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ABSTRACT

A heat transfer analysis was made of a
composite wall shroud consisting of a ceram-
ic thermal barrier layer bonded to a porous
metal layer which, in turn, is bondeO to a
metal base. The porous metal layer serves
to mitigate the strain differences between
the ceramic and the metal base. Various
combinations of ceramic and porous metal
layer thicknesses and of porous metal densi-
ties and thermal conductivities were inves-
tigated to determine the layer thicknesses
required to maintain a limiting temperature
in the porous metal layer. Analysis showeo
that the composite wall offered significant
air cooling flow reductions compared to an
all-impingement air-cooled all-metal shroud.
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THE WALLSHROUDSabove high pressure turbine
blades of current aircraft gas turbine en-
gines are metallic structures and need to be
cooled to reduce thermal distortions, crack-
ing, and oxidation. This cooling is ob-
tained by air bled from the engine compres-
sor. Since the bleeding of the air from the
compressor reduces engine cycle efficiency,
reduction of the cooling air requirement is
desired.

The use of a layer of ceramic on the
hot gas-side of the shroud structure, as
studied in references (i to 3)* can signifi-
cantly reduce the coolant flow requirement
and/or reduce the shroud metal tempera-
tures. Wear measurement of conventional
shrouds of large, high bypass turbofan en-
gines indicate that local metal removal
caused by turbine blade rub is generally in
the range of 0.76 mm(0.030 in.) deep;
therefore, in a composite shroud, the ceram-
ic layer thickness must be at least 0.76 mm
(0.030 in.) to preclude exposure of the
metal support structure by blade rubs.

Several approaches have been investiga-
ted in regard to adherence of thermally
sprayed ceramics to the metal support struc-
ture. The simplest approach is to thermally
spray ceramics directly on the solid metal
support structure. However, data in refer-
ence (3) indicate that the adherence of ce-
ramics is poor when thick ceramic layers in
the range of 22 mm(0.08 in.) are sprayed
directly on the metal substrate. Two possi-
ble reasons for poor adherence are (1) large
thermal stresses through the thick ceramic
layers under transient operation and (2)
high stress due to abrupt change in material
thermal expansion at the ceramic/metal in-
terface. These effects are mitigated and
the adherence of a thick ceramic layer is
enhanced by employing graded ceramic/metal
layers (4) in which the thermal expansion
coefficient is tailored by changing the per-
centage of metal in the intermediate lay-
ers. However, reference (4) reports that
excessive stresses exist in the ceramic top
layer and a means to build in beneficial
residual stresses is needed. Another ap-

proach, the one of concern in this paper, is Stepka and Ludwig
to use a compliant, generally low density
and low modulus, interlayer between the ce-
ramic and metal base. In this composite 2
wall concept, the compliant layer acts to
mitigate the strain difference between the

*Numbers in parentheses designate
References at end of paper.



ceramic layer and the metal base. Possible
interlayer materials are various types of
porous metals such as felt, woven and foam
metals. Thermal shock studies (5) revealed
that this compliant concept is more effec
tive in reducing thermal stresses than the
graded layer concept.

The objective of the study reported
herein was to analytically examine the vari
ables that affect the design of a composite
wall shroud consisting of a metal base, an
interlayer of porous metal and an outer
layer of yttria stabilized zirconia.

Based on considerations of low oxida
tion and long life, the maximum allowable
temperatures of the porous metal of the com
posite shroud, and the all-metal shroud were
set at 1144 K (16000 F) for current mate
ri~ls and 1200 K (17000 F) for advanced
materials. Both the composite and all~metal

shrouds were assumed to only be impingement
air cooled. The gas and coolant conditions
assumed were those of an advanced gas tur
bine.

The overall thickness of the composite
wall shroud was kept the same as on typical
all-metal shroud (5.59 mm (0.220 in.)). The
solid metal wall thickness of the composite
shroud was held constant at 2.03 mm (0.080
in.) to maintain structural integrity. The
variables investigated for the composite
shroud were (1) ceramic thicknesses from 0.5
to 3.06 mm (0.02 to 0.12 in.), (2) corre
sponding porous-metal thicknesses from 3.06
to 0.5 mm (0.12 to 0.02 in.), (3) porous
metal density from 10 to 50 percent of a
fully dense material, and (4) two porous
metals with thermal conductivities that dif
fered by a factor as much as 6, and (5) ra
tios of cooling airflow to turbine gas flow
from near zero to 0.03.

The data are presented as curves of
temperatures through the composite shroud
for various coolant- to gas-flow ratios for
selected thicknesses of layers and for vari
ous porous-metal densities. Comparisons are
made between the various composite shroud
combinations and the all- metal shroud.

SYMBOLS

A
Ac

parameter, see eq. (4)
impingement cooling airflow

area
blade chord
constants
diameter of impingement

cooling holes
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d
h
K
m
Nu
Pr
R
Rc
Re
T
V
W
Xc

z

Subscripts:

b
c
g
i

o
P
pl
p2
w
x

porous metal relative density
heat transfer coefficient
thermal conductivity
exponent, see eqs. (3) and (6)
Nusse It number
Prandtl number
thermal conductance, KIT
coolant- to gas-flow ratio
Reynolds number
temperature
ve loc ity
fl ow rate
distance between impingement

holes
impingement jet-to-wall

distance
tip-clearance to blade-span

ratio
viscosity
thickness

ceramic thermal barrier
cooling air
gas
inside (toward coolant side),

see eq. (1)
outside (toward gas side)
porous metal
porous-metal type 1
porous-metal type 2
metal support structure
flow rate, cross flow air

ANALYSIS AND CONDITIONS

HEAT BALANCE - An element of the com
posite turbine shroud, shown in Fig. 1, was
analyzed for the assumed engine conditions
and geometry shown in Table 1. Radiation
was neglected and heat flow was assumed one
dimensional through the ceramic thermal
barrier, the porous-metal interlayer, and
the metal wall. The effective gas and cool
ing air temperature Tg and Tc were
assumed equal to their respective total tem
peratures. For these assumptions the heat
flow equations are

hg(Tg - Tbo) = Rb(Tbo - Tbi) = Rp(Tpo - Tpi)

= Rw(Two - Twi) = hc(Twi - Tc) (1)

This set of equations was used in a computer
program to calculate the desired surface and
interface temperatures. Equations (1)
required gas- to-surface and surface-to-
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(7)

coolant heat transfer coefficients. The
gas-to-surface heat transfer coefficient was
obtained from the equation of heat transfer
reported in reference (6). This equation,
developed from experimental heat transfer
studies on a turbine shroud, is

NUg = hgC/Kg = 0.052 Reg
O.8(l - 20°. 8) (2)

where 6 is the tip-clearance to blade-span
ratio. The gas-side Reynolds number Re
was evaluated at an assumed average gas ~ach
number of 0.8, the characteristic dimension
of the blade chord, and the gas properties
near the shroud surface. The transport gas
properties were obtained from the data of
reference (7).

Impingement cooling of the metal wall
was assumed. For this cooling method, the
coolant-side heat transfer coefficient was
obtained from the correlation from reference
(8), which in the notation of this report is

Nu = h D /K = AS Rem PrO•33(Z/D )0.091 (3)c . c c c c c c
where, for an assumed 3000 < Re c < 30 000,

A = eXP[0.026(Xc/Dc)2 - 0.8259(Xc/Dc) - 0.398~

(4 )

B = 1{1 + 0.4696(WxI/WcDdo.965] (5)

m= -0.00252(Xc/Dc)2 + 0.06849(Xc/Dc ) + 0.50699

(6 )

The following fixed geometry values were
assumed for the previous equations: ratio
of jet-to-wall distance to hole diameter
IIDc = 15, a ratio of hole spacing-to
diameter (Xc/Dc) = 10, a ratio of crossflow
to jet-flow (Wx/Wc) = 1.0, and a hole di
ameter Dc = 0.51 mm (0.02 in.). Substitu
ting these values into equations (4) to (6)
and then into equation (3) along with appro
priate coolant properties values from refer
ence (7) results in

h
c

= c ReO. 94
1 c

where
c1 = 3.73x10-2 W/m2/K

The coolant Reynolds number was determined
from the following equation:

Stepka and Ludwig

5



Re c = WcDc/Ac~c

where for the given values of the coolant
temperature, assumed geometry of the
impingement holes, diameter of the turbine
shroud, and shroud width gives

where
c2 = 2.0x104 sec/kg

(8)

(9)

This equation is then substituted into equa
tion (7), which for assumed turbine gas flow
rate and values of coolant- to gas-flow
ratio Rc, and provides the needed values
of coolant-side heat transfer coefficients.

COMPOSITE SHROUD CONFIGURATIONS AND
MATERIALS - Fig. 1 depicts the composite
shroud configuration consisting of a metal
support, an interlayer of porous metal, and
a sprayed ceramic layer which is exposed to
the turbine gas flow. The overall radial
thickness of the shroud was 5.59 mm (0.220
in.) and was based on the consideration of
replacing a specified all-metal shroud with
ceramic composite shrouds. Analysis of the
relative structural strengths of the shrouds
was not made since it was considered outside
the scope of the present paper. The raaial
thickness of the metal support base was se
lected to be 2.03 mm (0.080 in.) for all
configurations. Therefore the combined ra
dial thickness of the ceramic and porous
metal layers was 3.56 mm (0.140 in.) for all
configurations. The thicknesses of the ce
ramic and porous-metal layers were varied
and the temperatures and cooling flow re
quirements were determined. The porous
metal thickness was varied from 0.5 to 3.06
mm (0.02 to 0.12 in.) which corresponds to a
ceramic thickness variation of 3.06 to 0.5
mm (0.12 to 0.02 in.) (see Table 2). The
density of the porous-metal interlayer was
also an independent variable in the study
and was varied from 0.1 to 0.5 of solid
metal.

The values of thermal conductivity
needed for the conductance terms in equation
(1) for the metal wall (MAR-M-509) and the
ceramics (yttria stabilized zirconia) were
obtained from references (9) and (10), re
spectively. Two different porous metals
composed of the same materials (FeNiCrA1Y)
were considered; they differed in structure
and thermal conductivity. Porous-metal 1
was a felt-type material and porous-metal 2
was an open-cell foam-type material. The
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thermal conductivity for porous-metal type 1
was obtained from the following equation
which was fitted to the data of reference
(11) for various relative densities dp
and average temperatures Tp:

-4
1 (5.4x10 T)

Kpl = 4.5 dp•38 e P W/m/K (10)

since there was no empirical data for the
thermal conductivity for porous metal 2, it
was assumed that the thermal conductivity
was a linear function of material density.
The published thermal conductivity data for
100 percent dense FeNiCrA1Y alloy (12} was
adjusted for density by the following equa
tion:

Kp2 = dp(6.38 + 0.018 Tp) W/m/K (11)

RESULTS AND DISCUSSION

The results of the heat transfer analy
sis of composite shroud designs and compari
sons with an all-metal shroud (where both
shrouds were impingement air-cooled) are
presented in Figs. 2 to 4. The composite
shroud is illustrated in Fig. 1, and the
assumed engine conditions and geometry are
given in Table 1.

COMPARISON OF COMPOSITE AND ALL-METAL
SHROUDS - The calculated results for the
all-metal shroud for coolant- to gas flow
ratios as high as 0.06 are shown in Fig.
2(a). The figure shows little reduction in
metal temperature with increasing coolant
flow ratio. The calculations showed that
the specified maximum metal temperature of
1144 K (16000 F) could not be obtained
even with a coolant- to gas-flow ratio as
high as 0.10. Therefore, for the conditions
of the analysis, impingement cooling alone
is not suffic~ent or practical for the all
metal shroud. The impingement cooling would
need to be supplemented by film-cooling, or
the shroud would require low thermal conduc
tivity rub material on the gas side to re
duce the heat flux, metal temperatures, and
cooling flow ratio.

By way of comparison, Fig. 2(b) shows
the temperatures in the composite shroud.
The composite shroud in Fig. 2(b) consisted
of 1.78 mm thickness of ceramic and a 1.78
mm thickness of porous-metal 2 with a 0.2
density. The metal temperatures for the
composite shroud are significantly lower
than for the all-metal shroud at the same or
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lower coolantflow ratios. Data in Fig.
2(b) for the compositeshroud indicatethat
the maximum allowablemetal temperatureis
reachedat a coolant- to gas-flowratio of
0.02. The data in Fig. 2(b) show the very
large insulativeeffect of the ceramic. For
example, at a coolant-to gas-flowratio of
0.02 the temperaturedrop throughthe ceram-
ic layer is 426 K (7660 F). Another ob-
servationis that the combined insulative
effect of the ceramic layer and porous-metal
layer causes the gas-sideceramicsurface
temperatureto be very near the gas tempera-
ture.

EFFECTSOF POROUS-METALDENSITYAND
THERMALCONDUCTIVITY- Fig. 3 shows the tem-
peraturesof compositeshrouds (ceramicand
porous-metallayerseach 1.78 mm thick) as a
functionof coolingflow ratio for porous-
metal types I and 2 (with different
densitiesand with inherentdifferencesin

thermalconductivities). For the two densi-
ties and for the range of porous-metaltem-
peraturesin Fig. 3, it can be determined
from equations(10) and (11) that porous-
metal 2 has a thermalconductivityfour to
six times higher than porous-metal1. For a
densityof 0.2 and a temperatureof 1144 K
(16000F), porous-metal2 has a thermal
conductivity5.9 higher than porous-metal1.

Fig. 3 shows the effect of increasing
the densitiesof the porousmaterialsfrom
0.2 to 0.5. As density is increased,the
porous-metalgas-sidetemperatureis re-
duced; this occurs becausethermalconduc-
tivity increaseswith density,thus result-
ing in increasedheat transferfrom the por-
ous metal. The beneficialeffect of the
greaterthermalconductivityof porous-metal
2 compared to porous-metal1 is apparent
when comparingFig. 3. Fig. 3 also shows
that the coolant- to gas-flowratio required
to obtain the 1144 K (16000F) maximum
porous-metaltemperatureis 0.02 for porous-
metal 2 with a 0.2 density. However,
porous-metalI with a 0.2 densitycould not
be cooled to this temperatureeven with very
high coolantflows, if the densityof
porous-metal1 was increasedto 0.5, the

maximum allowableporous-metaltemperature Stepka and Ludwigcould be obtainedat a coolantflow ratio of
0.024.

In the design of a compositeshroud, 8
the configurationparametersincludethe
layer thicknessesas well as the porous
metal densityand thermalconductivity. The
porous-metaldensity,layer thickness,and
structure(felt,foam, or woven), in addi-



tion to their effect on heat flow and shroud
temperatures,are factorswhich will affect
the stress,adherence,and durabilityof the
compositewall. Although stress analysisis
not addressedin this paper, a genera]ob-
servationfrom thermalstress and cyclic
life considerationsis that lower porous-
metal densitieswith their associatedlower
modulus of elasticityare desired. Froma
considerationof handlingand structural
integrity,a lower limit on the densityof
the porouswall is assumedto be about 0.2.

EFFECTSOF LAYER THICKNESS- Fig. 4
presentsthe resultsof the analysisin a
form which shows how porous-metaltempera-
ture varieswith changes in thicknessesof
the ceramicand porousmetal layersfor a
given coolantflow ratio.

The effect of the differentthermal
conductivitiesof the two differentporous
materialsis apparentfrom Fig. 4. A gener-
al observationis that, as the ceramic layer
thicknessdecreases,the porous-metalden-
sity must increaseto maintain a given tem-
perature. This is due to the fact that a
higher thermalconductivityin the porous-
metal,is requiredto accommodatethe in-
creasedheat flux and to maintain the allow-
able temperaturelimitson the porousmetal
at 1144 K (1600° F) for currentmaterials
or 1200 K (17000F) for advancedmaterials.

Fig. 4 shows that the higher the
allowableporous-metaltemperature(1200 K
(17000F)) is, the lower the porous-metal
densitiesat a given ceramiclporous-metal
thicknessratio can be. Inspectionof
Fig. 4 also revealsthat the porous layer
temperaturedecreaseswith decreasingporous
layer thicknessand increasingceramiclayer
thicknessfor a constantporous layer den-
sity. As the porous-metaldensity is in-
creased,the porous-metaltemperatureis
decreasedfor given ceramicand porous-metal
thicknesses. As an example,for a 0.2 den-
sity and a 1144 K (1600° F) temperature
limit,porous-metalI would need to be about
0.91 mm (0.036 in.) thick with a layer of
ceramic2.64 mm (0.104 in.) thick to satisfy
the heat load and coolingconditionsselec-

ted. On the other hand, porous-metal2 with Stepka and Ludwigthe same densitywould be 1.78 mm (0.07 in.)
thick with a 1.78 mm (0.07 in.) thick layer
of ceramic. The choice,as stated in the
previoussection,would be influencedby 9
thermalstress considerationswhich dictate
a selectionof the lowermodulusporous
layer,that is, porous-metal 2 with



the thickerporousmetal layersand the
correspondinglythinnerceramic layer.

SUMMARYOF RESULTS

The analysisprovideda basis for eval-
uating the effects of variableson the de-
sign of compositeturbineshroudswhich con-
sisted of the metal case wall, an interlayer
of a porousmetal, and an outer layer of
ceramic (yttriastabilizedzirconia). The
resultswere as follows:

1. Significantreductionsin the cool-
ing-airto gas-flowratio are indicatedfor
the compositeshroudscomparedto an all-
metal shroud that was only impingementair
cooled. This is based on the same maximum
allowabletemperaturefor the all-metal
shroud and for the porousmetal interlayer
of the compositeshroud.

2. The good insulatingpropertiesof
the ceramicsignificantlyreducedthe tem-
peraturesof the porousmetal and support
wall, but also caused the gas-sidesurface
temperatureof the ceramicto be essentially
at the gas temperature.

3. For a given porous metal densityand
coolant-to gas-flowratio, decreasingthe
thicknessof the porous-metaland in-
creasingceramicthicknessresulted in lower
supportwall temperatures.

4. To maintain given allowableinter-
layer temperaturesand coolant- to gas-flow
ratios,porous-metaldensityor thermal
conductivitymust increaseas the ratio of
the thicknessof the ceramic-to-porousmetal
decreases.

CONCLUDINGREMARKS

In general,thermalcycle lifeconsid-
erations (refs.5 and 13) would indicate
more compliant,lower densitiesof porous
metal for the compositewall designs. Also
the porous layer thicknessmust be large
enough to providethe needed strain isola-
tion betweenthe ceramic layer and the metal
base. Thereforea high thermalconductivity
at a low densityin the porous layer is
needed. Based on the foregoingand an as-
sumed lower limiton porous-metaldensity Stepkaand Ludwig
(consideringthe compositewall handlingand
structureintegrity)a 1.78 mm (0.07 in.)
thicknessof porousmaterial2 with a den- 10
sity of 0.2 and a 1.78 mm (0.07 in.) thick-
ness of ceramicappearsto be a good compos- \

ite wall configurationsfor the assumedcon-
ditions.



The insulatingpropertyof the ceramic
layer causes the ceramicsurfacetemperature
to be almostequal to the engine gas temper-
ature. A detrimentalresult of the high
surfacetemperaturewould be an increasein
radiationto turbineparts. This may re-
quire supplementalcoolingof these parts.

. A beneficialeffectof the high ceramictem-
peraturemay be improvedabradabilityof the
ceramicduring a blade rub.
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Table 1. - Assumed Engine Conditions and
Geometry

0.8

• 0.02

756 (900)

113.6 (250)

1144 (1600)
1200 (1700)

Gas total temperature
at shroud, K (o F). • 1589 (2400)

Gas total pressure, atm ••.•••••• 25
Gas flow rate, kg/sec

(lb/sec) •••• '••
Turbine tip diameter,

cm (in.). • • • • • • 96.5 (38)
Blade chord, cm (in.) •••••• 3.05 (1.2)
Blade tip clearance

to-span ratio •••••
Gas average absolute

Mach number • • • • •
Cooling air temperature

to shroud, K (O F) ••••
Allowable porous-metal

temperatures, K (O F):
Current material ••••
Advanced material •••
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Table 2. - CompositeWall Layer Thicknesses

Configu- Ceramiclayer Corresponding
ration thickness,_b porous-metal

layer thickness,Tp
mm in.

, mm i n.

I 0.50 0.02 3.06 0.12

2 0.76 0.03 2.79 0.11

3 1.27 0.05 2.29 0.09

4 1.78 0.07 1.78 0.07

5 2.29 0.09 1.27 0.05

6 2.79 0.11 0.76 0.03

7 3.06 0.12 0.50 0.02
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