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SUMMARY

A numerical procedure for the efficient simulation of steady inviscid flow is

described and its utility is demonstrated. The method is uniformly valid for applica-

tion in the subsonic, transonic and supersonic flow regimes. It does rot rely on the

int.:.juction of additional assumptions beyond those necessary to obtain the Euler

equations from the Navier-Stokes equations, nor does it make use of a time-asymptotic

solution of the unsteady equations of motion.

Application of the herein-defined surrogate equation technique allows the formula-

tion of stable, fully-conservative, type-dependent finite difference equations for use

in obtaining numerical solutions to systems of first-order partial differential equa-

tions, such as the steady-state Ewer equations or their various approximations.

Computational results are presented for the full Euler equations used to simulate

rotational subsonic flow and for the transonic small disturbance equations. For the

latter case, a computational efficiency greater than that obtained by means of the

standard perturbation potential approach is indicated.

INTRODUCTION

When written in primitive variable form, the systems of partial differential equa-

tions used to describe the steady motion of an inviscid fluid are of first order and

of mixed elliptic-hyperbolic type. Common examples of such systems include the tran-

sonic small disturbance equations : 	 0  + vy - 0	 vx - u  - 0	 (1)

where u and v are the perturbation velocity components and B (1 - MZ - ^ M1u)u .
m

and the Euler equations	 f  + gy - 0	 (2)

where	 f - (pu, pu t+p, puv, (E+p)u) T	g - (PV, puv, pv 2+p, (E+p)v)T

E - P + p (u2 + v2 )	 u and v are the velocity components, p is the density
y-1	 2

and p is the static pressure.

Because of the difficulties associated with both the formulation of robust finite

difference analogs for such equations and the construction of stable iterative proce-

dures for their numerical solution, these partial differential systems are not usually

solved in the forms given above. Rather, as is well known, the transonic small disturb-

ance equations are transformed into a scalar second-order partial differential equation

by the introduction of a perturbation velocity potential function. The steady Euler
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equations, on the other hand, are replaced by their unsteady versions, for which a

temporally-asymptotic steady solution is sought, either in real or in a pseudo-time.

Relatively few departures from these approaches are to be found in the literature.

Steger and Lomax (1975) have developed an iterative procedure for solving a non-conser-

vation form of the steady Euler equations for subcritical flow with small shear.

Chattot (1976) has solved the transonic small disturbance equations by differentiating

them to obtain a second-order system. This work represents a special case of the ap-

roach to be discussed here. He later adopted a variational formulation and has applied

it to model problems representing the Euler equations (Chattot et al. 1979). Ozer

(1977) has developed a relaxation procedure for solving the equations of motion when

reformulated to yield a second-order partial differential equation in the logarithm of

the pressure, together with first-o:der equations for the remaining variables.

Blomster and Skollermo (1977) applied Newton's method to the first-order system repre-

senting the full potential equation to solve a shockless transonic nozzle flow problem.

Rizzi (1979) has c—nded this procedure to the steady Euler equations.

The work of these authors notwithstanding, it remains the case that contemporary

numerical simulations of steady inviscid flow generally resort to either relaxation

solutions of steady second-order equations in derived dependent variables or time-

asymptotic solutions of unsteady first-order systems. In the former case, generality

is lost, while in the latter case, the computational efficiency may be quite low.

Here we present a means by which the steady first-order, mixed-type systems of

inviscid fluid flow may be readily and efficiently solved with conventional numerical

techniques. The method, which we refer to as the surrogate equation technique, main-

tains the generality of the flow equations while allowing the use of the fully-con-

servative type-dependent relaxation procedures which have been developed for the

efficient solution of second-order equations.

SURROGATE EQUA'iION TECHNIQUE

Given a first-order system, the surrogate equation technique (SET) consists of

embedding this system in a second-order system (its surrogate), applying additional

constraints obtained from the original system to restrict the solution set of the

surrogate, and then solving the resulting partial differential problem by means of a

conventional iterative procedure.

Consider a first-order system written in conservation law form, such as

C-
L (A ) + a-(B )^ f . 0 where f is an n-component vector and A and B

are n x n matrices. We embed this system in a second-order surrogate of the form

Iax(M ) + 2- (N)J [ax (A ) + By (B )^ f 0
	

(3)

This system preserves the conservation law form of the original system. Furthermore,
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the jump conditions satisfied by weak solutions to the surrogate system are the same

as those satisfied by the original system. The behavior of the additional character-

istic directions introduced by the embedding may be controlled through the specifica-

tion of the matrices M and N . For example, the choice M a A , N - -B would result

in the additional characteristics being the reflections of the original ones through

the x-axis, while the choice M - AT , N - BT would simply replicate the original

characteristics, while symmetrizing the matrix coefficients of the terms of highest

order in the surrogate second-order system. Having chosen M and N , the problem

specification is completed by requiring that, in addition to satisfying the original

boundary conditions of the first -order system, the solution to the surrogate system

must also satisfy the first -order equations themselves at the boundaries. This is

done to insure the uniqueness of the solution.

Having thus embedded the first -order system in a second-order system, we may avail

ourselves of the abundance of research results on efficient, stable iterative procedures

for such equations in order to construct a suitable numerical scheme. In the interest

of simplicity, we confine ourselves here to the use of fully-conservative, type-depend-

ent differencing together with the well-established successive line relaxation method.

We stress, however, that SET may also be used with other iterative solution methods.

RESULTS

In the course of developing SET (Johnson 1980), we have applied it to obtain solu-

tions to the two-dimensional steady Euler equations for purely supersonic and purely

subsonic nozzle flows and for rotational subsonic flow through bends. Application has

also been made to the two-dimensional transonic small disturbance equations for both

subcritical and shocked supercritical flow.

Consider the Euler equations (2), rewritten in the form

IOx-L I?y- a (T	 f - 0

where T - BA-1 with A and B being

the usual Jacobian matrices. If we choose

the matrices M and N in the SET formu-

lation (3) such that M - I and N - -T

we obtain the second-order system shown

in Fig. 1. There the application of this

system to a rotational subsonic Land flow

is schematically illustrated. Toe bound-

ary conditions used are also shown. At

the left-hand boundary, the infiow is

completely specified. While this con-

stitutes an over-specification, such

treatment is considered to be adequate

(4)

SYMMETRY

BOUNDARY

Fig. 1	 SUBSONIC BEND PROBLEM



4

for the present, illustrative, purpose.

Flow symmetry is required at the out-

flow boundary. On th• walls, in addition

to the usual flow tangency condition,

satisfaction of the original first-order

Euler system (4) is required. One should

note that while. for simplicity, the

equations presented here are written in

Cartesian coordinates. the computations

reported below were carried out using e

slightly different form of the equations.

written in sheared coordinates.
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Fig. 2 SAMPLE BEND FLAW RESULTS
Shercliff (1977) presented an

analytic solution to the incompressible analo; of the bend flow considered here. We

have solved the compressible flow problem over a range of subsonic Mach numbers. Select-

ed results for two such Mach numbers are sham in Fig. 2. The computational domain il-

lustrated is a section of a 90° symmetric bend, whose symmetry axis is the right-hand

boundary. In its passage through the entire bend, the flow transitions between two

asymptotic flows which are rectilinear shear flows. Also, as the bend cross-section

reaches its maximum at the symmetry axis, the flow is decelerating in the jection shown.

This case illustrates the feasability of obtaining solutions to the full Euler

equations for rotational subsonic flow by means of SET. Because of the form of the ma-

trix T used in the above formulation, it is not suitable for use in computing tran-

sonic flow. This does not appear to be an insurmountable difficulty, but, for the pres-

ent, we confine our transonic flow discussion to the small disturbance equations.

Given the transonic small disturbance equations (1), we choose M and N in the

SET formulation ( 3) such that M - AB-1 

r

and N -I	 where

A r a6/?u 0	
and	 B- L 0	 1

This choice yields the surrogate second-

order system shown in Fig. 3. This figure	 v wall slope

also illustrates the test case to which	 + 
aV ' 

°^ n 	 ay

we have applied the system. We consider

the flow in a two-dimensional channel 	 u 0	 is (iu i, ) + ) yz " °	 u - o
t

with uniform inlet conditions. A circular 	 r •	 ^, (^^ is +	 ' °	 V 
o

are airfoil surface is mounted nn the	 -
v 	 wall slope

lower channel. wall. 	 1v - >u

is >y " °	 ruw
The boundary conditions applied in

our primary formulation of the problem
	 DIRECTION

(SET 1) are also shown in Fig. 3.
	 Fig. 3 TRANSONIC SMALL DISTURBANCE PROBLEM
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We require both perturbation velocity

components to vanish at the channel '2

entrance and exit. The	 v	 perturba-

tion velocity is set equal to the wall co 0	 SrT I

O	 Fr 2
slope on both channel walls. The 	 u

O PPE
perturbation velocity it obtained from

the irrotationality condition on the 0

lower wall and from the mass conserva-

tion equation on the upper wall. In an `

effort to probe the necessity of these

.

6	 Q
boundary conditions, a secondary formula-

LLOING	 TRAILING

tion of the problem (SET 2) was created ®aE	 EDGE

20 2	 A
in which the mass conservation equation

'

on the upper wall was replaced by the
Fig.	 4 SUBCRITICAL FLOW

irrotationality condition while all

other aspects were held fixed.

For a subcritical flow case, the lower surface pressure coefficients resulting

from both SET formulations and from the conventional Murman and Cole (1971) perturba-

tion potential formulation (PPE) are compared in Fig. 4. All three formulations pro-

duce the same result, with SET 1 providing slightly better resolution of the stagna-

tion points. A similar comparison for a shocked supercritical flow case is presented

in Fig. 5. In this case, the agreement is also excellent, except in the immediate

vicinity of the shock. Here both SET 1 and SET 2 are in agreement and both produce a

very sharp shock (2 points as opposed to 4 points for PPE). However, the shock

strength is underpredicted. This anomaly is presently the object of further study.

Some interesting observations may be made concerning the relative efficiencies

of the three algorithms. PPE and SET 2

have roughly equivalent operations

counts while that of SET 1 is approxi-

mately 1.5 times as great. An examina-

tion of convergence behavior, however,
0 SET I

'	 O SET 2

reveals a strength of the SET formula- GP p PPE
tions. Fig. 6 illustrates the behavior°,

of the maximum residual as a function of 0

iteration level for all three formula-
N
s

tions under the same conditions. From the .	
0

data we may estimate the spectral radii
b	

^^

for the three formulations. These, in LEADING	 TRAILING

turn, imply relative asymptotic converg- 2
EDGE	 EDGE

0	 62	 Y	 i
ence rates of 1.0,	 2.3 and 8.1 for PPE,

SET 1 and SET 1, respectively. Hence, we
Fig. 5	 SUPERCRITICAL FLOW
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estimate the asymptotic computational

efficiencies of PPE, SET 2 and SET l to

be, respectively, 1.0, 2.3 and 5.4 .

CONCLUSIONS

We have shown that it is possible

to obtain a numerical solution to a sys-

tem of first-order partial differential

equations by solving a problem consist-

ing of a surrogate second-order system

together with the original boundary con-

ditions and supplementary relations ob-

tained from the first-order system.
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Fig. 6 CONVERGENCE BEHAVIOR

SET provides a meaus for formulating problems involving first-order equations

describing steady inviscid flow in such a way as to allow the use of fully-conserva-

tive type-dependent differencing and iterative solution procedures. Hence, we may

solve such problems without resort either to a velocity potential or stream function

or to an unsteady formulation.

An application of SET to the transonic small disturbance equations results in

algorithms which, on the basis of the computational experimentation reported here,

appear to have computational efficiencies which are several times greater than that

of the standard perturbation potential algorithm.

In view of the successful development of iterative procedures for the solution

of both the full Euler equations for subsonic and supersonic flows and the small

disturbance equations for transonic flow, it appears that further applications of

SET are merited.
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