy is lost through synchrotron radiation, the power
radiated being approximately proportional to the square of the par-
ticle energy (P = [72 - 1]). The fact that, in tie synchrotwen
mode, the power radiated by a particle of set energy is proportional
to the inverse-four power of the particle mass, and thus more effec-
tive for electrons than protons, leads to an important prediction of
our model; that protons, not electrons, gain the energy and radiate
it away. To find the limiting kinetic energy we will equate the
energization time, T, with the radiative lifetime for relativistic
particles (Alfvén and Félthammar 1963)

_3c5m3_1._ 1
N +

ael‘ Bel

. : (18)

7R

Equating this to Ty ylelds the relativistic factor y as a function
of the radius r (on the compressed side),

5 5
1 1
S e wahe T N (19)
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where B and Tg are functions of r. This value appears as the solid
circles in Figures 2 - 6, If, at a particular radius, the 7R value
obtained by balancing energization with radiative loss is lower than
the 43 value of the mechanism limit (kinetic less than potential),
then 7 will be the relativistic factor of the particle there, that
is, particles are energized up to and maintained at the energy
E = 7R mce. If the value 2 1s lower than the value YR the parti-
cles are energized to and maintained at the energy E = 1, mca. The
variation of y 1s shown as the solid line in Figures 2 - 6, where 7y
is always the smaller of the two values, 7, and 7y,

Knowing the particle kinetic energies, (7 - l)mce, and meg-
netic field strength, B, as functions of r, we may calculate the
wavelengti, Am, of the maximum synchrotron-radiated power as a func-

tion of r. With the frequency of the peak power being
AV = e wm— F) (20)

we have (A = c/v)

2
A _ 2mme

m e

Wi

1
< - (21)
4

These wavelengths, for protons, appear in Figures 2 - 6 as solid

squares for the radiation-limited proton energies (xm(yR)) and as
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hollow squares for the mechanism-limited proton energies (xm(yL)),
the solid curve taking the wavelengths pertaining to the charac-
teristic (lesser of 7R and 7L) value. Electron radiation=limited
wavelengths appear in these graphs as the solid triangles, but, due
to the fact that repid radiative loss limits them to low kinetic
energies, the emission is strictly through the cyclotron mode.

We examine five cases (Figures 2 - 6), combinations of medium
(M=5x 1028 gauss cm;) or weak (M = 5 % 1027 gauss cm;) magnetic
dipole moments with weak (rCOMP = 955 km) or strong (rCOMP =
95.5 km) compressions and one of a strong (M = 5 X 1022 gauss cmj)
magnetic dipole with week compression. In the week dipole (meaning,
also, weak corotational potentials) cases (Figures 2 and 5), the
proton energies are more restricted by the (kinetic less than poten-
tial) mechanism limit, while, in the medium dipole cases (Pigures 3
and 6), protons are energized at distances further from the star, in
regions in which we are less confident in the application of our
model. In the case of the medium dipole-weak compression (Fig-
ure 3), the energy limit dominates the radiative balance at r =
320 km (still within the Hinata and Jackson corotation limit, Toor)?
where the characteristic wavelength of the synchrotron emission is
2.8 x 10-7 em, in the weak x-ray region. For the case of the medium
dipole-strong compression (Figure 6), mechanism-limiting occurs at

a distance of r = 234 km, where the characteristic radiation is in

the strong x-ray regime, A = 1.1 X 1077 cn. In s strong

R -
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dipole- (M = 5 x 1029 gauss cm3; applicable to the Crab Nebule
pulsar) weak compression (again, Tooup = 999 km) case (Figure 4), we
find a limited wavelength of 2.2 X 10'9 cm (strong x-ray region) at
a distance r = T30 km, which, however, may not be in the corotating
zone.

As a velue for the power radiasted per particle, we use the

particle kinetic energy divided by its radiative lifetime,

P = (7 = l)mc2

- (22)

)

where 7 is the appropriate relativistic factor, YR OF 77 and the

lifetime 7. is given by Equation (18) (using 7g ©OF 7L). The power

R
radiated per proton is displayed, for the four above cases, in
Figure 7, where the substential radiated-power prediction

(> lOh MeV/sec/proton) of the model may be seen. It is importent to
realize that, in the cases studied, the power radiated by electrons
is less by 10 or more orders of magnitude. This is due to the short
radiative lifetimes of electrons which keep their kinetic¢ energies
(and momenta) low. The energy gain per unit time, and hence the
energy radiated per unit time, is proportional to the particle

kinetic energy (see Equation (3)), so the low-energy electrons gain

little energy from the magnetic pumping, hence radiate little power.
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We note that (for y >> 1) as the stellar rotation rate
Q= QT'TR%T increases, the radiation-limiied y-values, 7p (Equa~-
tion (19)), increase proportional to §, the characteristic synchro-
tron wavelengths, A (Equation (21)), decrease proportional to 9'2,
and the power radiated per particle, P (Equation (22)), increases
proportional to 02. We also note that, since the corotational elec-
trical potentials (Equation (13)) are proportional to the angular
rotation rate Q, the mechanism-limiting y-values, 7, (Equation (17)),
increase proportional to @ as do the radiastion-limited values, 7R’
Thus, if we increase the rotation rate of our model by a factor of
VIO (2 4 /I0 @ and T,y = 2 sec 4 Tp . = .63 sec), the characteris-
tic wavelengths as functions of the radius will all decrease by a
factor of 10 and the radiated power per particle will increase by a

factor of 10.
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IV. DISCUSSION

A numerical model of the magnetic-pumping process was con=
structed by alternately following the adiabatic motion of particles
trapped in magnetic mirrors and solving a pitch-angle diffusion
equation. The results of simulations suitably agreed with theo-
retical predictions for the speciél case of the Alfvénic model.

Our numerical techniques allowed us to manage the magnetic-
pumping process when pitch-angle diffusion occurs simultaneously
with the magnetic field variation. For this case we find that, as
in the Alfvénic model, the mean momentum of a distribution of
trapped particles, on the average, increaged with time t according

to

P(t) = P(t = o)et/'r , (23)

vwhere T is a positive constant. A resonance between the magnetic-
field cycle and the pitch-angle diffusion rate gives a maximum
energization efficiency for the mechanism, that is, for a certain
value of the diffusion per magnetic cycle (regulated by a diffusion

coefficient), the constant T will be a minimm.
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Fotating neutron stars with slightly asymmetric magneto-
spheres were mpdeled. By balencing the energy gain from the
magnet ic-pumping process with the energy loss by synchrotron radia-
tion, we determined the energies, synchrotron wevelengths and power
outputs of particles in the inner magnetospheres. We expect syn-
chrotron radiation by protons, rather than by electrons, and for
the parameters of our models, predict energy outputs in the range of
102 - lO6 MeV per second per proton.

In order to estimate the luminosity of the neutron star, we
must estimate the particle density in its magnetosphere. For an
upper limit to this density we require that the plasma diamagnetic
field be less than the magnetospheric field (B < 1 in plasma |

terminology), written
particle pressure < magnetic pressure , ' (24)
or, since the electron pressure is negligible,

2
2
n(y = 1)me” s g_rr- , (25)

where m is the protonic mass and B is the magnetospheric field,

o

This gives an upper limit for the perticle number density of
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BE
8n(y = 1L)me

This limit is used to estimate the magnetospheric luminosity

Interior to the distance r, defined

2
L(r) = [ B(r)n(r) 2LE ar (27)

s

where the power radiated per particle, P(r), is obtained from Eque-
tion (22), the factor of 1/2 comes from assuming half the spherical
volume contains particles, and the lower limit r is the neutron-
stellar radius. We display this luminosity L(r) for various field
strengths, etc., in Figure 8. Note that since the plasma diamag-
netic effect density limit (26) is independent of the angular rota-
tion ratio §, and since this limit for n is several orders of
magnitude smaller than the force balance limit given by (ms = mass

neutron star)

mgm /82N 2 2
G ;g— n - VKE;E) - 9(n(y - L)me") =nam@"r , (28)

LT L




2l

an increase in Q by a factor of‘JTG will change P(r) by a factor of
10 without changing n(r), hence will increase the luminosity L(r) by
a factor of 10.

Finally we would like to point out that other losses besides
synchrotron radiation (e.g., outward mass transport, collisional
losses, precipitation onto the star) have not been considered in our
model. All these losses are only important if the loss times asso-
ciated with the processes are shorter than the energization time or
radiation lifetime. Collision times are certainly much larger than
the times considered here which are of the order of several rotation
periods. Only strong mass transport rates, such that the plasma
radial velocity is larger than the corotation speed, would reduce
the efficiency of our mechanism. The effect of precipitation is
difficult to estimate but the extreme smallness of the loss cone in
the region where the synchrotre:n radiation is generated should

guarantee a small loss rate,
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FIGURE CAPTIONS
1. Time dependence of mean momentum of a distribution in the
continuous-diffusion magnetic-pumping model.

2. Neutron star magnetospherlc model: weak magnetic dipole

moment, weak compression.

3., Neutron siar magnetospheric model: medium magnetic

dipole moment, weak compression.

4, Neutron star magnetospheric model: strong magnetic

dipole moment (applicsble to Crab Pulsar), weak compression.,

5. Neutron star magnetospheric model: weak magnetic dipole

moment, strong compression.

6. Neutron star magnetospheric model: medium magnetic

dipole moment, strong comprestzon.

T. Power radiated per proton in the synchrotron mode for

various magnetospheric parameters.

8. Synchrotron luminosities of magnetospheres interior to

radius r as functions of r.
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