

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19800019056 2020-03-21T16:49:59+00:00Z

CLARKSON COLLEGE OF TECHNOLOGY
POTSDAM, NEW YORK 13676

A MICROPROCESSOR BASED HIGH SPFED PACKET SWITCH FOR

SATELLITE COMMUNICATIONS

(HASH-CR-163357) A SICSOPROCESSOR BASED 	 N80-27557
HIGH SPEED PACKET SNITCH FOR SATELLITE
CONNOVICATIODS Final Report, 15 Apr. 1978
30 May 1980 (Clarkson Coll. of Technology) 	 Unclas

347 p 8C A15/NP A01	 CSCL 17B 63/32 28062

Prepared for

National Aeronautics & Space Administration
Lewis Research Center
21000 Brookpark Road

Cleveland, Ohio 44135

Final Report

on

Grant No. NSG-3191
James Rotnem - Project Officer
April 15, 1978 - May 30, 1980

Mohammed Arozullah - Principal Investigator
Stephen C. Crist - Co-Investigator

Grant Title: Design of a Microprocessor-Based
High Speed Space Borne Message
Switch.

I

L.'
	

ABSTRACT

This report is concerned with lesign and evaluation of a

microprocessor based high speed space-borne packet switch. Three
I

designs namely,a single, three and multiple processor designs

are presented. System architectures for these three designs are

presented. Further, the hardware circuits, and software routines

required for implementation of the three and multiple processor

designs are also presented. A bit-slice microprocessor is used.

This processor has been designed and microprogrammed. Maximum

throughput has been calculated for all three designs. Queue

theoretic models for these three designs have been developed and

utilized to obtain analytical expressions for the average waiting

times, overall average response times and average queue sizes.

From these expressions graphs have been obtained showing the

effect on the system performance of a number of design parameters.

ii

TABLE OF CONTENTS

Page

i1.	 INTRODUCTION	 1

1.1 Problem Definition 	 2

1.2 Approach'to the Problem	 3

2. SYSTE24 DESIGN CONSIDERATIONS	 5

2.1 Protocols	 5

2.2 Packet Construction	 6

2.3 The Prior Architecture	 7

I	 2.4 Processor Workload Divisions		 13
,

2.5 Resource Contention Among Processors		 14
,

3. THE THREE PROCESSOR DESIGN		 •	 •	 •	 • •	 23

3.1 System Hardware		 23

3.1.1 The input Buffers		 23
3.1.2 The Input Buffer Polling Circuit		 27
3.1.3 The Input Switching Network	 29
3.1.4 The Shift Register Array 		 31
3.1.5 The Output Queue Lists 		 35
3.1.6 The Output Switching Network 		 44
3.1.7 The Output Buffers		 46
3.1.8 The Output Status Words 		 49
3.1.9 The Empty Shift Register List	 52

3.2
I

The Processors		 55

3.2.1 General Processor Architecture 55
3.2.2 The Instruction Execution Unit		 57
3.2.3 Microprogram Word IEU and System

Hardware Control Fields		 61
3.2.3.1 ALU Source Fields 		 63
3.2.3.2 ALU Function Fields 		 68
3.2.3.3 ALU Destination Fields 		 68

s 3.2.3.4 Bus Control Fields	 . .	 68
3.2.3.5 System Hardware Control Fields 68

3.2.4 The Microprogram Control Unit	 69
E 3.2.5	 Processor Timing		 74

3.3 System Software		 74

3.3.1 The Input Service Routine 		 77
3.3.2 The Routing Service Routine		 79
3.3.3 The Output Service Routine 		 86

iii

Page
C.

4. THE MULTIPLE PROCESSOR DEIGN • • • 	 94

	

4.1 The System Architecture 	 94

	

4.2 Shared Resources	 99

	

4.2.1 The Shift Register Array	 100

	

4.2.2 The Output Queue Lists 	 101
4.2.3 ELIST102

4.2.3.1 Processor-Controlled^ELIST	 103
4.2.3.2 Hardware-Controlled ELIST 	 106

	

4.3 The input System	 115

4.3.1 Architectural Workload Division . 	 117

	

4.3.1.1 Master/Slave Scheduling 	 118

	

4.3.1.2 Separate Systems 	 121
4.3.2 The Input Processors 		 124

	

4.3.3 The Input Service Routine	 124

	

4.4 The Routing System 	 127

4.4.1 Architectural Workload Division 127
4.4.2 Packet Routing Data Ports		 131
4.4.3 The Packet Sorting Processors		 139
4.4.4 The Packet Sorting Service Routine 141
4.4.5 The Packet Routing Processors		 144
4.4.6 The Packet Routing Service Routine	 . .	 148

	

4.5 The Output System	 152

4.5.1 Architectural Workload Division.. 	 152

	

4.5.2 The Output Processors	 156

	

4.5.3 The Output Service Routine	 156

5. EVALUATION AND TUROUGHPUT ANALYSIS . . • • • 	 166

	5.1 Performance Evaluation 	 166

5.1.1 Throughput Estimation for the Three
Processor System	 166

5.1.2 Throughput Estimation for the Multiple

	

Processor System 	 171

	

5.2 Evaluation of the Processor	 183

	

5.3 Packet Losses	 185

	5.4 Fault Detection and Fault Tolerance	 188

iv

QUEUE THEORETIC MODELLING FOR CALCULATION OF
THE AVERAGE RESPONSE TIMES AND THE AVERAGE
QUEUES IZES 191

6.1 Introduction	 191

6.2 Design Parameters of the Switch	 191

6.3 The Single Processor Design	 192

6.3.1 Introduction 192
6.3.2 Parameters of the Input Queue 194
6.3.3 Parameters of the Output Queue	 196
6.3.4 Parameters of the Queue for Routing

Service 198
6.3.5 Expression for the Average Response

Time	 199
6.3.6 The Average Queue Sizes	 203
6.3.7 Interpretation of the Graphs Showing

the Effect of the Various Design
Parameters on the Performance of the
Proposed Packet Switch	 204

6.4 The Three Processor Design	 212

Page

6.4.1 Introduction.	 212
6.4.2 Expressions for the Waiting Times

at the Various Queues and the

	

Overall Average Response Time 	 212
6.4.3 Expressions for the Average Queue Sizes	 214
6.4.4 Interpretation of the Graphs Showing

the Effect of the Various Design
Parameters on the Performance of
the Proposed Three Processor Packet
Switch	 	 215

	

6.5 The Multiple Processor Design 	 222

6.5.1 Introduction	 222
6.5.2 Analytical Expressions for the

Waiting Times at the Various Queues
and the Overall Average Response Time	 223

6.5.3 Expressions for the Averac;e Queue

	

Sizes at the Various Queues 	 226
6.5.4 Interpretation of the Graphs Showing

the Effect of the Various Design Para-
meters on the Performance of the
Proposed Multiple Processor Packet
Switch	 	 227

	

6.6 Conclusions 	 230

v

Page

7 .0	 Summary		 231

7.1	 Suggestions for Future Work	 231

7.2	 System Throughputs	 231

7.2.1	 Single Processor Packet Switch	 232

7.2.2	 Three Processor Packet Switch.		 232

7.2.3	 Multiple Processor Packet Switch	 232

7.3	 Queue Theoretic Results		 234

REFERENCES.		 235

APPENDIX A:	 INPUT SERVICE ROUTINE MICROCODE	 319

APPENDIX B:	 PROCESSOR-CONTROLLED ELIST. 		 324

i

vi

LIST OF FIGURES

`-^	 Fie
2.1	 Single Processor System Architecture

3.1	 Three Processor System Architecture

3.2	 Input Buffer for One User

3.3	 Input Buffer Polling Circuit

3.4	 Single Data Path in the Input Switching
Network

3.5	 Input Data Path Busy Port

3.6	 One Location in the Shift Register Array

3.7	 Shift Register Polling Circuit

3.8	 Output Queue List Data Structure	

3.9	 Am 29705 Two-Port PAM • • • • • • . • • . • .

3.10	 One Output Queue List

3.11 One Data Path in the Output Switching Network . .

3.12	 Output Data Path Busy Port

3.13	 One Output Buffer

3.14 One Output Status Word and the Output Buffer
Polling Circuit

3.15	 The Empty Shift Register List Data Structure . .

3.16	 The ELIST Hardware 	

3.17	 The Processor Architecture

3.18	 The IEU for the Input and Output Processors . . .

3.19	 Tile Routing Processor's IEU

3.20	 Am 2903 Four-Bit ALU Slice

3.21	 Addressing Matrix

3.22	 Input Processor IEU UW Control Fields

3.23	 Routing Processor IEU WW Control Fields	 .

Page

10

24

26

28

30

32

33

36

37

39

41

45

47

48

50

53

54

56

58

59

60

62

64

65

vii

Figure Page

3.24 Output Processor IEU uW Control Fields	 66

3.25 ALU Control Fields	 67

3.26 Microprogram Control Unit	 70

3.27 An 2911 Microprogram Sequencer	 71

3.28 MCU uW Control Fields	 72

3.29 Jump Control Logic Functions	 73

3.30 Processor Clock Waveforms 	 76

3.31 Input Service Routine Flowchart	 78

3.32 Input Service Routine	 80

3.33 Packet Routing Service Routine Flowchart	 81

3.34 Packet Routing Service Routine 	 87

3.35 Output Service Routine Flowchart	 89

3.36 Output Service Routine	 92

4.1 The Multiple Processor System Architecture 	 .	 .	 . 95

4.2 Processor-Controlled ELIST Architecture 104

4.3 ELIST Data	 Input Port	 108

4.4 ELIST RAM Structure	 110

4.5 ELIST Data Structure 	 111

4.6 ELIST Input Port Hardware Timing Diagram 112

4.7 ELIST Data Output Port	 113

4.8 FLIST Output Port Hardware Timing Diagram 116

4.9 Input System Architecture	 "A"	 119

4.10 Input System Architecture	 122

4.11 Input Processor IEU Microprogram Control Fields 125

4.12 Input Processor MCU Control Fields and Jump
Control Logic Function	 126

Viii

Fi ure Page

4.13 Input Service Poutine Flowchart	 128

4.14 Input Service Routine		 130

4.15 System Architecture for a Single Packet Sorting
Processor		 132

4.16 System Architecture for a Single Packet Routing
Processor		 133

4.17 A Single Packet Routing Data Port	 136

4.18 Packet Routing Data Port Polling Circuit		 137

4.19 Packet Routing Data RAMS		 138

4.20 Packet Routing Data List Data Structure	 140

4.21 Packet Sorting Processor IEU Microprogram
Control	 Fields		 142

4.22 Packet Sorting Processor MCU Control Fields
and Jump Control Logic Function	 143

4.23 Packet Sorting Service Routine Flowchart		 145

4.24 Packet Sorting Service Routine 		 14;

4.25 Packet Routing Processor IEU 		 149

4.26 Packet Routing Processor IEU Microprogram
Control Fields		 150

4.27 Packet Routing Processor MCU Control Fields
and Jump Control Logic Function,		 151

4.28 Packet Routing Service Routine Flowchart		 153

4.29 Packet Routing Service Routine 	 155

4.30 System Architecture for a Single Output
Processor	 157

4.31 Output Processor IEU Microprogram Control
Fields	 158

4.32 Output Processor MCU Control Fields and
Jump Control Logic Function 	 159

4.33 Output Service Routine Flowchart		 162

4.34 Output Service Routine	 .	 . .	 164

A

t9r d.

Figure	 Page

5.1	 System Throughput as a Function of the Number
of Processors 	 176

5.2	 System Throughput as a Function of the Number
of Userb	 .	 180

6.1	 The Queuing Model : 236

6.2	 The Modified Queuing Model. 237

6.3	 Average Waiting Time Vs. Utilization Factor at
Queue 1 .	 238

6.4 Average Waiting Time Vs. Utilization Factor p2
at Queue 2 With p l As A Parameter , 239

6.5 Average Waiting Time Vs. Utilization Factor p3
at Queue 3 With p 1 and p 2 As Parameter. 240

6.6 Average Waiting Time Vs. Utilization Factor p3
With p l and p2 As Parameters.	 (Queue 3)	 241

6.7 Average Waiting Time Vs. Utilization Factor at
Queue 3 With p and p 2 As Parameters.	 242

6.8 Average Waiting Time Vs. Utilization Factor p3
At Queue 3 With pl and p2 As Parameters 243

6.9 Average Waiting Time Vs. Utilization Factor p3
With p 1 and p2 As Parameter 244

6.10 Average Waiting Time Vs. Utilization Factor p3
With pl and p2 As Parameters.	 245

6.11 Average Waiting Time at Queue 1 Vs. Clock Cycle
Time of The Processor.	 (For the Proposed Design
0 - 120 ns.) 246

6.12 Average Waiting Timr. at Queue 2 Vs. Clock Cycle
Time of The Processor. (For the Proposed Design
0 - 120 ns.).	 247

6.13 Average Waiting Time At Queue 3 Vs. Clock Cycle
Time of The Processor. (For the Proposed Design
^ - 120 ns.) 	 248

6.14 Overall Average Response Time Vs. Packet Size B
With p l , p2 and p3 As Parameters. 249

6.15 Overall Average Response Time Vs. Destination
Functions. (X-10 packets/sec., B=1024 bits,
0=120 ns, p 1-.2325, p 2=.2685, p3=.48075,
S i = ^M8)

	

	 . .	 250

x

a

g=gam=	 Page

 - 6.16 Overall Average Response Time Vs. Destination
Functions. (1-10 packets/sec., B-1024 bits,
4-120 no t p1-.2325, p2-.2685, P3-.480751
Si = yiABS)	 251

6.17 Overall Average Response Time Vs. a in Si =-a. . 252

6.18 Overall Average Response Time Vs. a in S i - XBy ia. 253

6.19 Overall Average Response Time Vs. a in

Si - AByi +
a8 (a-1)

Byi254

E
i

6.20 Overall Average Response Time Vs. a in S i - lMa .	 255

6.21 Overall Average Response Time Vs. a in S i - iBYia. 256

6.22 Overall Average Response Time Vs. a in

AB(a-1)
Si - 11BYi + . 257

E Vow,

i

6.23 Average Queue Size Vs. Utilization Factor at
Queue 1	 258

6.24 Average Queue Size Vs. Utilization Factor at
Queue 2 With pl As A Parameter	 259

6.15 Average Queue Size Vs. Utilization Factor At
Queue 3 With p l and p 2 As Parameters	 260

6.26 Average Queue Size Vs. Utilization Factor At
Queue 3 With p l and p 2 As Parameters	 261

6.27 Average Queue Size Vs. Utilization Factor At
Queue 3 With p l and p 2 As Parameters	 262

6.28 Average Queue Size Vs. Utilization Factor At
Queue 3 With p l and p 2 As Parameters	 263

6.29 Average Queue Size Vs. Utilization Factor At
Queue 3 With p l and p 2 As Parameters	 264

6.30 The Queueing Model For The Three Processor Design. 265

7

xi

F- i=	 P-ne
r

-	 6.31 Average Waiting Time Vs. Utilization Factor
(,.)	 At The Input Queue 265

6.32 Average Waiting Time Vs. Utilization Factor
e!	 At The Routing Queue: (No Contention) 267

6.33 Average Waiting Time Vs. Utilization Factor
At The Routing Queue. (Contention at all times) 268

6.34 Average Waiting Time Vs. Utilization Factor
At The Output Queue. (No Contention). 269

6.35 Average Waiting Time. Vs. Utilization Factor
At The Output Queue. (Contention at all times). 270

6.36 Average Queue Size Vs. Utilization Factor At
The Input And The Routing Queues. (No
Contention 	 271

6.37 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Input Queue. (For The
Proposed Design 0=120ns) 272

6.38 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Routing Queue. (No
Contention For The Proposed Design o-120ns). . . 273

6.39 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Routing Queue. (Contention
At All Times For The Proposed Design 0-120ns). . 274

6.40 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Output Queue. (No
Contention For The Proposed Design ^-120ns). . . 275

6.41 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Output Queue. (Contention
At All Times For The Proposed Design m-120ns).	 276

6.42	 Average Waiting Time Vs. Utilization.Factor
At The Input, Output and Routing Queues. 277

6.43 Overall Average Response Time Vs. Utilization
Factors At The Input, Output and Routing Queues. 278

6.44 Average Waiting Time 	 Clock Cycle Time Of
The Processor At The Input Queue 279

6.45 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Output Queue. 	 280

6.46 Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Routing Queue 281

xii

Fiqure

6.47

6.48•

Pale

Overall Average Aesponse Time Vs. Packet
Size B with q , P 2 and p 3 As Parameters. 282

Overall Average Response Time Vs. Destination
Functions '	 283

6.49 Overall Average Response Time Vs. Destination
Functions 284

6.50 Overall Average Response Time Vs. a in Si s LMa. 285

6.51 Overall Average Response Time Vs. a in

Si
M XBy ia		 , 286

6.52 Overall Average Response Time Vs. a in

18(a-1) AB
Si s lBy i +	 .	 . 287

E ABi
6.53 Overall Average Response Time Vs. a in Si	

11a. 288

6.54 Overall Average Response Time Vs. a in

Si
M 	AByia 289

6.55 Overall Average Response Time Vs. a in

XB(a-1) A
. 290

E —B
i

6.56 Average Queue Size Vs. Utilization Factor At
The Input Queue 291

6.57 Average Queue Size Vs. Utilization Factor At
The Routing Queues 292

6.58 Average Queue Size Vs. Utilization Factor At
The Output Queue	 293

6.59 Average Queue Size At The Output Queue Vs. The
Number of Output Lines 294

6.60 Average Queue Size ;t The Output Queue Vs. The
Number of Output Lines	 295

6.61 Average Queue Size At The Output Queue Vs. The
Packet	 Sire 296

6.62 Average Queue Size At The Output Queue Vs.
Packet Size 	 297

6.63 Average Queue Size At The Output Queue Vs. The
Clock Cycle Time 	 298

xii

..

Figure	 Page

6.64 Average Queue Size At The Output Queues Vs. The
{	 Clock Cycle Time 299

6.65 The Queueing Model For The Multiple Processor
Design	 .	 ,	 .	 300

6.66 Average Waiti,;g Time Vs. Packet Arrival Rate At
The Input Queue	 301

6.67 Average Waiting Time Vs. Packet Arrival Rate At
The Input Queue	 302

6.68 Average Waiting Time Vs. Packet Arrival Rate At
The Input Queue 	 303

6.69 Average Waiting Time Vs. Packet Arrival Rate At
The Output Queue	 304

6.70 Average Waiting Time Vs. Packet arrival Rate At
The Output Queue 305

6.71 Average Waiting Time Vs. Packet Arrival Rate At
The Output Queue 306

6.72 Average Waiting Time Vs. Packet Arrival Rate At
The Routing Queue 	 307

6.73 Average Waiting Time Vs. Packet Arrival Rate At
The Routing Queue 	 308

6.74 Average Waiting Time Vs. Packet Arrival Rate At
The Routing Queue 	 309

6.75 Average Waiting Time Vs. Packet Arrival Rate At
The Sorting Queue 	 310

6.76 Average Waiting Time Vs. Packet Arrival Rate At
The Sorting Queue 	 311

6.77 Average Waiting Time Vs. Packet Arrival Rate At
The Sorting Queue 	 312

6.78	 Overall Average Waiting Time Vs. Packt;. Size 	 313

6.79 Overall Average Waiting Time Vs. Destination
Functions . 	 314

6.80 Average Queue Size Vs. Packet Arrival Rate At
The Input Queue 	 315

6.81	 Average Queue Size Vs. Packet Arrival Rate At
The Output Queue 	 316

6.82 Average Queue Size Vs. Packet Arrival Rate At
The Routing Queue 	 317

xiv

s

Figure	 Page

6.83 Average Queue Size Vs. Packet Arrival Rate At
The Sorting Queue 318

i

xv

5.3

LIST OF TABLES

Pag6

Contention Problems in a Shared Flag System . . . 	 20

Hardware Control Signal Codes 	 25

Microprogram Word Bit Divisions 	 75

Software Execution Times for the Three_
Processor System • 	 168

Software Execution Times for the'Multiple
Processor System	 174

Throughput for Each Processor Class 	 175

xvi

1.0 INTRODUCTION

In the.past decade packet switching has revolutionalized

data communication. In 1960 virtually all interactive data

communication networks used circuit switching, which is the

current technology used in telephone networks 111. Circuit

switching networks preallocate channel bandwidth for an entire

message. However, since most interactive data traffic occurs

in short bursts, a large portion of the bandwidth is wasted.

Thus, as digital electronics became inexpensive and the need

for more digital data communication networks grew as computer

technology expanded, the redesign of data communication net-

works became economically feasible and desirable. Packet

switching was introduced since it allows for the dynamic allo-

cation of bandwidth, which permits users to share the same

transmission line previously assigned to only one user.

Packet switching has improved the economics of data communi-

cation systems, network reliability and functional flexi-

bility [11.

Packet switching networks divide the users' messages into

small segments, or packets, of data which move through the

network towards their destination. All packets are fixed-

length and serial in structure. Packets consist of a header

and a body. The header, which precedes the body, contains

the routing control information which indicates the packet's

E	 source and destination. In addition, the header also con-

tains message reconstruction information for use at the des-

{ T `r	 tination. Since a complete message may occupy more than one

j
	

1

/i

^^0Nr11M^!^

^r++

	 packet,. each header contains a message number and a packet

sequence number. Thus, any packets arriving in a scrambled

sequence can be rearranged to correctly yield the entire
i

message received. The body of a packet contains the data

E '

	

	 being transmitted. The length of each packet within a net-

work is fixed for the entire system.

The routing of these packets is handled by the packet

switches implemented an the network. These special switches

k replace the previous circuit switches found in telephone net-

works and older data communication networks. The scope of

the work presented in the following chapters consists of the

design and evaluation of these packet switches using micro-

processors to control the switching functions.

1.1 Problem Definition

This report examines the problem of designing and evalua-

tiny, multiprocessor-controlled packet switches. (The design

atX evaluation of a single processor version is presented in

1;e,3).) The work presented in the following chapters will investi-

gate: the question of how large a multiprocessor packet switch can

be constructed before the problem of resource contention erodes

the system's performance. The performance of these multiprocessor

designs will be evaluated in terms of their maximum throughput with

respect to the number of users and the number of processors imple-

mented, average delay within the switch, and queue sizes.

These packet switches must be capable of routing packets

among any number of up to several hundred users. In addition,

2

x

all designs must allow the use of these packet switches in

communication satellites as well as in networks using only

land lines. The problems of protocols and error-correction

codes are briefly reviewed in this work.

1.2 Approach to the Problem

System design considerations are examined first. These

considerations include protocols, prior work, workload divi-

sions and resource contention among processors. A review of

protocols and their effects on throughput is presented. Using

the information from this investigation of protocols, a deci-

sion is made on how to handle this prGi)lem.

After the protocol problem is solved, a review of the

prior single processor design is presented. Using the prior

design as a.foundation, the requirements and goals of the

multiprocessor designs are formulated. A review of the prior

design at the functional level allows the workload division

for the three processor design to be made.

Once the workload division is made, the contention pro-

blems relating to the shared resources are investigated. In

this investigation, each shared resource is identified and

their specific contention problems are examined. Various

solutions to these problems are found and presented.

Once all the design considerations that influence the

actual implementation are examined, the system architecture

of the three processor packet switch is designed. The design

of the architecture, its operation and functional requirements

3

^rR

y
ifM

allows the detailed design of the system hardware to be

^^. completed.

once the system hardware is designed, the processors

and their software requirements are defined and designed in

detail.

After the design of the three processor system is com-

pleted, the same design procedure is repeated for the design

of the multiple processor packet switch.

With both designs complete, an evaluation of each system

is carried out. The evaluation determines the maximum through-

put of both architectures. A queue theoretic model is

developed that facilitates analysis of delay and queue sizes
i

j	 within the packet switch.

4

2.0 SYSTEM DESIGN CONSIDERATIONS

The final architectural designs of the multiprocessor-

based packet switches are influenced by several system de-

sign constraints and goals. Some of these are considered in

the single processor architecture (2,3]. Thus, those par-

ticular considerations will be reviewed briefly in this

chapter. The remaining design considerations arose directly

from the use of multiple microprocessors, and shall be dis-

cussed in detail. The review of each design constraint and

design goal will lend an explanation to the approach taken in

the development of the new system architectures.

2.1 Protocols

Much attention was given to the analysis of various pro-

tocols and their effects on the packet switch in the previous

work (2 , 3]. Implementation of a full forward error correc-

tion (FEC) scheme, an End-to-End Automatic-Repeat-Request

(ARQ) scheme, and an Up-Link ARQ scheme were considered. The

results of this research were used to select a protocol scheme

for the multiprocessor architectures.

Since large system throughput is a major goal, any proto-

col which was shown to reduce system throughput was eliminated

from further consideration.

A reduction in throughput was found to be linked to all

protocols requiring the packet switch to maintain special

software. Thus, only protocols which are transparent to the

packet switch will be supported by the multiprocessor

5

rchitectures. Two protocols which fulfill this requirement

re the FEC.scheme and the End-to-End ARQ scheme.

In addition to improving system throughput, "transparent"

protocols offer the users flexibility. Users can custom tailor

protocols to meet their needs. Transparent protocols could be

changed or altered even after the network is completed and

operational. Also, different protocols could be implemented

between different users in the same network.

2.2 Packet Construction

'

	

	 The packet format consists of a body and a header. Pac-

kets are serial in structure with the headerrecedin theP	 g

body. The body length of a packet is fixed for a given system.

However, the selection of this length is generally made from

a range of 256 bits up to 10240 bits. In order to maximize

the throughput of the multiprocessor-based packet switches

under investigation in this report, the recommended body length

is 10240 bits.

The packet header contains information required to route

the packets to their proper destinations. In addition, the

header also contains special information needed by the destina-

tion. Since entire messages may exceed the length of a single

packet, they must be divided into packet-length segments before

transmission. The last packet of a message will be "padded"

with blank characters to fill unused bits in the packet

should the message not require an integer number of packets.

The sfecial header information is used by the destination
f

6

to reconstract entire messages which have been sent via

(several packets. Therefore, should the packets arrive in a
i

scrambled sequence, the message is still recoverable. This

information and the routing information is arranged in vari-

ous fields. These fields contain, in-coded form, the packet's

source, destination, message number and sequence number.

Since the header information is vital for proper packet

transmission, its protection is a system design requirement.

Thus, the header is protected by an error -correcting code.

The Bose-Charedhuri -Horquenghen (BCH) code was chosen for this

task in the original design and is implemented again in the

multiprocessor systems. The cost of this protection is in-

creased hardware and software for both the system users and

the packet switch. However, this increased overhead has been

deemed necessary in order to maintain the integrity of the

network. The header is the only part of the packet which has

error-correction protection that is used directly in conjunc-

tion with the packet switch. Error protection of the packet

body is optional to system users and must be implemented at

the ground stations.

2.3 The Prior Architecture

There are several important design philosophies which

have shaped the architecture of the packet switch. They are

incorporated in the multiprocessor architectures as well as

in the single processor architecture. The following are the

^-^	 design guidelines used for all architectures:

7

1) A fixed packet length must be used by the network.

This simplifies hardware and software requirements.

2) All packet transfers through the switch are done

serially. This eliminates any need for Serial-to-

Parallel and Parallel -to-Serial conversions. (Al-

though all packet transfers are done serially, the

processor accesses the header in parallel.)

3) Since all packet transfers are serial, this operation

is to be managed by dedicated hardware. Processor

control of this function would decrease system through-

put due to the comparatively slow speed of software.

In addition, the use of dedicated hardware o perform

this task allows the processor to spend more time

making decisions and controlling other system opera-

tions.

4). The full capacity of the processor must be utilized

to avoid throughput reduction. This goal is achieved

by regviring that the processor never wait for hard-

ware. This requires parallel hardware for certain

functional blocks. These blocks are initiated into

action by the software. This hardware completes its

assigned task automatically without further software

supervision. All architectures permit several simul-

taneous operations to Le performed, since the processor

is free to move on to new tasks once the hardware is

activated.

4	
,^

8

.z

. a

5) To further increase system throughput, the procv9soi

is only allowed t3 access the header of each p,^+^:ket.

while in the switch, the packet bodies are left un-

touched by the processor. Since the routing informa-

tion needed by the processor is found only in the

header, this design goal is easy to implement.

The final system architecture of the single processor

packet switch ik> presented in Figure 2.1. This packet switch

handles N usere who are allocated one line each. Operation

of the system consists of each user transmitting their packets

to the rr:itch which routes the packets to the proper destina-

tion. The packets arrive at the switch as serial bit streams.

The switch is configured such that any user may communicate

with any other user in the network.

The routing of the users' messages begins with the

buffering of all incoming packets. Each input line is double

buffered. Even with double buffering, the processor service

response time must be short. Buffer overflow will destroy

paci;ets left tor' long in a buffer. In order to avoid packet

lossas, a oininum of processing is done at the input buffers.

As •-oon. ^s a full buffer is detected, the processor immediately

stores the packet in temporary storage. This storage area is

constructed of shift registers arranged in an array.

Once stored in the shift register array, each packet

receives additional service. Their headers are decoded by

the processor to determine each packet's destination. The

I	 routed packets are assigned to software output queues. Use

9

04

M

r

Oa
a

wet
V4 0
y ob <

^
• O

a

M
Y ••

w ,40 w d
w y

6
M r'•

4

^I

a

N 34

10

•

• N

M1Y
3w YO

Ow ba+
y

M

L—:A—1

SL

.

0

I

$4a
V
V

A

r• N

Y to ^7

L+ r0• 7 Gl W
►...4	 v O

p•
u

NH Gr

O^

o+ ^
r. O
•,+ u

rl

N

•

:^
W

of software queues eliminates the need for additional packet

transfers required by hardware queues. Each queue corresponds

to one unique output buffer.

When an output buffer becomes empty, the processor

accesses the associated queue for the next packet awaiting

transmission. Each queue contains the location of each routed

packet in the array awaiting transmission to that queue's

corresponding output buffer. Using this information, the

processor begins the transfer of the queue's oldest packet to

the proper buffer. Once in the buffer, the packet is then

transmitted onto the network channel under hardware control,

The software required to control the packet switch con-

lists of three routines: The input service routine., the back-

ground service routine and the output service routine.

The input service routine is interrupt driven. Execution

of this routine begins when the Data Available (DAV) line of

an input buffer becomes active and is detected by the input

interrupt polling circuit. Equal priority among all users is

ensured by the sequential scanning of these DAV lines.

The first task of this software is the linking of a free

data path in the input switching network to the full buffer.

Next, the address of an empty shift register is fetched from,

the Empty Shift Register List (ELIST). This shift register

is then linked to the full buffer via the data path. Fina?.ly,

the processor initiates the packet's transfer into the array.

This routine has the highest priority and is uninterruptable.

11

ry 	 R)	 4

t.M-0A x

	

	 The background service routine continually scans the

shift register array in search of packets requiring service.

Upon finding one, the processor fetches the header. The header
:r

is corrected, if necessary, by using error pattern data stored

in a Syndrome Decoder ROM. Next, the packet's destination is

t

	

	 determined. The packet's address in the array is then placed

i:i the proper output queue list. However, if this list is

empty and its corresponding buffer is also empty, the processor

will load the packet directly into the buffer. The packet's

array address will then be placed in ELIST. This routine has

the lowest priority since it is not interrupt driven.

Like the input routine, the output service routine is

interrupt driven. Detection of an empty output buffer by the

output interrupt polling circuit forces the execution of this

software package. This routine must first check the output

queue associated with the buffer requesting service. If this

list is empty, the service request "flag" for this particular

buffer is reset and the processor exits from this routine.

However, ii the queue is not empty, the processor then fetches

the array address of the oldest packet in the queue. Using

this address, the processor then links the proper shift regis-

ter to the empty buffer. This link is established via an

available data path in the output switching network. once

the link is complete, the data transfer begins. This routine

has the second highest priority.

12

2.4 processor Workload Divisions

.. - In most. multi-microprocessor systems, the primary design

goal is the identification and separation of all tasks which

are relatively independent 14]. Ideally, this allows each

processor to perform a dedicated task. Thus, each processor

can operate mostly independently of the others. As a result,

	

j	 very little data needs to be exchanged among processors rela-

tive to the total system data flow.

	

:+h	 This design philosophy is implemented in the determination

of the processor workload division for the multiprocessor-

based packet switches. The first step in the implementation

is the identification of each "independent" task. A review

of the single processor design shows that the operation of the

packet switch consists of three major tasks. Each of these

are controlled by independent software routines. The three

tasks are:

1) Storage of received packets (Input Function)

2) Routing of each received packet (Routing or Background

Function)

3) Transmission of each routed packet (Output Function)

Now that the "independent" tasks have been identified,

the workload division can be made; one processor is assigned

to each of the three tasks. The architecture supports an

Input Processor, a Routing Processor and an Output Processor.

Each processor supervises dedicated hardware, executes custom

(-^	 software and shares a minimum amount of common resources.

13

 ...	 T..:	 'SMI

A .1

^}` .Fri 3^ . {^	 M	
	
'. 	 .

4

	
rx	 -	

7;^^	 Mfr- • _ y .. .

^
Pz,

	 e sharing presents many problems and is the next topic

a

— 	3

e

'2.5 Resource Contention Among Processors
3
J

	

	 In most multiprocessor systems, shared resources are

necessary. Unfortunately, they present many control problems
_ 	 3

and may cause reduced throughput. Therefore, they must be	 }

kept to a minimum.

Concern over shared resources arises whenever the possi-

bility of processor contention exists. Contention occurs when

two or more processors simultaneously request access to the

same resource. This is known as a race condition [51. Con-

tention also occurs when one or more processors request access

to a resource currently in use by another processor.

A system's throughput can be severely reduced by conten-

tion in two ways. Simultaneous access of a resource by two

or more processors will cause havoc in the system. Therefore,

special hardware and/or software is required . to schedule re-

source allocation. Only one processor must be granted access

to a particular resource at any given time. This requires

that the other processors be "locked out." Implementation of

any resource locking scheme requiring special system software

will reduce throughput. In addition, processors which become

"locked out" are forced to wait for the busy resource. Pro-

cessor idleness due to contention reduces throughput.

Since increased throughput is the primary goal in the

design of a multiprocessor packet switch, contention must be

14

r"

I R

	

	 minimized. This goal is achieved by first identifying each

shared resource. The following is a list of shared resources

compiled from a review of the system architecture:

'.^	
1) The shift register array

2) ELIST

3) The output queue lists

4) The Output switching network

5) The output-buffers	 i

An analysis of contention problems . for each of these re-

sources is now needed.

All three processors use the shift register array. Each

shift register must assume one of the following states:

1) Empty

2) Holding an unserviced packet

3) Holding a routed packet

4) Shifting out or in a packet in transit

Empty shift registers with their addresses in ELIST can

only be accessed by the Input Processor. Shift registers con-

taining unserviced packets can only be accessed by the Routing

Processor. The Output Processor can only service shift re-

gisters containing routed packets. Thus, any shift register

in one of these three states is free from contention problems.

However, shift registers containing packets in transit

from the array to the output buffers present a contention

^t	 problem. As stated earlier, once a packet transfer is

is

initiated by a processor, dedicated hardware takes control.

'	 Therefore, the processor is now free to start a new task. In

the case of the output processor, the next task is the up-

dating of ELIST with the address of the packet in transit.

ELIST now contains the address of a shift register who's con-

tents are only partially transferred. A resource contention

could occur if the Input Processor uses this location to store

a new packet.

Two solutions to this problem exist. one solution is to

require the output Processor to temporarily hold the address

of each packet in transit. This scheme needs hardware to sig-

nal- the completion of transfers, address storage and additional

control software. Since additional software reduces through-

put, this scheme is not used.

Instead, the scheme used requires the array hardware to

allow the simultaneous transmission of an old packet and the

storage of a new packet at the same location. Although the

shift register array is a shared resource, contention pro-

blems have been avoided.

The shared resources remaining to be examined all have

one thing in common: Each resource is accessed by the Routing

Processor. However, only the output queue lists are accessed

by this processor under normal operation. The Routing

Processor only requires access to ELIST, the output buffers

and the output switching network when a special event occurs.

This event takes place whenever the Routing Processor finds

a packet destined to an output buffer which is empty and who's

16

output queue list is also empty. The Routing Processor re-

sponds by transmitting the packet directly.

In order to deal with this one special operation, allo-

cation of many shared resources is required. This increases

the risk of reduced throughput due to contention. In addition,

throughput will be reduced by the system software required to

manage the resource allocations. Therefore, a decision must

be made whether or not to allow the Routing Processor to

transmit packets as done previously by the background routine

in the single processor design.

Since system throughput is at stake, the Routing Processor

must not be permitted to transmit packets.. Although a new

scheme must be devised to handle this special event, conten-

tion has been completely eliminated from the output buffer

system and the output switching network. (Specific details

on the new scheme are presented next in the contention analy-

sis of the Output Queue Lists.) These resources are now solely

controlled by the Output Processor. In addition, ELIST is now

only accessed by the Input Processor and the Output Processor.

Each output queue list is associated with one unique

output buffer. These lists contain the addresses of routed

packets in the array awaiting transmission. The Routing Pro-

cessor must access these lists to update them with the
7

addresses of newly routed packets. Meanwhile, the Output

Processor must access the lists to find the next packet re-

quiring transmission.
_	 r

{	 Since the Routing- Processor always writes to the lists

while the Output Processor always reads from the lists, dual

17

port RAM's can be used [61. Dual port RAM's permit two pro-

cessors to access them simultaneously provided at least one

processor performs a read operation. Only one processor is

allowed to perform a write operation at one time.

The data structure of the output queue lists is designed

such that if the processors are accessing the same location

the queue is considered empty. Only after the Routing Pro-

cessor updates the list and moves on to the next location can

the output processor read from the once empty list. Thus,

the situation of a concurrent read and write operation at a

single location is avoided. At first glance, the problem of

contention appears to be solved. However, further investiga-

tion is needed to ensure that this is true.

A new output buffer___status word with three states, "busy,"

"empty," and "idle" is now used. An output buffer in the busy

state is in the process of receiving a packet from the array,

receiving output processor service or transmitting a packet.

Once a packet is transmitted, the buffer enters the empty

state which indicates the buffer requires service. An output

buffer is placed in the idle state by the Output Processor

when the buffer becomes empty if its queue list is also empty.

When the Routing Processor encounters a packet destined

for an idle-buffer, it must first update the buffer's queue

list. Then the processor must change the buffer's status

word to indicate the buffer is empty and requires service

from the output processor. This operation replaces the prior

l^,	 scheme of transmitting packets directly. As stated earlier,

18

many contention problems are eliminated by this new scheme.

However, a new subtle problem has arisen.

Table 2 . 1 lists the sequence of events which leads to

the problem. The first line in the table shows that an empty

output buffer is receiving processor service. The buffer's

output queue is currently empty. The Output Processor is pre-
I

"j	 sently accessing this queue. Meanwhile, a packet destined for

this buffer - is being routed by the Routing Processor. The

Routing Processor has just read the status word of this buffer

which indicates the buffer is empty. However, just after the

status word was read, the Output Processor updated it to cor-

rectly indicate that the buffer is idle. Line two in the

s f	 table now shows the new status word. In addition, the Routing
k	 ^

?	 Processor, acting on incorrect information, has placed thex

packet's address into the queue list without updating the

status word. Line three in the table displays the packet's

address residing in the queue list while the status word still

indicates the buffer is idle. Since the Output Processor can

only service buffers in the empty state, this packet is

trapped in the system. This packet will remain trapped until

a new packet arrives for the same destination. The remaining

lines in the table depict the events leading to the recovery

of the trapped packet. Since the recovery time may be quite

long, a solution to this problem must be found.

In order to solve this problem, a locking scheme is im-

plemented for the output queue lists and the associated output

buffer status words. Any time one processor gains access to

19

Y

1

i

I

i

^	 1

1
1

a .^	 1	 a^^^ ^ I	 1	 1	 ^	 1	 1	 1	 1	 1	 I
N

1
^ ^	 1

	1 	 ^

Q	

1	

w ,

^ ^ ^ E 1 ^ ^ N	 g N 1 ' 1
ak a	 1	 +

^ a a 1 ^o a s oa ^O V V	 ^/ V V V V

	

to	 0	 0
M T r4 r4	

1
1
1

N	 d	 tV	 4	
T	 r-I

IA ^	 1	 M ^	 a ^ O

	

1	 ca ^ w	 as

1
1

	

0 0^0 ^ ^ ^a 1 ^

a F-4
	

r4 a a

	

w	 P4

EA

1

1

M	 4>7 !J 1	 .N N	 i^J

	

^w a 9 mI
	 a a	 a,

	

0 V	 41 41 41

i	 a a a

z	 z
1
1

In

	

N m I qr Ln	 r co 'rn o
	1 	 r-I

I
0
W

ro
N
w

b
rox

ro

O
a
a
O
V

0U

CV

GJ
r-I
rd
H

20

one of the queue lists, the other processor is locked out from

that particular queue and its associated buffer status word.

Thus, when a processor is granted access to these resources,

the processor is ensured of obtaining correct data. Although

the queue lists are never accessed by more than one processor

at one time, the dual port RAM's are still used since they

simplify other hardware and software requirements. The locking

scheme requirDs some additional hardware and software. Some

processor idleness may also be encountered. However, although

some system throughput is sacrificed, the packet switch's

integrity has been preserved.

The ELIST is the last shared resource to be analyzed for

contention problems. ELIST is shared by both the Input Pro-

cessor and the Output Processor. The Input Processor must

access this list to find available empty shift registers in

the array. The Output Processor updates this list with the

addresses of shift registers released by transmitted packets.

As in the case of the Output Queue Lists, one processor always

writes to ELIST while the other always reads from ELIST.

Therefore, ELIST can be built using dual port RAM's. These

RAM's allow a simultaneous re&I operation and write operation

to take place at different locations without interference.

The data structure of ELIST is designed such that no

simultaneous read and write operations can be performed at

the same location unless the list becomes empty. If the list

becomes empty, the system faces a far graver problem than con-

tention. However, ELIST should never become empty under

21

v

4

normal operation. Thus, another shared resource is spared

from contention problems, since the processors using it are

transparent to one another.,

In summary, the output queue lists are the only shared

resources which face contention problems. Details concerning

how this problem is handled are found in 3.1.5, 3.3.2 1 and

3.3.3.

22

3.0 THE THREE PROCESSOR DESIGN

?

	

	 The system architecture of the three processor packet

switch is presented in Figure 3.1. As in the single processor

design, this packet switch handles N users who are allocated

one line each. Again, the switch is configured such that any

user may communicate with any other user in the network. Al-

though the workload is divided among three processors, the

function of the switch remains unchanged from the original

design. Thus, a detailed description of the packet switch's

operation is not presented. Instead, this chapter focuses on

the actual hardware, software and processors required to imple-

ment this new architecture.

3.1 System Hardware

Under processor control, the system hardware carries out

the assigned tasks of the packet switch. Since the packet

switch architecture now supports multiple processors, a new

control signal labelling scheme has to be adopted. Thera

scheme is designed to help eliminate any confusion regarding

the source and destination of each control signal. Table 3.1

contains each control signal code format with an example and an

explanation. Detailed explanations of the circuits and their

operations are presented in the following sections.

3.1.1 The Inpnt Buffers

Displayed in Figure 3.2 is the circuitry required by

an input buffer for one user. All received packets remain in

23

rI

L-

M

W

w7
u
u

A
u
w
a

IA
>,
to
w
0
to
w
a^

w
a

v
0
'tE

24

V •/ V

Z `_
SEn '7 ^ 1'1 ^' K' ^f

d

a tA!`
e ^i

►"^ of o

3 "
W

}(

„w a Q W V Q W V 1

d CC
°c a t+-K .-^	 sr G

LU Q m V W J+ W S .t Z	 ti U

J1 V, V• f R. 1!
Cr G c

.Z ,^ ^/ fly Jl .!^

u

.^ N Q
`

v

1 ^ ` r L

V

e
J+

N

O
U

Un

N
.-4

O
!4

C
O
U
0)
1a
ro

'O
f^
ro
Z

.•r

ri

0)

.t]
ro
H

25

14
W
N

A^
W

O

,,01'

`T
$4
W
44
W
W

J
0

a
C
H

N
f"1

b►.r4
w

^^++
	 t

Q	 H

v^1	 of

26

the input buffer until they are transferred into the shift

register array. In order to reduce the possibility of over-

flow, each input channel is double buffered. The two buffers

at each input channel are packet-length shift registers. Buf-

for select logic determines which buffer is to be linked to

the input channel while the other buffer is linked to the
Input Switching Network. This select logic is driven by a

packet counter. The packet counter monitors the arrival of

packets by counting each bit. Once an entire packet has been

received, the counter rolls over, activating the buffer select

hardware. The select logic then switches the buffer assign-

ments. Concurrently, the counter sets the Data Available

(DAV) flag indicating a full input buffer. This flag is

scanned by the Input Buffer Polling Circuit, which is the

next topic presented.

3.1.2 The Input Buffer Polling Circuit

The Input Buffer Polling Circuit appears in Figure 3.3.

This circuit sequentially scans each input buffer's DAV flag

searching for a full buffer. A counter, which cycles through

N values, drives the poller. The counter's output is supplied
S

to the DAV multiplexer (MUX). Selection of one of the N MUX

inputs is controlled by the counter's value. Each of the MUX

inputs is a DAV signal from an input buffer circuit. The

selected DAV signal is passed onto the Stop Scan flip-flop.

When an active DAV signal is encountered, the Stop Scan flip-

!

	

	 flop is set. Once set, this flip-flop halts the counter.

Simultaneously, it brings the Input Buffer Service Request

27

I—	 Q

s aC

m^
+	 - H

4A

0u
w
u
0%

.r4

0
a

s+
a^
w
w
0
w

0
a
aH

M
M

w

u J v
v0
U

t	 Y

28

3

(IBOR) line high, informing the Input Processor that a full
y	

buffer has been found.

The stabilized counter value represents the address of

-that full buffer. 'This value is sent to the Input Processor

for processing. In addition, the counter's output is supplied

to the Flag Reset Demultiplexer (DEMUX). This DEMUX allows
a

the processor to send the A-RESET (see Table 3.1) signal to

clear the proper buffer DAV signal. The A-RESET signal also

clears the Stop Scan flip-flop, thus restarting the polling

circuit.

3.1.3 The Input Switching Network

C The Input Switching Network can provide a programmable
i

data path between any input buffer and any location in th3

shift register array. This network consists of multiple,

programmable data paths permitting the system to handle simul-

taneous packet transfers. A single data path is illustrated

in Figure 3.4.

In order to establish a complete data path in the net-

.work, the Input Processor must first place the address of the

input buffer being serviced into Latch A. The contents of

this latch are supplied to the Data Mux and ' the Input Buffer

Shift Clock Demux. The Data Mux links the selected input

buffer to the switching network. The Shift Clock Demux sup-

:	 plies the shift clock to the selected input buffer. Once this

half of the data path is established, the Input Processor sends

the address of the empty shift register to Latch B. This

latch provides the Data DeMUX, the Shift Register Array Clock

29

V

INPUT' PR0.e'ss k Os-is

LAT11 a rN	 ,^p3-A

FRom
DATA DATA

TO	 SHIFT
INPVr	 i	 . RE- &Ts7C-F
gUF FERS	 rn v x

I

O E M UX DATA	 IniP•ITS

ii
{

INPUT SHrFT

TO	 I	 B UFFER RtGIsic-R	 I TO SHUT
sNv^T	

SHIFT
S^FFEfi	 ' ARRAY	 I RE&IVIFP,

SHIFT	 C L0C-X (IOC Lock INNIS,
CIOCk	 I

tern s 	 I	 oEm^x QC-P.

M i-A

C.V.PACKc-T
ONE
6Nor TO	 51(a-JS

covnlrft CUR STATUSCO D	 Q
1Z ^L1P-FLaf^S

Ck	 Q ^

STO P I
7R pr^sf E R

DATA PAjN puC-y
CLOCK

Fig. 3.4	 Single Data Path in the Input Switching Network

30

"' Damux and the Status Demux with the select lines needed to
{

complete the data path. 	 The Data Demux links the selected

shift register to the network, completing the actual data

'`- path for the packet transfer.	 The Shift Register Array Clock

Demux supplies the shift clock to the shift register.	 The

function of Status Demux and its associated hardware is ex-

plained in 3.1.4.

• When a data path has been completed, the Input Processor

initiates the packet's serial transfer through the data path

by clearing the Stop Transfer flip-flop. 	 This flip-flop halts

the packet transfer once the packet counter rolls over. 	 The

! packet counter counts each bit of the packet in transit by

monitoring the shift clock pulses. 	 This scheme permits every

packet transfer into the array to be hardware terminated. 	 In

addition to halting the packet transfers, the Stop Transfer

f flip-flop generates the Data Path Busy signal. 	 This signal
r
E indicates the status of the data path, which can be either

idle or busy. Each Data Path Busy signal is sent to hardware

which provides the Input Processor with the address of a free

data path. Figure 3.5 is a diagram of this hardware circuit.

3.1.4 The Shift Register Array

The function of the Shift Register Array is to pro.•ide

temporary storage for received packets which are waiting to

be routed and transmitted. A single location in the array is

shown in Figure 3.6.

As packets arrive from the input buffers, they are shifted

into the shift registers in the array. Each location actually

31

rte...______ _____

N

x
it

r

I !4

0
tt

M

o.

d
Z
H

E J N +c_ W

W	
^j l9

a. J ~
F-

Q
Q
^

T 4
7 L

Q

41
w
Oa

M̂W

a

ro

ro
ca

V
a
LL
q
H

M

t^

W

/ M

32

O
H
IY

Y

Q

0

^
^ a

W
gd X

m
Hi a o4W Q 7

• V 50h q.

2

PC cc

av D lC

3
W w

m

7 a ^; 111

• Q	 :7

e so J c	 v

tE

to

L
^n

e9
1
a

•

1
I I o°.

yS

A x

K
O p ^

^'
^ u O

LL a O L

iv N ^ ^

LL O v

N
d
4J

tT

a
V
W

N

V

9i

O
•rl

41

oU

a

41

O

10

M

tT
.r4

W

6

6

d

^
Yg	

^3	 aat Q. Ic	 s
e

K t
u a H

.^	 c
J

t:.

s

X

_	 LL O o

i

33

r<

s
uses three shift registers linked together to form the packet-

length storage area required. As the packets are transferred,

the header arrives first and eventually resides in the Packet

Header Shift Register. Unlike the shift registers which con-

tain the actual packet data bits and the header error protec-

tion bits, this shift register allows parallel accessing of

the header. Since the processor fetches each packet header

and also returns the corrected header to the shift register,

the parallel access feature is a system requirement.

As packets are sent to the array, their headers and header

correction bits are also sent to the Syndrome Generator 131.

Each shift register location has its own Syndrome Generator.

This hardware circuit decodes the header information into a

syndrome. A non-zero syndrome indicates an error in the

header data. The syndrome is available to the Routing Proces-

sor which corrects the header using this error pattern infor-

mation.

All packet transfers into the array from the input buf-

fers are hardware terminated. When the Stop Transfer flip-

flop in the Input Switching Network is set, it halts the

packet transfer hardware. In addition, the activated flip-

flop is sent to the input of the Status Demux. This Demux

passes the flip-flop's signal onto the selected shift regis-

ter's Status flip-flop. The activated signal sets the Status

flip-flop indicating that a packet transfer has been completed

and that this location in the array now contains a packet re-

j (quiring service. Every array Status flip-flop is scanned by

34

the Shift Register Polling Circuit, which appears in Figure

3.7. This pollen searches for unserviced packets, notifies

I	
the Muting Processor once one is found, and supplies the

array address of the unserviced packet to the processor. A

set Status flip-flop is cleared once the Routing Processor

accesses the Syndrome Generator at that location. Next, the

poller is restarted by the processor.

Previotisly, the polling of the array was carried out by

the processor. This scheme required additional software and

consumed processor execution time even when empty locations

were scanned 13 j. Thus, the proposed use of a hardware poller

increases the Routing Processor's throughput.

3.1.5 The Output Queue Lists

The Output Queue Lists are the software lists contain-

ing the shift register array address of each routed packet

awaiting transmission. Each list contains the addresses of

routed packets destined for that list's associated output

buffer. The Routing Processor always writes to the lists,

adding the addresses of newly routed packets. Meanwhile, the

Output Processor always reads from these lists, fetching the

next packet to be transmitted. The lists are organized in a

First-In-First-Out (FIFO) format, resulting in the transmis-

sion of the oldest packet in the selected list. Figure 3.8

contains the data structure of the Output Queue Lists.

i

	

	 The index pointer or "Input Pointer" (IPT11) used by the

Routing Processor points to the next address to be filled.

!	 i
Once a location is filled, the Routing Processor updates :the

35

/RH

go

z

W T

h^
% N

1 ~
m

oc oc w	 ^;
(n (P

V

u
w

u

v+
a

r4
0
w

w
d

to

a
w

N

r

r►

d+
.04
w

Yv0J

36

1 x xx
a S. R.

3 S. R.

4 A X X
5 x X X.

O
O
O

Q Xxx

Z P7'R (n►)

OF TR(rJ)

I P(^►̂ 1 xxx

a xxx
? xx x

O
O
O

IQI xxx

O PrR CN)

Fig. 3.8 Output Queue List Data Structure

f

37

IPTR by incrementing it. When the IPTR reaches the end of

the list, it rolls over, returning to the top of the queue

list. The index pointer or "Output Pointer" (OPTR) used by

the Output Processor points to the next location to be read.

In order to fetch the next address from a list, the Output Pro-

cessor must perform the read operation and then it must incre-

ment the OPTR.

The data structure of the lists is designed such that

when IPTR is equal to OPTR the list is assumed to be empty.

Under special circumstances, this assumption may cause packet

losses. This problem is explored further in Chapter S.

In the single processor design, the output queue lists

are stored in local RAM and the index pointers are stored in

the processor's register file. However, in the multiprocessor

environment of the new designs * this scheme no longer meets

system demands. Both the Routing Processor and the Output

Processor must access these lists. Therefore, the Output

Queue lists must be stored in RAM's that are available to

both processors. In order to reduce contention problems,

each list is stored in a physically different RAM structure.

This permits the two processors to simultaneously access dif-

ferent lists without interference. Special locking hardware

is required to prevent simultaneous access of one RAM should

the processors fail to access different lists. As mentioned

earlier, the RAM's used are TWO-PORT RAM's. The logic dia-

gram of the AM29705 chips used is presented in figure 3.9 (6).

Several chips can be arranged to form a RAM structure of re-

required width and length.

38

^r r s ti
w
O

f ^

fi N

. y r

u • M
r •

lT

r r r r	 a tit
W

39

v	
j

An additional constraint in the design of the queue lists

the requirement that the value of each index pointer be

available to hardware test logic. The function of the test

logic is to notify the Output Processor when an output queue

list becomes empty (OPTR = IPTR). Fulfilling this requirement

results in the storing of all queue list index pointers in

hardware counters. Figure 3.10 is the logic diagram of one

Output .Queud List structure. The operation of this circuit

is best explained by tra^ing the procedure followed by the

Routing Processor and the Output Processor as they access a.

queue list.

Once the Routing Processor has determined the destination

of a packet, it activates the uP4-B (see Table 3.1) control

line which selects the desired Output Queue List. These con-

trol lines, when activated, enable the selected RAM, the

associated locking circuit, and the IPTR updating circuit.

Next, the processor places the shift register array address

into the Output Queue List Data Port. The Routing Processor

then activates the B-REQUEST lines to request access to the

queue list. This control signal is sent to all the queue

lists, but is enabled only at the queue list selected by the

uP4-B signal.

If the selected queue list is available, the B-REQUEST

signal sets the WRITE ACCESS CONTROL flip-flop. This flip-

flop then activates the READ LOCK-OUT line, which disables

the READ ACCESS CONTROL flip-flop. Disabling this flip-flop

docks out the Output Processor from this list. In addition,

40

Q 10	 vo^tfw

I	
^	

.

f	
o.

O	 H

CO

O	

U^	

N

I I^
J

g

s	 p ^

o!	 o r 44
y	 w
J

f°	 O

l

d	 O
3

yppt

at

V	 ~
d	 ^	 o0

	

N Iv	 Q

ca

sa
^ 2 OI	 K

F•^
7

a d0
,J P d

1 m

V

N
t1
0

G

a.

7

0
•Or,

I
GIn ^L PACE

41	
QU. Ty

the set WRITE ACCESS CONTROL flip-flop activates the WRITE

^f)

	

	 signal, which enables the RAM in the write mode. The address

data latched in the Output Queue List Data Port is then strobed

s

	

	 into the RAM location selected by the IPTR. The IPTR counter

has as many unique values as the RAM has locations. The

1

	

	

Routing Processor is informed of a completed write operation

by the STATUS-B signal, which goes low when the WRITE ACCESS

(

	

	 CONTROL flip-flop is set. Upon receiving the active-low

STATUS-B signal, the Routing Processor reads the associated

Output Status Word (OSW). (The function and operation of the

OSW is discussed in 3.1.8.) The reading of the OSW before the

release of the queue list is required since access to the OSW

is also controlled by the queue list lock hardware. Thus,
f

only one processor can access both the queue list and the

associated OSW. Once the OSW read operation is performed,

the Routing Processor generates the B-RELEASE signal. This

signal clears the WRITE CONTROL ACCESS flip-flop. Clearing

this flip-flop frees the list since the READ LOCK-OUT signal

and the WRITE signal are de-activated. In addition, the B-

RELEASE signal activates the IPTR UPDATE signal which incre-

ments the IPTR counter.

If the Output Queue List selected is locke6 by the Output

Processor, the B-REQUEST line is disabled by the WRITE LOCK-

OUT line. The Routing Processor is informed of its denied

access via the STATUS-B line, which remains high after the

access request. The action taken by the Routing Processor in

t this event is discussed in 3.3.2.

42

1	
The Output Processor must access an Output Queue List

f	 each time it services an empty output buffer. In order to

aucess the queue list associated with the output buffer being
1

serviced, the Output Processor must first activate the proper

{ pPl-C line. The activated UPl-C line enables the seclected

RAM, the associated locking circuit and the OPTR updating

circuit. Next, the Output Processor generates the C-REQUEST

signal. If the selected queue list is locked by.the Routing

Processor, the C-REQUEST line is disabled by the READ LOCK -

1	 OUT line. The active-low STATUS-C line will remain high after

the request, notifying the Output Processor of its access

denial. The action taken by the Output Processor is discussed

in 3.3.3.

If the requested queue list is available, the enabled C-

REQUEST signal will set the READ ACCESS CONTROL flip-flop.

Setting this flip-flop activates the WRITE LOCK-OUT, READ,

and STATUS-C lines. The activated WRITE LOCK-OUT disables the

B-REQUEST signal, locking the Routing Processor out from this

queue list. Also activated is the READ signal, which places

the RAM in the enabled read mode. In addition, the STATUS-C

line goes low informing the Output Processor that access has

been granted. Once access has bee p granted, the Output Pro-

cessor checks the EMPTY-C line to determine if the list is

empty. This lire is driven by a comparator whose inputs are

the values of IPTR and OPTR. If the two pointers are equal,

the comparator activates the EMPTY-C line.

If the list is empty, the Output Processor releases the

list by generating the C- RELEASE line. The OPTR is not

43

incremental in this situation since the list is empty. Should

the list not be empty, the Output Processor reads the packet's

address from the location selected by the OPTR. Once the read

operation is complete, the Output Processor activates the C-

RELEASE line freeing the list. In addition, the activated C-

RELEASE signal increments the OPTR.

Should both the Routing Processor and the Output Processor

request the • same queue list simultaneously, a Default Circuit

locks out the Routing Processor while granting access to the

Output Processor.

An important point to note about this component is that

although the hardware implementation of the index pointers is

a system requirement, the system is enhanced by this feature.

The first benefit of this scheme is the reduction of software

due to the decrease in index pointer management overhead.

The second benefit is the reduced number of register files

required by the processors since the index pointers are stored

externally. This reduces the processor's complexity. An

additional point about this scheme is that it can be imple-

mented in single processor systems as well as in multiprocessor

systems.

3.1.6 The Output Switching Network

Illustrated in Figure 3.11 is one data path in the

Output Switching Network. As in the Input Switching Network,

the function of this network is to provide the Output Processor

t
	 with programmable data paths.. These data paths are used to

link shift registers in the array •to output buffers. Packet

44

v

14 P4 -CLArr-H 8

OuTPu'r mocHswi% ossis

ATCW A eN t._.___,4 P3 - C

OurPvr PRocessoR o e us

S N IF r
OUTPUT

F Rom	 I RECTsrER
S HIFT	 i' guFFER I	 TO

RE61STE R ARRny I Ov1PVrI
DArA

(

OUTPUT
DATA

I Q UFi fR

OvtPuTi INK DE/AUX og7R

INPv7S

SWIFT Qutpur
TO
SHIFT'	 i REGISTER gVFFER .I	 TO

Remle q AP.RAy C COCK I OuTPV
L4oCk	 I OuTPvT G(m^x 16uFFFP.
3,NPuTS	 I

CLOCK I SHIFT

DeA:I^X
CCuCk

I_ LNPd?S

Mi-C
COUNT

ONE

	

CK {'ACKET	 $" or 	 FTNISNED I CovIvr

	

(0•̂ MER	 q,q	
I FINISIifb

C °	 D	 Q	 X-L	 OC-mvX I I.IlvtS 10

CK	 Q	
UVIPUT

	

HALr	
I IIuFFfR;

TRANSFE R

DATA PitsN Qusy

C^oCK

Fig. 3.11 One Data Path in the Output Switching Network

45

F"'l-

transfers through the switching network are processor ini-

tiated and hardware terminated. There are multiple data

paths allowing simultaneous packet transfers. The circuitry

required to monitor the status of all data paths in the

switching network-is presented in Figure 3.12. This circuit

provides the Output Processor with the address of a free data

path when one is nemded.

3.1.7 The Output Buffers

The function of the output buffers is to receive

packets transferred from the shift register array and to then

transmit those packets to the external channel hardware.

Packets arrive at a rate determined by the internal shift

clock. Packets then leave at the rate maintained by the ex-

ternal line clock. The logic diagram for one Output Buffer is

given in Figure 3.13.

The central component of the buffer is a packet-length

shift register where the packets are stored. While the COUNT

FINISHED line is inactive, the packet is shifted into the

shift register by the internal shift, clock. Meanwhile, the

INHIBIT XMIT flip-flop remains set, disabling the external

shift clock. Once the COUNT FINISHED line is activated by

the Output Switching Network, the INHIBIT XMIT flip-flop is

cleared. This action enables the external shift clock, which

then begins to shift the packet onto the channel line. The

packet counter monitors the complete transfer. As soon as

the last packet bit is shifted out of the buffer, the counter

rolls over. The carry out line from the counter sets the

46

wa

O

V	 4J
^	 H

ed 	 a°

to

^- a v°	 a

2

I	 â
L

x ^
h 0
J N

r-i

M

W

ti
7
M
^'V
Q

3
^
J

F-
^
Q'2
H

N

o
N
C
^

W

°o
V

Z
W

M

C)

N
J

lE

u-

F-

p

'^O^jO 9r

47

.w

W

4cW

m

4
Q p

J ^

0 0

H	 Y
x	 ^
H
m	 Ly

ix
H

. r

$4

W

W

V
aV

a
0

M

r--1

M

b;
•ri

w

llr	

9.

^ M dM J

W ^ O
W `

H ^ o
6	

N

O
v

48

N

i

INHIBIT XMIT flip-flop and generates the BUFFER EMPTY signal.

The BUFFER EMPTY signal is supplied to the output buffer's

!	 Output Status Word (OSW). The function and operation of the

OBW is presented as the next tori_..

3.1.8 The Output Status Words

j	 The Output Status Word (OSW) of an-Output Buffer is
I
	

hardware circuitry used to monitor and reflect the current

status of the buffer. All OSW's are accessible to both the

Routing Processor and the Output Processor. Each OSW is linked

to an associated Output Queue List. Thus, just as in the case

of the queue lists, only one processor may access a particular

OSW at any given time. This scheme eliminates the possibility

of one processor reading an OSW while the other processor is

altering the same OSW.

Each OSW indicates one of the three states that its

corresponding output buffer is in. The three output buffer

states are Busy, Empty and Idle. An output buffer is in the

Busy state whenever it is receiving a packet, transmitting a

packet or receiving Output Processor service. Output buffers

enter the Empty state when the packets that they were trans-

witting are completely transferred onto the channel lines.

The Output Processor places an empty output buffer in the Idle

state when the correspording Output Queue List is also empty.

The hardware implementation of one OSW and the Output Buffer

Polling Circuit used to scan each OSW is illustrated in

Figure 3.14.

49

v

N

4.

0
ipy

ai

V
M
ml
V

R
.-1
ri

W
d!
w
W

a

a^

^v
a
ro
^o
w
0

N
a

ro

a
b^

a^
a
0

M

a^
w

P.	t	 W
IjV	

w	 > VH .,,^	 e,	 ac

V ^ m ^[y•	 N 6
S 4

50

v

The Output Buffer Polling Circuit sequentially scans

each OSW in .search o;. an empty buffer. When a buffer empties,

its support hardware generates a BUFFER EMPTY signal. This

signal sets the OSW's SERVICE REQUEST flip-flop. The acti-

vated SERVICE REWEST line is eventually found by the poller

as it scans the CSW's. Finding an empty buffer, the poller

signals the Output Processor and supplies the processor with

the address of the empty buffer.

The Output Processor then accesses the Output Queue List

associated with the empty buffer. If the list is empty, the

Output Processor updates the OSW to indicate that the buffer

is in the Idle state. This update is done when the Output

Processor generates the C-IDLE signal. (The proper uPl-C

select signal is still enabled from the queue list access.)

The poller is restated by the C-RESET signal. If the list is

not empty, the C-SERVICE signal is activated to clear the

SERVICE REQUEST flip-flop. This updates the OSW to indicate

that the buffer now is busy. The poller is restarted by the

C-RESET signal.

Every time the Routing Processor updates an Output Queue

List, it checks the corresponding OSW. If the OSW indicates

that the buffer is not idle, the OSW is left unchanged. How-

ever, if the OSW indicates that the buffer is in the Idle

state, the Routing Processor updates the OSW to indicate that

the buffer is empty. This update is accomplished when the

Routing Processor activates the B-EMPTY signal. (The proper

UP4-B select line is still enabled from the queue list access.)

51

W

3.1.9 The Empty Shift Register List

The Empty Shift Register List (ELIST) contains the

array addresses of every empty shift register in the array.

This list is read by the Input Processor and written to by

the Output Processor. Figure 3.15 shows the data structure

used to maintain the list. The index pointer (EPTRO) used

by the Input Processor points to the next shift register

address to be fetched. Once the address data is fetched, the

Input Processor increments EPTRO. The index pointer (EPTR1)

used by the Output Processor points to the last location

updated with tho address of a freed shift register. The Out-

put Processor must first increment EPTRl and then perform the

write operation.

This data structure is designed such that under normal

operation, a Read and a Write operation will not take place at

the same location. Thus, both processors can simultaneously

access the list without interference.

illustrated in Figure 3.16 is the hardware circuit re-

quired to implement the ELIST. As in the Output Queue List

system, the pointers are implemented in hardware and the RAM

is a 2-port RAM. Although this is not necessary, since

neither processor requires access to the other's pointer, it

does reduce software overhead. Since this increases through-

put, this scheme is proposed over the previous scheme of

storing the pointers in the register file. The use of hard-

ware index pointers could also be usct in a single processor

52

0

N	 5 • (; • ^^
	

do	 E MO, J_

EPTR 0	 -- 0

1 5.P

a nx x
xx x

4 ^,R•^

5 S. R. #

O
O
O

go	 Ef7RI

Fig. 3.15 The Empty Shift Register List Data Structure

53

- UPDATE

X -REAP

C-ORATE

G w RITE

INP U T rROCFSS OK X90,	
OvTPuT PRo(C-sSOK 080$

E
F	 S

i

Fig. 3.16 The ELIST Hardware

54

system by using an up/down counter to hold a single index

pointer. The.ELIST data structure which supports the single

index pointer is found in [21 and [3 1.

3.2 The Processors

As stated earlier, there exist three classes of processors

in this implementation of a packet switch. Although each pro-

cessor's function is quite different, the actual processor used

in each class is constructed around a similar architecture.

The custom software executed by each processor and the blocks

of unique support hardware are the two elements which give each

class of processor its distinct character. As in the single

processor design, the processors are built using the Advanced

Micro Devices (AMD) 2900 family of bit-sliced processing com-

ponents. The design considerations which led to the selection

of these components are discussed in [2] and [3] .

3.2.1 General Processor Architecture

The architecture of all classes of processors is

comprised of two functional blocks: The Microprogram Control

Unit (MCU) and the Instruction Execution Unit (IEU). The

Routing Processor contains one additional functional block:

The Syndrome Read Only Memory (ROM) which contains the header

error correction information in a lookup table format.

Figure 3.17 contains the block diagram of the processor archi-

tecture.

55

f

1	 mCu
1	 S	 MICRoPRobrrA ,n SIQuENCEfZ	 I

Y
t	 S	 I

I	 m	 i

I	 5	 I

A	 I
r

'	 s	 CONTR OL MFm0P,

I	 ^	 I

I	 I

1	 PITE LINE kEG-z src-N
I

^	 I

'	 NEXT ACM-M.

SUS CONTROL L2NE5

T E
PAS

	

=F. IS	 IBuS
ORIGTNAI'	 = ,^

OF

0BuS

LRrcH

A
0
0
R
C
S

j - ---
c

r--- --

q	 I SvNORoME '
r

pEcoock. K
` r — — I	 ^`^^------—

ROM	 ' ^.-------

Rourrn,^ FRxcss^k	 .

ONLY

To SWITi if IN4 HF1N'1 r.:i{

Fig. 3.17 The Processor Architecture

56

3.2.2 The Instruction Execution Unit

The Instruction Execution Unit (IEU) of the Input

Processor and the Output Processor is presented in Figure
i

3.18. Figure 3.19 shows the IEU of the Routing Processor.

Both versions of the IEU incorporate the AMD 2903 four-bit

ALU slices. Shown in Figure 3.20 is the block diagram of the

AND 2903 ALU chip. Cascading these chips in parallel will

provide the required width of the processor word.. The AMD

2903 has been selected over the AMD 2901 ALU because the 2903

architecture supports two Direct Data Inputs. The use of the

second data input allows the data from the polling circuits

to be directly supplied to the ALU. This reduces software

overhead since a typical two instruction read operation is no

longer required. Instead, the data is sent directly to the

ALU during the execution of a single instruction. Since this

scheme is implemented for each class of processors, a total

of three memory cycles has been saved, improving throughput.

All the arithmetic and logical operations required for

address generation and data manipulation are carried out by

the IEU. Inputs to the ALU are supplied by five different

sources: The Input Bus (IBUS), the Microprogram Word (uW),

Scratchpad 1, Scratchpad 2, and the polling circuit. The IBUS

provides a data path from all external memory and data ports

to the ALU. Immediate operands in the Control Memory are

suppi_ ..t to the ALU via the uW input. Scratchpads 1 and 2

are two file registers located in the ALU's internal W4.

'	 Their addresses are supplied by an external circuit which can

57

a

Fig. 3.18 The IEU for the Input and Output Processors

58

MW	 6
()	 S	 r

_l 	Q 	 M

u
k	 HARD- wirer,
E	 s	 AGO r•Es:vS

f	 w
V	 ^

A	 X, w`E oEB	
"	

a

I N Pu T	
SAS

tAvx

TRY

STgTC

(7N1aoL

•	 FRarh

POCLINfr

Ott' 06 Ou . is
	 ^A	 WE 06p	 B	 0g	 CifttviT

Ama903 A LU	 I q	 ° E ^z
En

EA
jtN

	

Y o6,,	 zEN

OEy

IS
l.A'rt ri	 Ita RAI.E

'$;L ALE

I	 R

Q
Roll

AOCF•(Sl

S
L /q tr N

WNORomE	 A tr;tss

OE^orEP^	 LATCPI

R0/4

Atuz,s
DEcoK P,

Fig. 3.19 The Routing Processor's IEU

;"	 t

59

w1

s

• BLOCK MAGAAM

OA[A Pi

AOUAatS AOOAISa) •'}
IIAM rrAnl a0_^d

A t
DAVAOUr MIAMI

a a

CP	 a	 LATCH We t +— d

a

oaa_s

OAt-^
1

r ! MNX SSW S	 r•
•

4

ON n0-^ 60-3

TWA 0 ALU ca

e•.A a PO-3

a SipO

t% aN I tin Sp.'s [A Ot00

a a

oroa

ar, C>
eP	 aA[cnr[A

t
Q& C>_

IVIS

^
'

asrAUer^oN	 • rt_t
0[000[2[AO

WAiTL^L^! •

• .. ^_n CP

t
Vice

Fig.•3.20 AM 2903 Four-Bit ALU Slice

YPA OM

60

^e

provide the hardwired address of the selected register, when

needed. Data from the polling circuit provide the processor

with the address of the device requesting service.

Once the ALU inputs are processed, they leave the ALU

via the Output Bus (OBUS). This bus is sent to system hard-

ware, the Address Latch, the Address Decoder and the Data Bus

Decoder (Input Processor and Output Processor only). The

Address Latch holds address data stable during read and write

operations. The Address Decoder generates device select lines.

When used in conjunction with the Data Bus Decoder, the Address

Decoder forms an Addressing Matrix which can activate single

bit control lines (31. This matrix is illustrated in

Figure 3.21.

3.2.3 Microprogram Word IEU and System Hardware Control
Fields

IEU hardware and blocks of system hardware receive

control signals from various fields within the Microprogram

Word (VW). Along with control signals, the ALU can receive

operands from the microprogram word. Control signals from

the UW are also sent directly to systems hardware blocks.

These signals do not require processing by the IEU. There-

fore, while the processor performs one task, the VW control

signals can activate components of the system hardware. This

hardware can either assist the processor in completing its

task or will independently perform a different task. This

scheme permits concurrent operations to be carried on within

the packet switch.

61

C

i 1

Fig. 3.21 Addressinrj Matrix
(Courtesy of James Burnell)

62

Presented in Figures 3.22, 3.23 and 3.24 are the segments

the uW which are required to control the IEU and the system

dware. in addition, theee figures and Figure 3.25 contain

tables used to microprogram the packet switch.

3.2.3.1 ALU Source Fields

The AMD 2903 ALU chip provides the ALU with tT.*

operand inputs labeled R and S. A 2-1 MUX supplies the R oper-

and input with data from either the A output from the internal

register file or the external A-Direct-Data (DA) input. Since

no class of processors utilizes the A register file, the DA

input is permanently selected. External to the ALU, a 2-1 mux

selects either the VW operand data or the data held in the

IBUS Latch, and supplies the selected source to the DA input.

This mux is controlled by the R SOURCE field in the UW.

The ALU's S input has three sources: The B output of the

internal register file, the B-Direct-Data (DB) input and the

internal Q register. Addresses for the B register file are

supplied to the AM2903 via the external B SOURCE mux. This

mux has the harwired addresses for each scratchpad register

used as its inputs. The B ADDRESS field in VW controls this

mux. Data supplied to the DB input arrives from the pro-

cessor's polling circuit. Both the B register file output

and the DB input are tristated. Tristate bus control is

essential since both inputs share the same internal data bus.

This data bus forms one of the two inputs to an internal 2-1

mux. The other mux input is the output from the Q register.

63

n
A!

O M

w

M̂ N o
ti j

a	 M J
W d

Q

IQ

2
^S Wz

=

M lw m ^

in

p^GiN
AL PAGE aM

Q c•1W ll
s e
^ °

Ot POOR.
QU ALI'CY1

w
100 U)

an	 1

J

/

Q
m

cd to

ww,,

i

Z

O
OD N

W

^
w

to
^.{

m
J ?

<r t4
0

W
p

W
^.{ H

O
V

LAr

^
`

^ H
V V

HQ
fp

O

J
Q Z N

C.0
^r
O

c

CSI

G

~

G

fA

N

Z

N

V
LA
Q
co

^
Q

^ 3 3 T >H >

H
A

li
a

a
^	 ^

v	 V H Vi Q t9; t-I 4 ^L

CHm

.o Ly d
c[

I 0

I Q	 o'

QDW ^ :< ^ Q x ^
¢

v
^.

N

^.
r f

W o

w W

O^

•,-
H ^1 ^ '0 r{ ^ ^ o

U

cw^^^^^^ xin H
Q1 6v ^ n

0
t

H o

64

W

^ e We

m m ^

3

10 r

I^

^ W
J '^
Q ^

H

M

IOla
w

lw H

CO

m

C
V

qL
m

0

Q^

I

.4
r

Nm

ac
r

Z
O

N

.e

d^

o~
M

CO

M

M

M

h1

M
M

1

M

M

b

r6

Cd

O

I
V

0
0J
W
M

c
W

W
c
Q

w-

O
O
1

x

W
V

A
Ŵ

W

w
.1.1
C

u°

3

H
w
O
N
N
GuJ

O
1aa

C

a°

M
N

M

d+

W

^	 r
A o

O	
:

to ^ s

o^

v W
2

J ^ _
•

O W Q rc

t
C.2 o

W LA Or o x

cIC

^
3
'2
3
^Q W H H

^o x e. x

uj

65

r
V`1
b
tl'

M,

01

M

h
M
1

n'1

N
("1

M

Inm

0u
Mu
v
H

E
W

G

t-
M

n
v.

W
CL
4

O
Q

(A

V

w

O
14

R
O
u

W
H

b
OMM

.m
wIwQ,

tz
W

V

a

a

a
0

qwN
W1

0%
.,4
w

K

M

m

to
1
s
t6

r6

1

14,

O^

1

1
.o

1

I. j
to

J
W V

J
s

VA
F-

^' ui N

©Cf Jv

i(A
to
O

W ,^
S

^ W

o.

t^

N

it	 40

2S
4 W
• L

its,

 V
C QCD

J
¢ C

'A

^ H
V

Z
a ►°
J ^'
Q

w
d ^

	W 	 U

	

tC	 11 '^
9

	

O	 ^•
N

J GL^

Q

^ O

Q ^

t ^ C

tE

v
w ^

H O

r

w

cD

3 V
a c

N ^^

N

m

{yj V W
^''Vootu

%

nn..
^^

rA7

,^
d

o

V)

Q
3 w m

Ham̀ ^. ♦-1 A. xx

I
Qw

e 4 e-1

66

t	 1 9
.7, T

10
cr Is	 .,A,

A 0
077

I t ^'I" ^^i rl^i^1^1^^-I-I`lyl

:1	
1

s	
is

1 3 	 i's is

t o a

O

0
!E

0

O

tr
0C)

0

V
z

z

O

fa

-W — - — -

OF	 IS

TAM 1 1. ALU OP111AW . 50UnC1S

I A I TuL 11-T 171 u	 it	 t j Op.craml S_

L	 t	 L	 HAIA 06 'pul A	 FIA P.1 ou l"VI 0

L	 L	 14	 IIAIA O%o!pvl A	 Dro 3

L	 H	 x	 IIAIA Ojlpvl A	 a Ileg-1 1 (f

H	 L	 L	 DAC 3	 IWA Ow l; A 0

14	 L	 VS03

14I1
L x	 D ,

0 Prn,%Icf
--	 I

L - LOW	 " - fcc, 14	 x - NMI cre

TADLC 2. AW ►U!,MOUS

1 4 13 12 1 1 	 14ca Code	 I ALU I unaons

L L L L 0
1	 ►4	 ri - tocit

L L I n V n+-s i V4,% C,

L L II L 2 F	 h vus s ixiw,
I

r;tjs c,

L L N it 3--

L 5- I ,Iv% C,,

VIVS C,

L m 11 L 141lu

Tl II ii i F	 14 Plot Cn

I - - L
L 11 1^~9,

11 l I I l A F, III, I kcmsw 14011 S,

-W T 1	 1 4 	 1. XCLU51VL 011 SI

-W - 1

it

L

D fj•• 14, 1:014 So

Ii 11 1 1
 -

F,	 14, ► MD

14

L - LOW	 1 4 - HIG14	 I - CIO 3

Fig. 3.25 ALU Control Fields

67

N NI	 I	 MI	 h •^h .ti ^11	 ti,	 'N IN

r,r	 [t Id'	 r,f a	 I^r'e;t.}Ir	 ^	 rls
NIN. •6 `` NI	 h h'h:N	

^1	 NON

^ I r t l	 1' r 1 t	 1+ r; r^.^ O i	 r O	 ^	 ^
..1

;IT

/^8

1	 11

•	 IU.",i^_^^I	 1
II

I (
1

I	 ,	 '	1	 '^, ^1 ^,	

.h 7
	 w

h•	 'A

i

Ala
I	

i

$

N

'
(]	 1

'
2

'	
X1;1	

^	 ^	 i	 I

. t	 .', Ir l	 rlt it 1l	 r't ^^,[Ir [,
1	 ^

I's

. VAL PAQ,

01Z QUA'WTr

TABLE 1. ALU OPEnANC, SOUnCES

L^ Ip VCp ALU Operand 11 ALU Operand S

L L L RAM Ot 1WA A RAM OApA 0

L. L N RAM OvW A 043
L N X RAM Ovtput A O 11"tar
N L L ON- 3 PAM OWput0
N L N DA&>t 000-s
N I N X I	

OAa 3 a "•star
L • LOW	 N . 1410H	 X • Wnl Can

TABLE 2. ALU FUNCTIONS

16 13 12 1 1 Hex Code ALU Functions

l L L L 0 10- l	 I	 SrKt-al Func l•Ons

b_-H 	 F - NiG14
F+ S M nus n m nus t Nlus C„

T7'-A 	 , ► 5 uj ^^ i P,Zs c„

L L L

-1i
N

L
1

1 2L l
L 3	 y F+ n {'lus S 1° ,s CnL N N
L 11 L L • ► S hws Cn
L IT l 1/ S~— -F -^$ Ftus Cn
L N i1 L 6 F	 R vl s Cn
L 11 H N 7^- f = j i ► iui Cn
N l l L 6 FI_ LOW

N L l 'l/ 8 F, + I4,-A ^ _0S ^
11 l 11 -C. A F, + N, 1 kCIU^ ' VF: NUIi S,

F•	 H; CXCLUSIVC On SIN l N 11 0
N 11 L L Cw F j	 11, AND Si

N It l IT 0 -F -̂ , 1i1 %Cri 5,
11 it li -E _ F,~ 04, Nk	 S Il
N 11 N 11 C 4i Qii S, -F

L•LOW	 N•10014	 I-0103

I^

1	 ,

Fig. 3.25 ALU Control Fields

r

67

Selection of the S input is made by the VW S SOURCE control

field. This uW field controls the 2-1 mux and the tristate

logic.

3.2.3.2 ALU Function Fields

The selection of an ALU arithmetic function or

logical operation is determined by the VW ALU Function

field.
3.2.3.3 ALU Destination Fields

Internally, the 2903's ALU output is sent to both

the register file's DATA IN input and the Q register (via the

Q shifter). The ALU's output is also available to the Output

Bus (OBUS) via an internal tri-state buffer. The ALU Destina-

tion field can direct the ALU output to any or all of these

locations.

3.2.3.4 Bus Control Fields

.^n order to hold address data stable, the OBUS is

supplied to two address latches: The Address Latch and the

ROM Address Latch (Routing Processor Only). These latches are

enabled by the Bus Latch uW field in cojjunction with the

Phase 2 clock (see 3.2.5) .

The various uW Read and Write fields control data trans-

fers between the processors and external hardware.

3.2.3.5 System Hardware Control Fields

The System Hardware Control Fields consist of vari-

ous control bits used to activate system hardware operations.

68

These signals are sent directly to the hardware since they do

not control.IEU operations. However, they usually act in con-

junction with the processorr often helping to speed up pro-

cessor tasks. They also may direct hardware operations which

carry out independent tasks. Thus, use of these special con-

trol bits has improved system throughput.

3.2.4 The Microprogram Control Unit

The function of the Microprogram Control Unit is

twofold: It must control the execution of the processor's

software and it must supply the microprogram's control signals

to the IFU and the system hardware. A diagram of this unit

is given in Figure 3.26. The MCU consists of an AMD 2911

mic~oprogram sequencer, jump control logic (implemented by a

Programmable Logic Array (PLA)) [3], a pipeline register

and the microprogram memory. A block diagram of the AMD 2911

chip is presented in Figure 3.27. This device generates the

pprogram counter value used to control the execution sequence

.of the processor's microprogram. Next address selection pro-

vides the MCU with one of the two possible next addresses.

Either the uprogram counter or the address in Jump Address

field of the uW is supplied to the address lines of the

microprogram memory. The PLA Jump Control Logic determines

this selection. Inputs to the PLA Jump Control Logic come

fy ori various system status signals and the Next Address Select

pW field. Figure 3.28 contains the Next Address Select field

and the Jump Address field. The Jump Control Logic Function

for each class of processor is given in Figure 3.29.

l

69

v

r

g
Y
S
7
8
m

S
T
A

s	 0
'Sump

S^ S^
LORC 	 Am all i	 2FRo

,, /l CPLA)

N
E
x
T

A	
ADDRESS i/^Pvr

0
0
R
C

MICROPROCTRAM MEAORy

c
T	 DATA OOT P u T

RESIEF

PIPELINC R E 6. 1 TER

AAW	 1 E V	 SWITC.+2rjG

IMPVT	 CON ROI.	 HA RCUif+it^'

To

LEV	
LIPES	 CONTROL

TUMP AC0R E'S 5	
LLNES

Fig. 3.26 :Microprogram Control Unit,

70

L

F.

Fig. 3.27 Am 2911 Microprogram Sequencer

71

Next Address

0 0 uPC±1

0 1 unconditional
Jump

1 X Jump on IBSR-A
a0

I

Control	
38-39

Bits N1 N0
40-43

Jump Address

INPUT	 JA3,JA2,JA,,JA^
PROCES-

SOR

42-44

N1 No J Next Address

0 0 0 uPC + 1

0 0 1 unconditional
Jump

0 1 X Jump on NEW-B
=0

1 0 X Jump on STATUS
-B=1

1 1 X Jump on IDLE-
B=1

OUTPUT
PROCES-

SOR

Jump Address

JA41JA3,JA21JA1

JA

Mnemonic Next Address Select	 Jump Address
Fields

45-48

Jump Address

ROUTING JA3 , JA2,JA,JA0
PROCES-
SOR

42-44
	

45-49

N! N0 J Next Address

0 0 0 uPC+ 1
0 0 1 unconditional

Jump

0 1 X Jump on SER-
VICE-C=0

1 0 X Jump on STATUS
-C=1

1 1 X Jump on EMPTY-
C=O.

Fig. 3.28 MCU uW Control Fields

72

INPUTS	 OUTPUTS

	

ISSR-A N1 No	 FE Cn S1 S0 	 ADDRESS SOURCE

x	 0	 0	 1	 1	 0	 0	 UPC +1

X	 0 .1	 1	 0	 1	 1	 Jump Address

0	 1	 X	 1	 0	 1	 1	 Jump Address

i	 1	 x	 1	 1	 0	 0	 UPC + 1

Input Processor Jump Control Logic Function

INPUTS I OUTPUTS
NEW STATUS IDLE N1 No J FE C S1 S0 ADDRESS SOURCE
-B	 -B	 -B

X	 X	 X	 0 0 0 1 1 0 0	 UPC + 1

X	 X	 X	 0 0 1 1 0 1 1	 Jump Address

0 .	 X,	 X	 0 1 X 1 0 1 1	 Jump Address

1	 X	 X	 0 1 X 1 1 0 0	 UPC+ 1
X	 0	 X	 1 0 X 1 1 0 0	 UPC+ 1
X	 1	 X	 1 0 X 1 0 1 1	 Jump Address

X	 X	 0	 1 1 X 1 1 0 0	 UPC+ 1
X	 X	 1	 1 1 X 1 0 1 1	 Jump Address

Background Processor Jump Control Logic Function

INPUTS	 OUTPUTS

SER- STATUS EMPTY Nl N0 J FE Cn S1 S0 ADDRESS SOURCE

	

VICE- -C	 -C
C

X	 X	 X	 0 0 0 1 1 0 0	 UPC + L
X	 X	 X	 0 0 1 1 0 1 1	 Jump Address
0	 X	 X	 0 1 X 1 0 1 1	 Jump Address
1	 X	 X	 0 1 X 1 1 0 0	 UFC + 1

X	 0	 X	 1 0 X 1 1 0 0	 UPC + 1

X	 1	 X	 1 0 X 1 0 1 1	 Jump Address
X	 X	 0	 1 1 X 1 0 1 1	 Jump Address
X	 X	 1	 1 1 X 1 1 0 0	 UPC + 1

Output Processor Jump Control Logic Function

Fig. 3.29 Jump Control Logic Functions
73

The output of the AMD 2911 can be unconditionally reset

to zero. This allows the system to initialize program execu-

tion whenever required. Table 3.2 contains the VW widths for

each class of processors. Since some bits in the VW remain a

constant logic value, they can be hardwired. This reduces

the actual Microprogram Memory (ROM) widths.

3.2.5 Processor Timing

A two-phase clock drives the processors. This clock

controls the timing of internal and external data transfers.

Figure 3.30 presents the waveforms and significant timing

events. Phase 1 latches the internal data of the 2903 ALU

and the 2911 microprogram sequences. Phase 2 is required to

stabilize data in the IEU hardware that is external to the

ALU. In addition, this clock phase is used to latch data and

address information required for external data transfers to

I/O ports and memory. Each clock cycle has a period of 120

nanoseconds which yields a maximum clock frequency of 8.33 mHz

[3] .

3.3 The System Software

Each class of processor executes a unique software rou-

tine. The three different routines are: The Input Service

Routine, the Routing Service Routine and the Output Service

Routine. A detailed explanation of each routine's function

is presented next.

74

IA iCeoproorao"	 Word
Olt	 Ir g o, r, -A

Confral	 /=iP1ctS Lnp,t	 Ft„t• ••_	 os
h	 11`nvi ;n. 	 Pro<E{ ai+r

t	 nw „j

IM4,id;a{	 rl^cran^ ^6 •-^ 5 S0-i5

C."iro^Soure p-

Fvntf;OA	 tn"fral
ab-3o

OeSf;not;on	 cu-ird
a6- 3O a6-3o

3131- 3^
But Uci	 (O"il - o I

31
3a- 34'53 -35

rev
3a	 34

36- 41

Sy stem	 N,•ta w&tt 	 Gfj : 	,.^ 3^
-37

4 3, - 44
4a- 49

Next	 AAIse5s	 r.'ekci 45 - 4945 ' 9s
^-„ M	 A.t,1-, S,

P
4. p - 4 3

T OTAL	 „ J	 s,i . ^	 ;; }9 G''s $ 0 C:.

^c'OC^SSO^-
t^^^^^,,^..^	 ,^:^ti► 	 c.nrtro^	 s:,, :,^

,C(W ROM W f yr,-,
Lo9ic Q) Lo3ic 1,

InP^t IE'N)Cn ► r8)=s,=y 17, EA 33 P"J5
TAY-SA,6

43	 g.ts
Rovt^n^ ZEN, CA, 18) 1.5 I 	 E A

Output
IE/v,Cn,T,Iss) I4 1 7 P EA 4^	 arts

Sa TAB

Table 3.2 Microprogram Word Bit Divisions

75	

OF
POVI, `t !,

'f'1 -' x

Y

02.

nScc.

1 a) current instruction is latched into pipeline
O

register.

b) Data is clocked into Q register.

r \`J a) A and B latches internal to 2903 are open.

a
(b) IBUS latch is open.

c) READ line is low during this time in a read operation.

® a) A and B latches, IBUS latch are closed.

b) ALU output- is stable.

e) WE is low if storing into register file.

Address is latched.on this edge during an

address.gencration operation.

5 If Write, micropro;ram word bit is highs WRITE

goes loci during this pulse.

Fig. 3.30 Processor Clock Waveforms
(Courtesy of James Burnell)

76

_)

3.3.1 The Input Service Routine

The Input Service Routine is executed by the Input

Processor. Shown in Figure 3.31 is the flowchart of this

software routine. This routine is sense-loop driven. The

Input Processor loops on a status bit-which is controlled by

the Input Polling Circuit. when the poller finds a full in-

put buffer, it updates the sense-loop status bit. Once the

procs. : 4ir leaves the loop, it fetches the address of the full

input buffer. This address is supplied by the polling cir-

cuit. N-xt, the processor clears the buffer's DAV flag and

restaxta the pollen. Restarting the poller, before service

is complete allows the poller to find the next full buffer

before the processor returns to the sense-loop. This scheme

reduces processor idleness due to poller scan time.

The Input Processor then fetches the address of a free

data path in the Input Switching Network. This address is

supplied by the Input Data Path Status Port.. The ELIST is

accessed next. Using this list, the Input Processor fetches

the address of a free shift register in the array. After ob-

taining the address stored in the location selected by the

EPTRO index pointer, the Input Processor increments the EPTRO.

EPTRO now points to the next empty shift register address

stored in ELIST. Using the three addresses mentioned above,

the Input Processor links the full input buffer to the empty

shift register via the free data path. Upon completion of the

link, the Input Processor initiates the packets transfer into

the array. The Input ;'rocessor then returns to the sense loop.

77

V

Fig. 3.31 Input Service Routine Flowchart

N^,

78

A listing of this routine is given in Figure 3.32. Since

?	 the instruction set of each processor is custom tailored, no

standard computer language exists to describe the packet

switch's software. In order to document the software, a simple

format is used to code each line of software:

<lot operand><operation><2nd operand> -* <destination>.

In the listing, instructions performing a single task are

grouped together, followed by a comment explaining their. function.

Concurrent task execution is noted by ";". In addition, the uP

Address Code is listed next to the instruction which generates

that particular control signal. This is done to help explain how

the software interfaces with the system hardware. Each line of

code listed requires 120 nanoseconds of execution time.

3.3.2 The Routing Service Routine

Execution of the Routing Service Routine is carried

out by the Routing Processor. The flowchart of this software

routine is illustrated in Figure 3.33. This routine is sense

loop driven. The processor loops waiting for the Shift

Rogister Polling Circuit to indicate that a newly arrived

packet has been found in the array. When a new packet is

found, the Routing Processor leaves the loop and fetches the

packet's array address from the poller. Using this address,

the Routine Processor fetches the packet's syndrome from the

Syndrome Generator. This syndrome is latched into the address

input of the Syndrome Decoder Rom. Simultaneously, the shift

79

INPUT: If IBSR-A 0, JMP TO INil.,
*Is there an input buffer
requesting Service?
NO: Loop @ INPUT.

Input Polling Port + Q

*YES: Input the address
of the buffer requesting
service.

[ELISTI@EPTRO ♦ Scratch It Reset Poller

*Find a free shift regis-
ter, clear IBSR-A and
restart roller.

Input Data Path Status Port Address 4 Address Latch (uPl-A)
Data Path Busy Status Port 4 Q; Update EPTRO

*Find a free date path
and increment EPTRO.

Scratch 2+Data Path Latch A Base Address 4Address Latch (uP2-A)
Q -+ Data Path mux select Latch A(D)

*Link the input buffer
to the data path.

Scratch 2+Data Patb Latch B Base Address-Address Latch (PP3-A)
Scratch 1 4 Data Path Demux select Latch B(D)

*Link the empty shift
register to the data
path.

Data Path Transmit Control Address 4 Address Latch
Scratch 2 -+ Data Bus Decoder (Ml-A); Jump to INPUT

*Start data transfer
and return to the
sense loop.

Fig. 3.32 Input Service Routine

80

TOP

a

START

^O	 M.ea on
^^^•tvk.A NXI?

tt7i/{^

yes

Oafetn^^ne 'r'^►t
pddeess e^ thQ

oat tt9^^teP

te^^rti.^ Stroiee,

Fetch a.,d

Coved heodet:

Re ,,tart 11,,2

Poj;:A^ Ciervit.

Mot a catt.dpA

healer ,n S.R.

Acro^.

Oriert^^..r the
Poc kcl5

deL}IAai;OA

^^ QUq^F L
oC

Fig. 3.33 Packet Routing Service Routine Flowchart

81

y	 .•

.A r

^	 Place 'fhe Q^c►
i

Add^ecl ^r•to fhz

GIN	 QO a USI 90114 Port.

FOR PACE I3

Req^esf i ►+e
p„tp^t Qoeut

Cast.

Nd	
List Free

yE5

-^ lfackei's Add,ess
i	 ^	

1̂	 fr	 1	 1	 i

	

' IS SAOCPCI inio '	 PCelOemr^ o^j AvTon.OT.0

ftie queue list. (h0cdwoce,

i m

Fig. 3.33 Packet Routing Service Routine Flowchart, continued

0	 82

.I

Re.leme ovi-p f

4Veo p list.

TOP

Fig. 3.33 Packet Routing Service Routine Fl6wchart, continued

V

register status flag is cleared and the poller is restarted.

-The output from the Syndrome Decoder Rom is exclusive-ORed

with the packet's header. This operation yields the corrected

header, which is stored back into the shift register.

Using the corrected header, the Routing Processor deter-

mines the packet's destination. In order to route the packet,

the Routing Processor must place the packet's array address

into the proper Output Queue List. As stated earlier, these

lists are shared resources which have contention problems.
Thus, they are regulated by hardware locks which permit access

to only one processor at a time. Therefore, before accessing

any list, the Routing Processor must request access. In order

to minimize the time spent accessing these resources, the

shift register address data is first placed into the Output

Queue List Data Port. The Routing Processor then requests

access to the selected queue list. If access is granted, the

data in the data port is automatically strobed into the queue

list at the location specified by the IPTR. This scheme per-

mits the Routing Processor to move on to the next task rather

than writing to the list.

Once the shift register address is placed into the proper

queue list, the Routing Processor checks the associated OSW.

If the OSW indicates that the corresponding buffer is not in

the Idle state, the Routing Processor releases the Output

Queue List. The signal generated to release the queue list

also activates the IPTR update circuitry, which automatically

increments the IPTR counter. After releasing the queue list,

the Routing Processor returns to the sense loop.

f1

84

Should the OSW indicate that the output buffer is in the

i^	 idle state, the Routing Processor updates the OSW. After this

update, the OSW indicates that the buffer is now in the Empty

state, waiting for Output Processor service. The Routing

Processor then releases the queue list and returns to the

sense loop.

If the selected Output Queue List is not available, the

Routing Processor loops request service. This loop is called

j	 a SPIN LOCK since the processor spins on the hardware lock

while waiting for the busy resource to be freed 1 51. There

exists an alternative locking scheme called the SUSPEND LOCK.

This alternative scheme requires the processor to suspend the

current task which needs the busy resource 1 51. This task

is temporarily put aside as the processor moves on to a new

task. Implementation of this scheme was considered, but was

abandoned. Several reasons led to the abandonment of the

Suspend Lock:

1) The additional hardware and software required to sus-

pend and resume jobs.

2) The next task selected may also require the busy

resource.

3) The time wasted idling in the-spin lock is far shorter

than the time required to suspend and resume the exe-

cution of a job.

4) The possibility that no new task existed, resulting

in wasted time as the processor suspended the only

job available.

85

1W

Thus, the Spin Lock is used in both the Routing Service

^J	 Routine and the Output Service Routine. A listing of the

Routing Service Routine is contained in Figure 3.34.

3.3.3 The Output Service Routine

The Output Service Routine is executed by the Output

Processor. Figure 3.35 contains the flowchart of this rou-

tine. This routine is sense loop driven. The Output Proces-

sor remains in the loop until the Output Buffer Polling cir-

cuit locates an empty output buffer. When the poller finds

an empty buffer, it notifies the Output Processor by changing

the sense loop status bit. Once the processor leaves the

loop, it fetches the buffer's address from'the poller. Using

this address, the Output Processor selects the corresponding

Output Queue List. Access to the queue list is then requested.

As in the Routing Service Routine, a spin lock is implemented

for queue list accesses. The Output Processor must spin on

any activated queue list lock. Once access is granted, the

Output Processor checks to see if the selected queue list is

empty. If the queue list is empty, the Output Processor up-

dates the buffer's OSW to indicate that the buffer is now in

the Idle state. Then the Output Processor releases the queue

list, restarts the poller and returns to the sense loop.

If the selected queue list is not empty, the Output

Processor fetches the oldest packet address in the list. The

associated OSW is changed to indicate that the output buffer

is in the Busy state. After updating the OSW, the Output

Processor releases the queue list and restarts the poller.

86

V

START: If NEVI-B O, Jmp to START

*Is there a shift register
requesting service?
NO: Loop @ START.

SRS Polling Port Scratch 1

*YES: Input the address of
the shift register.

Syndrome Generator Base Address+Scratch 1- o-Address Latch (UP1 -E1
Syndrome (R) -► Decoder ROM Address Latch= Reset Poller

*Fetch header Syndrome and
send it to the Decoder ROM.
Clear NEW-B and restart the
poller.

Decoder ROM Address - ► Address Latch NP2-B)
(Decoder ROM) @Syndrom(R) -► Q

*Fetch error word from ROM.

Header Base Address+Scratch 1 4Address Latch (PP3-A)
ALU EXOR Q -► Scratch 2, Header Port(R)

*Correct the header. Store it
back into the S.R. Array and
into Scratch 2.

Scratch AND Destination Mask - ► Q

*Determine packet destination.

Q+Output Queue List Base Address+Address Latch (PP4-B)

*Select the queue list and the
OSW of the destination out-
put buffer.

Scratch 1 -► Output Queue List Data Port

*Place the packet's S.R. Array
address into Queue List Data
Port.

Fig. 3.34 Packet Routing Service Routine

87

fREQUEST: Request access to Queue List (N)

*Request access to the Output
Queue List selected. If
access is granted, the data
in the port is automatically
written into the queue list.

If STATUS-B a 1, Jmp to REQUEST

*If . access is not granted,
loop @ REQUEST. Proceed
otherwise.

If OSW(N) - NOT IDLE, Jmp to END

*Is output buffer idle?

Set OSW(N)=EMPTY; Release Output i?ueue List; Jmp to START
I	 _

*YES: update OSW, release
queue list and return to
the sense loop.

END: Release Output Queue List; Jmp to START

*NO: Release queue list and
return to the sense loop.

Fig. 3.34 Packet Routing Service Routine, continued

88

O %CI1V9C
QV CF

IS
`^Tr

i

Fig. 3.35 Output Service Routine Flowchart

89

Fig. 3.35 Output Service Routine Flowchart, continued.

i

90

Next, the address of a free data path in the Output Switching

Network is fetched from the Data Path Busy Port. The Output

Processor links the shift register containing the packet

awaiting transmission to the empty output buffer via the free

data path. Once the data link is established, the Output

Processor initiates the packet transfer and increments the

ELIST index pointer EPTR1. EPTR1 now points to an.unfilled

location in ELIST. After this update, the address of the

shift register containing the packet being transmitted is

placed into ELIST at the location specified by EPTR1. The
i

Output Processor then returns to the sense loop.
I

A listing of this routine is given in Figure 3.36.

91

OUTPUTs If SBRVICS-C = Or Jmp to OUTPUT

*Is there an output buffer
requesting service?
NO: Loop @ OUTPUT.

Output Folling Port - ► Q

*YES: Input the address of the
buffer requesting service.

Q+Output Queue List Base Address+Address Latch (uPl-C)

RE EST: Request Queue List (N)

*Select the buffer's output
Queue List and OSW. Then
request access.

If STATUS-C = 1, Jmp to REQUEST

Was access granted?
NO: Request access again.

If EMPTY-C 0, Jmp to IDLE

*YES: Determine if the list
is empty. List Empty: Jump
to IDLE.

(Output Queue List(N))@OPTR(N)-*Scratch 1; Set OSD7-BUSY;
Release Output Queue List; Reset Poller

*List Not Empty: Input the
S.R.# which contains the
packet to be transmitted.
Then update the OSW, restart
the Poller and release the
queue list.

Output Data Path Status Port Address-+Address Latch (PP2-C)
Data Path Busy Status Port -+ Scratch 2

*Find a free data path.

Scratch 2+Data Path Latch A Base Address+Address Latch (VP3-C;
Scratch 1 4 Data Path MUX Select Latch A(D)

*Link the shift register to
the data path.

Fig. 3.36 Output Service Routine

92

op

Scratch 2+Data Path Latch 8 Base Address ♦Addregs Latch W N -C)
Q 4 Data Path Demux Select Latch B(D)

*Link the output buffer to
the data path.

Data Path Transmit Control Address y Address Latch
Scratch 2 4 Data Bus Decoder W-C); Update EPTR1

*Start Packet transfer ani
increment EPTR1.

Scratch 1 ♦ (ELIST)lEPTRl; JMp to OUTPUT

*Place S.R.# in the Empty
S.R. List and return to the
top of the program.

IDLE: Set OSWwIDLE: Release Output Queue List; Reset Poller;
Jmp to OUTPUT

*t+pdate OSW, release queue
list, restart poller and re-
turn to the top of the pro-
gram.

Fig. 3.36 Output Service Routine, continued

93

1.0 THE MULTIPLE PROCESSOR DESIGN

With the three processor design complete, the next logi-

cal step in the expansion of the system is to include multiple

processors in each processor class. The major incentive be-

hind this idea is to increase the system throughput through

the use of a multiprocessor architecture. However, two major

problems must be :overcome before this goal can be achieved.

The two problems are contention and throughput-limiting func-

tions. The solutions to these problems are presented as

topics in this chapter since they shape the final system

architecture. Also included in this chapter is . the system

architecture, the processors, hardware and software required

for implementation, and the design trade -offs made. Many

hardware components used in this design are exactly the same

as those used in the three processor design and, therefore,

are not presented in much detail. This chapter begins with

an overview of the system architecture and its operation.

4.1 The System Architecture

The system architecture is shown in Figure 4.1. This ne%*y

architecture is controlled by four classes of processors. The

new class of processors and the system requirements that caused

the additional workload division are discusnO. in 4.4. In

order to examine the duties of each class of rrocessors, a

packet's transfer through the packet switch is traced.

The first function of the switch is to receive and to

store each incoming packet. When a pac}: ,r^t arrives, it is

temporarily stored in an input buffer. An input buffer

94

i^

^	 3 a

1

a^
	

a^

— ri.

ORIGINS
OF

POOR
• QU•gLIT^.i

U
a^0

U
$4
Q

W
V
N

N

O
N
N
d1
U
O

a

m

a

0
a

a^

H

m

In

w

95

containing a newly received packet requests processor service.

Dedicated hardware pollens sequentially scan their assigned

group of input buffers searching for full buffers. One group

of input buffers is assigned to one Input Processor. Upon

finding a full buffer, a polling circuit signals the Input

Processor it is serving. Immediately, this processor estab-

lishes a data link between the full buffer and the-Shift

Register Array. In order to set up this link, the processor

must first find an available data path in the processor's

dedicated Input Switching Network. Next, the processor must

find an empty location in the Shift Register Array. Once the

address of an empty location is fetched from the Empty Shift

Register List (ELIST), the processor completes the data link.

The processor then initiates the packet's serial transfer into

the array. As in the previous systems, this transfer is hard-

ware monitored and terminated, allowing the processor to move

on to a new task.

The second function of the switch is to sort each packet

in the array into groups of packets that are destined for the

same group of ground stations. Each unique group of stations

is serviced by one unique Routing Processor. Shift registers

containing newly arrived packets signal for Packet Sorting

Processor service. Dedicated hardware pollers scan their

assigned group of shift registers for new packets. Once a

polling circuit locates a new packet, the Sorting Processor

it is serving is notified. This processor fetches the packet's

i	 header and corrects it. As in all previous systems, the header

96

r

Y:

is protected by the BCH error-correcting code. The packet's

destination-is then read from the header. Using this infor-

mations the Sorting Processor sends the packet's destination

information and array address to an input/output port asso-

ciated with the packet's destination. Each different I/O

port belongs to one Unique Packet Routing Processor. Any

Sorting Processor may access any I/O port.
i

	

	
The Packet Routing Processors carry out the.switch's

third function, which is the updating of the Output Queue

Lists with the addresses of sorted packets. Once an I/O port

is found to contain valid packet routing data, the I/O port

polling circuit signals the Routing Processor it serves. The

Routing Processor responds by fetching the packet's destina-

tion information. Using this information, the processor

determines to which ground station the packet is destined.

Packets leave for a ground station via an output buffer which

corresponds to that ground station. Each output buffer is

assigned to only a single ground station. In order to route

a packet to a particular ground station, the Routing Processor

must assign the packet to the software output queue list which

corresponds to the proper output buffer. This assignment is

made by fetching the packet's array address from the I/O port

and placing it into the proper queue list. Each Routing

Processor controls a unique group of output queue lists. A

packet is considered routed once its array address is placed

into one of the N queue lists.

97

- _A

fl
The fourth and final function of the switch is to trans-

fi
	 mit the routed packets to their final destinations. This job

belongs to the Output Processors. When an output buffer
i

empties due to a --ompleted packet transmission, the buffer

requests processor service. Dedicated hardware pollers

sequentially scan their own group of output buffers in search

of empty buffers. When an empty buffer is found by a polling

circuit, the Output Processor served by this poller is in-

formed. The processor then accesses the output queue list

belonging to the empty buffer. The address of the oldest

packet waiting for transmission to this destination is fetched

from the queue list. Next, the processor finds a free data

path in its dedicated Output Switching Network. A link is

established between the shift register containing the packet

to be transferred and the empty buffer via the free data path.

Once this link is complete, the packet transfer is initiated

by the processor. Automatic hardware controls this serial

packet transfer. As soon as an output buffer is loaded, the

packet is automatically transmitted to the ground station by

hardware external to the packet switch. While the internal

hardware transfer takes place, the Output Processor updates

ELIST by placing the packet's array address into ELIST.

If an output queue list is empty when its associated

output buffer becomes empty the Output Processor must place

the buffer in the "idle" state. An idle buffer will remain

idle until a new packet arrives for that buffer. The Routing

Processor will assign the new packet to the empty queue list.

98

Next, the Routing Processor must change the buffer's status{J	 to indicate that the buffer is empty and requires service from
c

the Output Processor servicing that particular buffer.
r

4.2 Shared Resources

In the three processor design, contention problems be-

tween the different classes of processors are discussed in

depth.. A workable solution is found and implemented for each

shared resource. In this multiple processor design, new con-

tention problems arise. Since there can be more than one

processor in each processor class, contention may occur between

processors of the same class. The contention problems of these

resources can be solved with design changes within the sub-

system they serve. These design changes may affect the archi-

tecture of that subsystem, but they do not affect the other

packet switch functions. Thus, the resource allocation schemes

required by these shared resources are discussed in the sec-

tions which describe each subsystem of the switch.

However, there are several resources which are shared

by two or more classes of processors. The design of these

"Multi-Access Resources" and the formation of their alloca-

tion schemes may affect the architecture of two or more packet

switch subsystems. Thus, these resources must be considered

before the entire architecture of the packet switch can be

designed. A review of the three processor design reveals

that there are three resources which will become Multi-Access

Resources in the multiple processor system. These resources

are:

99

v	
r

1. The Shift Register Array

^.	 2. The.Output Queue Lists

3. ELIST

Now identified, each of these resources must be investigated

and redesigned if necessary.

4.2.1 The Shift Register Array

Each Input (Output) Processor's switching network

may be linked to any location in the Shift Register Array.

However, no two Input (Output) Switching Networks will ever

access the same location simultaneously. This is due to the

fact that two or more Input (Output) Processors can never

fetch the same address for a particular array location from

ELIST (an Output Queue List) simultaneously as they service

packets. As mentioned earlier, the array is capable of re-

ceiving a new packet while concurrently transmitting the older

packet from the same location. Thus, no contention problems

will arise between the Input and Output processors even if

they access the same location concurrently. However, unless

only one Sorting Processor is allowed to access a single lo-

cation at one time, contention problems will arise. These

problems can be eliminated by the assignment of groups of

locations to one Sorting Processor. Since packets may be

stored in the array with an uneven distribution, the locations

assigned to each Sorting Processor should be interleaved.

This ensures against the Sorting Processors being forced to

carry unproportional workloads due to uneven packet storage.

100

_	 4.2.2 The Output Queue Lists

In'the three processor design, the Output Queue

Lists are not completely free from contention problems. They

are shared between the Routing Processor and the Output Pr.o-

cessor. In the multiple processor system, the lists are needed

by the multiple processors in both the Routing and the Output

classes of processors. This requirement adds new contention

problems for these already contention-plagued resources. In

order to keep the amount of processor contention from increas-

ing, a restriction regarding processor access to these lists

must be made. Only one Routing Processor and only one Output

Processor will be allowed to share a list. This requirement

changes the workload of the Routing Processor used in the

multiple processor packet switch.

In the three processor design, the Routing Processor

services the entire Shift Rigester Array and all of the N

output queue lists. A packet in any Shift Register Array

location can requir- routing to any output buffer. A packet

is considered routed only after its array address is placed

into the proper queue list.

As described earlier, the Shift Register Array is now

divided into groups of locations, each of which is serviced

by a unique processor. This architecture, using the previous

Routing Processor structure, would require that all the

Routing Processors be allowed to access any of the N queue

lists. Since this requirement is in conflict with the pre-

vious design decision that limited one Routing Processor to

a list, a new architecture is needed.

101

[1

If

The new architecture will force a division of the Routing

Processor's . workload. This workload division requires the

implementation of a new claps of processors which is needed

to carry out some of the tasks formally assigned to the Routing

Processor. The new class of processor is the Sorting Pro-

cessor. Each Sorting Processor is assigned to a group of

shift register array locations. They are allowed to send

routing data to any Routing Processor. Each Routing Processor

is assigned to a unique group of Output Queue Lists. These

two classes of processors are linked by a contention-free

hardware interface. Details concerning the actual implementa-

tion of this interface and the new processors are presented

in section 4.4.

4.2.3 ELIST

The Empty Shift Register List (ELIST) is accessed

by every Input Processor and every Output Processor as well.

The previous ELIST structure cannot handle this requirement.

Since only one Input Processor and only one Output Processor

can access ELIST without interference, a new ELIST allocation

scheme is needed to provide the multiple processors with

contention-free access.

The first scheme considered is the division of ELIST

into smaller lists. Each list would then be assigned to one

Input Processor and to one Output Processor. However, in

order for this scheme to work properly, the workload must be

distributed evenly among the Input Processors and also among

102

the Output Processors. An example of how an unevan packet

distribution can cause this scheme to fail is easily illus-

trated.

Assume each user is transmitting packets at his maximum

allowable rate. Assume even further that most of the packets

sent are destined to only one or two users that are serviced

by the same Output Processor. After a short time, all but

one of the Input Processors will have depleted their supply

of array addresses. Only the Input Processor that shares the

same ELIST with the busy Output Processor will continue to

4	 receive new array addresses. This case illustrates the need

I to supply ELIST data to each Input Processor through the use

of a data distribution scheme. In addition, this case

example clearly demonstrates that ELIST must remain as a

single resource that is shared through the rise of an alloca-

tion scheme. The idea of an ELIST data distribution system

is the foundation on which two ELIST implementations are

based. One design is based around an Elist Support Processor

while the other design uses only automatic hardware. These

two designs are discussed in detail below.

4.2.3.1 Processor-Controlled ELIST

Since there are no constraints regulating the use of

support processors, the use of a processor to coordinate the

operation of the ELIST data distribution system is a logical

choice. The processor controlled ELIST system architecture

is presented in Figure 4.2.

103

V

1+
a
41
V
d
41

V
14
oc

E4wM
a
w

1

0
54
4J
a
0
u
i
w
0
m
N

O
^iw

N
d'

.H
w

104

W
%AW

The operation of this ELIST data distribution system is

straightforward. Each Output Processor sends its ELIST data

I
	 to a dedicated I/O port. Those ports support the common

DAV/DAC handshaking protocol. A dedicated poller scans these

ports in search of a full port. When the poller finds a full

port (identified as full by its activated DAV flag), it signals

the Elist Support Processor. The support processor then

fetches the data and sets the DAC flag. The Eliot Support

Processor then checks to see if any Input Processor-linked

I/O port requires data. Each of these I/O ports is assigned

to one Input Processor. Again, the DAV/DAC flag handshaking

is used and a dedicated hardware poller is . also used to scan

these ports. If the poller had located an empty port (sig-

nalled by an activated DAC flag), the Elist Support Processor

sends the ELIST data directly to the empty port. If no I/O

port is empty, the data is stored into the ELIST RAti. If an

Input Processor's I/O port empties before the Eliot Support

Processor has received data from an Output Processor, the

support fetc',es the data from the RAM and then sends it to

the empty port.

Since this ELIST data distribution system is controlled

by a processor, it can serve the Input Processors and the

Output Processors only as fast as the Elist Support Processor

executes its task. The Elist Support Processor can support

any packet switch throughput up to 3 Mega-packets per second

(see Appendix). This ELIST structure is a throughput-limiting

(function. Therefore,-adding additional processors to the

11: `,

other four classes will never increase the system throughput

beyond the upper bound of 3 Mega-packets per second. Thus,

tn.s system is replaced by a hardware-controlled data distri-

bution system, which is the next topic of discussion.

Although the processor-controlled system is not used in

this particular architecture, the processor architecture, the

interface hardware and the software required for implementa-

tion are located in the Appendix. This material is presented

because the processor-controlled ELIST schenn is less complex

than the hardware-controlled ELIST and it can offer the user

some degree of flex'bility in that the processor software can

be custom tailored. Thus, the processor-based ELIST is the

recommended implementation for packet switches operating below

3 Meta-packets per second.

4.2.3.2 Ha dware-Controlled ELIST

Since hardware is relatively faster than software,

a completely hardware-controlled ELIST will serve the packet

switch at this fastest rate possible. This design removes the

previous throughput limitations encountered in the ELIST

£upport processor-based design.

ELIST interfaces to the Input Processors and the Output

Processors throtiq;i input/output ports. A dedicated port is

assj-;nt;U to each processor accessing the list. In order to

explain how the system services the two classes of processors

(Input and Output), the operation of the data storage func-

tion is described first.

106

V

°CRY-'.!T'!^-	 --^- .^.^-	 -..^.-.. _^ ._^_^_- ^^^•

Figure 4.3 contains the ELIBT Data Input Port architec-

ture. When an Output Processor has a new array address for

BLIST, it checks the port's Data Accepted (DAC) flag. If the

previous data was fetched by

is set. A not DAC flag ally

its port with the new data.

port, the processor sets the

the DAC flag is not set, the

this flag gets set.

the MIST hardware, this flag

es the Output Processor to load

Once the data is loaded into the

Data Available (DAV) flag. If

Output Processor must wait until

The ELIST storage hardware is controlled by a polling

circuit which is driven by a counter. All the ELIST Data

Input Port DAV flags are sent to the ELIST DAV MUX. The Out-

put of this MUX generates the FULL PORT signal which reflects

the status of the DAV flag selected. Selection of the DAV

flags is controlled by the value of the counter. The value

of this counter is also supplied to the ELIBT Input Enable

Demux. The activated Demux output enables the handshaking

logic and the tri-stated port output of the addressed I/O

I.	 port.

If the addressed I/O port's DAV flag is set, the FULL

PORT signal becomes activated. This activated signal sets

the STORE DATA Flik-Flop. Once set, this flip-flop halts the

poller's counter. Simultaneously, the flip-flop activates

the one-shot that generates the active-low WRITE signal.

While the WRITE signal is activated, the two-port MIST RAM

is enabled in the write mode. The data from the enabled I/O

port is then strobed into the RAM.

107

v

3
R

41
N
O
a$
41
a
a
c .
M
b
41
b

EN
M
a
w

M
a
t+..,w

e
W

H

108

i

The ELIST RAM Structure is shown in Figure 4.4. The

lj	 ELIST Data Structure is presented in Figure 1.5. In this

data structure, both the read and write operations are per-

formed before the index pointers are updated. Both pointers

are updated by being incremented. Once the bottom of the

list is encountered, they roll over and return to the top of

the list.

Once the write operation is complete, the low-active

WRITE signal goes high. The leading edge of this low-to-high

transition fires the one shot which activates the DATA

RECEIVED signal. This activated signal clears the DAV flag

and sets the DAC flag belonging to the enabled I/O port. The

clearing of the DAV flag clears the STORE DATA flip-flop. The

reset flip-flop activates the UPDATED signal which increments

the counter.which serves as the write index pointer (EPTRO).

In addition, the reset flip-flop enables the poller to re-

start. Figure 4.6 contains the timing diagram and the signifi-

cant events for this entire operation.

The second function of the ELIST data distribution system

is to supply each Input Processor with the address data stored

in the ELISff. when required. Figure 4.7 contains the ELIST Data

Output Port system which carries out this task. The primary

function of this system is to keep each ELIST Data Output Port

filled with valid data. If the ports are kept full, no Input

Processor will be forced to wait for data.

As with the ELIST Data Input Ports, each Data Output Port

is assigned to one processor. Each port has its own hand-

shaking flags. When an Input Processor needs data from the

109

a^

a

v
a
w

H

H
W1/) ¢

N °
J tA

a d'
O
F O •

O'
.r4

W

O J04'
Ge poojt̂ PACE IS

,z j

t4-^^r
w°
F ^a
o^
^c
w 04

U

..

WIwr	 ^

o	 ^Z

110

v

a s. R. # a

0

0

0

N S. R. # N

E PTR 0

X X X

a xx x

3 xX x
4 S. R.

5 s. R.

0
0
0

E.	 E P TR Z

F PTR 0

Fig. 4.5 ELIST Data Structure

111

`^ of ^, -^^` .a

C 0 to •^ O

C. °O

O
pJo

co
`

y

6 W
'
^

jill

S N̂ O. ` .A O 0 ..t
.^

u 4-0 r
•"	 b

•^ •
~

W ^n ^' 6 w °C '^	 o to r `0

•C ^d Q
'

•y .f^
C 11.

d
H

e Ng
3

d b̂b d
C

? T ° W
V(r N c Ĝ M ••••

d%
	 N u Q

u
d's 01

tL F- rQ tr
® ® o 0® ®.

W

H
H

w
ro

-•+
A
ON
9

H

0)
14
ro3
b
ro
x
4J
w
0
a

4J

a
a
H

H

H
aw

a+

w

W	 J
	 a

vJ
	 1L G.	

H	 OC	 W	 S
C

112

H
w

a

I I	
tt 4	

- il

i

o^h

o ^cdr

^n ac

Q V
^ O

o Iv V ^ 5 c
N	 o

^

Irk	 oc W	 a

r H
2	 °
M

> o ^ a
o

W

H

-^
V

F-

I ^
OC ^ .ir V

^ C 2

0

i

Q

0 AC

J ^Wo^

v	 H Q 4 H >
%A	 Lv J o w o Q

- 1 	 — — -7- T

113

`'.: '1

SLIST, it checks the I/O port's DAV flag. If this flag is

set, valid data is held in the port and the Input Processor

fetches this data immediately. If the DAV flag is not set,

the processor must wait for service.

Once data is fetched from an I/O port, the Input Pro-

cessor accessing this port sets the DAC flag. Every I/O

port's DAC flag is sent to the ELIST DAC MUX. The output

•

	

	 of this MUX generates the EMPTY PORT signal. Selection of

the DAC flag is controlled by the counter which drives the

j

	

	 mux. The value of this counter is also sent to the LOAD

Demux and to the DATA SENT DEMUX. The activated Demux out-

puts enable the handshaking logic and the data loading cir-

cuitry of the addressed I/O port.

If the selected I/O port's DAC flag is se*, the EMPTY

PORT signal is activated. This signal then sets the SEND DATA

flip-flop. Once set, this flip-flop halts the poller and

activates the one-shot that produces the active-low LOAD sig-

nal. While the LOAD signal is active, the data on the ELIST

Output Data Bus is strobed into the enabled I/O port. The

data on the ELIST Output Data Bus is supplied from the RAM

location selected by the read index pointer.

Once the data transfer has been finished, the active-low

LOAD signal goes high. The leading edge of this low-to-high

transition activates the one shot that generates the DATA SENT

signal. The DATA SENT signal then clears the enabled port's

DAC flag and sets its DAV flag. The reset DAC flag clears

the SEND DATA flip-flop, enabling the poller to restart its

114

1

4
fi

scanning. Simultaneously, the DATA SENT signal goes low

resulting in the updating of the read index pointer. This

update increments the hardware counter which serves as the

read index counter. A timing diagram of the complete ELIST

output function, along with the significant timing events,

is presented in Figure 4.8.

4.3 The Input System

The Input System consists of the Input Buffers, the

Input Processors, the Input Switching Networks and the Input

Polling Circuits. This sytem interfaces to the Shift Register

Array and the ELIST Data Distribution System. The architec-

tural organization of this system is presented below.

However, before the architecture can be designed and

explained, the contention problem related to the Input

Switching Network must be solved. As in the previous designs,

the Input Switching Network provides programmable data paths

from the input buffers to the Shift Register-Array. In order

to provide the address of an available data path in the net-

work, the status of each path is monitored by the hardware in

the Data Path Busy Port. This port is accessed by the Input

Processor.

.If a single Input Switching Netwark is used in the

multiple processor system, access to the status port must be

granted to only one Input Processor at a 4i-me. Since several

Input Processors will require access to this resource, a

resource allocation scheduling scheme is needed. This scheme

115

L

W
FE

P-

I
N

ro
^.1

Q

R
•.i

4

H
0!
w

3

54
ro
x
V
0
w

0a
00
H
NHa
w

qr

a;.r4
w

V

	

^	 c	 ^

^ 	 V

t	 ^	 .i rd's O
	

.+	 M

	

Cd 13	 (A

^'	 o	 y g o	 C	

,t	

+^ o.

	

5 y	 F-	 Q^	 rt

	

Z ,,	 w	 W	 o	 ;u

	

V	 ¢
CZ 	Q
o^ Qu

116

r,

will require new hardware and additional software. The addi-

tional software will reduce the throughput of the Input Pro-

cessors. Throughput may be-reduced even further if the Input

Processors are forced to wait for the resource whenever it is

busy. This contention problem needed to be solved. The solu-

tion implemented in this design eliminates contention com-

pletely by allocating a dedicated Input Switching Network to

each input processor.

4.3.1 Architectural Workload Division

In the three processor design, the workload is

divided into three relatively independent tasks. This scheme

works quite well, in that each processor can carry out its

assigned task without interference from the other processors.

However, in the multiple processor design, the workload of

the packet switch must be sub-divided within the three func-

tions. Processors in the same class must share the workload

within the function assigned to that processor class. There-

fore, if the proper architecture is not implemented, a pro-

cessor may be faced with interference from the other processors

in its own class.

The processors controlling the Input System can be

organized using ont; of two techniques: Master/Slave Scheduling

or Separate Systems [5 	 The Master/Slave Scheduling scheme

is organized such that one processor maintains the status of

all the "Slave Processors" and the uncompleted tasks. This

"Master Processor" schedules the work for each of the Slave

Processors.

117

^	

* a	
a t	

_

.i

The Separate Systems scheme is organized such that each

processor carries out its assigned tasks in parallel with the

other processors. The assignment of tasks for each processor

is fixed by the system architecture. There is no dynamic

allocation of processors to tasks, as in the Master/Slave

Scheduling System. In addition, each processor is assigned

dedicated memory and dedicated I/O devices.

These two schemes are the foundation on which two archi-

tectures for the input system are based.. Each of the two

architectures are presented below. Also included are the

design considerations which led to the selection of the

Separate System scheme.

4.3.1.1 Master/Slave Scheduling

One possible implementation of the Input System

using the Master/Slave Scheduling scheme is presented in

Figure 4 . 9. This figure contains a block diagram of the

Input System Architecture A.

Input System Architecture A uses a hardware poller to

locate full input buffers. Once the poller finds a full buf-

fer, which is indicated via an Input Status Word (ISW), it

stops and signals the Job Scheduling Processor (Master Pro-

cessor). The Job Scheduling Processor inputs the address of

the full buffer from the poller. The Job Scheduling Processor

then updates the ISW to indicate "partial service" and re-

starts the poller. Next, the Job Scheduling Processor fetches

the address generated by the priority encoder. This encoder

118

s

e

d

V
d

U
Ia

to
ta

aa

o+

t+.pi
w

i

119

driven by the Busy flip-flops that indicate the current

status of each Slave Processor. The encoder supplies the

address of the free Slave Processor which has the highest

assigned priority. Using this address, the Job Scheduling

Processor assigns-the task of servicing the full buffer to

the free Slave Processor. This Slave Processor sets its Busy

flip-flop and begins the task of inputting the packet to the

Shift Register Array.

The main advantage of this scheme is that the workload

is shared by all the available Slave Processors, regardless

of the distribution of the incoming packets. Since the Slave

Processors are assigned to tasks (incoming packets) and not

to the input buffers, all the processors will be utilized

even if only one or two channels are heavily loader. An addi-

tional advantage of this system is that under lightly loaded

conditions, the low priority Slave Processors will be free.

These low priority processors could be programmed to execute

background functions. Service for the input buffers could

then be interrupt driven.

There exist two disadvantages in Architecture A. The

first disadvantage is a reliability problem. If the Job

Scheduling Processor fails, the entire packet switch becomes

inoperative. One possible solution to this problem is the

implementation of additional Job Scheduling Processors that

are assigned their own dedicated Slave Processors. Another

possible solution is to have a Slave Processor replace the

Job Scheduling Processor in the event of a failure. Both of

120

(these schemes will add complexity to the hardware and/or

software.

The second disadvantage is the amount of hardware re-

quired to allow any Slave Processor to serve any input buffer.

This architecture could require thousands of control lines

for just one control signal. An example of this problem is

given below for a typical system:

N - 100 Users (100 input buffers required)

of Slave Processors - 4 processors

4 of Input Switch.'&ag Network Data Paths

- 10 paths/processor

t of DATA IN lines - 1 line/user/data path

(100 users)-(4 processors)•(10 paths/processor)-1 line/user/

data path - 4000 DATA IN lines.

As a result of this finding, n new multiprocessor archi-

tecture for the Input System is proposed. The new architecture

is discussed below.

4.3.1.2 Separate Systems

The Input System Architecture is presented in

Figure 4.10. Each Input Processor controls a complete input

system. Each of these systems operate independently of one

another. The size of these systems is determined by the rum-

ber of input buffers assigned to each system. Once a group

of buffers are assignee to an Input Processor, they remain

fixed to that processor. Therefore, in this scheme,

121

W

O
M

ac

W

u
4)

x
u
w

a

N

a
c
H

O
-i

qw

C+.04
W

p 1 Y

Z
H

~N
;

ti
Wz

a

M

ate.. ^ !! a ^

{21 a^tl G ^/

H (4

`,-)

	 N

F

122

As are assigned to processors, while the reverse is never

Li ale .
i	

In order to compare the hardware complexity of this

scheme to the complexity of the Master/Slave Scheduling scheme,

the previous example using the DATA IN lines will be continued:

N = 100 users (100 input buffers required)

of Input Processors = 4 processors

of Input Switching Network Data Paths

= 10 paths/processor

of DATA IN lines = 1 line/l user/l data path

(25 users/separate system/processor)-(4 separate systems)-(10

data paths/processor)-(l DATA IN line/l .user/l data path)

1000 DATA IN lines

The Master/Slave Scheduling scheme required 4000 DATA IN

lines. Since the DATA IN line is only one of two Input

Switching Network signals that requires 1 line per 1 user per
b.

1 data path, the Separate Systems scheme is clearly less com-

plex.

The one major drawback with this architecture is that

idle or lightly loaded processors cannot be assigned to

heavily loaded channels if those channels are under the con-

trol of another processor. Thus, some Input Processors may

become heavily loaded while the other Input Processors remain

idle or under-utilized. However, this architecture is con-

sidered to be the best compromise since it is not as complex

123

-r

w

Architecture A. Therefore, this is the architecture that

3.9 chosen for the actual implementation.

Since this architecture merely divides the workload by

means of buffer assignments, no major hardware changes are

required. The Input Buffers, the Input Switching Networks

and the polling circuits are identical to those used in the

three processor design. Therefore, these system components

are not presented in this chapter (See 3.1 for a.review of

these components).

4.3.2 The Input Processors

The Instruction Execution Units and the Microprogram

Control Units for the Input Processors are the same as those

used in the Three Processor Designs (see section 3.2 for a

review). However, since ELIST has been redesigned to meet new

requirements, the Input Processors' Microprogram word is dif-

ferent. Figure 4.11 contains the IEU Control Fields in the

Microprogram word. Figure 4.12 contains the MCU Control

Fields and the Jump Control logic function for the Input

Processor. Again, their functions are similar to those in

the three processor design as discussed in 3.2.4.

4.3.3 The Input Software Routine

The Input Service Routine is sense loop driven. The

Input Processor remains in the loop until the Input Polling

Circuit locates a full input buffer. Once a full buffer is

found, the processor leaves the loop and fetches the address

of the buffer from the poller. Next, the Input Processor

124

lu
Q

Q

CD

^

+ 0̀G

d

co

^

I

4

10

I ¢W ^ ^-1 'C-I cl ^ ^-)

U

0 fti

N

H

J
O

2e

W

M

J
N
O

WZ

M

M

O
co
1
%O

16

in
fd

cu

1

cd

v.

t!1

1

N ^f

W V

W_ u^i

W

O ^

LA v'

c gco

Z
M

7

E Hv

0

J J
Q ^

LL.

OD

L o

v

cJ	 40
Q N

I- o
e 2
w Q

.Q

O-

H

v

Q

Q

w
Q

I0̂

V
J
Q

H

IH H
C

H^

d-
H

m

H^

WD

Iw N^

0

i

I

. Q

m
w ^ ^
J
Q

w vi cd

h N

CD to vl
N

col 	 I

to
b
r-1
W
-rl

W

O
W
43
Q
O
U
R

14
ON
O
$4
a
O
H
U

aw
H

O
w
m
O
U
O
1^1
a

aaa
H

.,4
w

125

NEXT Avp1 % sEcecr TuMP ADDR ESS

39- 38	 39.4oZ

Ni No I Next	 AooeEss

V5 (25 Aft + 1

0 1 UNcoNCrnoNAL rump

1 701-P ON XBSR-A s

nMP 00 OAV-A = ^

•	 3'u ror AopREss

TA z ^ TA Z ^ ^-A, 3 TAO

:EM-A
ELIST

D A v N1 No

X),I- QS 95

A x 0
0 x 1
1 x 1 0
x 0 1 1

x 1 1 1

1 1 2

1.^ 1 2

Awc-vS source
JA PC + 1

T,,,.p A dd c'e s s

Sunp AddcesS

µPc + 1

Svmp Address

,uPc + 1

Fig. 4.12 Input Processor MCU Control Fields
and Jump Control • Logic Function

i

126

w

fetches the address of a free data path in its dedicated Input

Switching Network. Simultaneously, the processor clears the

buffer's service request flag and restarts the pollen. The

Input Processor then checks the DAV flag at its ELIST Data

Port. If this flag is not set, the processor loops until the{
i

flag becomes set. When the flag is set, the Input Processor

fetches the address of an empty shift register from the port

and sets the DAC flag.

Using these three addresses, the Input Processor links

the full input buffer to the empty shift register via the

free data path. Once this link is established, the processor

initiates the data transfer and returns to . the loop. A flow

chart of this software routine is presented in Figure 4.13.

A listing of this program is given in Figure 4.14.

4.4 The Routing System

The Routing System consists of the Shift Register Array,

the Sorting Processors, the Shift Register Array polling cir-

cuit, the Pouting Processors, and the Packet Routing Data I/O

ports. The Routing System interfaces to the Input System,

the Output Queues Lists and the Output System. The archi-

tectural organization of this system is presented below.

4.4.1 Architectural Workload Division

As discussed in section 4.2, the Routing function

as defined in the three processor architecture can no longer

meet the requirements of the multiple processor design. The

I
127

Fig. 4.13 Input Service Routine Flowchart

128

Fig. 4.13 Input Service Routine Flowchart, continued.

129

Inputs If IBSR-A=fd, JMP to INPUT

*Is there an input buffer
requesting service?
N0: Loop @ INPUT.

Input Polling Port -► Q

*YES: Input the buffer's
address.

Input Data Path Status Port Address-*Address Latch (µp1-A);
Reset Poller Data Path Busy Status Port4Scratch 1

*Find a Free data path,
clear IBSR-A'and restart
the pollen.

ELIST Data Port Address4Address Latch (µp2-A)

WAIT: If ELIST DAV = y1, JMP to WAIT

MIST Data Port-+Scratch 2; Sent a DAC•

*When the data becomes
available, input the shift
register number from the
ELIST port.

Scratch 1+Data Path Latch A Base Address-*Address Latch (UP3-A)
Q -* Data Path MUX select Latch A(D)

*Link the buffer to the
data path.

Scratch 1+Data Path Latch B Base Address-Address Latch (pP4-A)
Scratch 2 -* Data Path DeMUX select Latch B(D)

*Link to empty shift
register to the data path.

Data Transmit Control Address ♦Address Latch
Scratch 14Data Bus Decoder (M1-A); JMP to INPUT

*Start data transfer and
return to sense loop.

Figure 4.14 Input Service Routine

130

principle requirement is that each Output Queue List be

accessed by only one Routing Processor. This constraint is

satisfied by dividing the Routing function into two smaller

tasks. Each task, the sorting of packets and the routing of

packets, is assigned to one class of processors. The Packet

Sorting Processor is assigned the task of sorting each packet

in the array. The sorting function requires that a packet's

destination and its location in the array be sent to the

proper Packet Routing Processor. The Packet Routing Processor

then uses this information to route the • packet by placing the

packet's array address into the proper output queue list.

The system architecture for a single Packet Sorting Processor

is presented in Figure 4.15. Figure 4.16 illustrates the

system architecture for a single Routing Processor.

Implementation of this scheme does not require the re-

design of the Shift Register Array, the Shift Register Array

Polling Polling Circuit, or the Output Queue Lists. There-

fore, these components are not discussed in this chapter (see

section 3.1 for a review of this hardware). However, the

processors and their software routines are different from

those in the previous design. In addition, the new component,

the Packet Routing Data Port, is implemented in this archi-

tecture. Therefore, these topics are discussed. The Packet

Routing Data Ports are presented below as the first topic.

4.4.2 Packet Routing Data Ports

The Packet Routing Data Ports provide the necessary

interface between the Packet Sorting Processor and the Packet
i

Routing Processor. Each Packet Routing Processor is assigned

131

I

o a^ar d ^, c

W =
LL z
0

H
H

Y. (X z

0
V
O Q

^
LL QH
1

<C J

$4
0

0
a
t+
a
.04

41
w
0w
+1
a,
x
v

a

a^

tit
a.,q
ul

M

w
0
w

a^

a

A

FA

tn
rl

V'

b+
MI
W

V CL

w
M

1

M	

^.^^

LL N
M J

S
1/j

r

i
E

r

132
r

aW^

0 Q ,J

w
a

a

r+
n^
xu
a
0
d+
a

b
w0w
u
N
D

u
01
J^
•.1

u

to

N

^o

er

d+
.rf
w

133

its own Packet Routing Data Port. Any Packet Sorting Pro-

censor can send data to any Packet Routing Data Port. Asso-

ciated with every Packet Routing Data Port is a dedicated RAM

which is external to the Routing Processor it serves. The

function of these ports is to accept the routing information

from the Packet Sorting Processors, to store the routing infor-

mation in the external RAM and to provide this data to the

Packet Routing Processor when needed.

There exists an alternative to using the external RAM

for storage, but it is considered too costly to implement.

The alternate scheme requires that whenever a Sorting Processor

places data into a Routing Processor's data port, the Routing

Processor is to be notified by an interrupt. This interrupt

signal is activated by the Sorting Processor. The Routing

Processor responds to the interrupt by suspending the Packet

Routing Routine in order to fetch the data from the full port.

Once fetched, this data is stored in an internal software queue.

This scheme is considered too costly because:

1) Additional processor hardware will be required to

handle the interrupts.

2) The additional required software overhead will

increase execution times and reduce throughput.

These are the reasons the hardware stack scheme is implemented.

The operation of a Packet Routing Data Port can be best

explained by tracing the procedure that a Packet Sorting Pro-

cessor follows to send data to a port. Once a Packet Sorting

`	 Processor determines which port is to receive the data, it

134

checks the associated DAC flag. If this flag is not set, the

processor waits for it to be set. When the flag is set, the

Packet Sorting Processor sends the packet's destination infor-

mation to the Packet Destination Data Latch. Next, the

Packet Sorting Processor sends the packet's shift register

array address to the Packet Array Address Data Latch. Once

both latches are loaded, the Packet Sorting Processor sets

the DAV flag which automatically clears the DAC flag. A

single Packet Routing Data Port is illustrated in Figure 4.17.

Every DAV flag is scanned by a hardware polling circuit.

This polling circuit is presented in Figure 4.16. When an

activated DAV flag is found by the poller,.the STORE DATA

flip-flop is set. The set flip-flop halts the poller and

activates the one-shot that generates the low-active WRITE

signal. The outputs of the two data latches associated with

active DAV flags are enabled. The enabled output of the

Packet Destination Data Latch is sent to the Packet Destina-

tion Data RAM and the output of the Packet Array Address Data

Latch is sent to the Packet Array Address Data RAM. Both of

these RAM's are enabled in the write mode by the activated

WRITE signal. The WRITE signal is held activated until the

data is strobed into the RAM's. This data is stored into

the two RAM's at locations which have the same address since

both RAM's share a single index pointer. The architecture

of the Packet Routing Data RAM's is presented in Figure 4.19.

Once the write operation is complete, the active-low

WRITE signal goes high. The low-to-high transition of this

135

A06"
A"Alit WA

RAM
AN-D
—RCS

(^S

PAC.
Effiluf;

TO FkW7

DNA RAA

To Fwi*r

Ammo
AOpaiSi OA^A

M w
)Ac%eT
UIV-uve
D ATA
LArca

PAC kR

AmIN Y
40fa ti
OA1A
LAW" U

AA P4 -D

Res

^.^.-^	 ^r .c(a oa N S

R' Sr

—^ DAC- Dw

olAv 9, o S p- DAv

OAC.
t -

' eaAee^ 1L	 '
Ap-+ — D

was
R LS

To Ww" PACkCT

0lSt7^Afi^a a+

bw MIA OATH

tL ATCW

TFF
Mon %g*T34

oevc,_ Pawcssoa	 i
'A ^

DAv S

I
i
I
I

DAC-D

—^Q –	 D - DAV

Fig. 4.17 A Single racket Routing Data'Port

136

U
1^1

V4
V

O

Oa

0a
ro
43
roa

a

4J
a0a

a,J
U
ro
a

co

a

tT.,j
w

T4 ft M	 (11

W
V -d ccM	 w

w

xW
_J

137

W
H

3

H	 o e
0

3	 H a

F

Fe

bW ^

ro

ro

a ?
oC ri	 ^

% d	 -rl

^ ^	 0
W W	a

41

u
U
to
a

sr

rn.H
w

o ^o.. m

7
O
GC

02

•

138

signal activates the one-shot that generates the Flag UPDATE

signal. The Flag UPDATE signal clears the DAV flag and sets
F

.!	 the DAC flag. The clearing of the DAV flag resets the STORE

F	 DATA flip-flop. The reset flip-flop activates the INDEX UP-

DATE signal which increments the hardware counter that serves

as an index pointer. The data structure for the Packet

Routing Data List is given in Figure 4.20. Both the read and

the write operations take place before the index pointers are

incremented. When the two index pointers are equal, the list

is assumed to be empty.

When the Packet Routing Processor needs to fetch data

from the RAM's, it first selects the Packet Destination Data

RAM and then fetches the data. Next, the Packet Routing

Processor selects the Packet Array Address RAM and fetches

the data. The processor increments the index pointer once

both read operations are finished. Two-port RAM's are used

to allow a simultaneous read by the processor and write by

the hardware. Since the list is assumed to be empty when the

index pointers are equal, a read and a write operation will

never occur at the same location.

4.4.3 The Packet Sorting Processors

The Instruction Execution Units and the Microprogram

Control Units of the Packet Sorting Processors are similar to

those used in the three processor design for the Routing Pro-

cessor (see section 3.2). The IEU control fields in the Micro-

program Word for the Sorting Processors are presented in

139

x x x

x X
3

0

0

0

a	 - PTRO

i A X.

a, X x
x x
0 ATA

b A T A
0
0
0

DA TA

PTR I	 go
0

No	 — PTRO

Fig. 4.20 Packet Routing Data List Data Structure

140

Figure 4.21. Figure 4 ..22 contains the MCU control fields and

the Jump Control Logic Function for the Packet Sorting Pro-

cessors.

4.4.4 The Packet Sorting Service Routine

The Packet Sorting Service Routine is sense-loop

driven. While the Shift Register Array Polling Circuit

searches for unserviced packets, the Packet Sorting Processor

loops on the test bit. Once an unserviced packet is found by

the polling circuit, the Packet Sorting Processor exits from

I	 the loop. The processor fetches the address of the packet
I

from the halted poller. The packet's syndrome is fetched

and sent as an address to the Syndrome Decoder ROM. Con-

currently, the packet's service request flag is cleared and

the poller is restarted. The ROM output is fetched and

exclusively-ored with the fetched packet header. The cor-

rected header is stored back into the array. Using the cor-

rected header information, the Packet Sorting Processor

determines the packet's destination. The destination informa-

tion is then used to determine which Packet Routing Processor

is to receive the packet's routing data. This is accomplished

by sending the destination data to the Sorting Processor's

t Address Decoder. This decoder will generate the address of

the Packet Routing Data Port associated with the destination
k

of the sorted packet. Since a Routing Processor may route
r

packets destined for different ground stations, the different
i

	

	
destination codes of these packets must generate the address

of this Routing Processor's port. Since the different codes

141

i
i

v d ^s :

N ^ ^m

^
,v..

N
w W

o 0 0z Q

a a+^. m a
,j L'1 `' U

d

--^ ^ ^ ^ m m m

Q
`C

H I-i H

^G x

IW
e-1 t 1 C rl t-^

A
m

20

0
to

d1
-.i
W

r4
14
41

O
u

rx
ro
!T

N
a
O
u

W
H

O
w

a^
U

14
a

ONc.r,
41
14

ul

4J

X
V

a

N

tr.A
w

M Q
^ a

^ WM
4c

kv

M
H	

^ J
è}►' CIC

5 ^M

ca ^ ^
I3

Q

M
^ ^ J Q

M C1?.	 ^ Q ^,

i
.o J

w (H	
o0

^ HV lJ

^. Z Ham'

1
__j
	 F"

d z
L
N

d s
Q m

w
^ ^

W

,^ c Q	 e-w H,,
4o 0^

L
o	 cW

G W
Z N

S^

J VL e^

142

N, N NEXT ADL pE r s

S Aft + 1

W(AMITrtwAL sump

nj ZVOP ON NEW-0 n

'^, 1 sump oN

1va► P ADDRESS

TAS ^ TAB) -XA 1) 7AI

NExr ADDRESS %tRCT Z umP ADDRESS

44-41	 ¢a- 45

WW-6 A DDRE SS 	 SOURCE

X x 9S 1 1 .0 Pc + 1
X X qS 1 I -rut-, P 	 ADO RC ss

Y-, UUAP	 ADDRESS

^. x ^. A ^. ^PC + 1
X ^. 1 1 sumP	 ADDRESS

X ^. ^. 1 1 f3 .v►PC 4 ^.

Fig. 4 . 22 Packet Sorting Processor MCU Control
Fields and Jump Control Logic Function

143

will enable different address decoder lines, an encoding

V)	 scheme is needed. WIRE-ANDing the different address lines

that must enable the same port will provide the system with

the single port address lines needed. The only constraint

associated with this scheme is the requirement that the address

decoders have low active, open collector outputs.

Once the proper Packet Routing Data Port is addressed,

the Sorting Processor checks to determine if the port is

empty. If the port still contains valid data, the Packet

Sorting Processor waits for the port to be emptied by the

automatic port hardware. When the port is empty, the Packet

Sorting Processor first sends the packet's destination data

to the port. The processor then sends the packet's array

address, sets the port's DAV flag and returns to the sense

loop. Figure 4.23 contains the flow chart for this routine.

A listing of this program is supplied in Figure 4.24.

4.4.5 The Packet Routing Processors

The Microprogram Control Units of the Packet Routing

Processors are similar to one used in the three processor

design for the Routing Processor (see section 3.2). However,

the Instruction Execution Units (IEU) of the Packet Routing

Processors are redesigned to handle the Packet Routing Data

Ports. Since the Packet Routing Processors need no polling

circuits, the Direct Data (DB) is used to supply the pro-

cessors with the Packet Routing Data. This scheme saves

execution cycles since the processors are not required to

generate the addresses of the external data RAM's. A single

144

iI

START

TOP	 .
I

t
N O

	

	i+eet a^Up saviced 044
site,

t
ye s

OeMV.iat 4 he

addtKi ^ the

ShA

reQvettin9 Service

Fetcl% oAJ comet

♦MC tntoder. W41

+ht hM45 ciTC04.

Stares Correc ho

Deader .a +hit

S.R. array ,

De}ec^;pe the
pAcIMNs

DCS+ i A' @, i on .

: Z-Ij Ze -,, .II NO

yes

Fig. 4 . 23 Packet Sorting Service Routine Flowchart

145

Fig. 4.23 Packet Sorting Service Routine Flowchart, continued

If NW-D=O• JMe to START

*Is there a shift register
•	 requiring service?

NO: Loop 0 START.

SRS Polling Port-►Scratch 1

*YES: Input the address
of the shift register.

Syndrome Generator Rase Address+Scratch 1 Address ♦Latch (uPl-D)
Syndrome (R) -P, Decoder ROM Address Latch= Reset Poller

*Fetch header syndrome and
send it to the Decoder ROM.
clear NEW-0 and restart
the pollen.

Decoder ROM Address-Address Latch (µp2-D)
(Decoder ROM) @ Syndrome (R)-Q

*Fetch error word from ROM.

Header Base Address + Scratch 1-+Address Latch (µp3-D)
ALU EXOR Q-+Scratch 2, Header Port (R)

*Correct the header. Store
it into the S.R. Array and
into Scratch 2.

Scratch 2 AND Destination Mask4Q

*Determine packet destina-
tion

Q + Packet Routing Processor Base Address ♦Address Latch
(µp4-D)

LOOP: If DAC-n - O, JMP to LOOP
Q-►selected Packet Routing Destination Data Port
Scratch 14selected Packet Routing Shift Register A Data
Ports set DAV flag= JMP to START.

Figure 4.24

*Select the proper Packet
Routing Processor's Data
Port. Send the packet's
destination data. Then
send the packet's S.R.
array address. Set the port's
DAV flag and return to the
top of the program.

Packet Sorting Service Routine

147

I.r

control signal from the processor's microprogram word controls

the DS SOURCE MUX, which selects either the Packet Destination

Data RAM or the Packet Array Address Data RAM. The output

1	 from the MUX is tristated because the DS data bus is inter-

nally shared by the output of the ALU's register file. The

redesigned IEU used by the Packet Routing Processors is dis-

played in Figure 4.25. The iEU control fields in the Micro-

program Word for the Packet Routing Processors are given in

Figure 4.26. The MCU control fields in the Microprogram Word

and the Jump Control Logic Function are presented in

Figure 4.27.

4.4.6 The Packet Routing Service Routine

The Packet Routing Service Routine is sense-loop

driven. The Packet Routing Processor loops, testing the

status bit which informs the rrocessor when packet routing

data is available. When a packet's routing data is available,

the Packet Routing Processor leaves the loop. The processor

then fetches the packet's destination information. Next, the

packet's array address is fetched. Using the destination data,

the Packet Routing Processor selects the proper output queue

list. Concurrently, the Processor's index pointer for the

Packet Routing Data List is incremented. The packet's array

address is loaded into the Queue List Data Port by the pro-

cessor. The Processor then requests access to the queue list.

Requests for access are generated until the Packet Routing

Processor is allowed to access the queue list. Once access

is granted, the hardware automatically strobes the array

148

Z,

A" at

FAA

Fig. 4.25 Packet Routing Processor IFU

149

d 7
war ;i

iN
i tu

r
cc

H
w

M

h

.t

a
n

ICW ^
a
i

W	 1
M	 a a

1	 N 1'

g ^
W

M

M
^	 z

co
^	 2

to

1

t.
^ ¢ N

^ ^ H

2
h	 O

ee

r

0

W ^
M

1

1^• a
N Q Z
~ o ^

^ OH

N

Q O

. a

M•

E
R

Ili a ^, 8'
a
Idu

w ^ ^

i H4 ^

FA

er

von c^

J w w
y
Y

Q H .+ u
O

AO

do

II ^ q4 er

I,a c-i	 .-1 V4 .. w

150

QS 0 S(

^ ^ 1

^ 1 X

^ 1 X
1 QS X

1 ^ ^

1 1 x

I I x

,uPC + i

SumP ADDRESS

AA PC + 1

'Sun, (- AGGRESS

APC + A.

,UPC- + 1

FE C„ S Z Sje

1 1 0 0
1 ^ s 1

1 1 0
^ 1 1

11 0
Z ^ 1 1
1 1 ^^

1 0 1 1 1

NEXT ADDRESS SELECT YvrAp ADDRESS

40 - 4d	 4.3 -46
Of NO T .I NEXT ADDRESS

0 0 a APO

0 (d 1 UncwbxriwjAC T,4i-P

X MWP ON RME-e - i

1 (^ x AWP aw SIAtus -e n 1

1 1 x rp ens =W.E-a = Z

TumP ADORES5

TAS) V t ., TAI. SAO

ROuTC -B STAM-B XCU-6 N, No S

7C X x

X x >C

0 x X

1 X x

x 0 x
1 x

X X

x x 1

i

	 Fig. 4 . 27 Packet Routing Processor MCU Control Fields
and Jump Control Logic Function

r

s	 ^

151

address data from the port into the queue list RAM. Meanwhile,

the Packet Reputing Processor checks the status of the queue

list's corresponding output.buffer. If the buffer is in the

Idle state, the processor updates the buffer's status to the

Empty state, releases the queue list and returns to the sense

loop. However, if the buffer is not in the Idle state, the

processor simply releases the queue list and returns to the

loop. The flow chart for this software routine is shown in

Figure 4.28. A listing of this program is given in Figure 4.29.

4.5 The Output System

The Output System consists of the Output Buffers, the

Output Processors, the Output Switching Networks, and the Out-

put Polling Circuits. Interfacing to this system are the

Output Queue Lists, the Shift Register array and the ELIST
;

i	 Data Distribution System. The architectural organization of
^E

this system is presented below.

4.5.1 Architectural Workload Division

The two major system constraints that influence the

architectural organization of this sytem are:

1) Only one Output Processor must control an output

buffer. Each output buffer must be assigned to only

one Output Processor in order to eliminate resource

contention.

2) Only one Output Processor can have access to an out-

put queue list.

152

Fig. 4.28 Packet Routing Service Routine Flowchart
r

x

153

s

Fig. 4.28 Packet Routing Service Routine Flowchart, continued

l ^+4

154

TEST: If ROUTE-B = 1, JMP to TEST

*Are there any packets re-
questing routing?
NO: Loop @ TEST

Destination Data RAN + , Scratch 1
Shift Register Address RAM 4 Scratch 2

*YES: Input the packet's des-
tination and array address.

Scratch l+Output Queue List Base Address-oAddress Latch (UPl-B);
update packet data pointer

*Select the Output Queue List
and OSW of the-destination
buffer

Scratch 2 -► Output Queue List Data Port (N)

*Send the packet's array address
to the Output Queue List Data
Port.

REQUEST: Request Queue List (N)

*Request access to the Output
Queue List selected. If access
is granted, the data from the
Port is automatically stored.

If STATUS-B = 1, JMP to REQUEST

*If access is not granted, Loop
@ REQUEST. Proceed otherwise.

If OSW = NOT IDLE, JMP to END

*Is the output buffer idle?

Set OSW=EZiPTY; Release Output Queue List (N); JMP to TEST

*YES: Update OSW, release Queue
List and return to the top of
the routine.

END: Release Output Queue List (N); JMP to TEST

*NO: Release queue list and re-
turn to the top of the routine.

Fig. 4.29 Packet Routing Service Routine

155

The Separate Systems Scheme as discussed in section 4.3.1 is

considered the best technique to use in organizing the Output

System in order to fulfill the above requirements. The system

architecture of a single Output Processor in the Separate

System Scheme appears in Figure 4.30.- Each output processor

is assigned to a fixed number of output buffers. in addi-

tion, each processor is assigned a dedicated Output Switching

Network, a dedicated Output Polling Circuit and is allowed

access to the Output Queue Lists that corresponded to the

assigned output buffers. Since the implementation of this

architecture did not require the redesigning of the Output

Buffers, the Output Polling Circuits or the Output Switching

Networks, these hardware blocks are not discussed in detail

in this chapter (see section 3.1 for a review). The Output

Processors and their software are discussed below.

4.5.2 The Output Processors

Both the Instruction Execution Units and the Micro-

program Control Units used by the Output Processors are

similar to those used by the Output Processors in the three

processor architecture (see section 3.2). Shown in Figure

4.31 are the IEU control fields of the Output Processors'

Microprograms Word. Figure 4.32 displays the MCU control

fields of the Microprogram Word and also the Jump Control

Logic Function for this class of processor.

4.5.3 The Output Service Routine

{

	

	 Like all the software routines, the Output Service

Routine is also sense-loop driven. The Output Processor

156

0

r	
C9w Q

4 H

^ Q
M

W

W 'z"

N

4

O
W
fA
d1

O

a

a
41

a^

0+
a

ro

0
w

u

41
u
a^

u
$4

a^
41
N

N

d
O
M
tN

w	 ^

f	 '

157

v

1- W
N N

0

^ V

W
u

o
M

v v

W
O

W
J
Q

N
H

IW H
15

Fyn

H
1A

co

A

^^1

H

11
I rO

^^

w

N	 -^

O^ N
1	 ^
^	 aO

c
A J

4t
to

m yS .	 ^, 'C
r-^1

W

r4
O
$4

Ou
w b
COX

0$

d
54
V

clo a
V to V	 i

C a

5C^ Cr

.J ca °0
a

Q H H H a
O
O

H •	 i

f4

O

i

E

S

1

1

W

gr4-
M

W
,	 1- aft

1
oer^J2

O. WM r

A
ro

1

IY
N

d ^

M

ern of
t

J14
M

c

4441

m

x

'S
M
'

aJ ^^ Q
^ a

Z
^ o7 F

/ J V
Q

n

W
W

-+	 o
Q	 ^7	 J

W
^ G	 ^

i0 E d
H	 O	 t;

158

I►

4-1- 41

NExr Aomess

AAPC+ 4.

Ulawo .riwAL Tv,-P

1 TwoP ON itma-C=

1 1 W—f ON Smros -C +^

! aP om DAC-C a

i sine oN emm-c 	 fa

i

NEXT ADDRESS SGUCT	 TUMP ADDRESS

44-49
TumP ADORE ss.

sA.,, 7A3 , sAZ , 'SAS , 3740

SmVw -C S' aws-c DAL-C EmPTY•c N, Nm T I FE Cn C j So I ADORFSS SouRCE

X X %^ x Rf r6 q 1 ,uPc + 1

X

1
X
x

X

X

X
X

X
X

^

!^

x
X

x
^

x

X

X

x
^
^
X
x

x

X
X

k
x
X

^
1

^

^

1
1

1

1^^

^^

^'
^.

^
^

Y^

1 q

^1

1

^

^
^I

1

^

1
1
1
1^
1

^

1^
1

Qf

1

1

1^^
i ¢^^

1

1

1
1

el

1

^^

1
1

1
1

QS

1

1Lmp ADDRESS

^np ADDRESS

,uPc + 1

ARC +1

TumP ADDRESS

-rumP ADDRESS

^uPC + 1

AAPc + 1

S'JmP ADDRESS

Fig. 4.32 output Processor MCU Control Fields
and Jump Control Logic Function

159

r

leaves the loop once its polling circuit locates an empty out-

put buffer. After leaving the loop, the processor fetches the

address of the buffer from the halted poller. Using this

information, the Output Processor selects the buffer's corre-

sponding output queue list. A request for access to this

list is generated by the processor until access is granted.

When access is granted, the Output Processor determines if

the queue list is empty. If the processor finds the list

empty, the processor changes the buffer's status from the

Empty state to the Idle state. Concurrently, the processor

releases the queue list, restarts the poller and returns to

the loop.

However, if the queue list accessed is not empty, the

Output Processor fetches the address of the packet to be

transmitted. Simultaneously, the output buffer's status is

changed from the Empty state to the Bus* , state, the queue

list is released and the poller is restarted. After the Out-

put Processor has completed all these tasks, it finds a free

data path in its dedicated Output Switching Network. This

data path is linked to the shift register containing the

packet to be transmitted. The Output Processor then links

the empty buffer to the data path. Once the path is complete,

the processor initiates the packet's transfer into the output

buffer. While this transfer is taking place, the Output

Processor checks the status of its ELIST Data Distribution

I/O port. If the Data Accepted (DAC) flag is not set, the

processor loops until it becomes set. Once the Output

160

Processor finds the flag set, it sends the array address of

the freed shift register. After loading the 1/0 port, the

processor sets the port's DAV flag and returns to the sense

loop. Figure 4.33 contains the flow chart for this routine

and the listing of this program appears in Figure 4.34.

161

l	 J
i
's
10

ft
At j

r
a

Fig. 4.33 output Service Routine Flowchart

162

V

r

<<

VC(

lw^M io tldST

^n	 P.or nr

ei 1tie 0A v (L5.l

AC,'

kciC'.:: J^`j.f

F ir.A O t^:Q

d.io ^.^ ► I.^k,

Tcow;n.'t

t 1,

ra^krt.	 ^

INAL p

r	 •+

Loop

i	 rig. 4.33 Output Service Poutine Flowchart, continued.

163

.r

SQt Osw
rOLE.

Reuse OJIM
QW't lift $mt
ruilg i he Mcr.

LOOP

a

i
Y

{

6^/HISS
a M !^row' P	 da 4 +e t,.^s,

LOO P

Fig. 4.33 output Service Routine Flowchart, continued.

163

OUTPUT: If aERVICE-C - 0, JMP to OUTPUT
*Is there an output buffer
requesting service?
NO: Loop @ OUTPUT

Output Polling Port-+Q

*YES: Input the address of
the buffer.

Q + Queue List Base Address♦Address Latch (µp1-C)

REQUEST: Request Output Queue List (N)

*Select the buffer's Output
Queue List and OSW. Then
request access.

If STATUS-C-1, JMP to REQUEST

*Was access granted?
NO: Request access again.

If EMPTY-C-%F, JMP to IDLE

*YES: Determine if the list
is empty.

List Empty: Branch to IDLE

[Output Queue List (N)j @ OPTR (N)-4Scratch 1; Set
I	 OSW=BUSY; Release Output Queue List; Reset Poller

*LIST NOT EMPTY: Input the
SAA which contains the
packet to be transmitted.
Then update the OSW, restart
the poller and release the
queue list.

Output Path Status Port Address♦Address Latch (µp2-C)
Data Path Busy Status Port♦Scratch 2

*Find a free data path.

Scratch 2+Data Path Latch A Base Address-Address Latch G N -C
Scratch 1 Data Path HUX select Latch A(D)

*Link the shift register to
the data path.

Fig. 4.34 Output Service Routine

164

.w

t!

	

	 Scratch 2+Data Path Latch B Base Address-Address Latch (up4-C
Q -► Data Path DeMUX select Latch B(D)

K	 *Link the output buffer to
t.	 the data path.

Data Path Transmit Control Base Address4Address Latch
Scratch 2-+Data Bus Decoder (Ml-C)

r
t

	

	 *START Packet transfer.

LIST Data Port Address-►Address Latch (µp5-C)

LOOP:	 If DAC-C-#, JMP to LOOP
'	 Scratch 14ELIST Data Port

*Send the empty S.R.# to the
ELIST data port when the
port is empty.

Send a DAV; JMP to OUTPUT

^	 *Send a DAV to the port and
return to the top of the
program.

f
IDLE:

	

	 Set OOW=IDLE; Release Output Queue List; Reset poller;
JMP to OUTPUT

*Update OSW, release queue
list, restart poller and
return to the top of the
program.

Fig. 4.34 Output Service Routine, continued.

165

5.0 EVALUATION AND THROUGHPUT ANALYSIS

^--^	 The evaluations of the two packet switch architectures

are presented in this chapter. The evaluation of the packet

switch's performance is in terms of throughput. This evalua-

tion is based on the software execution times. In the multiple

processor architecture, additional parameters affect the sys-

tem throughput. Therefore, equations relating the number of

processors and the number of users to the system throughput

are presented.

5.1 Performance Evaluation

In order to compute the maximum system throughput, two

assumptions must be made. Both assumptions hold true for the

two architectures. The first assumption is that the system

is heavily loaded such that all output queues contain at least

one packet awaiting transmission. The second assumption arises

from the fact that processors never wait for internal hardware

and that each system is virtually free from resource conten-

tion. Thus, each processor is assumed to be busy 100% of the

time under heavily loaded conditions. Therefore, a processor

can process one packet in the amount of time required to exe-

cute the assigned software routine completely without inter-

ruption. Using these assumptions, an estimation of throughput

for each multiprocessor architecture is presented below.

5.1.1 Throughput Estimation for the Three Processor System

In order to estimate the system throughput, equations

and relationships are developed. In these calculations, system

166

W

parameters are introduced. These parameters are:

1)
tPl s Input Service Routine execution time

2) tP2 = Routing Service Routine execution time

3)
tP3 = Output Service Routine execution time

4) R = •Bit Rate per user

5) N = Number of Users

6) B = Number of Bits per Packet

7) FP = System Throughput in Packets per Second

8) F = System Throughput in Bits per Second

A processor can process one packet in the amount of time

required to execute the assigned software routine. Since

each packet must be serviced by all three routines, the pro-

cessor with the longest execution time will determine the

maximum system throughput. The software execution time for

each processor is listed in Table 5.1. A processor clock

cycle of 120 nanoseconds is assumed. Table 5.1 shows the

number of instruction cycles required and the time taken.

Some routines have several execution times listed. Each of

the different values illustrate the various effects of re-

source contention, the state of the output queue lists and

the state of the output buffers.

167

Normal Operation (No memory
contention) :

Input.Service Routine 11 cycles = 1.32 µ Sec

Output Service Routine

(a) Transmit Packet 16 cycles = 1.92 µ Sec

(b) Empty Queue 7 cycles = 0.84 µ Sec

Packet Routing Service Routine

(a) Enqueue Packet 15 cycles = 1.80 µ Sec

(b) Enqueue Packet
and Update OSW 15 cycles = 1.80 µ Sec

Worst Case Due to Memory Contention:

Input Service Routine 11 cycles = 1.32 µ Sec

Output Service Routine

(a) Empty Queue 0 cycles

(b) Transmit Packet 18 cycles = 2.16 µ Sec

Packet Routing Service Routine

(a) Enqueue Packet
(Default) 19 cycles = 2.28 µ Sec

(b) Enqueue Packet
and Update OSW
(Default) 19 cycles = 2.28 µ Sec

(c) Enqueue Packet 17 cycles = 2.08 µ Sec

(d) Enqueue Packet and
update OSW 17 cycles = 2.08 µ Sec

Table 5.1 Software Execution Times for the Three Processor
System

168

IV

As stated earlier, the packet switch's maximum throughput

is achieved when the processors are busy 100% of the time and

when no output queue lists are empty. Therefore, in order to

determine the maximum throughput, the slowest execution time

must be selected from one of the following values:

1) The execution time for the Input Service Routine

under normal operating conditions.

2) The execution time for the Packet Routing Routine

when it enqueues a packet under normal operating

conditions.

3) The execution time for the Output Service Routine

when it transmits a packet under normal operating

conditions.

Selecting and comparing the above values from Table 5.1,

the execution time for the Output Processor is found to be

the largest of the three values. Therefore,.the three pro-

cessor system has a maximum throughput which is limited by:

FP < 1/t P3
	 (5.1)

The system throughput in terms of bit rate is found by

multiplying the maximum packet throughput by the packet bit

length:

B xFp = F < B/tP3	 (5.2)

169

i

4

The system throughput in terms of bit rate is related to the

number of users by:

FB - NXR	 (5.3)

This can be expressed as:

NXR < B/tP3 .	 (5.4)

or,

tP3 < B/(NXR) 	(5.5)

In a heavily loaded system free from resource contention,

the Output Processor services one packet every 1.92 micro-

seconds. Therefore, the maximum packet throughput is:

FP < 1/1.92 VSeconds = 520,833 packets/second 	 (5.6)

If a packet length of 10,240 bits/packet is used,

the maximum system bit rate is:

F = 10,240XFP = 5.3X10 9 bits/second.	 (5.7)

An important point to note is that the system is de-

signed such that the processing time of each packet is inde-

pendent of the packet'size. Therefore, an increase in the

170

.

packet length will increase the system bit rate proportionally.

However, due to the two internal serial transfers, a packet's

delay is affected by the packet's size. An additional draw-

back of overly large packet sizes is that a significant por-

tion of a user's throughput is wasted when snort messages are

transmitted. Therefore, the system's throughput in terms of

a bit rate may be quite large while the actual information

rate could be small. All these points also hold true for the

multiple processor architecture.

5.1.2 Throughput Estimation for the Multiple Processor
System

The maximum throughput in bits/second of the multiple

processor packet switch varies depending on the values of two

parameters. These parameters are the packet size and the num-

ber of processors implemented. In this section, the relation-

ship between the throughput and the number of processors is

presented. In order to evaluate this packet switch, new para-

meters are needed. These new parameters are:

1) c = Number of Processors in the Input Processor Class

2) c2 = Number of Processors in the Packet Processor Class

3) c3 = Number of Processors in the Packet Routing Pro-
cessor Class

4) c4 = Number of Processors in the Output Processor Class

i	 5) C = Total Number of Processors

171

6) tPl = Input Service Routine execution time

7)'t P2 : Packet Sorting Routine execution time

8) tP3 = Packet Routing Routine execution time

9) tP4 = Output Routine execution time

10) FPcl
= Input Processor Class throughput in packets
per second

11) F
Pc2 1-'

Packet Sorting Processor Class throughput in
packets per second

12) FPc3 ` Packet Routing Processor Class throughput in
packets per second

13) FPc4
= Output Processor Class throughput in packets

per second

The maximum throughput of the switch is limited by the
k'

maximum throughput of the class of processors which has the

smallest maximum throughput. The throughput of each class

of processor depends on the software execution times and the

number of processors assigned to each class. Therefore, the

throughput for each processor class is:

FPci 11 i(1/tP)c i f 	 1 < i < 4
	 (5.8)

In order to use this equation in the performance evalua-

tion of the multiple processor packet switch, the software

172

execution times must be known. Table 5.2 contains the soft-

°°	 ware execution times for each class of processor. Various

values are listed since the execution times of some routines

vary depending on the current state of the system. As stated

earlier, the packet switch's maximum throughput is achieved
i

when the processors are busy 100% of the time and when no output
F

queue list is empty. Therefore, the execution times used in
t

this throughput estimation are:

1) The execution time of the Input Routine when data

from the MIST is available immediately.

2) The execution time of the Packet Sorting Service

Routine when the Packet Routing Data Port's DAC flag

is set.

3) The execution time of the Packet Routing Service

Routine when it enqueues a packet under normal opera-

ting conditions without updating an OSW.

4) The execution time of the Output Service Routine when

it transmits a packet under normal operating conditions.

Using the data from Table 5.2 in equation 5.8, a table

listing the throughputs as a function of the number of pro-

cesses is constructed. Table 5.3 contains this data compiled

from the evaluation. A graph displaying the relationship be-

tween the number of processors and the upper bound on the

system throughput is presented in Figure 5.1. This graph is

plotted using the data contained in Table 5.3.

173

Normal Operation (No Memory Contention):

^-^ Input Service Routine 13 cycles - 1.56 µ Sec

Packet Sorting Service Routine 13 cycles - 1.56 µ Sec

Packet Routing Service Routine

(a) Enqueue Packet	 9 cycles - 1.08 µ Sec

(b) Enqueue Packet and
Update OSW	 9 cycles - 1.08 µ Sec

O"t ut Service Routine

Ca) Tra-:emit Packet	 19 cycles = 2.28 µ Sec

(a) Empty Queue	 7 cycles = 0.84 µ Sec

Wort Cast Due to Memory Contention:

Input Service Routine 13 cycles = 1.56 µ Sec

Packet Sorting Service Routine 13 cycles - 1.56 µ Sec

Packet Routing Service Routine

(a) Enqueue Packet
(DEFAULT)	 13 cycles = 1.56 µ Sec

(b) Enque Packet and
Update OSW (DEFAULT) 13 cycles = 1.56 µ Sec

(c) Enqueue Packet	 it cycles - 1.32 µ Sec

(d) Enqueue Packet and
Update OSW	 11 cycles = 1.32 µ Sec

Output Service Routine

(a) Transmit Packet	 23 cycles = 2.96 µ Sec

(b) Empty Queue	 11 cycles - 1.32 µ Sec

Table 5 . 2 Software Execution Times for the Multiple Processor
System

174

of • n
M n N u1 a► M n ,.^ N ^
^ OD M n rl 10 O u1 01 M

rl rl N N M M M ^

x
.H ^

roo
age mN O

N
o►

IA
oo

ODn O
n

M
^o

10
^n

00
M

^p
N

u

1^. .

14
. . . .

W;
. . . .

N V
N M ^ 1C n 4D 01

o^

roaw a v
a ^

a
O ^

ro^^ o
a^

BIM 4w
41j a vG7 rl 0 r-

^ a

9-4 P4 N M M to V; ^p a

^

M

Ln

E .a a^̂

EZiti ^p N O^ to N 00 el' rl n ^ Id

H rl rl N M M

2

	

O	 W Z E

	

W W N	 Oo
3 aC	

> x>>W 0 z Z

O W O E^ E+ W N t~ cn W Z E

a

175

ci

VII

a-

0
14

41
u
0
14
04

44
0

14
ofIz
4)
A
4J

44
0

0
kA

41
w u
v
0

%4,yo to

41

W
-0
r

0
14

-Z c
E-4

Ei

41
N

404- to

V

Lq	 X61	 V4	
96

LA	 CA	 Tq

VJ46OJ4 I

176

A specific example is prys% -d below to illustrate how

1	 the number of processors required 	 a desired throughput is

determined:

Packet Length

B - 10 0 240 bits per packet

Desired Throughput

FB < 30x109 bits per second

FB/B a Fp < 3.0x106 I.ackets per second

The processor assignments are determined using equation

5.8.

Number of Input Processors

FPC1 s
3 MPS < (1/tPlM

Ci > (3x10 6 packets/sec)(1.56 x 10-6 seconds/packet/

processor)

C1 > 4.68 processors.

Since C must be an integer value, C 1 > 5 processors.

Number of Packet Sorting Processors

FPc3 a 3 MPS < (1/tP2)C2

C2 > (3 x 10 6 packets/sec)(1.56 x 10-6 seconds/packet/

processor)

177

C2 > 4.68 processors

C2 > 5 processors.

Number of Packet Routing Processors

FPc3 _> 3 MPS < (1/tP3)C3

•	 C > (3x106 packets/sec)(1.08 x 10-6,
	 seconds/packet/

processor)

C3 > 3.24 processors

C3 > 4 processors.

Number of Output Processors

FPc4 s 3 MPS < (1/tP4)C4

C4 > (3x10 6 packets/sec)(2.28x:r-6 seconds/packet

/processor)

C4 > 6.84 rrocessors

C4 > 7 processors.

There is an important point to note regarding the

system throughput. As mentioned earlier, the system through-

put depend3 on the packet size and the number of processors

implemented. The .important point of this relationship is

that the number of processors that can be implemented is

limited by the number of users. Each user is considered to

r 	 P

s

178

y

have one input and one output buffer. If one ground station

user is allocated two sets of buffers, he is viewed as two

distinct users by the switch. The number of users limits the

throughput because the number of Input, Packet Routing and

Output Processors can never exceed the number of users. This

limitation arises since each user's workload cannot be effi-

ciently divided among more than one processor of the same class.

Therefore, the maximum attainable packet throughput for a fixed

number of users is achieved when one processor from each class

listed above is assigned to one user. As seen in Table 5.2,

the Output function requires the longest execution time of

the three classes listed above. As a result, this function

limits the system's maximum attainable packet throughput as

given by

FP < (1/tP4)N .	 (5.9)

This equation, which expresses the relationship between

the maximum throughput and the number of users, is plotted in

the graph of Figure 5.2. The importance of this relationship

is illustrated in the example given below.

Desired System Features:

N = 5 users

B = 10,240 bits per packet

F = 30X10 9 bits per second

Y

	 179
l

A--

i
I

t

to
Z)
w0

z
a,x

w
0
0
0
-A

n	 ^
•1 	 U

w

to

to
to

^ a

w

Ul
0
o

,0
N
- 21

E1

E

O
d N

7
C
w

a

ov

v
si
X

x
v
Lit

14^-	 JSL	 '+9,

is s o; c

180

System Performance Evaluation using Equation 5.9:

FP < (1 packet/2.28 microsecozds)•5

FP < 2.19x106 packets per second

FB = BxPp < 22.5x109 bits per second

As seen by the results above, the system performance

falls short of the desired goals. The system designer has

three options available:

1) Build the system and reduce each user's throughput to

meet the lower performance rating.

2) Increase the packet length. This solution faces the

problems described in section 5.1.1.

3) Assign the.ground station users additional sets of

buffers so that the packet switch serves more than

five users. This sclution allows additional pro-

cessors to be implemented, which will increase the

system's throughput rating.

The purpose of the above example is not so much to ex-

plain how to solve performance problems as to stress the

importance of the last relationship presented in equation 5.9.

Without this relationship, one would determine the number of

processors required by referencing Figure 5.1. This obtained

value may be impossible to implement due to the user/processor

limitations.

C'
	

181

iI

f

A final point regarding the maximum obtainable through-'.

put of the multiple processor system is that Equation,3.9 has
4

a finite upperbound which is not solely limited by the number

of users. As stated earlier, service fir each packet requires

a read and a write operation at ELIST. Therefore, ELIST will

limit the maximum packet throughput of the packet switch.

Using the hardware technology currently available; ELIST is

designed to provide and accept address data approximately
Y

every 100 nanoseconds. This fact limits the system maximum

attainable packet throughput as given by

FP < (1/tP4)N < (1/100x10-9)
(5.10)

FP < (1/tP4)N < 10x10 6 packets/second

A system using a packet length of 10,240 bits will have

a maximum bit rate limited by

F = BXFP < (10,240 bits/packeL.) x (10x10 6 packets/

second)

FB < 102.4x10 9 bits/second.	 (5.11)

As new and faster hardware and processor technology

becomes available, the overall performance of this packet

switch will improve.

182

h.

S.2 Evaluation of the Processor

Implementation of the packet switch may require the con-

struction of a customized processor chip. Therefore, a review

of the characteristics of the AMD 2903 ALU will provide the

system designer with an insight into the design of a processor

which is better tailored for this particular application. This

review begins with the available features of the AMD 2903 ALU

and ends with the features not provided by this chip that

would enhance processor performance.

r

	

	 The AMD 2903 ALU provides ample arithmetic and operations

for the packet switch. In fact, the number of operations can

be reduced to save hardware complexity. The only functions

required are the addition operation, the logical AND and the

logical OR. The on-chip register file is ideal for holding

scratchpad variables. In both multiprocessor designs, the

full capacity of this file is never used. Therefore, this

component could be reduced in size without degrading system

performance. The single 0 Register, which provides a work

area for some operations, was quite adequate. The provided

ZERO flag went unused and could be eliminated from the custom

designed processor.

There are several features the AMD 2903 ALU architecture

does not support. These features would make the processor

better suited for this particular application. They are:

1) Internal tristate control of the DE Direct Data Input

Bus. This bus is not currently tristate because this

bus is bidirectional. This allows data to enter the

183

V

4aa>

r

ALU from external hardware as well as allowing data

_ - from the register file to be sent directly to external

hardware. Since direct transmission of data from the

register file to external hardware is not required,

this bus could be tristated internally to save ex-

ternal hardware. A possible alternative would be to

increase the size of the internal select MUX. In this

scheme, the DB input bus would no longer need to share

the internal data bus with the register file.

2) Additional Direct Data Inputs. These inputs save

execution cycles since the processor does not need to

generate a device's address before a read operation

can be performed. These inputs can be used whenever

the processor is required to access a single unique

system device. Since the Data Path Busy Status Ports

are unique system devices, this feature would reduce

the software execution times for the Input and Output

Processors in both architectures. This scheme may

require larger internal Select MUXs and more select

control signals. However, there does exist one way

to increase the number of direct data inputs without

increasing the Select MUX size or the number of con-

trol lines. As mentioned earlier, only a small por-

tion of the register file is used. In fact, the A-

Register File is never used. Therefore, this component

could be removed and its input to the Select MUX could

be replaced with a direct data input. This particular

184

1 ^, -
f	 ^,+ n' tai {	 fi/.T4	 S .. r:-. .e	 ...k'

Y:
'	 L

feature would increase system throughput directly and

}	 shouldebe considered an important design criterion.

3) Internal data bus latches. This feature would provide

for the stabilization of ALU data inputs without the

use of external latches.

All these features are recommended for any processor

custom designed for the packet switches.

5.3 Packet Losses

if the throughput rating of the packet switch is exceeded,

packets will be lost even when there are no hardware or soft-

ware failures in the system. However, an important point to

make concerning these packet losses is that the system will

always recover at some point in time. In both architectures,

packets can be lost due to overflow in three components.

overflow can take place in an additional component of the

multiple processor system. The components which are suscep-

tible to overflow are:

i
1) The Input Buffers

2) The Output Queue Lists

3) ELIST

4) The Packet Routing Data Ports' queues.

Even with double buffering, an input buffer will over-

flow if its user exceeds his allotted channel capacity. The

_

	

	 oldest of the two packets residing in the input buffer will

be lost as the new packet is shifted into the buffer.

185

V

if any output queue list becomes full, the packet switch

will encounter serious problems. When a queue list becomes

full, the two index pointers will be equal in value. This is

the same situation for an empty list. When the two pointers

are equal, the Output Processor assumes the list is empty and

does not access the list until new data is placed into the

queue list. Therefore, the list remains full until new data

is placed into the list, overwriting valid data. Only after

overflow has occurred can the Output Processor access the

list. Two serious problems arise from -this overflow condition.

The first problem is that once overflow takes place in the

queue, no less than the entire list of original data will be

lost. The second problem is a result of the first problem.

As stated earlier, the data stored in the Output Queu-w Lists

are the array addresses of routed packets. Therefore, if these

addresses are lost, the routed packets will never be trans-

mitted and they will remain in the Shift Register Array inde-

finitely. Since they are never transmitted, their array

addresses will never be returned to ELIST. This fact could

cause ELIST to become empty. An empty ELIST and the asso-

ciated problems of this situation are discussed next.

If ELIST becomes empty and a new packet arrives at the

input, the oldest packet in the shift register array will be

lost as the new packet is stored in its place. Packets will

continue to be lost until the Output Processors return enough

array addresses to ensure that the next shift register address

fetched by an Input Processor is valid data. ELIST will

in

186

i

	

-	 I

become empty when the system users exceed the packet switch's

tU-oughput rating.

In the multiple processor design, if a Packet Destination

Data list becomes empty, the system will face problems similar

to those caused by a full Output Queue list. This is due to

the fact that both lists share the same data structure. Again,

packets will be trapped in the Shift Register Array because

	

•	 the data lost during overflow is needed for routing. If a

packet is never routed, it can never leave the array. There

is no way to re-sort these packets, which means the lost

routing information can never be recovered. As with a full

Output Queue list, the entire list of original data will be

overwritten before the system can recover.

Packet losses reduce the actual throughput of a system

since users must retransmit all packets lost in transmission.

Since a large and effective throughput is the primary goal of

this work, care must be taken to ensure against packet losses.

The system designer must research the queuing problems of the

switch before deciding on the size of the Shift Register Array

and all the various queue lists. If the packet switch is

built with an insufficient amount of array locations and/or

queue lengths for its throughput rating, packet losses will

be inevitable. In addition, part of the responsibility of

ensuring against packet losses belonge to the users themselves.

They must not exceed the charnel capacities assigned to them.

187

IV

5.4 Fault Detection end Fault Tolcrance

Since the packet switches presented in this work are

part of a proposed communication satellite network, fault

detection and fault tolerance are desirable features. Once

the satellite is placed into orbit, maintenance and repair

work will be quite expensive or impossible. Therefore, if

the packet switch could handle its own maintenance problems,

the useful life of the satellite will be extended.

The failure of some components will cause an entire

channel to fail. An example of such a component is an input

buffer. If an input buffer fails, the channel it serves will

also fail. Some component failures will cause intermittent

packet losses. An example of this type of failure would occur

if one location in the Shift Register Array failed. Only the

packets stored in this location would be lost or corrupted.

Both of these types of failures will degrade system perform-

ance but the packet switch can still operate. However, there

are certain component failures which will cause the entire

packet switch to fail. These components should be either

fault tolerant through the use of redundant circuitry or self-

diagnostic. The self-diagnostic components should be able to

hand over their tasks to a spare component upon detection of

a fault. The components which fall into this category for

the three processor system are:

1) The Input Processor

^-	 2) The Routing Processor
f

3) The Output Processor

188

4) All the polling circuits

5) Both Data Path Busy Status Ports

6) ELIST

The components which can cause a channel loss in the

three processor desi g n due to a failure are:

1) Input Buffers

2) Output Oueue Lists

3) Output Sta	 or	 ORIGIN.' P;',^r LS
DE POOR QUALITY

4) Output

The components which can cause intermittent packet losses

in the three processor design due to a failure are:

1) Data paths in the Input Switching Network

2) Shift Register Array locations

3) Data paths in the Output Switching Network

In the multiple processor design, the only system com-

ponent that may cause the entire packet switch to fail, should

it fail, is the ELIST. Single or multiple channel failures

could result if one of the following fails:

1) Input Buffers

2) Input Polling Circuits

3) Input Processors

4) Data Path busy Status Ports

5) Packet Destination Data Ports

6) Packet Routing Processors

189

1) Input Buffers

2) Output Qu

3) Output S

4) Output

"t

--4) 'All the polling circuits

5) Both Data"Path Busy Status Ports

6) BLIST

The components which can cause a channel loss in the

three processor design due to a failure are:

ORMAL PACC jv
aB .POOR QUAD

The . components which cacause intermittent packet losses

in the three processor design due to a failure are:

1) Data paths in the Input Switching Network

2) Shift Register Array locations

3) Data paths in the Output Switching Network

In the multiple processor design, the only system com-

ponent that may cause the entire packet switch to fail, should

it fail, is the ELIST. Single or multiple channel failures

could result if one of the following fails:

1) Input Buffers

2) Input Polling Circuits

3) Input Processors

4) Data Path Busy Status Ports

5) Packet Destination Data Ports

6) Packet Routing Processors

189

d

7)

t ^	 s)
9)

10)

11)

Output Queue Lists

Output Processors

Output Status Words

Output Polling Circuits 	 •

Output Buffers

As noted above, if the Data Path Busy Status Port of an

Input or Output Switching Network fails, the loss of some

channels will occur as a result. However, if only a single

Input (Output) Switching Network is used by the switch (as in

the case of the Aee processor system), a status port failure
will result in the failure of the entire packet switch. Thus,

system reliability and elimination of resource contention is

achieved with multiple Switching Networks.

B	 The components which can cause packet losses in the O

multiple processor design due to a failure are:

1) Data paths in the Input Switching Network

2) Shift Register Array locations

3) Shift Register Polling Circuits

4) Packet Sorting Processors

5) Data paths in the Output Switching Network

Now that the impact of each component failure is identi-
•

f ied, ± : system designer can decide Nhat level of fault

detection and fault tolerance is needed for each component.

t

190

e	 r

v

6.0 QUEUE THEORETIC MODELLING FOR CALCULATION OF THE AVERAGE
RESPONSE TIMES AND THE AVERAGE QUEUE SIZES

6.1 Introduction

In this section queue theoretic analysis and evaluation

of the proposed designs are presented. Analytical relationships

between the average response times and the design parameters

of the switch are obtained. These expressions are to be used

to evaluate the performance of the three designs of the switch

for various values of these parameters. Also, the average queue

sizes in the shift register array are obtained. This queue

size gives an idea as to the required size of these shift

register arrays in the various designs.

6.2 Design Parameters of the Switch

The average response time of the switch and tho average

size of the shift register array depends on a number of para-

meters. The more important of these are:

1) f - clock cycle time of the microprocessor - This

speed determines the time taken by the processor to

serve a packet at the various stages of its service.
n

e	
2) tpl - duration of the input interrupt service routine.

3) tp2 - duration of the output buffer interrupt service

routine for packets.

4) tp3 - duration of the routing service routine.

5) t
p
4 - duration of the sorting service routine.

6) R - bit rate/user.

7) N - number of input lines connected to the switch.

8) S - number of bits/packet.

191

c

i

9) yi : destination function - this function determines

the fraction of the total number of arrivin 	 ckets

going to individual output lines.

10) Si = output line speed - this speed determines the

time required to transmit a packet to a particular

destination. Different lines may have different

speeds.

11) Fp = system packet rate in packets/sec.

12) FB = system.throughput in bits/sec.

13) M = number of output lines.

14) R = number of packet size storage locations in the

shift register array.

15) Ti = time taken for unsuccessful polling of one line

at the i-th queue.

16) A = overall average arrival rate (packets/sec.).

17) T = time needed to shift one bit internally.

18) Ni t j=1,2,3,4 = number of processors at the input,

output, routing and sorting service points respectively.

6.3 The Single Processor Design

6.3.1 Introduction

It appears from the proposed single processor

architecture and operation of the switch thet queues build

up in the switch as shown in Figure 6.1. In this queueing.

model packets queue for service by the processor in three

places. Firstly, the arriving packets queue for inputting

into the shift register array. Secondly, these packets await

192

tho routing service which includes header analysis, error

analysis, generation of ACK's and NACK's, and separating the

packets into software queues. Finally, these packets queue

for outputting. The routing service is to be performed

by the processor whereas the inputting and the outputting

functions involve service by a polling circuit in addition

to that by the processor. Also, the inputting function has

the highest priority, the outputting function has the second

highest priority and the routing service has the lowest

priority. This priority assignment is assumed as the incoming

packets have to be attended to upon their arrival, otherwise

they will be lost. Also, the output lines, being slower than

the switch itself, causes a bottleneck in the system. Hence,

whenever an output line is free to transmit messages, it

should be serviced as quickly as possible.. Thus, the outputting

process is given the second highest priority.

The packets change priority class after receiving service

and the whole system can be modelled as a single server (the

processor) serving customers of three levels of priority as

shown in Figure 6.2. The packets of various priorities queue

separately for service. The average time spent by a packet

in the switch (average response time) is the sum of the

waiting times and the service times at the three queues. Next,

expressions are derived for the average waiting times, the

overall average response time, and the average queue si7.es at

the various queues.

j

193

i
E

i

1

sum of the arrivals on all the input lines. It is assumed

that the arrival on the i -th input line is Poisson with average

rate ali . Then the overall arrival at the input queue is

Poisson with arrival rate

N'

11 = ^ lli ^ a	 (6.1)
i=1

(b) Service Time

The service time at this queue consists of

polling time to locate the packet, transfer setting up time

and the actual transfer time. However, the processor is

free to service other lines as soon as a transfer is set up

and also there are sufficient number of transfer paths

available so that the actual process of transfer of any

packet does not cause any delay in servicing any other packets.

Thus, for the purpose of calculating the average waiting time

for packets in this queue, we consider the service time

T1 polling time + setting-up time
(6.2)

= t + tpl

where tpl is a constant.

ti We need the mean and the . second moment of Tl and, hence,

those of tl . If there are N input lines, polled equally,

194

then a particular

have to wait anti;

bility of staring

Thus, the average

one is polled is

packet may be polled immediately or it may

L N-1 other lines are polled and the proba-

the scan at any one particular line is N .
number of lines polled before the particular

N-1 i a N-1

JO N a (6.3)

and the average time spent for unsuccessful polling is

(NN-I where T1 is the time taken for unsuccessful poll of

one line. Also, the mean square value of the polling time is

N-1 UTl) 2	 (N-1) (2N-1) T1

iIo	
N	 =	 6	 (6.4)

Hence, the average service time

E[Tl I = N21
Tl + tpl	 (6.5)

and the mean square value of T 1 is

(N-1)(2N-1)T 1
E[T 22] =	 6	 + t2

2 (6.6)pl

(c) Utilization Factor

N	 _
P1 = Al • E [T1 1 _ (1 Ali) [N21 Tl + tpl)	 (6.7)

i=1

195

6.3.3 Parameters of the Output Queue (Second highest
priority)

•	 (a) The Arrival Process

This queue, in fact, consists of M separate

queues, one for each output line. A packet from this queue

is serviced when the corresponding output buffer is empty. An

empty output buffer produces an interrupt that is recognized

by a polling circuit, and is serviced by the processor if there

is a packet to be zLa:lsmitted in the corresponding output queue.

If there is no packet in the corresponding output queue, then

this interrupt is disabled until a packet is available.

The time spent in this queue is calculated in two stages.

Firstly, the time spent in waiting for and being serviced by

the processor and secondly, the time spent in transferring and

transmission of packets from the shift register array to the

output lines.

All the packets in all the output queues and the packets

in the input queue affect the time spent by any packet waiting

in any of the output queues for the processor. However, the
s

'time for transferring and transmission of a packet depends only

on the speed of the corresponding output line because the pro-

cessor can attend to other packets as soon as a transaction has

been set up. Hence, to find the waiting time, we shall consider

all transactions in the output queues to form one queue. It

should be noted that it is the interrupts by the output buffers

that are serviced by the processor. However, the interrupts

are serviced only if there is a transaction available for

transfer in the corresponding output queue. Thus, we are

196

t

f.

assuming that the arrival of the interrupts follows the same

distribution as the arrival of the packets to the output

queues. This arrival process is, in fact, nonpoisson. How-

ever, we shall assume it to be Poisson with the understanding

that the results obtained are the worst case ones. The arrival

rate is A2 = Al a X.

(b) Service Time

The relevant service time for calculating the

waiting time is

T2 polling time + setting time

= t2 + tp2	 (6.8)

where tp2 is a constant..

The transfer time is not included here because it does not

affect the waiting time for service by the processor. Following

the arguments given in connection with the polling time for the

input queue, it can be shown that the average service time

E[T2] = M41 T2 + tp2	 (6.9).

2 = (M-1) (2M-1) TZ +
t2	(6.10)E [T2]	 6	 p2

(c) The Utilization Factor

The utilization factor connected with the

service by the processor, for this queue is

P2 = a 2 • E[T2 1 	 (6.11)

and

197

6.3.4 Parameters of the Queue for Routing Service
(third highest priority)

•(a) The Arrival Process

The arrival process is not exactly Poisson.

However, for the purpose of this analysis, it is assumed to

be Poisson with the understanding that the results obtained

are the worst case ones. The arrival rate is-a3 11 = X.

(b) Service Time

The service time T3 = Polling Time +
Processing Time

= t3 + tp3	 (6.12)

where tp3 is a constant. Following the arguments given in

connection with the input queue, it can be shown that

E[T3] = K21 T 3 + tp3	 (6.13)

and

E[T2] 	 (K-1) (2K-1) T2 + t2	(6.14)3 -	 6	 3	 p3

where K is the number of storage locations (in packets) in

the shift register array and T 3 is the time spent in unsuccess-

ful polling of a storage location.

(c) Utilization Factor

The utilization factor for this queue is

P 3 = a3 • EIT3 1 	(6.15)

3

6.3.5 Expression for the Average Response Time

Equations derived in the previous section are now

used to obtain expressions for the response time bf the switch.

The queues use random dispatching (polling) and pre-emptive

queueing disciplines and do not give preference to packets with

shorter service times. As this dispatching discipline is

independent of service time, the mean waiting times are the same

as those for Head-of-Line service discipline. However, we take

the polling function into account by adding the average time

due to unsuccessful polling to the actual processing time by the

processor. Then the average waiting time at the queue with the

j-th priority is [7,8]

i

1	 j-1	
ii11iE [Ti]

i	 EjtW	 J-1	 E(T j) (Pi) +

	

j	 (1 - E pi)	 i-1 	 2[1- f Pi]
i 1	 i 1

j	 1, 213.

(6.16)

The average of the total time spent by a packet in the input

queue (highest priority) (time spent in waiting, being ser-

f	 viced by the processor and being transferred to the shift
4

. register array from the input buffers) is

E(tgl) - E[twl I + E[T1] + E[Ttl]
	

(6.17)

"	 where Ttl is the transfer time at this queue 1. The average

of the total time spent by a packet in the output queue (second

highest priority) is calculated in the following way:

r
199

p

M
Yi	 Yi=1

i=1
(6.19)

I

(a) Arrival Process

^.^

	

	 This queue consists of M separate queues and the

waiting time is different in the different queues as the waiting

time in a queue depends on the arrival process and the speed of

the corresponding output line. The arrival to each of the queues

is assumed to be Poisson. However, the arrival rate may be dif-

ferent for different queues. The arrival rate to the i-th

component queue of this second priority queue is

121 - Yi12 a Y
l a
	

(6.18)

where yi is specified by the destination function such that

y of the total arrivals at this second priority output queue

go to its i-th component queue.

Hence, the average service time at the i-th component

queue is

E[T21] = E[tw2] + tp2 + E(Tt]
21

(6.20)
- EN w2] + tp2 + T 21

where Tt21 - transfer time, is a constant and t p2 the setting

up time, is also a constant. E[Tt21) -
average transfer time

from the shift register array to the output buffer + average

transm; .ssion time over the i-th output line

200

where Si is the transmission speed in bits/sec of the i-th

output line. The utilization factor at the i-th component

queue is

p21 = 121 *E(T21] .	 (6.22)

Also

E (T20 _ -7 + tP2	(6.23)
Si

neglecting the cross multiplication terms and E(t2) as

small. Then, the average time spent in waiting at the i-th

component queue of the second priority queue is

A -E (T2i1
E [t] _ 	 (6.24)

w 2	 1 - p21

Thus, the average total time spent in the i-th component

queue of the second priority queue is

A • E [T2]
E (tq]

=
E ET2i I + 21 -

p2i	 (6.25)
21	 2i

The overall average time spent in waiting and in service at

the second priority queue is

M 121eElt]	 M
E[t 2] _ I	

q2i =	 4E(t]	 (6.26)
q	 i=1	 2	 i=1	 q2i

The total average time spent by a packet in the queue for

routing service (the third highest priority - -:ue) is

201

s(tg3 I - EItw3 I + EIT3 I
	

(6.57)

Thus, the overall average response time - the average total

time spent by a packet in the switch

sit
q
3 - $ Itgl l + E Itg2I + E (tg3 l 	 (6.28)

Putting back the expressions for the relevant quantities in

equation (6.28) we get the overall average response time

g Itgl - E (tgl l + E (tg2 l + E (tg3l

M
-

E'(tw1I + tpl +
E(Tt1I

+i^l Y
i E(tw2} + tp2

Yi (I 1 1 j) (tp2 + s2}
+ g + i-1

S1 2(1 - y1A(E (tw2) + tp2 + ^-))i
+ sit w3 I + tp3 + K T 3	 (6.29)

2
neglecting E(t2 1 compared to t2 + 8 , where E(twj)Si

J-1,2,3 are given by equation (6.16).

Equations (6.16) and (6.29) show the relationship of

the average response time for the packets to the various

design parameters of the switch, namely, the total arrival

rate A, the number of input lines N, the size of storage at

the shift register array K, the number of output lines M,

^.^	 packet size B, transmission rates of the output lines S i , the

202

_

}

processor times tpl, tp2 and tp3 , the times -C l , t 2 , T 3 needed

ft-Ar unsuccessful polling of a packet at the first, second and

third priority queues respeet.tvely, and y i, the destination

function. This relationship can be used to study the effect

of variation in any of these parameters on the average response

time. In this respect, it is useful to draw graphs showing

the variation in the average response time as some or all of

these parameters are varied. Graphs of u-xis type-are presented

in Figures 6.3 - 6.22. Further explanation of these graphs is

presented in section 6.3.7.

6.3.6 The Average Queue sizes

For this pre-emptive resume queue one can also obtain

average queue sizes. The average number of packets waiting in

the j-th queue is (7,6]

j 1	 ij	 A E[T2 1

8[w l •	 1	 Pi ill pi
+	 i=1	 (6.30)j

(1-i^1 P i)	 211 - i 1 Pils

where)l	 12 = 13	 £ = iii = i, P1' P2 . and P 3 are given
i=1

by equations (6.?), (6.11) and (6 . 15) respectively, and E[Til.

E['2 ^ aad R[r) are given by equations (6.6), (6.10) and (6.14)

respectively. We are specifically interested in the queue size

in the shift register array. This shift register array stores

the packets that are waiting for the output function and the

routing function. Hence, the required average queue size

is E[w2 1 + EIW3). A number of graphs showing the variation in

203

5

i

i

These

1
1

Bt11i), jw1,2,3 have been obtained from equation (6.30).

graphs are shown in Figure 6.23 - 6.29. Further explanation

of these graphs is presented-in section 6.3.7. These graphs

show the average queue sizes. However, we may be interested

in finding queue size necessary for given utilization factor

and probability of overflow. These results can be used to ob-

tain an approximate answer to this question. If the utilization

factor is about .6 and the probability of overflow is 10 -3 , then

the required buffer size is approximately ten times the average

buffer occupancy. For smaller utilization factors, the required

buffer size is further less 193.

0
6.3.7 Interpretation of the Graphs Showing the Effect of

Various Design Parameters on the Performance of the
Proposed Packet Switch

A number of graphs showing the effect of the various

design parameters on the average waiting times and the average

queue sizes at the three queues and the overall average response

time are presented in Figures 6.3 through 6.29.

(a) The Average Waiting Times at the Three Queues

Effect of A, M, M, 0 and R on the average waiting

times at the three queues are shown in Figures 6.3 through 6.13.

Average waiting time ut queue 1 vs. A, N, t1 and tp1.

Figure 6.3 shows the effect of p l , the utilization factor

on E(twl), the average waiting time at queue 1. E(t wl) increases

as p1 increases and becomes very large as p1 approaches 1. The

effect of A t N and tp1 on E(twl) can also be obtained from this

(graph by calculating the corresponding p1 using equations (6.1)

through (6.7) and using this value of p1 in Figure 6.3.

204

1

o^►verage waiting ti	 t ausue 2 vs. A t No tlL 2"tp,"tp2 and M.

}

	

	 The effect of ;,2 , the utilization factor on L(tw2), the

average waiting time at queue 2 is shown in Figure 6.4. Because

the packets at the input queue (queue #1) has priority

over those at the output queue (queue 62), the E(t w2) depends

on both pl and p2 . The family of graphs in Figure 6.4 show the

effect of p2 on E(tw2) for a number of values of pl . It should

be noted that pl has a dominant effect on E(tw2) and for values

of p1 close to 1, E(tw2) increases rapidly. This indicates that

when the input queue is heavily loaded,.the processor does not

have much time for the second queue. It is also observed from

equations (6.8) through (6.11) that p, is related tc the number

	

=	 of input lines N. the arrival rate A, the polling time t 2 , the

processor setting up time tp2 and the number of o-;'put. lines M.

Bence, the effect of any of these parameters on E(t w2) can be

obtained from Figure 6.4 by using the corresponding values of

	

i	 p2 and pl . It can be seen from Equation (6.16) that E(t w2) con-
i

	

`	 tains a term i: p=_ -	 Hence, if pl + p2 approaches 1, then
1 2

8(tw2) increases rapidly. Also, if pl + p2 > 1 1 then E(tw2)

may become negative. Thus, to have a reasonable value of

E(tw2), pl + p2 should be less than unity.

Average waiting time at queue 3 vs. a No tit_t2.L—tp2 , K and M.

Figures 6.5 through 6.10 present the effect of p 3 , the

utilization factor on E(tw3), the average waiting time at queue

3 for a number of values of pl , p2 and K, the number of packet-

size storage units in the shift register array. Figures 6.5

	

k!	 through 6.7 show the effect of K on E (tw3) for same values of

i	 205

bl' p2 and p3' It is seen from these graphs that for any given

values of pl , p2 and p 3 , (e.g., p = .156, P 2 = .18 and P 3 = .343),

E(tw^) is smaller for K 10.than for both K 5 and K a 20.

This indicates that for a given data arrival rate and processor

speed, there is an-optimum value of K that produces minimum

E(tw3). For values of K below this optimum value E(tw3) increases

as there may not be sufficient storage space available. Hence,

the processor cannot immediately set up a transfer from the input

buffer to the shift register array and thus the processor has to

spend more than usual time for servicing each incoming input

packet which, in turn, increases the delay in servicing the

shift register array. This points to a possible tie-up situation

and, hence, sufficient storage should be provided to avoid this

breakdown of the process. On the other hand, as K increases,

Z(tw3) increases simply because more time is spent in polling

these storage units.

Figures 6.7 through 6.10 show the effect of p l on E(tw3)

for given values of p21 P3 and K. These figures show that as

pl increases (with the same values of p 2 , p3 and K), E(tW3)

increases very rapidly indicating a dominating effect of pl

on E(tw3). Vr*.s is because if the input queue is utilized

heavily, then the processor does not get time to serve the

second and the third queues giving rise to higher delay at

these latter queues.

It should be pointed out that E(ta3) involves a term

(1-P _P _
p	 , (cf. equation (6.16)), and, hence, as p l + P 2 +

l2 3
^-,	 p3 approaches unity, E RW3) increases rapidly and if p l + P2 +

P3 > 1, then E(ta3) mad► be negative. Hence, P 1 + P2 + P3

should be kept less than unity.

206

f ' -

i

Average waiting times vs. clock cycle time of processor.

^-^	 One of the objectives of this work has been to find out

the effect of the speed of the microprocessor on the performance

of the packet switch. For this purpose, graphs have been ob-

tained showing the effect of f, the processor clock cycle time

on E(twl), E(tw2) and E(tw3) as shown in Figures 6.11, 6.12 and

6.13 respectively.

Seven values of the clock cycle time, namely 0, 25 ns, 50 ns,

75 ns, 100 ns, 125 ns and 150 ns have been considered. It is

seen from these graphs that the clock cycle time has a prominent

effect on the waiting times. An arrival rate of A - 8x104

packets/sec has been used in generating these graphs and the

corresponding values of p l , p2 and p3 as obtained from equations

i	 (6.7), (6.11) and (6.15) respectively are also shown on these

graphs. For-the AMD 2900 bit slice microprocessor used in the

present design, the clock cycle time is approximately 120 ns.

The corresponding values of E(twl), E(tw2) and E(areare 250 nS,

1.7 US and 11.5 VS respectively.

In the future as more powerful microprocessors (with smaller

clock cycle times) become available, the corresponding waiting

times at the various queues can be obtained from these graphs.

Other arrival rates also can be used in obtaining similar graphs

provided that the corresponding p l + p2 + p3 remains less than

unity.

(b) The Overall Average Response Time

Effect of the various parameters on E(t q), the

!	 overall average response time is shown in Figures 6 . 14 through

6.22.

207

Figure 6: 14 shows the effect of the packet size B on the

r-
overall average response time E(tQ). Four graphs each corre-

sponding to a different set of (pl , p2, p3) are shown. It isI r _

seen that in each case the overall average response time

increases at the same moderate rate as B goes from 1000 bits

to 10 , 000 bits. This is a very useful result. Because the

throughput of the switch increases directly as B, whereas the

corresponding response time increases at a much slower rate.

Thus, the throughput can be increased considerably without

suffering severe penalty in response time. It is to be noted

that pl , p2 and p3 do not depend on B. It is the shifting times

that depend on B. Hence, the response time for a given B can be

reduced by employing a faster hardware for shifting of data.

Overall average response time vs. destination function yi.

Figures 6 . 15 and 6.16 show the effect of destination

functions on the overall average response time E(t q). In figure

6.15, all output lines are assumed to have equal capacities.
E

Also, five different sets of destination functions have been

used. The destination function sets 1 and 2 represent random

distribution of data to the various output lines. Set 3 repre-

sents uniform distribution of data to the output lines. The

fourth set is such that half of all the data go to the output

line number 1. The output lines 2, 3, 4 and 5 receive only ten

percent of the data each. The rest of the lines receive only

two percent of the data. This is a biased destination function.

^.	 The fifth set again represents a biased destination function

208

with the output line number 2 receiving fifty percent of the

 data. The capacities of all output lines are the same. It is

observed from Figure 6.15 that the overall average response

time is minimum for the uniform destination function. Also,

for the biased destination functions, the response tires are con-

siderably higher than that for the uniform destination function

case. The input arrival rate is chosen such that the utilization

factor for each of the output lines is less than unity.

For Figure 6.16 the same sets of destination functions

and same values of other parameters are used except that in

this case the capacities of the output lines are given by

Si = SAByi . Here, the capacity of each output line is propor-

tional to the amount of data destined for it. Because of this,

the response time remains constant for all the destination

functions.

Overall average response time vs. output line speeds S i.

Figures 6.17 through 6.22 show the variation of the over-

all average response time due to changes in the capacities of

the output lines. Three types of capacity assignments are con-

sidered: uniform, proportional and square root. In the uni-

form capacity assignment, the capacities of all the output

lines are the same (Si AMa). In the proportional assignment,

each.output line is given capacity proportional to the traffic

on it (Si = AByia). In the square root capacity assignment,

every line is assigned minimum capacity equal to the traffic

expected on this line. Additional capacities are then assigned

to each line in proportion to the square root of the traffic

expected on that line. Figures 6.17 through 6.19 show the

209

response time for uniform destination functions (Yi a .1 for
I

all i?. With this destination function, identical response

times are obtained for all three types of capacity assignments

as shown in figures 6.17 through 6.19. This is so because
with this destination function all three capacity assignments

result in the same capacity values for the output lines. The

case when a a 1, i.e., the capacity assignment is equal to the

average traffic on a line, the response time is undefined as

the one or more terms in equation (6.29) may be negative. It

is observed from these graphs that the response time decreases

as a increases, the decrease being sharper initially and more

sluggish for a > 5. Thus, after certain values of a, increasing

the line capacities may not reduce the response time corre-

spondingly. That means a point of diminishing return sets in.

These general comments apply to Figures 6.20 through 6.22

also. However, for these cases, the destination function is a

biased one and, hence, the response time does not have the

exact same value for the three different capacity assignment

strategies.

(c)

	

	
f the Various Design Parameters

on the Avera(

The number of packets waiting at the various

queues for various design parameters is shown in Figures 6.23

through 6.29.

Average queue sizes vs. X. N, M, K, tl , t2 , t 3 , tpl , tp2 and tp3.

Figure 6.23 shows the variation in the average queue size

C
z E(w1) with p l , the utilization factor at queue 1. This curve

has similarity with that for E(twl). This follows from Little's

210

formula which states that the average queue size average

(arrival rate.x average time spent in the system. As pl

approaches unity, the queue size increases rapidly. However,

as the queue 1 has the highest priority, the queue size is

rather small for p < 690

Figure 6.24 shows the average queue size EN) as a

function of p21 the utilization factor at queue 2 for a number

of values of pl . For reasonable results p l + p. should be less

than unity. It is also seen from this figure that pl has a

dominant effect on E(w2).

Figures 6.25 through 6.29 show how E(w3) 1 the queue size

• at-the third queue changes with pl , p2 , p3 and K. Figures 6.25

and 6.26 show EN) for K = 10 and K - 50 respectively for given

values of pl , p2 and p3 . It is seen that the ;spected queue

size EN 3) goes up somewhat for K = 50 than for K = 10. This

is due to the additional polling time necessary for finding the

stored packets. It appears that K = 10 is reasonable for p = .1.

However, it is seen from Figures 6.26 through 6.29 that E(w3)

increases rather quickly as p l increases. Hence, for higher

values of pl , a larger value of K should be used and the corre-

sponding queue size be determined. For the purpose of this

report, K = 50 is used and the corresponding E(w 3) are shown.

If a higher value of pl is intended to be used, then a K larger

than 50 has to be used.

211

V

I-

6.4 The Three Processor Design

^E

6.4.1 Introduction

it appears from the proposed three processor archi-

tecture and operation of the switch that queues build up in

the switch as shown in Figure 6.30. In this queueing model,

packets queue for service by the processors in three places.

Firstly, the arriving packets queue for inputting into the

shift register array. Secondly, these packets await the

routing service which includes header analysis, error analy-

sis, and separating the packets into software output queues.

Finally, these packets queue for outputting. All the packet

switch functions involve service by polling circuits in addi-

tion to processor service.

The average time spent by a packet in the switch (average

response time) is the sum of the waiting times and the service

times at the three queues. Next, expressions are derived for

the average waiting times, the average response times, and the

average queue sizes at the various queues.

6.4.2 Expressions for the Waiting Times at the Various
Queues and the Overall Average Response Time

The assumptions made for the queueing model for the

single processor design are also assumed here. Also, the

analytical developments used in section 6.3 are valid

here except that in the three processor design, each processor

is performing only one function. Hence, the average waiting

time at each queue depends on the corresponding utilization

212

tom,..''	
fn	 _.

factor only. Thus, the average waiting times at the routing

-^	 and the output queues depend on p3 and p2 respectively and

not on other p's.

Following the definitions and analytical developments

similar to those for the single processor design (cf. section

6.3), it can be shown that for the three processor design, the

overall average response time E(tq) is

E[tq] = Bit gl] + E[tg2] + E[tg3]

M

= E [twl] +t pl + EITti] +
i=1

Yi [Eltw2 l + tp2

Yi (alj)(tP2 + S
B	

jal	
Si+ B +

Si 2(1 - Yia(E(tw2) + tp2 + S))
i

+ E[tw3] + t p 3
	 (6.31)

2
neglecting E[tw 2] compared to t2 + B, where E(twj)

S1

j=1,2,3, the average waiting times at the j -th queue

are given by [7,8]

AE [T2]

	

E(twj) =
Z(1-p)	

,	 j=1,2,3	 (6.32)
j

where E[Tj l, j=1,2,3 and p j , j=1,2,3 are given by equations

(6.6)o (6.10) , (6.14) and (6.7) , (6.11) and (6.15) respec-

tively. The difference between equations (6.16) and (6.32)

213

f tia..

rn

should be noted. Also, the polling times T1 , T2 and T3

are assumed to be negligible as polling at all three queues

are done by hardware in this case.

Equations (6.31) and (6.32) show the relationship of the

average response time for the packets to the various design

parameters of the switch, namely, the total arrival rate a,

the number of input lines N, the number of output lines N,

packet size B, transmission rates of the output lines Si , the

processor times tpl , tp2 and tp3 , and yl , the destination

function. This relationship can be used to study the effect

of variation in any of these parameters on the average response

time. In this respect, it is useful to draw graphs showing

the variation in the average response time as some or all of

these parameters are varied. Some graphs of this type are

presented in Figures 6.31 - 6.55.

6.4.3 Expressions for the Average Queue Sizes at the
Various Queues

Following the developments in section 6.3.6 for

the average queue sizes for the single processor design, it

can be shown that for the three processor design the average

number of packets waiting at the j-th queue [7,8] is

A2E [T2]
E[W.] - p + --i	,	 j-1,2,3	 (6.33)

7	 j	 2(1-pj)

where E[T?], j-1,20 and p j , J-1,2 1 3 are given by equations

(6.6), (6.10), (6.14) and (6.7), (6.11) and (6.15) respec-

tively.

214

1

We are specifically interested in the queue size in

the shift register array. This shift register array stores•	 i

the packets that are waiting for the output function and the

routing function. Hence, the required average queue size is

SIN2 1 + E[W31. A number of graphs showing the variation in
H(Mj), j=1,2,3 have been obtained from equation (6.33). These

graphs are shown in Figures 6.56-6.64. Further explanation

of these graphs is presented in section 6.4.4. These graphs

show the average queue sizes. However, we may be interested

in finding queue size necessary for given utilization factor

and probability of overflow. These results can-be used to

obtain an approximate answer to this question. If the utiliza-

tion factor is about .6 and the probability of overflow is 10-3,

then the required buffer size is approximately ten times the

average buffer occupancy. For smaller utilization factors,

the required buffer size is further less [9).

6.4.4 Interpretation of the Graphs Showing the Effect
of the Various Design Parameters on the Performance
of the Proposed Three Processor Packet Switch

(a) Effect of
s	 es at the Various
es

In the three processor design, the problem of

contention among the processors for using common resources has

been resolved as much as possible. However, possible contention

over the use of the output queue lists by the routing and the

output processors could not be totally removed. It appears

from Table 5.1 that the durations of the routing service

215

I:

U-

Cl
routines and the output service routine increase by two cycle

times each in the presence of contention over those in the

absence of contention.	 garly on we wanted ^o find out the

effect of contention on the average waiting tunes and the

average queue sizes at the three queues. The graphs in Figures

6.31 through 6.41 show the effect of contention on the average

waiting times and the average queue sizes. An examination and

comparison of the corresponding graphs with and without conten-

tion show that the effect of contention on the average waiting

times and the average queue sizes at the routing and output queues

are negligible. The input queue, of course, is not affected by

contention. For this evaluation, two possible situations have

been considered: no contention and contention at all times.

The corresponding results give the lower and upper bound on the

effect of contention. Results for other degrees of contention

lie in between these two limits.

(b) The
	

tins Times a	 s

Figure 6.42 shows the effect of the utilization

factors pl , p2 and p3 on the corresponding average waiting

times. The average waiting times increase as the corresponding

P increases. For values of p beyond . 8, the waiting times

become very high and these go to infinity for p equal to unity.

Actual values of these waiting times for a given value of p

differs due to the difference in the values of E(T2), E(T21

and E(T2 1 which happens due to the difference in the values of

tpl , tp2 and tp3 as noted on Figure 6 . 42. Figure 6.43 shows

similar effects on the average response times at the three

queues.

216

v

s

average waiting times vs. clock cycle time of processor.

One of the objectives of this work has been to find out

the effect of the speed of the microprocessors on the performance

of the packet switch. For this purpose, graphs have been ob-

tained showing the effect of 	 the processor clock cycle time
t

on 8(tw1), 8(tw2) and E(t
w3) as shown in Figures 6.44 0 6.45 and

6.46 respectively.

Eleven •values of the clock cycle time have been considered.

The corresponding values of the respective utilization factors

are shown on these graphs. It is seen from these graphs that

the clock cycle time has a prominent effect on the waiting times.

An arrival rate of A = 8x104 packets/sec has been used in

generating these graphs and the corresponding values of pl' p2

and p3 as obtained from equations (6.7) , (6.11) and (6.15)

respectively are also shown on these graphs. For the AMD 2900

bit slice microprocessor used in the present design, the clock

cycle time is approximately 120 ns. The corresponding values

of E(twl) ' 1'•(tw2) and E(Tw3
) are 80 ns, 150 ns and 166 no

respectively.

In the future, as more powerful microprocessors (with

smaller clock cycle times) become available, the corresponding

waiting times at the various queues can be obtained from these

graphs. Other arrival rates also can be used in obtaining

similar graphs provided that the corresponding o's remain less

than unity.

(c) The Overall Average Response Time

.`

	

	 Effect of the various parameters on E(tq), the

overall average response time, is shown in Figures 6.47 through

6.55.

217

t

i

Overall average response time vs. packet size 8

Figure 6.47 shows the effect of the packet size 8 on

the overall average response time E(t 9). Four graphs each

corresponding to a different set of (pl' p2 0 p3) are shown.

It is seen that in each case the overall average response time

increases at the same moderate rate as 8 goes from 1000 bits to

10,000 bits. This is a very useful result. Secarse the through-

.'

	

	 put of the switch increases directly as 8 whereas the corre-

sponding response time increases at a much slower rate. Thus

the throughput can be increaser considerably without suffering

severe penalty in response time. It is to be noted that pl, p2

and' P3 do not depend on B. it is the shifting times that depend

on B. Hence, the response time for a given 8 can be reduced by

employing a faster hardware for shifting of data.

Overall average response time vs. destination function 11.

Figures 6.48 and 6.49 show the effect of destination func-

tions on the overall averags response time E(tq). In Figure

6.48 all output lines are assumed to have equal capacities.

Also, five different sets of destination functions have been

used. The destination function sets 1 and 2 represent random

distribution of data to the various output lines. Set 3 repre-

sents uniform distribution of data to the output lines. The

fourth set is such that half of all the data go to the output

line number 1. The output lines 2, 3, 4 and 5 receive only

ten percent of the data each. The rest of the lines receive

only two percent of the Lata. This is a biased destination

function. The fifth set again represents a biased destination

218

function with the output line number 2 receiving fifty percent

of the data. It is obserAd from Figure 6.48 that the overall

average response time is minimum for the uniform destination

function. Ale` for the biased destination functions the

response time is considerably higher than that for the uniform

destination function case. The input arrival rate is chosen

such that the utilization factor for each of the output lines

is less than unity.

For Figure 6.49 the same sets of destination functions

and same values of other parameters are used except that in

this case the capacities of the output lines are given by

Si = SAByi . Here the capacity of each output line is

proportional to the amount of data destined for it. Because

of this, the response time remains constant for all the

0 destination functions.

Overall average response time vs. output line speeds S i

Figures 6.50 through 6.55 show the variation of the overall

average .response time due to changes in the capacities of the

output lines. Three types of capacity assignments are

considereds uniform, proportional and square , ,)ot. In the

uniform capacity assignment the capacities of all the output

f	 lines are the same (Si - AMa). In the proportional assignment

^i

	

	 each output line is given capacity proportional to the traffic

expected on it (Si - ABYia). In the square root capacity
t

assignment every line is assigned minimum capacity equal to

the traffic expected on this line. Additional capacities

i

	

	 are then assigned to each line in proportion to the square

root of the traffic expected on that line. Figures 6.50

219

through 6.52 show the response time for uniform destination

functions (yi = .1 for all i) . With this destination function

identical response times are obtained for all three types

of capacity assignments as shown in Figures 6.50 through 6.52.

This is so because with this destination function all three

capacity assignments result in the same capacity values for

the output lines. The case when a - 1, i.e., the capacity

assignme,:t is equal to the average traffic on a line, the

response time is undefined as the one or more terms in

equation 6.29 may be negative. Hence the values of response

time for 2 < a < 10 are shown in these graphs. It i:.

observed from these graphs that the response time decreases

as a increases, the decrease being sharper initially and

more sluggish for a > 5. Thus after certain values of a

increasing the line capacities may not reduce the response

time correspondingly. That means a point of diminishing

return sets in.

These general comments apply to Figures 6.53 through 6.55

also. However, for these cases the destination function is

a biased one and hence the response time does not have the

exact same value for the three different capacity assignment

strategies.

(d) The Effect of the Various Design Parameters
on the verage Queue Sizes

The number of packets waiting at the various

queues for various design parameters is shown in Figures

6.56 through 6.64.

220

Figure 6.56 shows the variation in the average queue

size E(wl) with pl , the utilization factor at queue 1.

This curve has similarity with that for E(twl). This

follows from Little's formula which states that the average

queue size - average arrival rate x average time spent in

the system. As pl approaches unity the queue size increases

rapidly. However, the queue size is rather small for p < .9.

Similar comments also apply to Figures 6.57 and 6.58 which

show the variation of average queue sizes at the routing and

the output queues respectively.

Figures 6.59 and 6.60 show the effect of varying M, the

number-of output lines, on the average queue sizes at the

output queue for two proportional capacity assignments to

these lines. It follows from these graphs that even with

proportional capacity assignment the output queue size

increases with the number of output lines. This increase

is mainly due to the work involved in demultiplexing data to

so many lines which may or may not be ready to receive data.

It is seen from Figure 6.61 and 6.62 that the average

queue size at the output queue does not increase much with

increase in the packet size. This is an encouraging result

as the throughput can be increased by increasing packet size

without making the corresponding storage requirements too

high.

Figures 6.63 and 6.64 show that the queue size at the

output queue cannot be decreased much by using faster

221

5
i

processors. This is mainly because at the output queue

major part of the service time is due to shifting time and

many packets wait for the output buffers to be available

rather than for service by the processor itself. it also

appears from a comparison of Figures 6.63 and 6.64 that

increasing the capacities of the output lines make the

queue size to go down considerably.

6.5 The Multiple Processor Design

6:5.1 Introduction

In the multiple processor architecture queues

build up in the switch as shown in Figure 6.65. In this

queueing.model every packet queue for service by appropriate

processors in four places. Firstly an incoming packet queue

for service by one of the input processors for inputting

into the shift register array. Secondly, this packet awaits

service by one of the sorting processors that assigns it to

one of the routing processors. The routing processor services

it by putting it into one of the output queues. Lastly this

packet is serviced by one of the output processors. Each of

these services involve service by appropriate processors and

polling circuits. However, the hardware polling times are

negligible.

It is assumed that at every stage . of the service, e.g.

at the input service, the total number of packets arriving

there for service are equally divided among the processors

performing that function. This assumption is physically

reasonable as this will ensure that all the processors are

equally busy. operation of the multiple pro::essor design

indicates that at each stage of service there are a number of

single server queues in parallel.
222

The average time spent by a packet in the switch

(average response time)-is the sum of the waiting times and

the service times at the four queues.

Analytical expressions are derived next for the average

waiting times, the average response times and the average queue

sizes at the various queues.

6. S.2 Analytical Expressions .for the Waiting Times
at the Various Queues and the Overall Average
Response Time

Assumptions made for the queueing model for the

single processor design are ass,mir_-3 here. Also the

analytical developments used in section 6.3 are valid here

except

i) there is no interdependence among the functions as each

function is performed by a number of processors dedicated

for this function.

ii) The packet arrival rate to each processor assigned for

the j-th function is
aj/Nj

where N is number of

processors performing this function an a j is the

overall packet arrival rate for this service. In

normal operation a j=a for j=1,2,3,4.

It should be noted that

j=1 ; input function

J=2 -► output function

J=3 routing function

and j=4 -► sorting function

Following the analytical developments similar to those for

the single and three processor designs, it can be shown that

223

v

C

the average waiting times at the j-th queue are given by [7,8].

A BIT2]	 A t 2
8(t) _ --- ^	 t j=1,2,3,4 (6.34)wj	 2 1-p i

	2Nj (1 - i Pj)

Where BITj 2] - mean square value of the service time t pj (6.35)

and
p3

= aj B ITj] - L-
tpj	

(6 .36)Nj

(neglecting the polling times).

For the queueing analysis the following values of the

service times have been used.

tpl=15#

tp2 =19 $
(6.37)

tp3 = 9 f

tp4=13¢

These values differ.slightly from the values shown in table 5.2.

The values in table 5.2 are the final refined values obtained

after the queueing models have been developed using the earlier

estimates of these quantities. However, the queueing results

will not be much different using the values in table 5.2.

The average response times at these queues are

E(tgl) = E(twl) + tpl + Ttl	 (6.38)

=E(twl) + 15$+2nsxB

M
E (tq2) _	 Yi [E (tw2) + tp2 + S. +

i=1	 i

2
Yia (B2 + tp2)

+	
i]	 (6.39)

2(1-Yi A (E(tw2) + tp2 + S))
i

224

4

E(tq) = I E(tgj)J=].
(6.42)

E(tg3) a E(tw3) + tp3 = "NP+ 9	 (6.40)

V	
E(tg4)	 E(tw4) + tp4 = E(tw4) + 13
	

(6.41)

E(tg2) is obtained by following the development in section 6.3.5.

The overall average response time of the switch is

where E(tq.j); j=1,2,3,4 are given by equations (6.38) through

(6.41) respectively.

Equations (6.34) through (6.42 show the relationship of

the average waiting and response times for the packets to the

various design parameters of the switch, namely, the total

arrival rate a, the number of input lines N, the number of

output lines M, packet size B, transmission rates of the output

lines Si, the processor times tpl, tp2 and tp3 and-tp4 , Yi,

the destination function and N the number of processors at

the various queues. These relationships can be used to study

the effect of variation in any of these parameters on the

performance of the switch. In this respect, it is useful to

draw graphs showing the variation in the average waiting and

response times as some or all of these parameters are varied.

Some graphs of this type are presented in Figures 6.66 - 6.79.

The aim here is to see how the waiting times and response

times vary as the number of processors at every service stage

is varied. Hence these Figures show family of graphs with N

as a parameter. The effect of variation of other parameter

should be similar to that shown for the single and three

processor designs.

225

0

.•

6.5.3 Expressions for '-he Average Queue Sizes at the
Various Queues

Following the developments in section 6.4.3 for

the average queue sizes , for.the three processor design, it

can be shown that for the multiple processor design the

average number of , packets waiting at the j-th queue [7,8] is

X2	 2
l 2E[T2 ^ _ 1	 (N) tPj

E[Wjl a pj + 2 1-n j	 Ni tPj + 2(1- N tpj)

j
j - 1,2,3,4.
	 (6.43)

We are specifically interested in the queue size in

the shift register array. This shift register array stores

the packets that are waiting for the output, sorting and the

routing functions. Hence, the required average queue size is

E [W2 I + E [W3] + E (W4) . A number of graphs showing the variation

in E(Wj), j=1,2,3,4 have been obtained from equation (6.43).

These graphs are shown in Figures 6.80 - 6.83. Further

explanation of these graphs is presented in section 6.5.4.

These graphs show the average queue sizes. However, we may

be interested in finding queue size necessary for given

utilization factor and probability of overflow. These results

can be used to obtain an approximate answer to this question.

If the utilization factor is about .6 and the probability of

overflow is 13-3 , then the required buffer size is approximately

ten times the average buffer .occupancy. For smaller utilization

factors, the required buffer size is further less [9).

226

6.5.4 Interpretation of the Graphs Showing the Effect
of the Various Design Parameters on the Performance
of the Proposed Multiple Processor Packet Switch

Major aim of the analysis is to see how the

average waiting times at the various queues vary for given

overall arrival rate as the number of processors at these queues

are varied. Figures 6.66 - 6.68 show the effect of varying

the number input processors on the average waiting time at the

input queue. These graphs also show the effect on the average

waiting time of varying the overall packet arrival rate for a

given number of input processors. These three figures differ

I
in the maximum value of a, the packet arrival rate that is

allowed. Maximum packet arrival rates of 2x10 6 , 2x107 and

5x107 packets/sec have been used in Figures 6.66 - 6.68

respectively. The rationale for using these three maximum

values of a is the following: For a	 2x106 one cant	 max

observe clearly how the average waiting time varies for a

single input processor. However, the effect is not at all

clear for other higher number of input processors. The

using of Xmax - 2x10 7 and 5x10 7 shows the effect on average

waiting time of the varying the number of input processors.

`

	

	 For the same za.ason three values of Xmax have also been

used for the sorting, the routing and the output queues.

Figures 6.69 - 6.71 show the effect of varying the

overall packet arrival rate on the average waiting time

at the output queue. These graphs also show the effect

on the average waiting time of varying the number of output

processors. Similar results are shown in Figures 6.72 - 6.74

and Figures 6.75 - 6.77 for the routing and the sorting

queues respectively.

r-

227

Figure 6..78 shows the effect of varying B. the packet

size on the overall average response time for a fixed ►umber

of processors. The overall average response time increases

slightly as B increases.

Figure 6.79 show the effect of destination functions on

the overall average response time E(tq). In this figure all

output lines are assumed to have equal capacities. Also

five different sets of destination functions have been used.

The destination function sets 1 and 2 represent random

distribution of data to the various output lines. Set 3

represents uniform distribution of data to the output lines.

The fourth set is such that half of all the data go to the

output line number 1. The output lines 2,.3, 4 and 5 receive

only ten percent of the data each. The rest of the lines

receive only two percent of the data. This is a biased

destination function. The fifth set again represents a

biased destination function with the output line number 2

receiving fifty percent of the data. The capacities of all

output lines are the same.

It is observed from Figure 6.79 that in the case of

multiple processor design the E(tq) is almost constant for

all the sets of destination functions. One-explanation

is that in the case of multiple processor design any output

line with more packets destined for it may be provided

with a dedicated processor. Also since the output lines are

slower than the processor no large queue will build up, of

course the capacity of the output lines should be high enough

to absorb the packets destined for them. It is to be noted

that in Figure 6.79, the ratio of maximum packet arrival rate

228

to the line capacity is .5 M AB/AB8. 8. Thus the channel
i{

capacity is large enough to handle the packet arrival rates

for even the line with destination function of .5.

Thus it is seen-that E(tq) is almost constant for all

sets of destination functions.
i

Finally figures 6.80 - 6.83 show the effect of variation

in the number of processors on the average queue sizes for a

given packet arrival rate at the input, output, routing and

the sorting queues respectively. These Figures also show

the effect on the average queue sizes of varying the packet

arrival rate for a fixed number of processors at the corresponding

queues. It should be noted that the queue sizes decrease as

the number of processors increase at the various queues.

i

229

I

6.6 Conclusions

l }

	

	 Queue theoretic models have been developed for all the

three proposed architectures. Graphs showing the average

waiting times, the overall average response times and average

queue sizes as functions of various design parameters have

been obtained. It is observed from these graphs that in most

cases the average waiting times and the average queue sizes

are reasonable. The overall response times and the queue

sizes are much smaller in the three processors case than in

the single processor case. These quantities a:3 further

reduced in the multiple processor case, however, not propor-

tionately.

The main incentive for using multiple processors is to

increase the throughput. However, the response times and the

queue sizes (the storage requirement) are also reduced in the

process. Thus it seems that the multiple processor design is

the one to be used.

230

I!

7.0 Summary

7.1 Suggestions for Future Work

Several suggestions for future work in the area of

processor-controlled packet switches are presented in [2).

An additional feature which is possible in the multiprocessor

architectures is the transmission of system status data to

each user. This scheme would require an additional processor

which would be required to monitor the system status. This

processor could monitor the status of ELIST, the Output Queue

Lists, and important system hardware. If this processor dis-

covered a hardware failure, a near empty ELIST or a nearly

filled queue list it could generate a packet-length message

that would inform the user of the system problems. This

processor would be required to inform the Output Processor to

send a system status data packet to each user. Using the

received status information, user could re-route messages

around nonfunctioning channels, reduce their overall through-

put, or reduce their throughput to a specific user to avoid

packet losses.

Any system enhancements will be paid for in terms of

throughput and/or the number of required processors.

7.2 System Throughput

All three packet switch architectures are capable of handling

large system throughputs as shown in the following examples.

231

4
F

7.2.1 Single Processor Packet Switch

F < 1.5x105 packets/sec.

Using a packet length of 10,240 bits, the maximum bit

rate for the system is

F = FpxB < (1.5x 105) x (10,240) bits/sec.

FB < 1.50109 bits/sec.

7.2.2 Three Processor Pack Switch

F < 5.21 x 10 5 packets/sec

Using the packet length of 10,240 bits, the bit rate for

thid system is

F = FpxB < (5.21 x 10 5) x (10,240) bits/second

F = 5.33 x 109 bits/second

7.2.3 Multiple Processor Packet Switch

Example System

F < 30 x 10 9 bits/second

N = 10 users

B = 10,240 bits/second

Packet Throughput Requirement for this system

F = FB/B < (30 x 109/10,240) packets/second

Fp < 2.93x10 6 packets/second

I
232

Q

Since the throughput is limited by Equation 5.9, which

(}	 states the packet throughput is limited by the number of users,

the value calculated above may not be obtainable for this

system . An evaluation must be made.

F < 2.93x 106 < (1/tP4)N - 4.39x106

is true, the proposed system can be built to handle the desired

bit rate. By using Equation 5.8 for each class of processors,

the total number of processors required for this system is

determined. Twenty-one processors are needed: five Inpur Pro-

cessors, five Sorting Processors, Four Routing Processors and

seven Output Processors. This system using twenty-one proces-

sors will provide a bit rate of 30 X 10 9 bits/second. As shown

above in the evaluation using Equation 5.9, this throughput is

not the maximum obtainable bit rate. Thus, if additional pro-

cessors were implemented, a larger throughput could be provided

to the ten users.

The cost oZ achieving these large throughputs is paid for

in terms of the number of proces rs required, the width of

the Microprogram ROM and the special purpose hardware and soft-

ware required to deal with contention problems. T.se major

trade-off in both designs is that a reduction in the software

executions is paid for i1 hardware complexity. Two prime

examples of this type of trade-off are the use of hardware

pollers and the large number of microprogram control bits,

which enable the execution of concurrent tasks.

233

F

7.3 Queue Theoretic Results

0

	

	 Queue theoretic models have been developed for all the

three proposed architectures. Graphs showing the average

waiting times, the overall average response times and average

queue sizes as functions of various design parameters have

been obtained. It is observed from these graphs that in most

cases the average waiting times and the average queue sizes

are reasonable. The overall response times and the queue

sizes are much smaller in the three processors case than in

the single processor case. These quantities are further

reduced in the multiple processor case, however # not propor-

tionately.

The main incentive for using multiple processors is to

increase the throughput. However, the response times and the

queue sizes (the storage requirement) are also reduced in the

process. Thus it seems that the multiple processor design is

the one to be used.

The major contribution of this work to the area of digital

communications is the design of efficient multiprocessor packet

switches which can provide large throughputs, special functions

and flexibility not available in non-programmable systems. The

overall performance of these packet switches will improve as

faster hardware and processors become•available.

234

REFERENCES

1. Roberts, Lawrence G., "The Evolution of Packet Switching,"
Proceeding s of the IEEE, Vol. 66, No. 11, pp. 1307-1312,
November 1978.

2. "Design of a Microprocessor Based High Speed Space Borne
Message Switch," Annual Report to NASA on Grant No. NSG-
3191, Clarkson College of Technology, Potsdam, N.Y.,
April 1979.

3. Burnell, James F., "The Design of a Microprocessor-Based
High Speed Packet Switch," M.E. Thesis, Clarkson College
of Technology, Potsdam, N.Y., August 1979.

4. Russo, Paul M., "Interprocessor Communication for Mult'-
Microcomputer Systems," IEEE Computer Magazine, pp. 6
76, April 1977.

5. Madnick, Stuart E. and Donovan, John J., Operating Systems,
McGraw-Hill, Inc., New York, N.Y., 1974.

6. Advanced Micro Devices Inc., "The AM 2900 Family Data
Book," 1978.

7. L. Rleinrock.	 Queueing Systems, Vol. 2. John Wiley &
Sons, New York, 1975. Ch.	 3.

8. James Martin. Systems Anal sis for Data Transmission.
Prentice Hall, New York, 1972. Ch. 31.

9. M. Schwartz. Computer-Communication Network Design and
Analysis. Prentice Hall, New York, 1977. Ch. 7.

235

\ZOO,

Fig. 6.1. The Queuing Model

236

Legend:

O1
	 The input queue with

priority 1.

pThe output queue with

priority 2.

JThe queue for background

service with priority 3.

Legend:

O1
	 The input queue with

priority 1.

O2	 The output queue with
priority 2.

O3
	 The queue for background

service with priority 3.

Fig. 6.2. The Modified Queuing
Model.

237

L,.1

rl

LO ^N3
^ v

Wb

y^
i 238

7

r m

1pqCL

L
cc

1.r
0
Yu
w

0
a+

CO

a+

H

00

M
^J

3

d
00
^o
H
d9d

M

^O

0o

Lz+

co 	 3	 In
Ln

w	
N

e
r

i
1

u

Q

Q

r
6
N

d

!0

C m

rr
a

A
Y

N

41
aa
Y

N
CL

0Y
u

w
a

N	 G
Y

^	 M
M
Y
L7

M
N

M
YM {r
3 u

o°^o

w ^
v a
d d

moo

w
m

N
7
m

o-

2 39

m
r

1
CL

N
m

u	 ^^
c	 ^ !1

Y/

V'

CY

Q

L4	 ^-

N
C6

I
r

!'r1

a

en
CL

w0
u
w

a+

N

rr
"4

a

^o

H

ao

3

0010 w

w
t

a
i^

d d

LA

^o

w
m

N
7
m

aN
I
IA
m

N

M

Q

a

u.

C
I

N
a

M

I

W

IS!

p`"' 3	 7
m	

LD

m

a

c

Q
O

cv

CL

a
M
O
N
u
w
a
OM
w

N.	 M
m ^M

V

a

N

M

t+1

I ti
w

a a

^o

CD

© w

fn
7

m

a •-1

M	 ^

w de

241

	

C^	 C

aN

t0

w
MI

eryl

CL
O

w
O
w
u

tro.

C
O

a+

	

'	 M

Y

d)

H
00
C

a^
-A

m
w
d

d V

w ^
M

d a

	

m	 ^
w

N

0

C^ ô , t
242 	 n 1'9(+^

m^ 3
m v^ Wt

7

o P4N •
N	 N

A4
Oki

1

d
a

v

a
M
ON
^N

a
M
m M

.-1
^r1L

H
00

^ d

^O
w a

d

00

,aw

i

t
t

t

c

c

N

u
a

11 t^ i
m

m~ 3	 ^
m	 ^

W	 to

N
m

243

m
w
0Y

aa

QN

1
!r1	 cr

O
t
Y

ig
1+1a

w0
Y
v

12

cs
N	 ,^

m â

,a
Va

D

H

Y
•1

Ii

w

d

o^

^o

m ^
m w

7
m

^ M

E 14

244

m
w

! cU

c
N

n

M
N

M
ata

Na

cv

+^ tu
eh
CL

M
ONv

a
"4

s	 a
.a

D

u
M

ee
w

d

.o

m
o0

m w
N

N	 N

245

7
^C

O,p A00le L A'^C
Q0.	 Is

T^

N
m ^
m ^
Uf m

N

m

N

C
m
N

e
ID

N

m

a

w
^	 o
C

d

O

> R

rl
rl

N

m ^ gN^
,^ 8

M {r

d v

vo

c^

m ŵ

I

a

N
N

,^	 a

w
•

op	N

N a

•

N
N

246

mn
m
N

m

OD

M
N

m

^d l

Nt

r

m

NN

M
C
m
NT

I	
1
o

C

CE4

d"
n!

m
M
N
N OD

m^
N

OD

W^

^OD

z N

CN

0
M
m

M

l 1	 ^,^ 1 1	 1	 1	 t 1 `^

msN N

•
A

N
M
aa

V N
a N

w N^

a
a+

y
o a
R ^
CO N

N	 •♦

La
M

^ a
m an
r
r M

0)
m
m
0

w

.^01
F

d

v
0
V ^

a a0
N N

N

qv m
ed ^

H 'O

u O
^ wa

o►
to

w b

W

N

06
V4
W

247

1>

M
C

M
OD a LI)
M w

as'^
m

N
N to

Id ^
m N M o

mm M
W % a u
•- (0 m o

aCD
m

Q
OD

of

w
m N o

N m
CL H
N d

M a'i v
IU .et

m W 0
$ CV) ..

N
9 Q

NM N M

a+a W 7 a
d

•
u I^

CY

fa N (S) [
(0 p t^ O (S)

Ln ^6 A
W
ae

N
a E-4 b

u 41
cc

N o 0

^a $ m M u o

G 3
a

co p • m
)N d

' m a

.o

00

w

..

w _ rn

248

x

ONG1NAL PAGE
cw POOR QUAL]

N c th N 7 o0
^ N © m ^ nN

to " N N w

a
M
N

m a

w ^

CL

I
cd

N
a
w

t	

rl

1	

n

w
M

^	 3L
,^	 oa

0o

to

M

u
a

m̂ H
m d^ m

a

d
00
^oM
74

w

m ^
m ŵ

i

iv

a

f

N
O

U1
w C

•
.•1 N N^

O O
w

^

N • w w
• w N N
w N .-i O O

A w w w wC N O O
w ^ w . •

Ifs • •..) w w
N w • N N
O O O^

w o • w w
M • w N •^
r'1 w r1 O •

w • w w ..^
W% w N ri •

• ^ w w ^

U1 w • •" w
. •1 U1 w w N

If1 w • w w
O r^ .-1 .-1 u1

w w w w w
•^ N .-1 tf1 rl

..

r''' r•'^ r'^ P:4 r
w w w w w
O O o c 0
N N M .7 u1
Elie ^` We C^ C.4

IJ 41 L LJ LI

%1 V1 V1 ff N

fl X:
N

rl
H

N
A

V

NM
4

V;V
00

N

• a
^ wM ^
^ N
u r1C N

CL

•N' 4 a^
rr A a

^ o
W N N
O Ny .^

N A 6
d
N	 • w

tll	 fp
d 3̂ N
A

w ad ^
O [-^ NO
F+	 d .-1
d W Na

w
z.	 fA

V

M d ^
/+	 00 W

V1	 1+ Q!

d
â

V4Lot
u o
M rl

v

L4
.i

^O

OD
MW

^^ r
N

N w	 m
Ln

Y

i

^a

250

9 m

w
w
Q
.•
w N

.

N• w O O
N • w w

• w w N N
w N rl O Ow • •

1► w w w w

w Q w • •
• w w
w • N N

w

Q • w w
u^

w

rl w .-1 O ^

w • w w ^
w w rl ^ •

O w • • w
• Q w w ^

• ^ ^ •
yyew
^

• •wi w N
• O rl r-1 O

w w w w w
O .^ m rl w
ri N rl 'Me I
..
^ fA dl Vl OD

W W W W W
O O O O O
r) N eel %T U 1

Aj
d

N
)
N N N

.4
w

N

w
n

m
r	 ^

Ncn
O

W;
CO

N
N

• aN

O w
M v1
&j N

u N
W N^
^ a
0 w

w co a

	

N	
8

d

	

W	 vd
O Q1 A

k YI ^T
QI [^ N

QI v-4

ô
 O

	

rl	 (^ w
fA	 •

	

^1	 ai AI

d ^

cc JJ
11	 n,

ca^i

a

9-4^
to o

.o

^o

w
N	 N

m ^+'a	 m	 mN W	 lA

251

^.	 t

i
t

I

L

1

V
al

W	 ^rl

iI
d ^

u

a	 w

N ^
oD .-1 N

N M ^

•e ^ r

r
1

•

N

N

tl +^

n

7

H

W
0
a

N

N
a
w

0

1^

t_.J_.—L—L-1.J.—.1!_IJ —1_1

N N7^ 7

252

v

n

^1
n ^

co

.a
H

O)

^o
RL

d
00
a1
1+

d

ao	 ,

do

as

w

V, N
7 N

(
w@	 .. m m

N	 w — L

253

ORIGINAL PAGE I3

19 MR QUA4JMS

u
a^
m

u
a	 w

ao ^ •
M	 M	

p

m

J-% T

v
OQ W ^1

N

M

H

m
m

In ^•
m
°a1

m
m
N

d

m
N

>d
O

a^

^o

00

W

N	 N7
t

N w	 ^	 N

254

Iil - -- .----
w

m

BIZ

a
^	 YIN

90J

H
d

^	
d1

W
aD

A
d
00
of
1+

d
.-4

O

O
Cl!
%0

50
rf
Lrr

0
w

N
O

w
N
O

w

O
w

N
O

N
O

w

O
•
NO
NNO
u'►
n

N

T

@♦ moo'	 @	 3

N w	 ^	 N

255

v

N

T,rl

R

7

N
O

w

O

N
O

N
O
w

rl

w
r1

.^i

ri

t

m

tl

N

My
iiM

rn
tf	 D

H
d

A4

N

d

M

N

00

Cs

N w	 61	 . ^
P	 IA

256

w

1

^	 Nm 	 7G	 m
N

-	 .._. __ A

m

I
i

NO
w
N
O

w
NO
wNO
w

O

w
rl

.^1
w

7 ,^
m ^; a

N w

^ TM

tl
v

W v^l

p
^}M

•

M
y

Q
MI

r7

^d

OQ
O.

aW

OG

d
00
M
1+

rl

F+

N
N

00

w

N

?M

L L -L--1

257

I

1-

li
1C14

Ln

m

w
0V
V
w
a0M
M
N
^rl
M
Y
5

d
N
4dN

Ir

14N
^O

00
.rd
W

vW	 N	 m

256

v

_	 ♦7

1	 .

'	 M

M

^	 a
e

C14

Y
4

N a N

^	 m

M	 M	 ^
m	 •m	 o

m
U3	 w

cv	 N	 o

LOOR QUALM

m	 ^
•	

y
m

M
M

n	 e
m	 _

N

Lid

N
v
W

259

cr

Now

O ^

N N

14

•	 E4

N
C

m

cr

I
cv

N

1 ^

Y

1+
O
Y
v
a
g

CD

Y

d
W

N

d
d Y
00 41
W !f

4 a

u'►N
^O

^	 00

m	 4+

!"1

^ v
^ Oi	 ^ co

260

O
W

el

Ve
H

w

,r
V
N
•rl
O
Y
a

b

a
H

I
a wd
m
►% A

^ e6 a

K cr

Q

cr

c•

CY

cL4

M M

LD - `•'- •• \

CD

1

t^
v

^n

m

i

i

m

n

!+1

a
CD 913 N

* 261 •

^oN
^O

m	 o^

m W

m

It

N
CL

Y ^

m

l,A

N
CL

Y

N
M

LA
M

Q'

LD

Q^

NQ
Y

In

N

co

aN
Y

m

	

^--	 N0
a
co
ea

X
a+

3

	

f	

M

	

1	 a

	

CL 	
a

d
1+
0y
u0w
00

L

	

•	 N

a
N
rl
N

d

C7
^ 71

CY i+
N

y +^
Of+ C1
cc E

> eC
¢ a

N
%D

	

f CD	 oD

^m

O •

Y	 Y

I)RIGINAL PAGE 3
	 ^ ^r•i

Q$ POOR QUALITY

CD 3
In W	 N CD

26 2

t
cn
a

p ^
CL

m

m

N
4
N
Q'

W

	 CS)

C9

CD
C9
N

CD

m

N
a
1

N
m

N
CL
IN

M

M

N
CL

4

MCD
C9^.,
Ln w

N
CL

a

u
,4
3

M

a

u
4

0uu
tow
93
O
44
u
0N
44

Ai

^o9
d
N

v^l
N

7 1+
Q► d
7 +^a
41 0
to $4
t0	 td
w a
d

d d

coN
^O

00

W

263

C36

I
cc

.O

rl
3
cn

d
d

a.r
d

F+
O
a^
u
w
a
O
.+
L
N
N
YI
•4
YI
a+

m

d
N
rl

Al	 fA
O 14

N 0!

y

E

00 ►+
O O
^+ a
d

d

o^
N

^O

00

Ls.

v v	 ^y

t' W	 LO	 CD

N

264

0aH040H aN3CWV,

o c^
w

w
r+ o

a^

0

e a

nr G E+M 44 HW
rk,O^ 	

Oa 0^ H ^
a1	 ^ a1

0M

o:DEHaaH N9 0UN O 0 9
ON

w

W4
V oz cn
H N

W
V

°a °aa
a^

._._.. "'	
v 0 a

"—'	 a a
a	 cr

+^	 a
V
a a
04 V

H °	 •• H	 °o a

a w	 z
H a	 W r-I N M

a	 a

265

'r
YI CD

m

GN

!'d

41

ac

$4

V

w

0

ro
N

.-1

a

r-1
	

My
4)
R.,.f
H
b+

41
•.q
ro3
a^
a+
ro
$4
a^

Q

.4
M
^O

b;

w

v	 ^
W

266

a

a°

a,

9
a
w
0

v
ro
w
a
0.,4
41
ro
N

L

m «'7

N

M
CL	 O

E

H

•rl 0
{J •rl
.r y!

N ^
341
ro Ot p O
ro^

ai o>Z4—

N
fr1

tT

•rl

w

O^ f
C9	

OF PO ' N4,C
^,A

U	 d

m

w	 267

O
7

ON
R

N
O

R

4

q
O

.,4
41
ro
N

.r4
4)

N
R

•.1
0) 4J
E

•.1 r 4
H •-1

to
a ++
.1
.H a
ro0
3V
v O
ON O
to
$4 a
v0
>u
a--

N	
m

94	
268

r

O
4t

d
41
7
a

as
A
H

a
b
O
0
V
ro
w

O
44
41
ro
N

r-1

J

N

N	 ^
CL

E4

R q
•^ O

O ^
b+ O
ro V

2
a --

^o

m

w

w	
269

a

41

a
0

0
a

w
0

v
ro
w
a
0

•,4

ro
N

•,4

0
.-r
.A
a a!

.,4

•rl .-1
E, r-4

ro

•H 0
Id 03
0% a)
ro +^
$4 a
al 0Ua"

44

P'1

.r4

w

m

L9

n
9

N
CL

r

	

r --	 r	 Y

	

w	 270

M

3	
N	 271w

0^1a

d►
R

4A

pa
OG

Oa
a

i
4J

oc

M

V
ro
W

O
O

ro

.4
•4

a^
H
.a .
N

G
0 •F4
0 4109
0 4)

41
o r
0% o
rou
w

>z°
a --

4
M

1C

b+
•d

lom

M

$4
O

a

LO

co

2	 +,3	 Z
M w	 a- 272

n
z
a
n

a
a
M

^m

11
O
M
N
dl

ba

w0

E

u•
u^
,se o
N

O •^
.-1 IIV^
. O

1A b+
•.i
to

^g
E •^

0+ to
Q

V O•A $4
roa

dVt0% E
w W
^ O
v

M
^D

"4
r1

NZ
m
w

A

^ Z •

t

A4

M
a

^' N

O ^
w

a

a . E+ a
a

^, o

.pe
of

++
N
s

E 0

O N d •r+
4 a00 CD

OD S'

x^

u0
•a

> a^

H

w
Ew0

. ti+

•^ O
4j •.1

3d
dl C
O+ O
rou

a Z
^oM
to

d1

w

Z ^ 3 zm
w 273

0

m	 u)
M w	 274

U)

N	 m
^e

o►

va

I'm-
m
N CoN

ba+

^a

0E

H&
so
ua

x
^w
•+ o
u 04

DO

H^

Cv

Z"4
d1 C
O^ d
O ^
f^ C
d O>u^' v

to

44

v

m

M
O

0a

O
w
a

ar •

Ew
RwoO NM
0
s

EO
ONd •.,

^(A^g

x^

u0
$+

•a
^o
> ar

•.^ w
E 0
w

O+
C R
••^ O

3d
G! R
ON O
to
w

>za..
a

v;..,
w

•
n

!90

a	 Z
M

M
m
N
m

N2
m

275

Z	 3	
,Ẑ

C	 v	 y/
M	 w	

276

0
(Y
N

ci

U)
z

m
t

er

^o

d+
.A
w

0
0

w

a
w.o -.ww
a a
woN
Q ^
la U
a$
w

www
oA

^o

H^

wo
r4 $4
ua
uA
.x H
V
o$4
r+ ou 0

>^
w E+
E
N M
a

•^ a
•^ a

3V
wo
ON w
b V
N O
w O
^U

m
M

aC

6

•v

N

u
0
a
a
fr

as
M A
w ^N
4.4
CL M

ON
► 	 u

w
a0
a+
0
N

44
r1
44

I	 d

•rl

E

00
q ^
^ d
a^ 7
rl GJ

3 0'

W b0

I	 -H
i+ u

O
d ra

NS
I'O

to

•► 1

W

m

M
/1	 w

w •pn 	 ^F p
004

Ql/	 IS

6

Iq

G

N

Y

277

w
Y

a
a
N

N

0 y

a

M 0
w ^N û

a

a+

m

m M
D

a

H
GD

41 Q!

^ O ^
CS)

C
C

0 00as
d a+
0o z
e0 0
^ad
d C

t0

P u

N w ad^
CS) ^o

^o

44w

m

i

r^

{	 ^ M
a N

^	 iJ	 rl
j	 v N

f

278

—maim". -

PIN

m
n

m

7

m ^ ®	 m	 m	 ^
a+

W

x+

^ a
D ^
D d
V ^

w
a+
0
M
O

C^ V
O

D a
d

w0

N ^
U
.!C
u
0

v
a

m
00

00
e

a+

3
d
eo

N

CD Q C

d

^o

M
W

C

N ^
7
m

rt'

i 279

•ymay^
	 ^' w 3

	
bX4(^cn.JA	

t ia-1	 .^1'	 t`^	
4l'i:

,G *'*'.: ^^pK.:,

	

i' 1	 ,^'.F	 _ F r!	 v _' t [*may' {+r t	 zX` t C 1 r

	

yr r ,^^	 ^.CLst ^,	 r	 yfir, r_r ^	 d.:;^f.,^..	 ^	 _

	

q	
va

N

m
d
a
a+
0

M

W
d
u

$ O
ow

C
d

m ^

w
O

H

N d
C uu

N ,^
--	 u

0
U

C

OD
a^ 01
M ^
3 41

u a^ L
►+ a
01 L

C d O

qr	 A

^O

00
,a
W

N
7
LA

N
v
W

CM N mN3
m m m m m

280

:3

s:

N

N

ao

1

OD

m ^
0

H
ar

C
m
N .^

o
v
ao

M
H

m C
L a

mar
d wW C
co +d
ow 41
d 0

^ d a°
C
m
st• `O

^o

Mw

a^vw

7
LA V^^' M N

C
CD

^ m m m m

281

e+1o
wNa
w
rl
Q.

N.
}`^"1	

^
UM^I r1	 '

w ww w
*4 N*A rt
w ww w

^ NN .•1

m a
a
ro
N

Q
w

a

.es

M
a
^o
m

H

V

a

H

CD a
N g

a
d
eo
m a^

^waswad
8 ^°

M

m
r

N3
CD

7	 7	 3	 7	 7
LLa ^+° 	 Vim'	 M	 Nv

W

f	 ^—

fi
t

i
	

282

^ O'
^^qqw O O

w wi • •
•' w

^Vw

` w N rl O v

O
': O ON

w O w • •	 .

p 1A 'w O O
T w

Ow ^r1 O •

N111 w rl rl
• • w

^ p w w rl
w • r) r) •

w • • w

• p 4 .4 O

Q rl rl rl 111
w

rl N rl 111 rl

i
.;1

1M•

R.,Q 10 ON
111	 N e+1 ^D 0p	CQ

Z
I

N	 N	 n n N	 N	 N

CL CL CL	 N

® N
N	 OD	 m

a
v
94

I

283

7
t9	 N	 of	 to
tl'	 M	 N	 00

wa

w

7

t9

O
w

1^

Q

w
• O O

• w w

/ w N rl- O

w w w Nw

Qi^j rj w w

O eel w O O

w Q • w w
• w N ^

w • w w .y

M w r1 ri •
Q • • w

Q w w ^

N w w N
• • O rl m O

NUN WN u1 M O rl m m V1

du1	 eNr1
Go

0
&W

w
9

w w w w
N N rl N •-1 H1 MWO

N	 N	 N N N N ^

In
Q e3 dH

V4 N eh d N

1

1

M
J

C

S

W

O
M

a+
en	 ^

O fs

d
H

.es	 eu

w
O
M d
eu a

^	 eo
w
a6

M

ra
e0
N

O^
a

^o

eic
,r
w

284

i4
i

w^

W

•

irr

-row

Q	

ORIGINAL PAGE 1Sc0

N	 M. PMR QUALITY

r

9
im

it

r

N

a

m
a^

^O
M
d
4

M

rl
vt

N

00
*1
o

N
03	 03

N	 n	 lw	 N	 m

..
r^

Yv
t W

286

v

m ^ M

M

M
H

pM

0

H

W

M

e
.4
w

NN

00
M

r ow

I

^p

> 	 >•	 6
CD
N	

Of	 n	 le	 N	 m

287

w

s
wNO
w

O
w

	

N	 •O
w

	

•^	
N

	w 	 N
rl

•

	

w	 a {^

	

•^1	
M qW

•

• •.1	 00

I N 1 1

X OtH

N
7

m
N

a
Yv
W

m

03 1 03
T N co

SIX

ri

N

b
1A
a

N

d

wda
eo
w

e

w

eo

w

288

v

I

O

w

•

- N
y^•.t o

w

NO
m

C

^	 ^

igW/l	 p

o •n00 P4
N	 N^ N	 ^	 M	 M

h' ^r Tv^i N H y

N

N 7v^o, ^
OD

N CD

0

^M

N

M
h

^ a

H

d

o^
O.
aD

a

a►
00
cd
w

A d

M

dN

00
MW

289

OD v N CD

"I Lar
%^-fl 94
so
44

4
to

0
Pw

a]
10

La
ao

eo

co

O

ui

eo

290

Q1	 ^

'a	 a0	 Q	 N	 m

d
a
a^
aa
aac

G N
d

to

d
s+
O
u
mw
a0

D M
cc

• r-1	 N
9 a ,a

M
a+

m9
Gl
N

Y'1
N

r

^	 aa
a
a,
eo

d

d

..a
w

291

OD	 0 v	 (M

OD

CD c
"4

41

(D

cc

0
-r4
41

-H
rl
ri

cn
CL

TI

tc

CM >

ec

QP

CD

AV

292

m

daa

	

DO	 âa,
0

d

d

w
O
a+
u

	

c0	 CIE.

	

m	 o
N v1

O.	 J.1

N
rl
rl
"4
t^
'a

	

^	 d

	

•	 N
-0
N

01
7

C'

4!
CO
O
F+
Cl

N

	

m	 ai
u^

w

^►N

3
w

OD	 (D	 IT	 N	 m

293

Y

A

m

to
OD	

N

r.
N

3	 'v
W	 '

l

294

v

LA

d
c
a
a.+

a
a+

0
w
O
N

m O

Z
d

d
d
Cl
u

^ d CMM ^
a o
,.r	 d

au
a

d	 a^
N
M

w

^ a
d

®	 C'
N	 d

u

a

0̂
o

cc
,4
w

Ln	 M	
co
	 m	

m
3y

295

s

p

V

a
d

ma^^

a

d

d

a►

m ^m
v	 ^,

eo

d
d

,a
W

F i.

.^

w:

CD
•—	 00	 N

N

m
G
CD

m

1

1

I

296

g
h^

eS

`.	 I s

Y

a
•

n
• a

d

^ 4

j N
€ d

-	 j a
o	 u

•	 ^ m
Q ^o

P4 w

^C-4

N	 N	 N	 N	 N

T z	 .! y W

i	 a	 OD	 t0	 N	 m

W

297

3

0cm

V)c
0
D

nc
9

m
OD	 'p'	 N

	 mN0

298

OD
OD	 co	 tv

tai
to

I
CD

299

O D E+ a 0 E+	 A H 2 m to

4 • • •

= a

l

h
M a
0 Yw 0

h FFF • ^ a

a

I 3 e.

•	 N

ORIC NA,L PA ;E is
Q^oz	 ^'Yp/^	 a

~ Xc

n

47-

t	 .2

1	 113
lMf 	 CY

301

0 ocou
r4 MWW4

D
y

er

oc

t;

ow
G

m2
..P4

4?
QW

03

O
N

O

N

Z

7
N

O
	 I

D
D

^7	 N	 7	
.7.^1

.4

v*v
m

M

m
v

a^

A

Ir
M
A:

Ax
u
A
a

0

H

e
y

u
o+
A
.w

4

^o

^o

EJ+

302

1	 ^^ Zh i	 ^ Ri.

t4+.;

4M,"

tY^ y

y r.	 .

i

0

if
}

v,
7
in 3^ 7

V1
7 vi

M

Y
m
M
m
M

•

w^
W

/W
MM

.0
E

d

a

.A
w

a^

Wx
U
roa
00

V4H
ON

R

3

ON

to
14

.o

tr.,q
Ad

303

0
co o
C-4 	

®
Y

N

0

Y
W
CD
N

04

n
z

7	 7	 7	 7
tl'	 M	 Ni

	
In

.-.
N

o3

l
	 W

t

f

7
m

a
aa
a
.N

A
E

41
a
a,
41
A

ro

N

x
U
ro
a

w

a^

N

b+
9.,j
V
.H
ro3
m
ON
to

a^

a^

.o

cr

w

304

V

Ii o ti
dl

a

^ a
^ a
V	 +^

a
a,

a
r4
b
.04

w

V

xN v
a

m

H
M
R

.,a
41
41
to
3

tr
rts

a

0

^o

w

0
0

O
N

0
N

0

CD

mM	 N
N
ll

N

W

305

Y

9-
m
m

04

Y-
(9
m
m
m
M

W

a

a
4J

a^
r
H
41
a
a,

a

ro

4J
4)
x
U
^o
a

a^

H

tp
a

tyl

ro3
a^

H
U
a

Hr
%D

•,q
w

•	 1

w
	 c

In	
w3N ^
	

M	 N
	

m

w

i

306

Now.

nrz

i

d
7

o	 0
^oA

a
a^

m

tp

x
E

d!

c3
a

b
.A
$4
waY

W 0
m xN V

to
a

ui

a^

H

a

ro3
a^
a^
ro

a^

a
N
r`

t0

.r4

m

r	 W	 W	 .	 -

4J3
..

W

307

d1

a
O+
O

.,4

O
Oa
a,
A
E

41

O
41
roa
ro

41
a^
x
v
ro
a

a^
a~

E

ON
O

41

ro
3

O
O+
ro

a^

a

M
r

O+•,i
w

o Y0 0 ^9

mm
N

9
v

e

I

's

i

C7D	 ((V

M

W

308

id

c999
9
h

m

ya

a+

W

F

1	

i

I

WAr

Y

a
a,

a
a,

aro

ro

a

x
U
^O
C.

9
U

E
b^

ro

a^

ro

a^
>a

w

309

v

as

9
r4

0

ao

tp
ro

#4	 9
V
tr

t;
-A
04

CD

%W

CDCMO.
~'M tp

V	 NO

to

0

OD

310

c
c

r

999
;V

m

aa
a

w

a^

a

a^

w

d
v
a

^o

E

b3
d
b+

a

^o

w

o v

..
.r

w

311

v

W.

C

41
a

d

a^

a

m	
41m ^

M û
a
a

a

H
d+
e

41
v+

a
a^

w

a

m a

'	 r

'	 r

g

^^	 00	 t0	 st	 lV	 m
v	 '
W

312

JK

f
4

1

I

T

N
0

P.

A
dC
V
Aa

E

9 C

CC	 •.^
A
3

A
0+
A
w
A

a
ao	 -+

w
a,

^o

o^

N

^G

a

a^

N 7
M N ._ M

313

0

on.

0 U^
lbO

in •

in	 O
ObN •

• • NN
.Nr100in • • . .

OIA rINN

ON •00
0.0 • . •

tn • rl • •
N 4b •NN
OUl •OO
• tftb rl ••0 • . •

in • • N r)
rl • rl O' •
• rl • • •

U1 • rl rl •
O in • •
• 0 • %P4
lb • rl rl •

N lb • • •
ri in • % N
•OrIM0

N • • •
O A rl A in

rl N rl in M
. • .	 .

N N N N N
r1NMq'in

•^^Il1eq^^

►1#Mel►

WWi►7^^

to to N N to

4l M

V A

pi 	 an 04cc
PC44	 P4 9-4 r4

&Mk014A
•W

to

^ O

9C

d;

W
to

d1

O
vi

O
ml
0

C

(A
7

r1E
d+
C
i^

m
tT
!p

rl
rt

N
m

O+
r

^O

tT

ow

y 43 A
M N m

i
^a

as

r	
314

a

i^
R
M

d
^q
ai

rl

7
^.i
M

W	 01
x

a
a

m

w

d
a
m
ad
m
o+

w
d

0
co

^o

b►

w

m
LA	 N

al	 m	 M	 m

.a
a
oa

315

v

a
â
O^

a
a

01	 ^

V A
a

t

w

x
a^
x
v
v
a

a^
14

44
w

a^

a^

d

w
a^

w

+o

a+
44
w

0

in pq S
14%

o^0

CD
N
--	 Of	 m	 M	 m

N
v

316

v

k
	

0N

a
v

°o
a

o ^
a

a
430
a°

a^

H

a

v
4J
to
a

b
•ri

v
^^ a

rn 41
a, vxx UV
a a

I •^

a^
a
a^
a
a

W
tyl

.a
$4
a,

a

N

d+

W

I

•	 .	 ,	 , CD
^	 N

M	 -3
W

317

v

amp
O^

..4
41
N

H

4J

Cl

roa
ro

N
k
a

a,
x
U
ro

Ow

(D
N

.r4
W

dl

N

a
N
ro

M

10

.,4
w

0cc
N

.<

x
rn

'	 C

V

LA	 N	
m

0)	 M	 m

3v
W

318

r

APPENDIX A

INPUT SERVICE ROUTINE MICROCODE

r
319

i

a

2 IaL
O 4

CV

t

^h :'i •

0 Z

Z 2 --1

Z
2 `-!

T z

z

L LL

a
Z
H v

t.

y+ ^LL a
LL

sh

^ ŷl N

^ ^ a o 0

3^mN
1
H

y,
L

pO

2 o
H

1

t
i

320

i R

H

T `^

2 ^'

N

T ^

o ^
2

W

r

s	 v

^+	 IL
s
a

n
F-

Ns	 I

I

d

2

o •^2

O

o ^
z

o ^
Z

T
NN :
s	 ^

_c
Ya T

LL

Q

n tg ^
NN
V

^ a ^
V

c^

	

N	 ^
7

-T

	

s	 ^t 1
L S

	s 	 —
a
4 +

'^ w N

-f v w

^ T 0 nH .. .t

al

Cd

o
2

T ^

o ^
Z

N

T

o ^
2

W ^.
T

r
LL

4
W

v ^ ^

v

	

a	 µ-

i

	

V	 m

	

• o°	 d

	

a	 y,

r H

1
VG

eQ

T

321

I

i

r

N4

4.

ILJ
A

? 19` Z 2

0
No

^
K

e IL
.^

V'
It, LL. V-

Q

^ Q v - Q ^
^
♦ M

t
Ul d'

d
e

N
M

00 a if^^ v LL 4

4-e

K
•

^

ŝ
.M

•J G ^ JI j toa r
-= d

0 d
CA

r

G ^D S p

`i t Q Cl

y
V .t

322

w_ v

a

T r
LL ^s

o•	 ^

V

c

u' u-• w

T-1
'e la'^

v

E ^ a
N

T
^ • f

8 `3a I

r

z SL

z ^

2 `y

o
z

T

r
T ¢.

LL

o ^ ^

v
+

J

'C u
e ^
e

s sSO

2o ^

T
1

^E

323

1

APPENDIX B

PROCESSOR-CONTROLLED ELIST

F^

324

t	 !

d
N

V
d

V

E
N
M
aw
93
41
r4
P4
0
$4
0
a0
v
N
O

W
O!

O
N
a

t+.,4
w

325

v

v V ^
QV (^^ 1 0^ tp tJ ^ v

0 M • ^ ^O td >t

x

Q
W

9	 ^

L Q

t-

d

W

--	 -	 . sA
a
d^^

. Ma

M
1
W

O

^
NM

W

„1 v W E
in ty 6 ^

O a dN .4 •rH
W

^ ^ h fa H1 t•H^y 2 W
4 W H

N

d+
"1

' W

0

i	 W

0

326

N

M^
a

V

N

E
NH
a
W

o4
m

.#4

o1

.1

it

i

f

t

327

ELIST onv.n

tT •od ELIST

IA+ INP.rr

f^

lA 1

RM k!d O.dM/
'	 t«^or Pw+ 1'oM

Fig. B4. ELIST Support Processor

328

v

Fig. 85. ELIST Service Routine Flowchart

329

BLLIST: If DAV = O, JMP to DAC

{ *Is there a Shift Register num-
ber to input? NO: Jump to DAC
Routine.

(Data Port)@Input Polling Circuit + Q

*YES: Input the data from the
selected port.

If DAC=d, JMP to STORE; send a DAC; Release Input Port Poller

*Send a DhC to the input port and
clear the Input Port Poller.
Meanwhile, check to see if any
output port requires new data.
If none do, jump to the STORE
Routine.

ELIST OUTPUT PORT BASE ADDRESS - ► ADDRESS LATCH
i	 Q 4 Selected Output Port

:	 *If a port requires data, enable
it onto the data bus and send
the data.

SEND A DAV; RELEASE Output Port Poller; JMP to ELIST

DAC: If DAC-0j JMP to ELIST

*Is there an output port request-
ing service? NO: JMP to ELIST
Routine.

ELIST BASE ADDRESS - ADDRESS LATCH
(ELIST)@EPTR -► Q

*YES: Fetch a S.R.# from ELIST

ELIST OUTPUT PORT BASE ADDRESS-#ADDRESS LATCH; Decrement EPTR
Q -# Selected Output Port

*SEND DATA and update EPTR

SEND A DAV; RELEASE OUTPUT PORT POLIXR; JMP to ELIST

STORE: ELIST BASE ADDRESS - ADDRESS LATCH; Increment EPTR
Q -+ (ELIST) @EPTR; JMP to ELIST

*STORE the data in ELIST

'._	 Fig. B6. ELIST SERVICE ROUTINE

330

W

i

MIST Service Routine

a) S.R.# available as well as requested

b) S.R.# required from RAM

c) S.R.# stored in RAM

d) No data available or required

6 cycles = 0.72 uSec

7 cycles = 0.84 uSec

5 cycles = 0.60 uSec

2 cycles = 0.24 uSec

Fig. B7. Software Execution Times

331

a

I

J

	1980019056.pdf
	0006A02.TIF
	0006A03.TIF
	0006A04.TIF
	0006A05.TIF
	0006A06.TIF
	0006A07.TIF
	0006A08.TIF
	0006A09.TIF
	0006A10.TIF
	0006A11.TIF
	0006A12.TIF
	0006A13.TIF
	0006A14.TIF
	0006B01.TIF
	0006B02.TIF
	0006B03.TIF
	0006B04.TIF
	0006B05.TIF
	0006B06.TIF
	0006B07.TIF
	0006B08.TIF
	0006B09.TIF
	0006B10.TIF
	0006B11.TIF
	0006B12.TIF
	0006B13.TIF
	0006B14.TIF
	0006C01.TIF
	0006C02.TIF
	0006C03.TIF
	0006C04.TIF
	0006C05.TIF
	0006C06.TIF
	0006C07.TIF
	0006C08.TIF
	0006C09.TIF
	0006C10.TIF
	0006C11.TIF
	0006C12.TIF
	0006C13.TIF
	0006C14.JPG
	0006C14.TIF
	0006D01.TIF
	0006D02.TIF
	0006D03.TIF
	0006D04.TIF
	0006D05.TIF
	0006D06.TIF
	0006D07.TIF
	0006D08.TIF
	0006D09.TIF
	0006D10.TIF
	0006D11.TIF
	0006D12.TIF
	0006D13.TIF
	0006D14.TIF
	0006E01.TIF
	0006E02.TIF
	0006E03.TIF
	0006E04.TIF
	0006E05.TIF
	0006E06.TIF
	0006E07.TIF
	0006E08.TIF
	0006E09.TIF
	0006E10.TIF
	0006E11.TIF
	0006E12.TIF
	0006E13.TIF
	0006E14.TIF
	0006F01.TIF
	0006F02.TIF
	0006F03.TIF
	0006F04.TIF
	0006F05.TIF
	0006F06.TIF
	0006F07.TIF
	0006F08.TIF
	0006F09.TIF
	0006F10.TIF
	0006F11.TIF
	0006F12.TIF
	0006F13.TIF
	0006F14.JPG
	0006F14.TIF
	0006G01.TIF
	0006G02.TIF
	0006G03.TIF
	0006G04.TIF
	0006G05.TIF
	0006G06.TIF
	0006G07.TIF
	0006G08.TIF
	0006G09.TIF
	0006G10.TIF
	0006G11.TIF
	0006G12.TIF
	0006G13.TIF
	0006G14.TIF
	0007A02.TIF
	0007A03.TIF
	0007A04.TIF
	0007A05.TIF
	0007A06.TIF
	0007A07.TIF
	0007A08.TIF
	0007A09.TIF
	0007A10.TIF
	0007A11.TIF
	0007A12.TIF
	0007A13.TIF
	0007A14.TIF
	0007B01.TIF
	0007B02.TIF
	0007B03.TIF
	0007B04.TIF
	0007B05.TIF
	0007B06.TIF
	0007B07.TIF
	0007B08.TIF
	0007B09.TIF
	0007B10.TIF
	0007B11.TIF
	0007B12.TIF
	0007B13.TIF
	0007B14.TIF
	0007C01.TIF
	0007C02.TIF
	0007C03.TIF
	0007C04.TIF
	0007C05.TIF
	0007C06.TIF
	0007C07.TIF
	0007C08.TIF
	0007C09.TIF
	0007C10.TIF
	0007C11.TIF
	0007C12.TIF
	0007C13.TIF
	0007C14.TIF
	0007D01.TIF
	0007D02.TIF
	0007D03.TIF
	0007D04.TIF
	0007D05.TIF
	0007D06.TIF
	0007D07.TIF
	0007D08.TIF
	0007D09.TIF
	0007D10.TIF
	0007D11.TIF
	0007D12.TIF
	0007D13.TIF
	0007D14.TIF
	0007E01.TIF
	0007E02.TIF
	0007E03.TIF
	0007E04.TIF
	0007E05.TIF
	0007E06.TIF
	0007E07.TIF
	0007E08.TIF
	0007E09.TIF
	0007E10.TIF
	0007E11.TIF
	0007E12.TIF
	0007E13.TIF
	0007E14.TIF
	0007F01.TIF
	0007F02.TIF
	0007F03.TIF
	0007F04.TIF
	0007F05.TIF
	0007F06.TIF
	0007F07.TIF
	0007F08.TIF
	0007F09.TIF
	0007F10.TIF
	0007F11.TIF
	0007F12.TIF
	0007F13.JPG
	0007F13.TIF
	0007F14.TIF
	0007G01.TIF
	0007G02.TIF
	0007G03.TIF
	0007G04.TIF
	0007G05.TIF
	0007G06.TIF
	0007G07.TIF
	0007G08.TIF
	0007G09.TIF
	0007G10.TIF
	0007G11.TIF
	0007G12.TIF
	0007G13.TIF
	0007G14.TIF
	0008A02.TIF
	0008A03.TIF
	0008A04.TIF
	0008A05.TIF
	0008A06.TIF
	0008A07.TIF
	0008A08.TIF
	0008A09.TIF
	0008A10.TIF
	0008A11.TIF
	0008A12.JPG
	0008A12.TIF
	0008A13.TIF
	0008A14.TIF
	0008B01.TIF
	0008B02.TIF
	0008B03.TIF
	0008B04.TIF
	0008B05.TIF
	0008B06.TIF
	0008B07.TIF
	0008B08.TIF
	0008B09.TIF
	0008B10.TIF
	0008B11.TIF
	0008B12.TIF
	0008B13.TIF
	0008B14.TIF
	0008C01.TIF
	0008C02.TIF
	0008C03.TIF
	0008C04.TIF
	0008C05.TIF
	0008C06.TIF
	0008C07.TIF
	0008C08.TIF
	0008C09.TIF
	0008C10.TIF
	0008C11.TIF
	0008C12.TIF
	0008C13.TIF
	0008C14.TIF
	0008D01.TIF
	0008D02.TIF
	0008D03.TIF
	0008D04.TIF
	0008D05.TIF
	0008D06.TIF
	0008D07.TIF
	0008D08.TIF
	0008D09.TIF
	0008D10.TIF
	0008D11.TIF
	0008D12.TIF
	0008D13.TIF
	0008D14.TIF
	0008E01.TIF
	0008E02.TIF
	0008E03.TIF
	0008E04.TIF
	0008E05.TIF
	0008E06.TIF
	0008E07.TIF
	0008E08.TIF
	0008E09.TIF
	0008E10.TIF
	0008E11.TIF
	0008E12.TIF
	0008E13.TIF
	0008E14.TIF
	0008F01.TIF
	0008F02.TIF
	0008F03.TIF
	0008F04.TIF
	0008F05.TIF
	0008F06.TIF
	0008F07.TIF
	0008F08.TIF
	0008F09.TIF
	0008F10.TIF
	0008F11.TIF
	0008F12.TIF
	0008F13.TIF
	0008F14.TIF
	0008G01.TIF
	0008G02.TIF
	0008G03.TIF
	0008G04.TIF
	0008G05.TIF
	0008G06.TIF
	0008G07.TIF
	0008G08.TIF
	0008G09.TIF
	0008G10.TIF
	0008G11.TIF
	0008G12.TIF
	0008G13.TIF
	0008G14.TIF
	0009A02.TIF
	0009A03.TIF
	0009A04.TIF
	0009A05.TIF
	0009A06.TIF
	0009A07.TIF
	0009A08.TIF
	0009A09.TIF
	0009A10.TIF
	0009A11.TIF
	0009A12.TIF
	0009A13.TIF
	0009A14.TIF
	0009B01.TIF
	0009B02.TIF
	0009B03.TIF
	0009B04.TIF
	0009B05.TIF
	0009B06.TIF
	0009B07.TIF
	0009B08.TIF
	0009B09.TIF
	0009B10.TIF
	0009B11.TIF
	0009B12.TIF
	0009B13.TIF
	0009B14.TIF
	0009C01.TIF
	0009C02.TIF
	0009C03.TIF
	0009C04.TIF
	0009C05.TIF
	0009C06.TIF
	0009C07.TIF
	0009C08.TIF
	0009C09.TIF
	0009C10.TIF
	0009C11.TIF
	0009C12.TIF
	0009C13.TIF
	0009C14.TIF
	0009D01.TIF
	0009D02.TIF
	0009D03.TIF
	0009D04.TIF
	0009D05.TIF
	0009D06.TIF
	0009D07.TIF
	0009D08.TIF
	0009D09.TIF
	0009D10.TIF
	0009D11.TIF
	0009D12.TIF
	0009D13.TIF
	0009D14.TIF
	0009E01.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

