@ https://ntrs.nasa.gov/search.jsp?R=19800019056 2020-03-21T16:49:59+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

S0 T ETE TEAETEETE Ny T T Tl T el e m e o e o e

s et IR o, e

A MICROPROCESSGR BASED HIGH SPEED PACKET SWITCH FOR
SATELLITE COMMUMNICATIONS

(BASA-CR-163357) A MICBOPROCESSOR BASED N80-27557
HIGH SPEED PACKRT SWIICH FOR SATELLITE

COMMUNICATIONS Final Report, 15 Apr. 1978 -

30 may 1980 (Clarkson Coll. of Technology) Unclas
347 p HC AIS5/HF AO1 CsCL 17B G63/32 28062

Prepared for

National Aeronautics & Space Administration
Lewis Research Center
21000 Brookpark Road
~Cleveland, Ohio 44135

Final Report
on

Grant No. NSG-3191
James Rotnem - Project Officer
April 15, 1978 - May 30, 1980

Mohammed Arozullah - Principal Investigator
Stephen C. Crist - Co~Investigator

Grant Title: Design of a Microprocessor-Based
High Speed Space Borne Message
Switch.

CLARKSON COLLEGE OF TECHNOLOGY
POTSDAM, NEW YORK 13676

b o e e it R

R s ST U

ABSTRACT

This report is concerned with lesign and evaluation of a
microprocessor based high speed space-borne packet switch. Three
designs namely, a single, three and multiple processor designs
are presented. System architectures for these three designs are
presented. Further, the hardware circuits, and software routines
required for impiementation of the three and multiple processor
designs are also presented. A bit-slice microprocessor is used.
This processor has been designed and micropfogrammed. Maximum
throughput has been calculated for all three designs. Queue
theoretic models for these three designs have been developed and
utilized to obtain analytical expressions for the average waiting
times, overall average response times and average queue sizes.
From these expressions graphs have been obtained showing the

effect on the system performance of a number of design parameters.

ii

e

TABLE OF CONTENTS

1. INTRODUCTION .« <« & ¢ o o o o o o o o o o o &

1.1 Problem Definition . . ¢ &« « ¢« ¢ « «

1.2 approach to the Problem

2, SYSTEM DESIGN CONSIDERATIONS . & ¢ o ¢ o o =
2.1 Protocols . v ¢ ¢ ¢« ¢ o o o o o o o o

2.2 Packet Construction

2.3 The Prior Architecture . . ¢« ¢« ¢ o «
2.4 Processor Worklezd Divisions . . + . .

2.5 Resource Contention Among Processors .

3. THE THREE PROCESSOR DESIGN 3 « * . *

3.]1 System Hardware . . « « « o « o o o o

3.1.1 The input Buffers
3.1.2 The Input Buffer Polling Circuit
3.1.3 The Input Switching Network . . .
3.1.4 The Shift Register Array
3.1.5 The Output Queue Lists
3.1.6 The Output Switching Network . .
3.1.7 The Output Buffers
3.1.8 The Output Status Words
3.1.9 The Empty Shift Register List . .

3.2 The ProCesSOrS . « « o s ¢ o o o o o o

3.2.1 General Processor Architecture .
3.2.2 The Instruction Execution Unit .
3.2.3 Microprogram Word IEU and System
Hardware Control Fields
3.2.3.1 ALU Source Fields

2.3.2 ALU Function Fields . . .
2.3.3 ALU Destination Fields .
2.3.4 Bus Control Fields . . .
2.3.5 System Hardware Control F
3.2.4 e Microprogram Control Unit . .
3.2.5 ocessor Timing « + « &
3.3 System Software o . e 0 e . .

3.3.1 The Input Service Routine
3.3.2 The Routing Service Routine . . .
3.3.3 The Output Service Routine . . .

iii

ields

13
14

23

61
63
68
68
68
68
69
74

74
77

79
86

Page
4. THE MULTIPLE PROCESSOR DESIGN . . . o 4 o o = o o o = 24
4.1 The System Architecture ¢« ¢« ¢« ¢« « « + 94
4.2 Shared RESOUXCES « « o s ¢ o o s o o o o o o & 99
4.2.1 The Shift Register Array . . .« ¢« « « + o 100
4.2.2 The Output Queue Lists . . « .« ¢« ¢ « .« & 101

4 2 3 ELIST L] L] . . L] * . . L) . L] L] 102
4.2.3.1 Processor-Controlled ELIST .« o . 103

4.2.3.2 Hardware-Controlled ELIST 106

4.3 The Input System ¢ ¢ ¢« ¢ ¢« ¢ o o o o & 115
4.3.1 Architectural Workload Division 117
4.3.1.1 Master/Slave Scheduling 118

4.3.1.2 Separate Systems o . . 121

4.3.2 The Input ProcessoOrs . . o« « o o« o o« o o 124
4.3.3 The Input Service Routine 124

4.4 The Routing System ¢ ¢ ¢ o « o o o o+ = 127
4.4.1 Architectural Workload Division . . . e 127
4.4.2 Packet Routing Data Ports 131
4.4.3 The Packet Sorting ProcessSOrs« = 139
4.4.4 The Packet Sorting Service Routine . . . 141
4.4.5 The Packet Routing Processors 144
4.4.6 The Packet Routing Service Routine . e 148

4.5 The Output System . . . ¢ ¢ ¢ ¢ ¢ o o ¢ ¢ o o & 152
4.5.1 Architectural Workload Division.. 152
4.5.2 The Output Processors . . « « « « o o o+ = 156
4.5.3 The Output Service Routine 156

5. EVALUATION AND THROUGHPUT ANALYSIS . . « « + + « » » 166
5.1 Performance Evaluation ¢« « &« o o & o & 166

5.1.1 Throughput Estimation for the Three

Processor System . . .« e e o a o & o 166

5.1.2 Throughput Estimation for the Multiple
Processor System . . . ¢ « o o o o o o o 171
5.2 Evaluation of the Processor . . . « o « ¢ o « = 183

5.3 Packet LOSSES « v « o o ¢ o « + o o » o s o o 185

5.4 Fault Detection and Fault Tolerance . . « . . . 188

iv

o

Page
6. QUEUE THEORETIC MODELLING FOR CALCULATION OF
THE AVERAGE RESPONSE TIMES AND THE AVERAGE
QUEUE SIZES L] . L] L] L] . L X L L] L] L] * L] L[] L] L] L] L] L] . . 191
6.1 Introduction . . . ¢ ¢ ¢ ¢ ¢ o 4 o e s 4 e e 191
6.2 Design Parameters of the Switch « . . 191
6.3 The Single Processcr Design . . « ¢ « ¢ & o o & 192
6.3.1 Introduction . . . ¢ 4 ¢ + o o o o o o 192
6.3.2 Parameters of the Input Queue o s o o o 194
6.3.3 Parameters of the Output Queue e o s o o 196
6.3.4 Parameters of the Queue for Routing
Service - 3 3 . . . '3 - . . 198
6.3.5 Expression for the Average Response
Tlme . . . * . - . . [] 13 . . [[3 . . . 199
6.3.6 The Average Queue Sizes . . , c o o o a 203
6.3.7 Interpretation of the Graphs Show1ng
the Effect of the Various Design
Parameters on the Performance of the
Proposed Packet Switch 204
6.4 The Three Processor Design . . . ¢ « « ¢« « .+ . 212
6.4.1 Introduction . . . ¢ « ¢ & o ¢ o o o o 212
6.4.2 Expressions for the Waiting Times
at the Various Queues and the
Overall Average Response Time 212
6.4.3 Expressions for the Average Queue Sizes . 214
6.4.4 Interpretation of the Graphs Showing
the Effect of the various Design
Parameters on the Performance of
the Proposed Three Processor Packet
SWitCh 3 3 3 . . . L) - . . - 215
6.5 The Multiple Processor Design « « « . 222
E ' 6.5.1 Introduction . . . « ¢ 4 ¢ e e 4 4 e . . 222
6.5.2 Analytical Expre551ons for the
Waiting Times at the Various Queues
and the Overall Average Response Time . . 223
6.5.3 Expressions for the Averace Queue
Sizes at the Various Queues « . . 226
6.5.4 Interpretation of the Graphs Showing
the Effect of the Various Design Para-
meters on the Performance of the
Proposed Multiple Processor Packet
SWitCh . . . - [. . . . [.) . [. . . 227
E { 6.6 CONClUSIONS v v « « « o o o o o o o o o o o & & 230
v

LA T L . e

i m e e e T R 8 s e

7.0 SUMMATY . o« &« o « o o o o o & & o o o o
7.1 Suggestions for Future Work
7.2 System Throughputs. . . . « « + ¢« « « &
7.2.1 Single Processor Packet Switch .
7.2.2 Three Processor Packet Switch. .
7.2.3 Multiple Processor Packet Switch
7.3 Queue Theoretic Results
REFERENCES ¢ o ¢ ¢ ¢ ¢ © o o o o o o o o o
APPENDIX A: INPUT SERVICE ROUTINE MICRQCODE

APPENDIX B: PROCESSOR-CONTROLLED ELIST. . .

vi

PP Ty

Figure
2.1

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

LIST OF FIGURES

Single Processor System Architecture
Three Processor System Architecture
Input Buffer for One User « ¢« « « « .
Input Buffer Polling Circuit

Single Data Path in the Input Switching
Network L] L] L L] . - - L] . L] . - I‘ L] L] L] - - .

Input Data Path Busy Port « . « . .
One Location in the Shift Register Array . .
Shift Register Polling Circuit
Output Queue List Data Structure e e e
Am 29705 Two-Port PAM « « =« « o o o o o o o &
One Output Queue List « « . « o« .
One Data Path in the Output Switching Network
Output Data Path Busy Port
One Output Buffer« ¢« ¢« « « ¢ « &

One Output Status Word and the Output Buffer

Polling Circuit . . . ¢« & ¢ ¢« & & ¢« o o o o &

The Empty Shift Register List Data Structure
The ELIST Hardware . . . ¢ o« o « o o o o o
The Processor Architecture
The IEU for the Input and Output Processors .
The Routing Processor's 1EU . ; e e e s s e
Am 2903 Four-Bit ALU Slice . . + « &« o o o &
Addressing MatriX ¢ ¢ v v ¢ ¢ ¢ e e o 0 o o .
Input Processor IEU uW Control Fields

Routing Processor IEU uW Control Fields . . .

vii

45
47
48

50
53
54
56
58
59
60
62
64

65

]
;;
»
|

B A e e S

‘

)
|
|

S 1ty s S e 4 £

Figure

3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36

4.12

Output Processor IEU uW Control Fields

ALU Control Fields L] . - . L] L] - . L] L] . L] L] -

Microprogram Control Unit « +« ¢ & « « &

An 2911 Microprogram SeqUENCer . . « o« « « o+ &

MCU uW Control Fields . . ¢ ¢« ¢ o o o o o o o

Jump Control Logic Functions . . ¢« « ¢ ¢ « o &

Processor Clock Waveforms . .« « « o« + .. e

Input

Input

Service Routine Flowchart

Service Routine« v o ¢« o o o o « &

Packet Routing Service Routine Flowchart . . .

Packet Routing Service Routine

Output Service Routine Flowchart

Output Service Routine « + ¢« ¢« ¢« « « &

The Multiple Processor System Architecture . .

Processor-Controlled ELIST Archiiecture

ELIST
ELIST
ELIST
ELIST
ELIST
ELIST
Input
Input
Input

Input

Data Input Port ¢« v 4 ¢« ¢ o o o« @
RAM Structure . . . ¢ ¢ ¢ ¢« ¢« o« ¢ o o o
Data Structure « ¢ ¢ o
Input Port hardware Timing Diagram . . .
Data Output Port ¢ ¢ ¢ ¢ o « « &
Output Port Hardware Timing Diagram . . .
System Architecture "2A"+ .+ . .
System Architecture

Processor IEU Microprogram Control Ficlds

Processor MCU Control Ficlds and Jump

Control Logic Function & o o« & o o .

viii

Figure

4.13
4.14
4.15

4.16

4.17
4.18
4.19
4.20
4.21

4.22

4.26

4.27

4.28
4.29
4.30

4.32

4.33
4.34

Input Service Poutine Flowchart « . . .
Input Service Poutine . . + + « v ¢« ¢« ¢« o« + 4

System Architecture for a Single Packet Sorting
Processor . L] L] . L] L] [] L] . L] . . L] L] L]

System Architecture for a Single Packet Routing
Processor L] L] > - . . - . L] . L) L] . L - L] . L] .

A Single Packet Routing Data Port
Packet Routing Data Port Polling Circuit . . .
Packet Routing Data RAMS . « 4 « o & o « o o &
Packet Routing Data List Data Structure

Packet Sorting Processor IEU Microprogram
Contr()l Fields . - . . L] L) L] . L] . L]

Packet Sorting Processor MCU Control Fields

and Jump Control Logic Function « .+
Packet Sorting Service Routine Flowchart . . .
Packet Sorting Service Routine

Packet Routing Processor IEU . . . ¢ & o o« o &

Packet Routing Processor 1EU Microprogram
Control Fields . . & ¢ ¢ o o o o ¢ o o o o o &

Packet Routing Processor MCU Control Fields
and Jump Control Logic Function

Packet Routing Service Routine Flowchart . . .
Packet Routing Service Routine

System Architecture for a Single Output
ProCessor . v « o o o s s o s s o s o o s o o

Output Processor IEU Microprogram Control
Fields . - L] L] - »* . - Ll * - . - L] * Ll L L . .

Output Processor MCU Control Fields and
Jump Control Logic Function . . + . . « ¢« « . .

Output Service Routine Flowchart

Output Service Routine . & . ¢ ¢ o ¢ ¢ o o o &

ix

Page

128
130

132

133
136
137
138
140

142

143
145
147

149
150

151
153

155
157
158

159
162

164

L 10 S e R

6.11

6.12

6.13

6.14

6.15

System Throughput as a Function of the Number
of Processors ® L] [] L] [] L L] L] L] L] L[] [] . ® L[] L]

System Throughput as a Function of the Number
Of Userb ® L] [] L] L[] L) [] . . o L] L L] L] L] - L] L]

The Queuing Model . . . + ¢ o ¢ ¢ ¢ o o o & o
The Modified Queuing Model. . « + ¢ ¢ ¢ o &+ &

Average Waiting Time Vs. Utilization Factor at
Queue 1 * L] L) ® L 2 * L] L] L] L [] L] L] L) L] L] L] L] L]

Average Waiting Time Vs. Utilization Factor
at Queue 2 With P As A Parameter . « « « o o

Average Waiting Time Vs. Utilization Factor Pa
at Queuve 3 With 2 and Py As Parameter. . . .

Average Waiting Time Vs. Utilization Factor P3
With Py and Py As Parameters. (Queue 3) . . .

Average Waiting Time Vs. Utilization Factor at
Queue 3 With Py and Py As Parameters.

Average Waiting Time Vs. Utilization Factor Py
At Queue 3 With Py and Py As Parameters . . .

Average Waiting Time Vs. Utilization Factor
With Fy and Py As Parameter « « o « o o o o o

Average Waiting Time Vs. Utilization Factor P3
With Py and Py Ag Parameters. . « o« o o o o o

Average Waiting Time at Queue 1 Vs. Clock Cycle
Time of The Processor. (For the Proposed Design

¢ = 120 ns.,' . L] L . L4 L] L d L) L ® L] L] L] L] L] *

Average Waiting Tim: at Queue 2 Vs. Clock Cycle
Time of The Processor. (For the Proposed Design

¢ = 120 nS.). e o o & o e o » s o . e e e e o

Average Waiting Time At Queue 3 Vs. Clock Cycle
Time of The Processor. (For the Proposed Design

¢ = 120 nB.). e 8 o & & e e @ e s 8 o o s s o

Overall Average Response Time Vs. Packet Size B

With Pyr Py and Py As Parameters. . « « o o o o o

Overall Average Rgsponse Time Vs. Destination
Functions. (A-10° packets/sec., B=1024 bits,
¢=120 ns, py=.2325, py=.2685, p3=.48075,

AB8

si=T) e o & 8 o6 o e & e & o e 8 & s e s »

180
236
237

238

239

240

241

242

243

244

245

246

247

248

249

250

e re— R e, v Are o w v
-
i

6.17

6.18
6.19

6.20
6.21
6.22

6.23

6.24

6.725

6.26

6.27

6.28

6.29

6.30

Overall Average Rgsponse Time Vs. Destination

Functions. (A-10° packets/sec., B=1024 bits
¢=120 ns, 91-.2325, p2-.2685, p3-.48075,

si = YiABS, L] L] L[] . [] '. L] L] ® L * L L L] L L L] [] L

ABa

Overall Average Response Time Vs. a in si =

Overall Average Response Time Vs. a in si = AByia.

Overall Average Response Time Vs. a in

AB (a=1) /ABY
81 = ABYi + 4 L] L J L L L L] L] L L] L L[]
JXByi
i
Overall Average Response Time Vs. « in 8y = L%g

Overall Average Response Time Vs. a in si = ABvia.

Overall Average Response Time Vs. « in

AB{a=1) XBYi
si = ABYi + L] . L] L [] » L] L] * .
bX JXBvi

i

Average Queue Size Vs. Utilization Factor at
Queue 1 . * L] L] L] Ll L] . L] L J » L] L] L] . L d . L] L]

Average Queue Size Vs. Utilization Factor at
Queue 2 With Py As A Parameter . . « o o+ ¢ o

Average Queue Size Vs. Utilization Factor At
Queue 3 With 3 and po As Parameters

Average Queue Size Vs. Utilization Factor At
Queue 3 With PL and p, As Parameters

Average Queue Size Vs. Utilization Factor At
Queue 3 With Py and Py As Parameters

Average Queue Size Vs. Utilization Factor At
Queue 3 With Py and Py As Parameters

Average Queue Size Vs. Utilization Factor At
Queue 3 wWith 1 and Py As Parameters

.

The Queueing Model For The Three Processor Design.

xi

Page

251
252
253

254

255
256

257

258

259

260

261

262

263

264
265

Cugngg 1w haeaing. i on ——— T —
.

Figure

6.31

6.32

6.33
6.34
6.35

6.36
6.37
6.38
6.39
6.40
.6.41

6.42
6.43
6.44
6.45

6.46

Average Waiting Time Vs. Utilization Factor
At Th.e Input Q“eue [] L] L] - [] L] L] L] L L L 2 L] ® L] L]

Average Waiting Time Vs. Utilization Factor
At The Routing Queue. (No Contention)

Average Waiting Time Vs. Utilization Factor
At The Routing Queue. (Contention at all times)

Average Waiting Time Vs, Utilization Factor
At The Output Queue. (No Contention).

Average Waiting Timr. Vs. Utilization Factor
At The Output Queue. (Contention at &ll times).

Average Queue Size Vs. Utilization Factor At
The Input And The Routing Queues. (No
Contention . « ¢ ¢ ¢ o o ¢ ¢ ¢ ¢ o o & o o o o

Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Input Queue. (For The
Proposed Design ¢=120n8) . . « . ¢ ¢ ¢ o o o o &

Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Routing Queue. (No
Contention For The Proposed Design ¢=120ns). . .

Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Routing Queue. (Contention
At All Times For The Proposed Design ¢=120ns). .

Average Waiting Time Vs. Clock Cycle Time Of
The Procassor At The Output Queue. (No
Contention For The Proposed Design ¢=120ns). . .

Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Output Queue. (Contention
At All Times For The Proposed Design ¢=120ns). .

Average Waiting Time Vs. Utilization Factor
At The Input, Output and Routing Queues.

Overall Average Response Time Vs. Utilization
Factors At The Input, Output and Routing Queues.

Average Waiting Time “:. Clock Cycle Time Of
The Processor At The Input Quecue . . . « « « «

Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Output Queue. . . « « « « &

Average Waiting Time Vs. Clock Cycle Time Of
The Processor At The Routing Qucue . . . « . . .

xii

e A %

Page

265

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Figure
6.47

6.48

6.49

6.50
6.51

6.52

6.53
6.54

6.55

6.56

6.57

' 6.58

6.59

6.60

6.61

6.62

6.63

Page

Overall Average response Time Vs. Packet
S8ize B with Pre Pay and Pa As Purameters. 282

Overall Average Response Time Vs. Destination

Functions. + ¢« ¢+ ¢ ¢ 'c ¢ o o s o o o

. . L] . . 283

Overall Average Response Time Vs. Destination

Functions. .. e L] L] L L] . L] L] L] L] L] L] .
Overall Average Response Time Vs. « in

Overall Average Response Time Vs. « in
si = LBvia . . L L] L] L] * L] L] L] L] . . L]

Ovaerall Average Response Time Vs. « in

AB(a-l)“ABvi

s - ABV + L] . L] [] L] L] L]
i i b Jlei

i
Overall Average Response Time Vs. « in

Overall Average Respecnse Time V8. « in
Si = ABVia - L] L] ® L] L d L] L] L] . L] . L] L]

Overall Average Response Time Vs. « in
AB(a-l)JABvi

z ¢thi
i

. 284

ABa
Si = T-. 285

L] L . L d + 286

L] . . » 3 287

S, = —. 288

. . L] . . 289

e o s o« o+ 290

Average Queue Size Vs. Utilization Factor At

The Input QUEUE. « ¢ « + o o o o o o =

e o o o o 291

Average Queue Size Vs. Utilization Factor At

The Routing Queues « « « + o+ &

. 292

Average Queue Size Vs, Utilization Factor At

The Output Queue . « « « « ¢ ¢ « o + o

Average Queue Size At The Output Qucue
Number of Output Lines . . « « « « + &

Average Queue Size At The Output Qucue
Number of OQutpuc Lines . . . « « « « &

Average Qucue Size At The Output Qucuce
Packet SiZe. . ¢ o o ¢ ¢ o o o s e e

Average Queuc Size At The Output Qucuc
Packet Size. . o+ ¢ ¢ o o o o o o o o

Average Qucue Size At The Output Qucue
C1°CR cycle Time [. . L] L] L] L] L] L] . L]

xiii

. . - . . 293

Vs. The
* L] ® L] . 294

Vs. The
L] . . * 295

Vs. The
o ® L2 » . 296

VS.
- e . . . 297

vs. The
s o » o« o« 298

Figure Page
. 6.64 Average Queue Size At The Output Queues Vs. The
() Clock Cycle Time . . « &« ¢ ¢ o o o ¢« ¢ ¢ o o « o 299

6.65 The Queueing Model For The Multiple Processor
DeSign ') L3 3 [3 [. . L) . L3 . LY 3 - o . [y . LY 'Y 'Y 300

6.66 Average Waitiuyg Time Vs. Packet Arrival Rate At
The Input QUEUE. . « ¢« « o & + o o o + o o o » - 301

6.67 Average Waiting Time Vs. Packet Arrival Rate At
The Input QUEUE. . =« « + o & » s o o o o o o « « 302

14 6.68 Average Waiting Time Vs. Packet Arrival Rate At
The Input QuUeue. . . « « « o o o o« « ¢ o o o« « o« 303

6.69 Average Waiting Time Vs. Packet Arrival Rate At
The Output Queue . . . « « . ¢« &« o ¢« « &« « o« « o« 304

6.70 Average Waiting Time Vs. Packet Arrival Rate At .
The Output QUEUE . + « « « « o o o s =« » o« o o » 305

6.71 Average Waiting Time Vs. Packet Arrival Rate At
The Output QUEUE . « . « « ¢« « o« « o = o« « o « o« 306

6.72 Average Waiting Time Vs. Packet Arrival Rate At
The Routing Queue. . . « o« « o « o o + « o « « « 307

6.73 Average Waiting Time Vs. Packet Arrival Rate At
The Routing Queue. . . . « « « « & « « « « « o+ . 308

6.74 Average Waiting Time Vs. Packet Arrival Rate At
The Routing Queuwe. 309

Ik 6.75 Average Waiting Time Vs. Packet Arrival Rate At
] The Sorting Que‘.le. e o o e e e e e o o s e e o o 310

6.76 Average Waiting Time Vs. Packet Arrival Rate At
The Sorting QuUeUE. . +. « « « « « o o s o « « « o 311

6.77 Average Waiting Time Vs. Packet Arrival Rate At
The Sorting Queue. . . + ¢« o o + o o o &« o o « « 312

. 6.78 Overall Average Waitirag Time Vs. Packei 3ize . . 313

6.79 Overall Average Waiting Time Vs. Destination
Functions. . . ¢ ¢ o 4 o« o o o o o o o o o« « +» « 314

6.80 Average Queue Size Vs. Packet Arrival Rate At
The Input Queue. . . . + ¢ « + &+ « s+ + « o o « » 315

6.81 Average Queue Size Vs. Packet Arrival Rate At
The Output Queue . . . &+ ¢« & v &« + o o « o « « o 316

6.82 Average Queue Size Vs. Packet Arrival Rate At
The Routing Queue. . . « o v o o « &+ & o« o « « « 317

Xiv

T

Figure Page

X 6.83 Average Queue Size Vs. Packet Arrival Rate At
l ('} The SOrting Queue- L] (] L} . L] Ld 318

Xv

5.1

5.3

H
i
i
!
H

LIST OF TABLES

Contention Problems in a Shared flag System

Hardware Control Signal Codes . . « « « .

Microprogram Word Bit Divisions

Software Execution Times for the Three
Processor System . ¢ ¢« o ¢ ¢ o o ¢ o0 o &

Software Execution Times for the Multiple

Processor System . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o .

Throughput for Each Processor Class

xvi

168

174
175

1.0 INTRODUCTION _
B In the past decade.packet switching has revolutionalized
data.communication. In 1968 virtually all interactive data
—'commﬁnication networks used circuit switching, which is the
current technology used in telephone networks [l]. Circuit
switching networks preallocate channel bandwidth for an entire
message. However, since most interactive data tfaffic,occurs
in short bursts, a large portion of ghe bandwidth is wasted.
Thus, as digital electronics became inexpensive and the need
for more digital data communication networks grew as computer
technology expanded, the redesign of data communication net-
works became economically feasible and desirable. Packet
switching was introduéed since it allows for the dynamic allo-
cation of bandwidth, which permits users to share the same
transmission line previously assigned to only one user.
Packet switching has improved the economics of data communi-
cation systems, network reliability and functional flexi-
bility [1]. |

Packet switching networks divide the users' messages into
small segments, or packets, of data which move through the
network towards their destination. All packets are fixed-
length and serial in structure. Packets consist of a header
and a body. The header, which precedes the body, contains
the routing control information which indicates the packet's
source and destination. In addition, the header also con-
tains message reconstruction information for use at the des-

tination. Since a complete message may occupy more than one

'>_pééket.'each header contains a message number and a packet
sequence number. Thus, any packets arriving in a scrambled

sequence can be rearranged to correctly yield the entire

message received. The body of a packet contains the data
;ﬁ N being transmitted. The length of each packet within a net-
| work is fixed for the entire system.

The routing of theée packets is handled by the packet
switches im§lemented 1n the network. These special switches

replace the previous circuit switches found in telephone net-

S R TR R T e I = o

works and older data communication networks. The scope of

the work presented in the following chapters consists of the

BRI L L A

design and evaluation of these packet switches using micro-

processors to control the switching functions.

TR TTeRT e AT 5T

l1.! Problem Definition
i This report examines the problem of designing and evalua-

tanc multiprocessor-controlled packet switches. (The design

and evaluation of a single processor version is presented in

» lz,3].) The work presented in the following chapters will investi-
gate the question of how large a multiprocessor packet switch can

: be constructed before the problem of resource contention erodes

; the system's performance. The performance of these multiprocessor
designs will be evaluated in terms of their maximum throughput with

respect to the number of users and the number of processors imple-

mented, average delay within the switch, and queue sizes.

These packet switches must be capable of routing packets

(vf among any number of up to several hundred users. In addition,

et

- Baaiiul —
- Ty — —

all designs must allow the use of these packet switches in
communication satellites as well as in networks using only
land lines. The problems of protocols and error-correction

codes are briefly reviewed in this work.

1.2 Approach to the Problem

System design considerations are examined first. These

. considerations include protocols, prior work, workload divi-

sions and resource contention among processors. A review of
protoéols and their effects on throughput is presented. Using
the information from this investigation of protocols, a deci-
sion is made on how to handle this provlem.

After thé protocol problem is solved, a review of the
prior single processor design is presented. Using the prior
design as a.foundation, the requirements and goals of the
multiprocessor designs are formulated. A review of the prior
design at the functional level allows the workload division
for the three processor design to be made.

Once the workload division is made, the contention pro-
blems relating to the shared resources are investigated. 1In
this investigation, each shared resource is identified and
their specific contention problems are examined. Various
solutions to these problems are found and presented.

Once all the design considerations that influence the
actual implementation are examined, the system architecture

of the three processor packet switch is designed. The design

of the architecture, its operation and functional requirements

[
g
g.

O

i

allows the detailed design of the system hardware to be

. completed.

Once the system hardware is designed, the processors

and their software requirements are defined and designed in

detail.

After the design of the three processor system is com-

pleted, the same design'procedure is repeated for the design

. of the multiple processor packet switch.

With both designs complete, an evaluation of each
is cafried out. The evaluation determines the maximum
put of both architectures. A queue theoretic model is
developed that facilitates analysis of delay and queue

within the packet switch.

system

through-

sizes

» b
2
-

!

2.0 SYSTEM DESIGN CONSIDERATIONS

The final architectural designs of the multiprocessor-
based p&cket switches are influenced by several system de-
sign constraints and goals. Some of these are considered in
the single processor architecture [2,3]. Thus, those par-
ticular considerations will be reviewed briefly in this
chapter. The remaining design considergtioné arose directly
from the use of multiple microprocessors, and shall be dis-
cussed in detail. The review of each design constraint and
design goal will lend an expianation to the approach taken in

the development of the new system architectures.

2.1 Protocols

Much attention was given to the analysis of various pro-
tocols and their effects on the packet switch in the previous
work [2,3]. Implementation of a full forward error correc-
tion (FEC) scheme, an End-to-End Automatic-Repeat-~Request
(ARQ) scheme, and an Up-Link ARQ scheme were cdnsidered. The
results of this research were used to select a protocol scheme
for the multiprocessor architectures.

Since large system throughput is a major goal, any proto-
col which was shown to reduce system throughput was eliminated
from further consideration. |

A reduction in throughput was found to be linked to all
protocols requiring the packet switch to maintain special

software. Thus, only protocols which are transparent to the

packet switch will be supported by the multiprocessor

Linaak

Lt bt e bkt it s A ARG e dut OO
v

architectures. Two protocols which fulfill this requirement
are the FEC.scheme and fhe End-to~End ARQ scheme.

In addition to improving system throughput, “"transparent"
protocols offer the users flexibility. Users can custom tailor
protocols to meet their needs. Transparent protocols could be
changed or altered even after the network is completed and
operational. Also, different protocols could be implemented

between different users in the same network.

2.2 Packet Construction

The packet format consists of a body and a header. Pac-
kets are serial in structure with the header preceding the
body. The body length of a packet is fixed for a given system.
However, the selection of this length is generally made from
a range of 256 bits up to 10240 bits. In order to maximize
the throughput of the multiprocessor-based packet switches
under investigation in this report, the recommended body length
is 10240 bits.

The packet header contains information required to route
the packets to their proper destinations. In addition, the
header also contains special information needed by the destina-
tion. Since entire messages may exceed the length of a single
packet, they must be divided into packet-length segments before
transmission. The last packet of a message will be "padded"
with blank characters to fill unused bits in the packet

should the message not require an integer number of packets.

The syrecial header information is used bv the destination

B S T S P YR STy

PP

£ |)

to reconstruct entire messages which have been sent via
several packets. Therefore, should the packets arrive in a
scrambled sequence, the message is still recoverable. This
information and the routing information is arranged in vari-
ous fields. These fields contain, in-coded form, the packet's
gsource, destination, message number and sequence number.

Since the header information is vital for proper packet
transmission, its protection is a system design requirement.
Thus, the header is protected by an error-correcting code.

The Bose~Charedhuri~Horquenghen (BCH) coée was chosen for this
task in the original design and is implemented again in the
multiprocessor systems. The cost of this protection is in-
creased hardware and software for both the system users and
the packet switch. However, this increased overhead has been
deemed necessary in order to maintain the integrity of the
network. The header is the only part of the packet which has
error-correction protection that is used directly in conjunc-
tion with the packet switch. Error protection of the packet
body is optional to system users and must be implemented at

the ground stations.

2.3 The Prior Architecture

There are several important design philosophies which
have shaped the architecture of the packet switch. They are
incorporated in the multiprocessor architectures as well as
in the single processor architecture. The following are the

design guidelines used for all architectures:

- T WREETE

i 1) A fixed packet length must be used by the network.
%(A) Thig simplifies hardware and software requirements.
"2) A1l packet transferq through the switch are done
serially. This eliminates any need for Serial-to-
Parallel and Parallel-to-Serial conversions. (Al-
though all packet transfers are done serially, the
N processor accesses the header in parallel.)

3) Since all packet transfers are serial, this operation
is to be man&ged by dedicated hardware. ‘Processor
control of this function would decrease system through-
put due to the comparatively slow speed of software.

In addition, the use of dedicated hardware o perform

this task allows the processor to spend more time

making decisions and controlling other system opera-

tions.

4) The full capacity of the processor must be utilized

; to avoid throughput reduction. This goal is achieved
by requiring that the processor never wait for hard-
ware. This requires parallel hardware for certain
functional blocks. These blocks are initiated into
action by the software. This hardware completes its
' assigned task automatically without further software
supervision. All architectures permit several simul-
taneous operations to Le performed, since the processor

is free to move on to new tasks once the hardware is

Rt et b S A

activated.

8) To further increase system throughput, the processor
SR is only allowed t> access the header of each pu:ket.
While in the switch, the packet bodies are left un-

touched by the processor. Since the routing informa-

tion needed by the processor is found only in the

header, this design goal is easy to implement.

The final system architecture of the single processor

' ‘ packet switch is presented in Figure 2,1. This packet switch
; handles N users who are allocated one line each. Operation
of the system consists of each user traﬁsmitting their packets
to the switch which routes the packets to the proper destina-
tion. The packets arrive at the switch as serial bit streams.
The switch is configured such that any user may communicate
with any other user in the network.

The routing of the users' messages begins with the

buffering of all incoming packets. Each input line is double

buffered. Even with double buffering, the processor service

’ response time must be short. Buffer overflow will destroy

| packtets left toc long in a buffer. 1In order to avoid packet

i : lossas, a nininum of processing is done at the input buffers.
As ~oon .8 a full buffer is detected, the processor immediately
stores the packet in temporary storage. This storage area is
constructed of shift registers arranged in an array.

Once stored in the shift register array, each packet

receives additional service. Their headers are decoded by

- the processor to determine each packet's destination. The

routed packets are assigned to software output quecues. Use

|
|

(1T2Uuang sauwepr jo Asa3aIno)d)
3IN3093TYo2ayY wo3ysds x0ssadoxy atburs 1°z °brg

J 331 -
17l surrteq .
sng VYR/DV 3dniid3ul
&3 ANG
Gt xs uouuﬂ”ﬂ . - . Hnusuu . e N
20 3ndang . 108533013 33ng i ecuID

oo 1y

_

]
! I
! 1
At ! . | AvQ
Ny T4 3933n@ . L. ! 14} 4
270} - 3nding ! : ' 3933ng 3ndul L)
Irlm : . A . .
! 201393
A 1| AzomIN Keazy S R} t
= , 2 3
33633 SuyINS m“ uw“ﬂm«m jgﬁ Ins — - u
: u 2333ng andsy TueeYD

3adang

et Ll "Nt canel TN W T T — —

of software queues eliminates the need for additional packet
transfers required by hardware queues. Each queue corresponds
to one unique output buffer.

When an output buffer becomes empty, the processor
accesses the associated gqueue for the next packet awaiting
transmission. Each queue contains the location of each routed
packet in the array awaiting transmission to that queue's
corresponding output buffer. Using this information, the
processor begins the transfer of the queue's oldest packet to
the proper buffer. Once in the buffer, the packet is then
transmitted onto the network channel under hardware control.

The software required to control the packet switch con-
gsists of three routines: The input service routinc¢, the back-
ground service routine and the output service routine.

The input service routine is interrupt driven. Execution
of this routine begins when the Data Available (DAV) line of
an input buffer becomes active and is detected by the input
interrupt polling circuit. Equal priority among all usecrs is
ensured by the sequential scanning of these DAV lines.

The first task of this software is the linking of a free
data path in the input switching network to the full buffcr.
Next, the address of an empty shift register is fetched from
the Empty Shift Register List (ELIST). This shift register
is then linked to the full buffer via the data path. Finally,
the processor initiates the packet's transfer into the array.

This routine has the highest priority and is unintecrruptable.

11

N
|
‘0

" The background service routine continually scans the

‘ghift register array in search of packets requiring service.

ﬁpon £inding one, the‘processor fetches the header. The header
is cbrrected. if necessary, by using error pattern data stored
1n'; Syndrome Decoder ROM. Next, the packet's destination is
déterminéd. The packet's address in the array is then placed

i1 the proper output quéue list. However, if this list is

. empty and its corresponding buffer is also empty, the processor

will load the packet directly into the buffer. The packet's
array address will then be placed in ELIST. This routine hgs
the lowest priority since it is not interrupt driven.

Like the input routine, the output service routine is
interrupt drivén. Detection of an empty output buffer by the
output interrupt polling circuit forces the execution of this
software package. This routine must first check the output
queue associated with the buffer requesting service. If this
list is empty, the service request "flag" for this particular
buffer is reset and the processor exits from this routine.
However, if the gueue is not empty, the processor then fetches
the array address of the oldest packet in the queue. Using
this address, the processor then links the proper shift regis-
ter to the empty buffer. This link is established via an
available data path in the output switching network. Once
the link is complete, the data transfer begins. This routine

has the second highest priority.

12

P I BT P T PP ey

ST

e

2.4 Processor Workload Divisions

1 most. multi-nicroprocessor systems, the primary design
Agoal is the i&entification and separation of all tasks which

are relatively independent [4]. 1Ideally, this allows each

- processor to perform a dedicated task. Thus, each processor

can operatermostlf independently of the others. As a result,
very little data needs to be exchanged among'processors rela-
tive to the total system data flow. ‘

Tﬂis design philosophy is implemented in the determination
of the processor workload division for the multiprocessor-
based packet switches. The first step in the implementation
is the identification of each "independent" task. A review
;bf the single processor design shows that the operation of the
packet switch consists of three major tasks. E£ach of these
are controlled by independent software routines. The three

tasks are:

1) Storage of received packets (Input Function)
2) Routing of each received packet (Routing or Background
Function)

3) Transmission of each routed packet (Output Function)

Now that the "independent" tasks have been identified,
the workload division can be made; one'processor is assigned
to each of the three tasks. The architecture supports an
Input Processor, a Routing Processor and an Output Processor.
Each processor supervises dedicated hardware, executes custom

software and shares a minimum amount of common resources.

13

B v . . .

ot s 0

i
3
i

(

)

ﬂgégddxdébbhartng,p:esents many problems and is the next topic

‘2.5 Resource Contention Among Processors

In most multiprocessor systems, shared resources are

necessary. Unfortunately, they present many control problems

" and may cause reduced throughput. Therefore, they must be
'kept to a minimum. A

"concérh over shared resources arises whenever the possi-
‘Sility of procéssor.cbntention exists. Contention occurs when
two or more processors simultaneously request access to the
same resource. This is known as a race condition [5]. Con-
tention also occurs when one or more processors request access
to a resource currently in use by another processor.

A system's throughput can be severely reduced by conten-
tion in two ways. Simultaneous access of a resource by two
or more processors will cause havoc in the system. Therefore,

special hardware and/orvsoftware is required to schedule re-

source allocation. Only one processor must be granted access

to a particular resource at any given time. This requires
that the other processors be "locked out." Implementaticn of
any res.urce locking scheme requiring special system software
will reduce throughput. 1In addition, processors which become
"locked out" are forced to wait for the busy resource. Pro-
cessor idleness due to contention reduces throughput.

Since increased throughput is the primary goal in the

design of a multiprocessor packet switch, contention must be

14

:
d
]
i
1
%
1
)
3
|
i
i
{

ORISR

Ltase

- minimized. This goal is achieved by first identifying each
‘t‘ushared resource. The following is a list of shared resources

yuééﬁpilédﬂffom‘a review of the system architecture:

1) The shift register array

2) ELIST

3) The output queue lists

4) The Output switching network
5) The'output~buffers

An analysis of contention problems.for each of these re-
sources is now needed.
All three processors use the shift register array. Each

shift register'must assume one of the following states:

1) Empty
2) Holding an unserviced packet
3) Holding a routed packet

4) Shifting out or in a packet in transit

Empty shift registers with their addresses in ELIST can
only be accessed by the Input Processor. Shift registers con-
taining unserviced packets can only be accessed by the Routing
Processor. The Output Processor can only service shift re-
gisters containing routed packets. Thus, any shift register
in one of these three states is free from contention problems.

However, shift registers containing packets in transit
from the array to the output buffers present a contention

problem. As statad earlier, once a packet transfer is

15

p b 4

e s TR T

i 1y TYERETEANTTE

Ty

) nte it eSS A LRI e il

20

initiated by a processor, dedicated hardware takes control.

Therefore, thg processor is now free to start a new task. 1In
the casé of the output processor, the next task is the up-
dating of ELIST with the address of the packet in transit.
ELIST now contains the address of a shift register who's con-
tents are only partially transferred. A resource contention
could occur if the Input Processor uses'this.location to store
a new packet.

Two solutions to this problem exist. One solution is to
require the Output Processor to temporarily hold the address

of each packet in transit. This scheme needs hardware to sig-

nal the completion of transfers, address storage and additional

control software. Since additional software reduces through-
put, this scheme is not used.

Instead, the scheme used requires the array hardware to
allow the simultaneous transmission of an old packet and the
storage of a new packet at the same location. Although the
shift register array is a shared resource, contention pro-
blems have been avoided.

The shared resources remaining to be examined all have
one thing in common: Each resource is accessed by the Routing
Processor. However, only the output queue lists are accessed
by this processor under normal operatién. The Routing
Processor only requires access to ELIST, the output buffers
and the output switching network when a special event occurs.
This event takes place.whenever the Routing Processor finds

a packet destined to an output buffer which is empty and who's

16

B PPy

RS we:

output queue list is also empty. The Routing Processor re-

sponds by transmitting the packet directly.

In order to deal with this one special operation, allo-

‘cation of many shared resources is required. This increases

the risk of reduced throughput due to contention. 1In addition,
throughput will be reduced by the system software required to
manage the resource allocations. Therefore, a decision must
be made whether or not to allow the kouting Processor to
transmit packets as done previously by the background routine
in the single processor design.

Since system throughput is at stake, the Routing Processor
must not be permitted to transmit packets. Although a new
scheme must be devised to handle this special event, conten-
tion has been completély eliminated from the output buffer
system and the output switching network. (Specific details
on the new scheme are presented next in the contention analy-
sis of the Output Queue Lists.) These resources are now solely

controlled by the Output Processor. In addition, ELIST is now

only accessed by the Input Processor and the Output Processor.

Each output queue list is associated with one unigue
output buffer. These lists contain the addresses of routed
packets in the array awaiting transmission. The Routing Pro-
cessor must access these lists to update them with the
addresses of newly routed packets. Meanwhile, the Output
Processor must access the lists to find the next packet re~
quiring transmission.

Since the Routing Processor always writes to the lists

while the Output Processor alwavs reads from the lists, dual

17

S O

L i i

port RAM's can be used [6]. Dual port RAM's permit two pro-
cessors to accass them‘éimultaneously provided at least one
éiécéséor berforms a read ogeration. Only one processor is
allowed to perform a write operation at one time.

The data structure of the output queue lists is designed
such that if the processors are accessing the same location
the queue is considered empty. Only after the Routing Pro-
cessor updates the list and moves on to the next location can
the output processof read from the oﬁcé empty liét. Thus,
the situation of a concurrent read and write operation at a
single location is avoided. At first glance, the problem of
contention appears to be solved. However, further investiga-
tion is needed to ensure that this is true.

A new output“bufferwstétﬂﬁmwgrq with three states, "busy,"
“empty,” and "idle" is now used. An output buffer in the busy
state is in the process of receiving a packet from the array,
receiving output processor service or transmitting a packet.
Once a packet is transmitted, the buffer enters the empty
state which indicates the buffer requires service. An output
buffer is placed in the idle state by the Output Processor
when the buffer becomes empty if its queue list is also empty.

When the Routing Processor encounters a packet destined
for an idle buffer, it must first update the buffer's cueue
list. Then the processor must change the buffer's status
word to indicate the buffer is empty and requires service
from the output processor. This operation replaces the prior

scheme of transmitting packets directly. As stated earlier,

18

T v

D AL S A o

illlia . ciadnd

many contention problems are eliminated by this new scheme.

However, a new subtle problem has arisen.

Table 2.1 lists fhe sequence of events which leads to
the problem. The first line in the table shows that an empty
output buffer is receiving processor service. The buffer's
output queue is currently empty. The Output Processor is pre-

sently accessing this qﬁeue. Meanwhile, a packet destined for

~ this buffer-is being routed by the Routing Processor. The

Routing Processor has just read the status word of this buffer
which'indicates the buffer is empty. However, just after the
status word was read, the Output Processor updated it to cor-
rectly indicate that the buffer is idle. Line two in the
table now shoﬁs the new status word. 1In addition, the Routing
Processor, acting on incqrrect information, has placed the
packet's address into the queue list without updating the
status word. Line three in the table displays the packet's
address residing in the queue list while the status word still
indicates the buffer is idle. Since the Output Processor can
only service buffers in the empty state, this packet is
trapped in the system. This packet will remain trapped until
a new packet arrives for the same destination. The remaining
lines in the table depict the events leading to the recovery
of the trapped packet. Since the recovery time may be quite
long, a solution to this problem must be found.

In order to solve this problem, a locking scheme is im-~
plemented for the output queue lists and the associated output

buffer status words. Any time one processor gains access to

19

wa3sis berg pexeys e ur

SWSTQOId UOTIUSIUOD T°Z STqel

Kydug
K3dug

g
A3duy

Kydwg
K3dug
Aydug

A3dug joN

ot

- C - 9TPI
- - KX3dugeLsng
- uas (9) Asnge-A3dug
- sITeM (4) Kyduze-Asng
- S3TeM (d) ‘3juss (V) XsngeA3dug
- pananbug (g)+(v) Aduzea1pI
a1pI 89ATIIY (9) a1pI
- paddeay, (v) 1pI
- pananbug (v) aTpPI1
Aydug (¥) saataay suo 91pI~LA3dug
40SSTO04d ONIINOY SIAAING QUOM SNIVLS
X9 QU3 SOLVLS aaxLnoy INdLno

LSIT Inand

INd4dLno

SINIAT

e e e e et e e e e,

20

Iy e S
o

| (O

one of the queue lists, the other procvessor is locked out from
that particulgr queue and its associated buffer status word.
Thus, wﬁen a processor is granted access to these resources,
the processor is ensured of obtaining correct data. Although
the queue lists are never accessed by more than one processor
at one time, the dual port RAM's are still used since they
simplify other hardware and software requireﬁents.. The locking
scheme requirz=s some additional hardware and software. Some
processor idleness may also be encountered. However, although
some system throughput is sacrificed, the packet switch's
integrity has been preserved.

The(ELIST is the last shared resource to be analyzed for
contention problems. ELIST is shared by both the Input Pro-
cessor and the Output Processor. The Input Processor must
access this list to find available empty shift registers in
the array. The Output Processor updates this list with the
addresses of shift registers released by transmitted packets.
As in the case of the Output Queue Lists, one érocessor always
writes to ELIST while the other always reads from ELIST,
Therefore, ELIST can be built using dual port RAM's. These
RAM's allow a simultaneous rezd operation and write operation
to take place at different locations without interference.

The data structure of ELIST is deéigned such that no
simultaneous read and write operations can be performed at
the same location unless the list becomes empty. If the list
becomes empty, the system faces a far graver problem than con-

tention. However, ELIST should never become empty under

21

i
]
1
!

ST T TR T T TR TERANT A TR s T

normal operation. Thus, another shared resource is spared
from contention problemé. since the processors using it are
tran;parent to one another. ,

In summary, the output queue lists are the only shared
resources which face contention problems. Details concerning
how this problem is handled are found in 3.1.5, 3.3.2, and
3.3.3.

22

it R i

3.0 THE THREE PROCESSOR DESIGN

The system architecture of the three processor packet
switéh is presented in Figure 3.1. As in the single processor
design. this packet switch handles N users who are allocated
one line each. Again, the switch is configured such that any
user may communicate with any other user in the network. Aal-
though the workload is divided among three processors, the
function of the uwigch remains unchanged from the original
design. Thus, a detailed description of the packet switch's
operation is not presented. Instead, this chapter focuses on
the actual hardware, software and processors required to imple-

ment this new architecture.

3.1 System Hardware

Under processor control, the system hardware carries out
the assigned tasks of the packet switch. Since the packet
switch architecture now supports multiple processors, a new

control signal labelling scheme has to be adopted. This

~scheme is designed to help eliminate any confusion regarding

the source and destination of each control signal. Table 3.1
contains each control signal code format with an example and an
explanation. Detailed explanations of the circuits and their

operations are presented in the following sections.

3.1.1 The Input Buffers
Displayed in Figure 3.2 is the circuitry required by

an input buffer for one user. All received packets remain in

23

e ol

2an3093TYoayY woasks 108s25013 @Iyl T[°¢ bty

thH._.w G

205530
. Cot L -o
:MINY
O tu._to , |
. 4l
spaom V L
v, 1 souudo..c ”
> s ey o S)
{ad4r0 SGeyney ‘ Fhr *
| S¥343n8
_ _ dA0dNT

yompan

‘ ey
| | s
, ‘ ht&q b.*wwnat S 2yl ¥

24

sopo) TeubIS [OAFU0D dIempIeH [¢ 21qel

s

LR] TS

. -

+ comand

Pet g 1tes
7o r T2 Ldn0) ,

)

D) AN 2 pe el

> -1.5112 .t&*mﬂ/u.

gy S
IS B I A L
clefly v s

sy »oea BN

3-1v

vl 2V4 v

i eefreq WS bs

FRRTES R
Ha3rt » 2s0dd +>b+)n,
bl i) waraNtY
N3y ey w..,.t.,.,u
e d ety

a3 srzuay v

Ulﬂa_,..x D - AL

9 -1 3 - ="

2 704 LA

TR SSMPFY mi

PYCTORI M S 4o
Yy duag S0 ﬂt..*)ad

u..l..u ...tv\n vh..u!is.— —.vh._H

ltsf..f—'Z ..O“ﬁ Pn\»

S-Miw3

m - SPLYLS

v -¥s8T

Tavea pIVY .-C*wnw

2“ P Ctb #\.:—wﬁn
AT ool n....a.nem

MY smey prdvr

e |~oers -

3$¥3138 =D

15300399 | 2=/ VS

1353y-y | een ps -

Mﬁ....v .-nxv'&.. Ch.noc..wau.w\bv:_a.w

vesusaQ

3
.

R LA

2y Iwvx 3 }owies

<PeD ,,zsn,.w.

25

it e . e L
B o P ———

I9S8] dUO0 x0F xd33Ing 3Indur

2 gy

o
o

V) WALINOD -~
| 5 ¢ ou 13304

AY0

© o

O »

1371735
VIdIng

YD
YIUSIDIY L4THS HiSvIT -1H
viva

11

33409 o

)

“AY(0 ==
- s
104300
Y2130g

A {2073
YILST * Y JSTHS HidardT-1INMY
o YLvg

Xrw2G
8 %3072
Y a1ms 23IHS

S

o~

3 wwil

N >a 7 l— e %307
> AISMNTHO

s
]

Y wviwvo

e wal el

B O T T T T D VI PPy 1T 7 F T VT P P PP T

T

PR S - o £ a0 Sagl i

i e e s —

T 473, W Bty e

the input buffer until they are transferred into the shift

register array. 1In order to reduce the possibility of over-

~ flow, each input channel is double buffered. The two buffers

at each input‘channel are packet-length shift registers. Buf-
fer select logic determines which buffer is to be linked to
the iuput éhannel while the other buffer is linked to the
Input Switching Network. This select logic is driven by a
packet counter. The packet counter monitors the arrival of
packeté by countiné each bit. Once an entire packet has been
received, the counter rolls over, activafing the buffer select
hardware. The select logic then switches the buffer assign;
ments. Concurrently, the counter sets the Data Available
(DAV) flag indicating a full input buffer. This flag is
scanned by the Input Buffer Polling Circuit, which is the

next topic presented.

3.1.2 The Input Buffer Polling Circuit

The Input Buffer Polling Circuit appears in Figure 3.3.
This circuit sequentially scans each input buffer's DAV flag
searching for a full buffer. A counter, which cycles through
N values, drives the poller. The counter's output is supplied
to the DAV multiplexer (MUX). Selection of one of the N MUX
inputs is controlled by the counter's value. Each of the MUX
inputs is a DAV signal from an input buffer circuit. The
selected DAV signal is passed onto the Stop Scan flip-flop.
When an active DAV signal is encountered, the Stop Scan flip-
flop is set. Once set, this flip-flpp halts the counter.

Simultaneously, it brings the Input Buffer Service Request

27

3TnoaT) Burirod I933ng 3Indur g°g °BTd

PLEL)
V9 S YussNoY

ingnY 3HL OU

Y

©}

YNAOD 0 .lllﬂﬁ|
. 507D

.m..l'llZ?g

\

R 5 CH e

T T .-

T, —— o~ ——

AR s

(IéSk) iino high, informing the Input Processor that a full

buffer has been found.v'

'The stabilized counter value represents the address of

that full buffer. 'This value is sent to the Input Processor

for processing. 1In gddition, the counter's output is supplied
to the Flag Reset Demultiplexer (DEMUX). This DEMUX allows
the processor to send the A-RESET (see Table 3.1l) signal to
clear the proper buffer DAV signal. The A-RESET signai also
clear; the Stop Scan flip-£flop, thus-restarting fhe polling

circuit.

3.1.3 The Input Switching Network
The Input Switching Network can provide a programmable
data path between any input buffer and any location in th:2
shift register array. This network consists of multiple,
programmable data paths permitting the system to handle simul-
taneous packet transfers. A single data path is illustrated
in Figure 3.4.

In order to establish a complete data path in the net-

. work, the Input Processor must first place the address of the

input buffer being serviced into Latch A. The contents of

this latch are supplied to the Data Mux and the Input Buffer
Shift Clock Demux. The Data Mux links the selected input
buffer to the switching network. The Shift Clock Demux sup-
plies the shift clock to the selected input buffer. Once this
half of the data path is established, the Input Processor sends
the address of the empty shift register to Latch B. This

latch provides the Data DeMUX, the Shift Register Array Clock

29

- ——————

XNPoT PRoCESIOR OBYS INPUT PROEISOR ORYS

w . LATCH A @ ;(P&-A LATCH 8 snc———-,((PS—A
£] : P
% 3 X e . | —
. | '
: FRom To sHyT
: i
] . INPVT : DATA. - DATA I Restsice
E Bumes' Mmu X DEMUX 1t pava 1evmrs
' |
l |
e | | a——
- TNPUT SHIFT ——
To || gurr&R ' Ree1sier | | TO SHIFT
InpoT
i Burren V| swzeT ARRAY l ResisTER
: SHIFT ' LoeR - CLock | Ciock INPIS
| clock |) |
’ LNAS | DEMuX DemuA |
- -
M1-A f——
o I onE |
smicx PAKKET SHoT _ To sIAwvs
CounieR o STATUS { |
Cof—=i0 Q > FLIP- FLovs
Cemux | |
(43 Q |
STof '
TRAMSTER -
} ———————m DATA CATH Pusy

/.__
\ p e (L OCYS

Fig. 3.4 Single Data Path in the Input Switching Network

30

s Tn s TR TN T R AT R

Demux and the Status Demux with the select lines needed to
complete the data path. The Data Demux links the selected
shift régistef to the network, completing the actual data
path for the packet transfer. The Shift Register Array Clock
Demux supplies the shift clock to the shift register. The
function of Statué Demux and its associated hardware is ex-
plained in 3.1.4. '

When a data path has been completed, the Input Processor
initiates the packet's serial transfer through the data path
by clearing the Stop Transfer flip-flop. This flip-flop halts
the packet transfer once the packet counter rolls over. The
packet céunter counts each bit of the packet in transit by
monitoring the shift clock pulses. This scheme permits every
packet transfer into the array to be hardware terminated. 1In
addition to halting the packet transfers, the Stop Transfer
flip-flop generates the Data Path Busy signal. This signal
indicates the status of the data path, which can be either
idle or busy. Each Data Path Busy signal is sent to hardware
which provides the Input Processor with the address of a free

data path. Figure 3.5 is a diagram of this hardware circuit.

3.1.4 The Shift Register Array
The function of the Shift Register Array is to provide
temporary storage for received packets which are waiting to
be routed and transmitted. A single location in the array is
shown in Figure 3.6.
As packets arrive from the input buffers, they are shifted

into the shift registers in the array. Each location actually

31

3xod Asng yjeq ezeq Indur g°¢ °OTI

170:1M0D
SAIY ¥YossYd vt <K YIS

Rt 4°18

ovam—]

y230042
ALIyolYd
dadnvd
mOoN
AarLoy |

M je—

| SHIS) HLYD
_hwmaw _.\Cu_u
| s3#17 Asag
|

HiYd Ylivo
-

32

P

Co T T TR TR TR T TR

Kexxy x93STH3Y 3IITYS 3Y3 UT UOTILDOT SU0

-

-7 Af.ab byvp L0d1r0 32d auyy 209)

Kawzg M9 Undiao
AvYlY ‘¥°'s woyd

19y S -

ﬁi& 20d auy 299)

wewI)
salvlSs woyd

SOAFT Yeiiandd wiincy S.A _

§rdvr sad 3wy Buo)
xew3d(WO
Y oangnNl

ANy
TS woy

(utrd oy 32d avy ucov
Y xew30

. w Yiy o

hlg woy 3

| J
Aved N3 -
luo..vJ
Yoiyys39 INCIGNNAS
vivd Il_
XOw ndund ot lue..ul.— ‘¥s _ M3e9D
vsuek yeva vva 0P g YO LDNWY
AYSIY V'S ol rrm—— € $93 30 1/ 009 K39 vivo T vivo
9-24Y
(wsio2w3 saasnon)
690 wo
b vd JYoLs-9
sSn9T Ol W
..S.om
: Y20voH

33

- N e RS T e g gy e vy

i ., !-t!_ et il b
T

uses three shift registers linked together to form the packet-
length storage area required. As the packets are transferred,
the header arrives first and eventually resides in the Packet
Header Shift Register. Unlike the shift registers which con-
tain the actual packet data bits and the header error protec-
tion bits, this shift register allows parallel accessing of

the header. Since the processor fetches each packet header

. and also returns the corrected header to the shift register,

the parallel access feature is a system ;equirement.

As packets are sent to the array, their headers and header
correction bits are also sent to the Syndrome Generator [3].
Each shift register location has its own Syndrome Generator.
This hardware‘circuit decodes the header information into a
syndrome. A non-zero syndrome indicates an error in the
header data. The syndrome is available to the Routing Proces-
sor which corrects the header using this error pattern infor-
mation.

All packet transfers into the array from the input buf-
fers are hardware terminated. When the Stop Transfer flip-
flop in the Input Switching Network is set, it halts the
packet transfer hardware. In addition, the activated flip-
flop is sent to the input of the Status Demux. This Demux
passes the flip-flop's signal onto the selected shift regis-
ter's Status flip-flop. The activated signal sets the Status
flip-flop indicating that a packet transfer has been completed
and that this location in the array now contains a packet re-

quiring service. Every array Status flip-flop is scanned by

34

N IV

the Shift Register Polling Circuit, which appears in Figure
3.7. This poller sea;ches for unserviced packets, notifies
the Routing Processor once one is found, and supplies the
array address of the unserviced packet to the processor. A
set Status flip-flop is cleared once the Routing Processor
accesses the Syndrome Generator at that location. Next, the
poller is restarted by éhe processor.

Previously, the polling of the array was carried out by
the processor. This scheme required additional software and
consumed processor execution time even when empty locations
were scanned [3]. Thus, the proposed use of a hardware poller

increases the Routing Processor's throughput.

3.1.5 The Output Queue Lists
The Output Queue'Lists are the software lists contain-

ing the shift register array address of each routed packet
awaiting transmission. Each list contains the addresses of
routed packets destined for thaf list's associated output
buffer. The Routing Processor always writes to the lists,
adding the addresses of newly routed packets. Meanwhile, the
Output Processor always reads from these lists, fetching the
next packet to be transmitted. The lists are organized in a
First-In-First-Out (FIFO) format, resulting in the transmis-
sion of the oldest packet in the selected list. Figure 3.8
contains the data structure of the Output Queue Lists.

The index pointer or "Input Pointer" (IPTR) used by the
Routing Processor points to the next address to be filled.

Once a location is filled, the Routing Processor updates *the

35

3TnoaT) BuTTIod I93STHAYW IIJTUS L°€ °BTJ

- o xu
Yo ml—ll|||| M0YV)
arde?
3 3 o rﬁbuuwuc M&
! HY1100Y YL 9L
. . .@-) | w SYS
.)
aus i
g - MmN 10 § M,M»m - € S¥S
H¥pas © S¥S
4045 T SuS
. QHH.F%&-@

N S P T & U N

36

)

4 X X X t———— OFTR(N)
2 X X X
2 X X X

IPTRW) e

000

Q X X X

X X X
S.R.*# a—— OF TR (W)
S.R.*
X X X
X X X

IPTR (N) ————

nNijidlwiso |-

Q XXX

Fig. 3.8 Output Queue List Data Structure

37

e |

IPTR by incrementing it. When the IPTR reaches the end of

the list, it rolls over, returning to the top of the queue
list. The ind?x pointer or "Output Pointer" (OPTR) used by

the Output Processor points to the next location to be read.

In order to fetch the next address from a list, the Output Pro-
cessor must perform the read operation and then it must incre-
ment the OPTR.

The data structure of the lists 1s‘designed such that
when IPTR is equal to OPTR the list is assumed to be empty.
Under special circumstances, this assumption may cause packet
losses. This problem is explored further in Chgpter 5.

In £he single processor design, the output queue lists
are stored in local RAM and the index pointers are stored in
the processor's register file. However, in the multiprocessor
environment of the new desicons, this scheme no longer meets
system demands. Both the Routing Processor and the Output
Processor must access these ligts. Therefore, the Output
Queue lists must be stored in RAM's that are available to
both processors. In order to reduce contention problems,
each list is stored in a physically different RAM structure.
This permits the two pr:ocessors to simultaneously access dif-
ferent lists without interference. Special locking hardware
is required to prevent simultaneous aczess of one RAM should
the processors fail to access different lists. As mentioned
earlier, the RAM's used are TWO-PORT RAM's. The logic dia-
gram of the AM29705 chips used is presented in Figure 3.9 (6).
Several chips can be arranged to form a RAM structure of re-

required width and length.
38

|
WVd 3I0d-OAL G0L6T WV¥ 6°¢ *bra

iStudn
[l -
) aule § 0 . v])
: “ n : —* a
. =} orenre | ¢ S] e ©”
X v | o} e avans R o |
' tg ot . . . _——
; : . _
- — ~ M
@ f 0% |

3
§
3
:

An additional constraint in the design of the queue lists

) is the requirement that the value of each index pointer be
) available to hardware test logic. The function of the test

logic is to notify the Output Processor when an output gqueue

list becomes empty (OPTR = IPTR). Fulfilling this requirement
results in the storing of all queue list index pointers in
hardware counters. Figﬁre 3.10 is the logic diagram of one

- Output Queué List structure. The operation of this circuit
is best explained by traving the procedure followed by the
Routiﬁg Processor and the Output Processor as they access a

queue list.

Once the Routing Processor has determined the destination
of a packet, it activates the uP4-B (see Table 3.1) control
line which selects the desired Output Queue List. These con-
trol lines, when activated, enable the selected RAM, the
associated locking circuit, and the IPTR updating circuit.
Next, the processor places the shift register array address
into the Output Queue List Data Port. The Routing Processor
then activates the B-REQUEST lines to request access to the
queue list. This control signal is sent to all the queue
lists, but is enabled only at the queue list selected by the
uP4-B signal.

If the selected queue list is available, the B-REQUEST
signal sets the WRITE ACCESS CONTROL flip-flop. This flip-
flop then activates the READ LOCK-OUT line, which disables
the READ ACCESS CONTROL flip-flop. Disabling this flip-flop

;5,‘j ‘locks out the Output Processor'frqm this list. 1In addition,

40

sngo
WINYJ HVILN0Y

3STT snend Indano du0 OT°€ BT

SADT wesaou) 104100 >

.oQOJlm

>

>

VO 22w

\/ 5y
W viba FTTYRY)
oL dwod
s s 5 !
14T SS3yIay <53Yq0Y ¥ido | y
. wyy s ®
LYo4-oM L 304b2 WY N TE RE
Tam B e
M 2-Y0
tTro T oY -

- vdvr

L53062¥-9

m‘w? iS5

10035017 313IYM _

>

20
m\/\._l ‘
VV’*

-4
153083y~
D-Srayss

G i - T

SN R AT e

pao 424

tn o

the set WRITE ACCESS CONTROL £flip-flop activates the WRITE
signal, which enables the RAM in the write mode. The address
data latched in the Output Queue List Data Port is then strobed
into the RAM location selected by the IPTR. The IPTR counter
has as many unique values as the RAM has locations. The
Routing Processor is informed of a completed write operation
by the STATUS-B signal, which goes low when £he WRITE ACCESS
CONTROL flip-flop ié’set. Upon receiviﬁg the active-low
STATUS;B signal, the Routing Processor reads the associated
Output Status Word (OSW). (The function and operation of the
OSW is discussed in 3.1.8.) The reading of the OSW before the
release of the queue list is required since accéss to the 0OsSwW
is also controlled by the queue list lock hardware. Thus,
only one processor can access both the gueue list and the
associated OSW. Once the OSW read operation is performed,
the Routing Processor generates the B-RELEASE signal. This
signal clears the WRITE CONTROL ACCESS flip-flop. Clearing
this flip~flop frees the list since the READ LOCK~OUT signal
and the WRITE signal are de-activated. In addition, the B~
RELEASE signal activates the IPTR UPDATE signal which incre-
ments the IPTR counter.

If the Output Queue List selected is locked by the Output
Processor, the B-REQUEST line is disabled by the WRITE LOCK-
OUT line. The Routing Processor is informed of its denied
access via the STATUS-B line, which remains high after the
access request. The action taken by the Routing Processor in

this event is discussed in 3.3.2.

42

The Output Processor must access an Output Queue List
each.time it services an empty output buffer. In order to
access the queue list associated with the output buffer being
'serviced, the Output Processor must first activate the proper
#Pl=C line. The activated uPl-C line enables the seclected
RAM, the associated locking circuit and the OPTR updating
circuit. Next, ﬁhe Output Processor generates the C-REQUEST
signal. If the selected queue lisf is locked by the Routing
Processor, the C-REQUEST line is disabled by the READ LOCK-
OUT line. The active-low STATUS-C line will remain high after
the request, notifying the Output Processor of its access
denial. The action taken by the Output Processor is discussed
in 3.3.3.

If the requested queue list is available, the enabled C-
REQUEST signal will set the READ ACCESS CONTROL flip-flop.
Setting this flip-flop activates the WRITE LOCK-OUT, READ,
and STATUS-C lines. The activated WRITE LOCK-OUT disables the
B-REQUEST signal, locking the Routing Processor out from this
_queue list. Also activated is the READ signal, which places
the RAM in the enabled read mode. in addition, the ETATUS-C
line goes low informing the Output Processor that access has
been granted. Once access has bees» granted, the Output Pro-
cessor checks the EMPTY-C line to determine if the list is
empty. This lirne is driven by a comparator whose inputs are
the values of IPTR and OPTR. If the two pointers are equal,
the comparator activates the EMPTY-C line.

If the list is empty, the Output Processor releases the

list by generating the C-RELEASE line. The OPTR is not

43

T T T TR

S TREREYTTY

RN T o T W T T R ., -
3

TR e e ey —_

incremental in this situation since the list is empty. Should
the list not be empty, the Output Processor reads the packet's
address from the location selected by the OPTR. Once the read
operation is complete, the Output Processor activates the C-
RELEASE line freeing the list. In addition, the activated C-

RELEASE signal increments the OPTR.
Should both the Routing Processor and the Output Processor

. reguest the same queue list simultaneously, a Default Circuit

locks out the Routing Processor while granting access to the
Outpuf Processor.

An important point to note about this component is that
although the hardware implementation of the index pointers is
a system requirement, the system is enhanced by this feature.
The first benefit of this scheme is the reduction of software
due to the decrease in index pointer management overhead.

The second benefit is the reduced number of register files
required by the processors since the index pointers are stored
externally. This reduces the processor's complexity. An
additional point about this scheme is that it can be imple-
mented in single processor systems as well as in multiprocessor

systems.

3.1.6 The Output Switching Network
Illustrated in Figure 3.11 is one data path in the
Output Switching Network. As in the Input Switching Network,

the function of this network is to provide the Output Processor

with programmable data paths. . These data paths are used to

link shift registers in the array to output buffers. Packet

44

R R, S AN

DS aat [P
B LA

OUTPUT” PRESIOR QBYS

QuTPur FRotessoR oRVUS

—
-

45

LATCH A 6N [| (P23 (LATCH 8 e M P4-C
ey "
—y SHIET OVTPuT :
FRom | | gectsrer '
SHIET o gurrer || To
. oviPvT
REGISTER | DATA ovip
DATA l OvTPvT | PUFFER
o uThuTs : mux Demux 1, 0ATA
' LIPVTS
D S
i
1
1
*—-— | I A
peed SHIFT OuTpuT p—in
To
SHIFT V] Reexsrer guerer |1 To
Resasres ' ARRAY CLock | oureuT
<Lolx l OuTPuT - LOmuX ! quFFer
1NPUTS HIFT
| CLolk ISU.I(K 4
[/]
' DE MLX ‘ | TPl ‘
«-. | mamama
(OUNT e j
| ovE 1
eyl (K pAckeT SwoT FINISHED ! CounT :
CoomeR 7y | eamisuen 3
o D Q __-J—LL-F—_ ofmux I LINES 1O ?
o —Q‘ ovuTPur
[| BuFFeERS
HALT ' ;
TRANSFER . . ;
- DATA PATH Qusy

i (LOCK

Fig. 3.11 One Data Path in the Output Switching Network

RitaciihEc hab bl stttk ades okl & IR K Sid et tan

¥

transfers through the switching network are processor ini-
tiated and hardware terminated. There are multiple data

paths allowing simultaneous .packet transfers. The circuitry

‘required to monitor the status of all data paths in the

switching network: is presented in Figure 3.12. This circuit
provides the<0utput Processor with the address of a free data

path when one is needed.

3.1.7 The Output Buffers
The function of the output buffers is to feceive

packets transferred from the shift register array and to then
transmit those packets to the external channel hardware.
Packets arrive at a rate determined by the internal shift
clock. Packets then leave at the rate maintained by the ex-
ternal line clock. The logic diagram for one Output Buffer is
given in Figure 3.13.

The central component of the buffer is a packet-length
shift register where the packets are stored. While the COUNT

FINISHED line is inactive, the packet is shifted into the

" shift register by the internal shift clock. Meanwhile, the

INHIBIT XMIT flip-flop remains set, disabling the external
shift clock. Once the COUNT FINISHED line is activated by
the Output Switching Network, the INHIBIT XMIT flip-flop is
cleared, This action enables the external shift clock, which
then begins to shift the packet onto the channel line. The
packet counter monitors the complete transfer. As soon as
the last packet bit is shifted out of the buffer, the counter

rolls over. The carry out line from the counter sets the

46

T P T AT

et it i an

o
& P
3104 Asng yjed ereq 3ndino '€ ‘BT &
.|
! Shiyd vivd
oumod) ¥30°2nN3 _._.ao_:.o woy 4
SAGT YossMoYd 1ngdLn0 & st s i HoW K Arxwesy M | sau10 Asa9
-3yl , ,
109V | Ky Yivg <
“o-.
‘H) an oY
u-.&?L 4 @L N

TS 1 L ape B o

x933ng Indano dU0 €1°¢ "BTA

ﬁr&.&- 293 33d o)

MO I -
) pr : L".V.uo..u 1IINS

(upd oprg 344 3u0)

SINTT
b v . 0I1STials
= Frreey
1wy JI3THNT - ® S r
Lzwy ©
2393463 -
gm «W&&Ou - l—ll_l o-v e Y o ——
230¥)
A0us
o
As*_.w »y°0 124 200)

104100
0

180 ,
IS HD Oy w-- o~ ¥31SI93Y LITHS H5w- LMY
. NI viYO ‘|ﬁ ,dwuwzu..
. M _ pL]
J

L g e R

INHIBIT XMIT flip-flop and generates the BUFFER EMPTY signal.
The BUFFER EMPTY signal is supplied to the output buffer's
output Status Word (OsW) . The function and operation of the

O8W is presented as the next topi..

3.1.8 The Output Status Words

The Output Status Word (OSW) of an.Output Buffer is
hardware circuitry used to monitor and reflect thé current
status of the buffer. All OSW's are accessible to both the
Routing Processor and the Output Processor. Fach OSW is linked
to an associated Output Queue List. Thus, just as in the case
of.the gueue lists, only one processor may access a particular
OSW at any given time. This scheme eliminates the possibility
of one processor reading an OSW while the other processor is
altering the same OSW.

Each OSW indicates one of the three states that its
corresponding output buffer is in. The three output buffer
states are Busy, Empty and Idle. An output buffer is in the
Busy state whenever it is receiving a packet, transmitting a
packet or receiving Output Processor service. Output buffers
enter the Empty state when the packets that they were trans-
mitting are completely transferred onto the channel lines.

The Output Processor places an empty output buffer in the Idle
state when the correspording Output Queue List is also empty.
The hardware implementation of one OSW and the Output Buffer
Polling Circuit used to scan each OSW is illustrated in

Figure 3.14.

49

ATNDIT) SurTrod I233ng andIng ay3z pue paom snieixs Indano {uUO PI°E .awm

i . ‘gedvx 90
m ﬁuoﬂ&o& sad100 O}

e v

YIAO0Y 1D 1&'
51D

UOWUH’GWW‘II O Sig—-

NYS

wow ||
1590039 cus

IS w e¥s

>- T
(I}] 222A885°D
T 15709y o S ll.Ql . A13wD w3330
ININIF5 i '

2530039
351035

Q - v
A1dw3 -9

o S - \yh >=-T¢"
_ , 5%01-3

2703

a

T . e & e mw. ..

50

i
|
J
l

S TG T TRV R T D W TR TR TR L A TN T - e T R

The Output Buffer Polling Circuit sequentially scans
each OSW in search o. ah empty buffer. When a buffer empties,
its ;upport hardware generates a BUFFER EMPTY signal. This
signal sets the OSW's SERVICE REQUEST flip-flop. The acti-
vated SERVICE REWQUEST line is eventually found by the poller
as it scans the CSW's. Finding an empty buffer, the poller
signals the Output Processor and supplies the procecsor with
the address of the empty buffer.

The Output Processor then accesses the Output Queue List
agssociated with the empty buffer. If the list is empty, the
Output Processor updates the OSW to indicate that the buffer
is in the Idle state. This update is done when the Output
Processor generates the C-IDLE signal. (The proper uPl-C
select signal is still enabled from the queue list access.)
The poller is restated by the C-RESET signal. If the list is
not empty, the C-SERVICE signal is activated to clear the
SERVICE REQUEST flip-flop. This updates the OSW to indicate

that the buffer now is busy. The poller is restarted by the

~C-RESET signal.

Every time the Routing Processor updates an Output Queue
List, it checks the corresponding 0SW. 1If the OSW indicates
that the buffer is not idle, the OSW is left unchanged. How-
ever, if the OSW indicates that the buffer is in the Idle
state, the Routing Processor updates the OSW to indicate that
the buffer is empty. This update is accomplished when the
Routing Processor activates the B-EMPTY signal. (The proper

uP4-B select line is still enabled from the queue list access.)

51

>

TN

T —— s —— —_
. i T~ v——————

3.1.9 The Empty Shift Register List
The Empty Shift Register List (ELIST) contains the
array addresses of eﬁery empty shift register in the array.
This list is read by the Input Processor and written to by
the Output Processor. Figure 3.15 shows the data structure
used to maintain the list. The index pointer (EPTR@) used
by the Input Processor points to the next shift register

- address to be fetched. Once the address data is fetched, the

Input Processor increments EPTRg. The index pointer (EPTR1)
used by the Output Processor points to the last location
updated with the address of a freed shift register. The Out-~
put Processor must first increment EPTR] and then perform the
write operation.

This data structure is designed such that under normal
operation, a Read and a Write operation will not take place at
the same location. Thus, both processors can simultaneously
access the list without interference.

Illustrated in Figure 3.16 is the hardware circuit re-
guired to implement the ELIST. As in the Output Queue List
system, the pointers are implemented in hardware and the RAM
is a 2-port RAM., Although this is not necessary, since
neither processor requires access to the other's pointer, it
does reduce software overhead. Since this increases through-
put, this scheme is proposed over the previous scheme of
storing the pointers in the register file. The use of hard-

ware index pointers could also be used in a single processor

52

EPTRY el 4 S R.*
| & $. R ¥
E_ - | 3 S. R. "
| o)
| o)
i (o]
| , : N S.f. e————EPTRL
|
i
1 S.R * - C(TRL
a AKX
3 XXX
EPTRY — ol 4 S.R.® *
5 S. R* i
9 |
O
o
N SR

Fig. 3.15 The Empty Shift Register List Data Structurec

53

A- UPOATE ' - C-UPOATE

| 1

133 [L3
COUNTER COUNTER
EPTRG EPTRA |
ACORESS- A " AtoRess-@
e ———— Wl
AR ol Amd3705 _ }_r——.wme
WE,

&Pt RAM

A~PoRT DATA 1)

INPYT PROCESSOR xEuS OUTPUT PROCESSOR ©QUS

Fig. 3.16 The ELIST Hardware

54

e —— - . e e r e i 223 s s

ot e e - ———— .

system by using en up/down counter to hold a single index
pointer{ The ELIST data structure which supports the single

index pointer is found in [2] and (3]}.

3.2 The Processors
As stated earlier, there exist three classes of processors

in this implementation of a packet switch. Although each pro-

TR

cessor's function is quite different, the actual processor used

in each class is constructed around a similar architecture.

gdg

¥
SN R i N SV

The custom software executed by each processor and the blocks

Rl b A

of unique support hardware are the two elements. which give each
cléss of processor its distinct character. As in the single
processor design, the processors are built using the Advanced
Micro Devices (AMD) 2900 family of bit-sliced processing com-

ponents. The design considerations which led to the selection

A Aadh A

§ of these components are discussed in [2] and [3].

3.2.1 General Processor Architecture

The architecture of all classes of processors is
comprised of two functional blocks: The Microprogram Control
Unit (MCU) and the Instruction Execution Unit (IEU). The
Routing Processor contains one additional functional block:
The Syndrome Read Only Memory (ROM) which contains the header
error correction information in a lookup table format.
Figure 3.17 contains the block diagram of the processor archi-

tecture.

55

T —— — | —————— = —p—— ——

r - emum S - S e -as woun — —— — L] fa— — —— —-— L -— = - o= ﬂ
| —————N MCU !
M '
| 5 _ MICRoPROGIAM SEQUENCER t
t s| |
T
. L }+ |
] Co <5 ,
2 | ; |
r
f | v CONTROL MEMORY |
| | | |

To SWITCHING HAR L&FT

|
2 | PTPELINE REGISTER |
i | |
. : NEXT ALDRESS :
L-- o R I T - S an e eww = e wm = - o - J
4
| N\
: BUS ConTROL LINES
; | TEU
| ouOWALPAGRT | T8US by
L pOOR e
E OF P <
: LATCH
t A
. Fe--=- - >
I SYNOROME ' 4 R
ataitad flmm s ¢
[| DECODER K : :
- - = o - = -
v | Rom ::‘l- _______ L~ £ ----J
L______.a,--------- i i
s
RovrImng FPRocess~R)
oNLY
e A N NS

Fig. 3.17 The Processor Architecture

56

3.2.2 The Instruction Execution Unit

The Instruction Execution Unit (IEU) of the Input

Processor and the Output Processor is presented in Figure
'3.18. Figure 3.19 shows the IEU of the Routing Processor.
Both versions of the IEU incorporate the AMD 2903 four-bit

ALU slices. Shown in Figure 3.20 is the block diagram of the

AMD 2903 ALU chip. Cascading these chips in parallel will

il i it 4

provide the required width of the érqcessor word. The AMD
2903 has been selected over the AMD 2901 ALU because the 2903
? architecture supports two Direct Data Inputs. The use of the
; ; : second data input allows the data from the polling circuits
to be directly supplied to the ALU. This reduces software

overhead since a typical two instruction read operation is no

TR

longer required. 1Instead, the data is sent directly to the
1 ALU during the execution of a single instruction. Since this
scheme is implemented for each class of processors, a total
of three memory cycles has been saved, improving throughput.

All the arithmetic and logical operations required for

~address generation and data manipulation are carried out by
the IEU. Inputs to the ALU are suppiied by five different

f sources: The Input Bus (IBUS), the Microprogram Word (uW),

Scratchpad 1, Scratchpad 2, and the polling circuit. The IBUS

provides a data path from all external memory and data ports

to the ALU. Immediate operands in the Control Memory are

supps. d to the ALU via the uW input. Scratchpads 1 and 2

are two file registers located in the ALU's internal RAM,

o Their addresses are supplied by an external circuit which can

57

J

INBLT
mux

o TH4DRNNY

HARD-wWIALL
AbORESsBS

'-—-‘ X< 3 mozcown »
X m l l
P!l"“”"

DA

CorF ot
FRom
2y PoLLING
CTRCUIT
O¢,
b T

_ f: o TR
Y o€, 1N e 7
H —
Ot:7
revs ¢
LATCH I 1 LE -
/\ %2 A OBuS >
I U
B DATA BUS
v ADDRESS D€ CoOER
S LATCH '
© a— ce &,
D—————t
/\ AdHRESS I
> DECOLER] |
|
o——o=

V

Fig. 3.18 The IEU for the Input and Output Processors

58

N . D D KR T TN T, e r— iy e - ——— ———

o X Py BN

18

i
XCP» mamcow C°
J R TR} ¥ T

HARD - Wirer
Apprecics
A e X4 wE OEB
INPUT ‘ BA
mux >
TRI-
OnRoL
FRom
&n
. ? AGE v | ~ g v i _'_ M PoLLING
u\“ﬁm Q\IW WE Ok, 8 0a CIRCYET

Amd903 ALU [—%%

'a
(A SO —— éi.

o Cin
i ——eeeree. = 2
— €A

g ’ o SRy’

K

0&y

GBS .__l oevs - _>

<
LATCH (ba RALE
/\ o, ALe
I R
3 \/
Rom
v ADCRESS
S LArteH \/
SYNORome: ALLRLSS
DECOLCR C_ T LATCH
RoMm
O———
AbLFzss < I
/\ DECOtER |
|

Fig. 3.19 The Routing Processor's IEU

. . ' BLOCK DIAGAAM
() '
X)
'. . UATA ¢
oy | . ‘ -
,‘ Ao 2> - A :nuntts “m": | e gl 3 8y §
K [T iy o " L3
. m:uu 5 o
< oATAOUY tATAOUT
3 4 b n
¥ . 1 144
-3
. | Cpemet € LATCH Ky ¢ jo—cr
| T -
3 @9 org
1 4
« il £ 020,y
O3 > 7 _ I
3 Lo $ mux wx $ [
) P
; | 2 e A
{ mw O NFos \/ %o
| vk O. \\ Ay d—ae,
Caes N, oo
A4 {3 3100
{ J) | '
! s, 3 woren j— patten {223 a0,
3 s e
-4 o0, T3
K ; g REGISTER
{ oty —
g | N
d
: . m . [
! Torly D..._',L_... . l
P : . o mstRUCHON | © Yo-3
i 0LCO0E 2tr0
9 WHITLATY . .
j.* 1 i) P
: 13 |-
; ? . .) B3 Ve
1 3& memrana i) GND
4
Fig..3.20 AM 2903 Four-Bit ALU Slice
i
PN 030

60

. od ""'-!‘ it - - - S

provide the hardwired address of the selected register, when

needed. Data from the polling circuit provide the processor
with the address of the device requesting service.

Once the ALU inputs are processed, they leave the ALU
via the Output Bus (OBUS). This bus is sent to system hard-
ware, the Address Latch, the Address Decoder and the Data RBus
Decoder (Input Processor and Output Processor only). The

_ Address Latch holds address data stable during read and write

operations. The Address Decoder generates device select lines.

When used in conjunction with the Data Bus Decoder, the Address
Decoder forms an Addressing Matrix which can activate single
bit control lines [3]. This matrix is illustrated in
: Figure 3.21.
3.2.3 Microprogram Word IEU and System Hardware Control
Fields
IEU hardware and blocks of system hardware receive

control signals from various fields within the Microprogram

e i SRR A kol

Word (uW). Along with control signals, the ALU can receive
operands from the microprogram word. Control signals from
the W are also sent directly to systems hardware blocks.
These signals do not require processing by the IEU. There-

1 fore, while the processor performs one task, the uW control
signals can activate components of the system hardware. This
‘ hardware can either assist the processor in completing its

ﬁ task or will independently perform a different task. This
scheme permits concurrent operations to be carried on within

| the packet switch.

61

R aF B Ao

‘l
j (('i—*) .
onus

a | | vaTA BUS DECODER

ADDRESS
BUS
ADDRESS DECODER a

BUS ADDRESS
(l : | MATRIX

Fig. 3.21 Addressing Matrix
(Courtesy of James Burnell)

62

eTwee s

Presented in Figures 3.22, 3.23 and 3.24 are the segments
of the uW which are reqﬁired to control the IEU and the system
hardware. In addition, thege figures and Figure 3.25 contain

the tables used to microprogram the packet switch.

3.2.3.1‘ ALU Source Fields

The AMD 2903 ALU chip provides the ALU with two
operand inputs labeled R and S. A 2-1 MUX supplies the R oper-
and input with data from either the A output from the internal
register file or the external A-Direct-Data (DA) input. Since
no class of processors utilizes the A register file, the DA
input is permanently selected. External to the ALU, a 2-1 mux
selects either the yW operand data or the data held in the
IBUS Latch, and supplies the selected source to the DA input.
This mux is controlled by the R SOURCE field in the uW.

The ALU's S input has three sources: The B output of the

internél register file, the B-Direct-Data (DB) input and the
internal Q register. Addresses for the B register file are

supplied to the AM2903 via the external B SOURCE mux. This

"mux has che harwired addresses for each scratchpad register

used as its inputs. The B ADDRESS field in uW controls this
mux. Data supplied to the DB input arrives.from the pro-
cessor's polling circuit. Both the B register file output
and the DB input are tristated. Tristate bus control is
essential since both inputs share the same internal data bus.
This data bus forms one of the two inputs to an internal 2-1

mux. The other mux input is the output from the Q register.

63

SPTSTd T10I3U0D MM nIT 20SS3201g ndur. zz°¢ -brg

33 4 Mo =X

|
|
| vyl sadx I T T|T
, o) sndT | FIX|THT
, aply| saT |[S[O|T|T
m +.-O»— z*_Or_ zi G ﬂ 8 lﬂ
| wun swey| T Cuwws| T o Mmw TIX IS0y
svony | P Tmwss| O "goww| mr |o|lelallT
o S0
nu 09 | 31y 29005 9 sye S Y 71| %0l b3
dynes Y
. <
, SL1I9 HPIv0D hd
w 19538 -Ylawsga-y]aR¥-v| M | 3q | X30 Sy ... 8 T ¥ Oy ‘830
| -y WIY-Y | IM 230 3w I vy 'z ... %Ilsvgl °r %0 Ifeq — — _ sy
! o431 ‘3
M SUIIIA ITrowaNw
<4 35| 1v04n] Yy 5 sl w3 Hr2v| wozavmiis2al L4 | aygeus] YRS
<1 s SIS YN ..H nNoXLtoINNS sTYNY IS AN 4330
¥2110d | £5T1.15T13| S11ym| ¥30030] Lngsno| SND NIy ECED) Ny S Y
& 98 s ¢ ‘ -
€ e TFE ge - 9¢ st te-te ge b1-91 S1-9

£
¥
ta
2
e

QU M,fm

=
g
o

SproTd T[OX3U0D MM NIT IOSSad0ad buranoy ¢€z°¢ °“bTda

39v> 1 ~vogd -X

o] sz |g|F[T]
o s T (B I x| T F
‘ q 0%l smax gl | T T
YA I
SiIvaey WO Q 13 h»ou s2)fo4 \Ss & T M
v i J:\ VA .ﬁ
| m o] T wun sswoly] ¥ 1) © M T
9@ mr (g IOV
T wuves| O o 4] (2] = : ”
9o 9| SYI W) ey NY Bew_ S b T | %0 HL_ v3
| 2YeS Ay
<119 WILNOD)
! 2sw2y-8 I Y|s syl vy {r...v1| sy g1 ‘950 arH 5o _ — — Sig
m hht..v-W) wgow L > Om Pﬁ!@W“U@ wnlulgl %wo W wl—q Ho s u A% ﬂ
") ovoi-9 ‘w31 VE)
)
v w SI314 dvoalIpiy
!
| —
i 2043400 N]
w M 0 S4Tum} 13Y <1337 Svmi| 2evwd 3% H 4y |ixuyniisig NI e 02003 | SSTH00H S " 1704 - EX AN
‘ . »>0300 oV . .
. e | INBHE W3NU] (44,00 119Mm § 104200 wng 0y A oy g e 31y TOIWWT
.. 1
i Tv P> &g 8E£-% SE e g€ es-le fc-%c se e~ gy 6 9 st=9

65

SPI3Td TOI3uU0) MM NI I088d50ag IndIno pz°g¢ °H14

9> 1 vog =X

pea e sedx | LT THT
O sno T | T | X|TQF
9O s3I ||| TFT
py et MY LS N T IONT
v : o MY ITIXICHT
e LT, ﬂ Y x2iy83S T ¢ o]
e 7 7
: 34509 4 Tuanwydsl O v @ny " clelo)t
| Haty> s09] MY 23005 9| sy9 S I Y I B RE
2Dv¥n0s NIY
O
| . S119 CYLNO T o
ﬂ Iitvm - Sl 2707 -2 St... % - Br 90
5y N9 s3] 430 am] 3a] 3y 1 I vy .-l syg] T 22 Iy - - - %9
10dn-d| L530033-) | 1a¥35-) ‘NaT ‘w3
4 — - va
_ SN YINowWINW
WWHNOD . PRI BERY Lo
qowmed | L5T0] coppuer | aosaw| sravec] noves] v woten vl wr L yerssanssaany] Y 06 Y240
_‘ 1433113 Lw“.wh.w 50 193104 |ingine | s1zgea] i) SNB| N AN o 9 | ;o9n05 ny | 21YI2weT
.‘ To-Pb" bE-BE 4T -95 S b5 SE ®©E TE pc-Se ce ve-le @Y 4/ - I/ SI -9
]

~

R ————— e e e

T
T REE o . ' . ‘s - - -l
5 RAR S . ' S JF S P — e 20t o = =]
I REL e ot | o3 %03 ot | %ot €y 2, b4 Vam » 1T = m -
3 . i J— - 1 b= =t~ == S Thd_She X = S RS S, TS A
-~ - in oo = . i ' N . . - 3 -) - -
' : H — . = _—— = S 2
|z~ - P ‘ Y P s ‘s P 3 " =
{ TEEE - 4 - Tt S =5
o L) ©-Ct ™ Wk "3 “a . ‘u as v - Y -
”. - ‘c | GGt la ‘s s ' s “ T v Y ®» Y =
. N - - - - I S T - ‘ -
2 | ‘e el " = 2 - -) -
L R e R o - : g - " T T T .. |
".-a -) ‘s ‘e ' Y “ At wew 0 -
- — | — - - - i S LG S B, DR
.ld 3. O | ‘e ‘e e e mo.a -l & - ow owm Y
e e 0T e e t—- H — — § : s c———— | Nt
{ 2% il 2= O3 s ‘s ol L aaa e -1 . A . -
= .8 SA.E S A e e —_ -
On | wwen oD ™ | s ' ‘s i a4 et 5 w- 1w))
— S ——— - fmg = .} ‘- - - S e
| 2w | sw- | o s ‘e) ~a ~a P * - w]
AN K 5.0 1 - .- - S, S—— i s e]
| o ' v o=t e ‘y o3 - ~a PR < - -) -3
| S T RE . - les - % = e e | S P DL SRS |
| %5 {wsa | ©=00 % | | tos Xa ~ ~a amla R
- - H - + - . | I S TS, =5 B)
Tw Tw i Ly . N a-t s & - R
e —— - - ‘ - N SOS— L. 3 S {
- T - L - ' ~a A=l 4 sy 3 3 A * A
Scol S0l weusung 035 leexg ! @33 |seng o5 | wonsen g ey B % 4§ &1
- | Ui oy | oued | S5 isom | D | B en P 5 4 _ e |
Com | !
!

seu0 W
| & | fe= | _

407 = N31 ‘HOH = ¥1 80 ©1 20 %1 0 }1 10 %1 4O TCUINOD NOLLYNLLSIA NIV ' 378V

67

Control Fields

I. g Y Ll
c] e | !]
» i o SIS _ RN 2
nle = e s ci=l | § _ o ' | _ - -
S & #]_ | | 1| =18 - =
LELLLL L BE L 3
3 @ o |25 1™ | ' 5 |
s 510 450 L 5ix € |“i{2lals 5] { ! wial 1 | 1 .
N Cl = € = < o |& X 2 | Py ! Bt
Glc|z8£z 3¢ A HHHHE | || &g |
Q i1ZJ]|]escocczao0 e &l -1% I el el 1F]212 . | 0
£ |2 o |S|alciclwis]eletelesl 21313
0. = 12 2w RIOIOI0O 0'0'C B
= - O - © ol 12 |x % &
brd = > £ : > 2 ¢l
S - [o4 - “ = lat a &ials =) - - ™
o 1 Qi
S le] < << QIR eisjzlomizi= |2 =T =
< |s13383 S5 4 : = ;
s |S,88698 - Slolu fe o le o fu o STl IS D nl 1K) B o
e |&]60 8 Z o }—— —t a2 o=t ol ol ook el Lol el -
o o l““)lﬁ.pm od = | \ M r.
- = = o ©° j - < - e
Y EEE T S F Ik <121 _ 'N
2 ilSjse=sc00|z o~ S s
2 |2 i o = |«¢.)45.LAI.D.JA.U)»DL,I
- 2 -~ i1 {1 | ! |
ST PN < | | | i | i- 1
m Sl e T X aT x "- T = R BN S S B B ——ty—
<) e — H.n\HlHl.HLHlHlNlH
x S B 2) 0
ml o oizizlajeizizieleizizi=l-iz]x
. Bl s T a2 — : :
W IJLL.llunuuLll_L_unn.HW
< - - 1
- - s aX T, | o .lf..l.l.ll.L_l|..l«|_4a.|d |-.
Y . = e Sl el Sl S el ol Gl Gl bl el Gl Gl

g B s s IR P DS S S I Dy) WV (TS
Fre (Tl T oem [e Lrosfrosd s yTit0r " Hoos [h0s Tliton | _Ron i Setetafector 3 _Lh e -

e nciw o-ot b0y w_| = Bl B | 4 s “. fe gt LI R S N N A I

LR A N S L ST e Sat oy _ % LN AU IR AU U R asal_ 3 4) - -

o~~~ g | @-0r ™0\ L e S>el e te B S I L TS IR IR D D T S

0 IS Ao it ol e ST VORI RTINS DO I L N ’-l....! IR L R NUE S G DL)

IEREE) pue | v eca | %] ‘e ‘s ‘o 4 ‘o ‘s a=s? 2V @ _tw_ YV YV =
LA S SCTR VNI o 06 NG PUt N Y ST TR TRURZ IR S N S B S R e I Dt sl e

P | 2w P [wea | St O ‘o ‘e _ | .;h ’ ty .4 A= o2 vy . VY Y m

—— 2 — — P P . ——l e L - - ———n 8 i VUL Sy G P SRR SR

Joa | 2w o~y LI R IRCE TN s _ 1...wl-...|_ e | e o ¢ 1M m w1 *
teu{lw Q-4 - sy ﬁ % s L7 t i e ty e e el 1Y e w Y

= Flout T 2., ——te e e R A,

SCRTURTTT Y- Srw 2 S SO S DTS T BN g i .o EP S
Twftw -~ [Soae ..1.. L7} L] fe) Yy Lrem) e amgl_ o 1Y 1V w3
f«y.l... g el B OO B AL I SR A S manyiy. B G e SR .
SRR T e S0 RO 0 AT BRI I S L ol S S PSS SRR LRV B
2 "o | 010 MV § Y N S} Cai S ‘o3 I ‘cs a1 e | e —— bl 3 v om Y Y
[2w ilw) [y N .:..Tc..l IR ~ tos ~a) rea eets®nl v e NV VY
2w { 2wy e [S sef 8- Ss o3 1'% ¢ Ss (e eNa ami o [Y v Y Y
Cani Soun | weurnmg s | S5 | % | taleors | ess jes>si e jesxsi e weudeny w3 lhh K 4 4
ouns — el | %S nen zbhx wonm | v | E5 non aung NIV Py

steeo [N a ~ Sors

“M0Y = N31 ‘HOM = N 4O €1 10 F1 10 ' 40 % 404 TOUINOD NOLLYNLISI ATV T IIaVL

()]
o]
—t
[V}
o
feo
—
0
4
M ~
O
4 . Y - L o
< P 3 .| [$ls | 2 o
L -] - elew o -3
Q 513 L
S|z 3 |2 g1 1212 Z1a s =
s s s le 3z]
218 .28 .2~ A HEIAP 20 <
» - -~ ©f % [ginlals —
@ lo 3 s lrjT12:2, 3
S S5 S sl 22 -
Q13 WWOWNO 21z REAEEN Salal ey
S |= o |Slslceln =]ele ele CAEAE RSP P V)
2 2 |& tala ©2,0.0(0 0 ho_ﬂbfu_uuﬂlwru ~
o o i3131etaialerel 123 %X'2 815z .
v = |2 £:€13.5,312:12' 2 23/415.8,22.0
o = Ll F N L L L e D e e “
Zlel<c<x« 2 < [T, 2@l iz s.2z:ixgz .z
< M .W b= : -_-_.“ 1 uﬁ;-‘. -_- v -_r_-"n‘u . .
m : WWW - -U' lﬂb,rr.l. - FTP-F [aii¥eg Fllo..'b.m?lhro,ro W ma
[T -8 - it v 2 -
Slolssz330® 2ls S T O O A HBERE b
3(2|33283844|: |3 L 1]E
-t f z . o m it |
< < ml 0l2345~6789A000EF
- o o *
@ ke « x . " 1
S lulazxezx - T o 4 T
M s g N_L N_L“«ﬂlutmumtntutwu
- 1 v ’
o - = Tz —" te |=
R -1 I SEPRPR Il bl il bl L_t. NlLTT
» M .3 Ltluu.Nutl_l_tnua.uW M
@ SdRTZT
L L] L J VI PPR BPR 5PY By PR BPY PR £ = =lz!
s Iz |zi=|=x] ¢
- — b\ h—l ﬁ ”

.

Foans
{ T

[o,

N - i A A

Selection of the S input is made by the uW S SOURCE control
field. This uW field controls the 2-1 mux and the tristate

logic.

3.2.3.2 ALU Function Fields

The selection of an ALU arithmetic function or
logical operation is determined By the uwW ALﬁ Function
field. ’

3.2.3.3 ALU Destination Fields

Internally, the 2903's ALU output is sent to both
the register file's DATA IN input and the Q register (via the
Q shifter). The ALU's output is also available.to the Output
Bus (OBUS) via an internal tri-state buffer. The ALU Destina-
tion field can direct the ALU output to any or all of these

locations.

3.2.3.4 Bus Control Fields
<n order to hold address data stable, the OBUS is
supplizd to two address latches: The Address Latch and the
ROM Address Latch (Routing Processor Only). These latches are
enabled by the Bus Latch uyW field in co;junction with the
Phase 2 clock (see 3.2.5).
The various uW Read and Write fields control data trans-

fers between the processors and external hardware.

3.2.3.5 System Hardware Control Fields
The System Hardware Control Fields consist of vari-

ous contrcl bits used to activate system hardware operations.

68

These signals are sent directly to the hardware since they do
not gontrol.IEU‘operatiéns. However, they usually act in con-
juncgion with the processor, often helping to speed up pro-
cessor tasks. They also may direct hardware operations which
carry out independent tasks. Thus, use of these special con-

trol bits has improved system throughput.

3.2.4 The Microprogram Controi.Unit
The function of the Microprogram Control Unit is

twofold: It must control the execution of the processor's
software and it must supply the microprogram's control signals
to the IEU and the system hardware. A diagram of this unit
is given in Figure 3.26. The MCU consists of an AMD 2911
microprogram sequencer, jump control logic (implemented by a
Programmable Logic Array (PLA)) [3], a pipeline register
and the microprogram memory. A block diagram of the AMD 2911
chip is presented in Figure 3.27. This device generates the

pprogram counter value used to control the execution sequence

_of the processor's microprogram. Next address selection pro-

vides the MCU with one of the two possible next addresses.
Either the uprogram counter or the address in Jump Address
field of the uW is supplied to the address lines of the
microprogram memory. The PLA Jump Control Logic determines
this selection. Inputs to the PLA Jump Control Logic come
from various system status signals and the Next'Address Select
uW field. Figure 3.28 contains the Next Address Select field
and the Jump Adcéress field. The Jump Control Logic Function

for each class of processor is given in Figure 3.29.

69

e etk amend 0 - e " "

S ey MR T TR R T

VEADAWN oA ngh

TJumP ACDRESS

Fig. 3.26

Microprogram Control Unit,

70

\,/ J\/"

D
:UMP S.,‘.w . .
LO6IC | cn Am a?i i) 2€R0 | RESET
(PLn) :
N
€
x
T
A ADPRESS TAPUT
©
]
R .
S .
<
5 MICROPROGRAM MEMORY
S
€
L
€
; DATA OUTPUT
PIPELINE REGTISTER
W Tev SWITC 178
InvPuT CariTRoL HARL wWARE
To
reu L1wES ConTRoL
LINES

\/

T, T

o L R RS

MICROPROGRAM SEQUENCER
BLOCK DIAGRAM

..... -
E“:’:‘_ uvyY NSH 0P Sk thalg
r . 1
asgnren |
onane |
> noaTea sraca soTe
panp s i
oy Somtctvo
O AmZUt
omy Ju snatnt

ommger | 4 <
>—1q'¢..] pe s cuoce

VCROPRO etk
mattaes 1 COUNt m ALGRTES

A

—

vcarviane |

outeyt
COmTROL
& »»MM 1
ACLANR TR NS L) < Care

—4

3.27 BAm 2911 Microprogram Seguencer

71

TR — ———

M

TN TN ERTIT T g

L it ailgis st

R

Jump Address

Mnemonic | Next Address Select
Fields
Control 38-39
Bits Nl N¢ Next Address
@ g uPC + 1
& 1l unconditional
Jump
1l X Jump on IBSR-A
42-44
Nl N¢ Hext Address
@ pPC + 1
@ unconditional
Jump
[/} 1l Jump on NEW-B
=@
1 0] Jump on STATUS
-B=1
1 | Jump on IDLE-
B=1
42-44
N1 N¢ Next Address
uPC + 1
unconditional
Jump
s} 1 Jump on SER-
VICE-C=@
1 /] Junp on STATUS
-C=1
1 1 Jump on EMPTY-
C=0@.

INPUT
PROCES-
SOR

ROUTING
PROCES~
SOR

OUTPUT
PROCES~
SOR

Fig. 3.28 MCU uW Control Fields

72

40-43

Jump Address

JA3,JA2,JA1,JA¢

45-48

Jump Address

JA3.JA2.JA;JA¢

45-49

Jump Address

JA
Ja

4,JA3,JA2,JA

@

1

AT

T —— e g——

-

E! INPUTS OUTPUTS
gé IBSR-A Nl N¢ FE Cn' Sl S¢ ADDRESS SOURCE
[
P X [} @ | 1 [} @ uPC + 1
; ’ X g 1 1)] 1 1 Jump Address
-] 1 X 1 @ 1 1 Jump Address
1 1 X 1 1 @ @ WPC + 1
; Input Processor Jump Control Logic Function
4 NEW sTATUS IDLE N, Ny J FE C, S; Sy | ADDRESS SOURCE
3 -B -B -B
X X X @ @ @ 1l l @ @ uPC + 1
X X X g @ 1 1 ¢ 1 1 Jump Address
3 X X 7] 1l X 1 @ l 1 | Jump Address
1l X X @ l X 1l 1l @] uPC + 1
X @ X 1 ¢ X1 1 ¢ @ uPC + 1
X 1l X 1l @ X 1 @ 1l 1l Jump Address
X X @ 1l 1l X 1l l 7] @ uPC + 1
X X 1 1 1 X 1 @ 1 1 Jump Address

Background Processor Jump

Control Logic Function

INPUTS

SER- STATUS EMPTY N1 N¢ J FE Qn S1 S ADDRESS SOURCE
VICE- ~C -C

C

X X X g 9o @11 l ¢ ¢ uwPC + L

X X X g @ 1l 1 @ 1 1 Jump Address
@ X X @ 1 X 1 @ 1 1 Jump 2ddress
1 X X g 1 x|1 1 ¢ ¢ uFC + 1

X @ X 1 ¢ x |1 1 g @ uPC + 1

X 1l X 1) X 1l 0] 1l 1l Jump Address
X X 0] l 1l X 1 [} 1l 1 Jump Address
X X 1 1l 1 X 1 1 @ %) uiC + 1

Output Processor Jump Control Logic Function

Fig.

3

.29

Jump Control Logic Functions
73

MRt e st b el e o8 g L

The output of the AMD 2911 can be unconditionally reset
to zero. This allows the system to initialize program execu-

tion whenever required. Table 3.2 contains the uW widths for

'each class of processors. Since some bits in the yW remain a

constant logic value, they can be hardwired. This reduces

the actual Microprogram Memory (ROM) widths.

3.2.5 Processor Timing

A two-phaée clock drives the processoré. This clock
controls the timing of internal and external data transfers.
Figure 3.30 presents the waveforms and significant timing
events. Phase 1 latches the internal data of the 2903 ALU
and the 2911 microprogram seguences. Phasé 2 is required to
stabilize data in the IEU hardware that is external to the
ALU. 1In addition, this clock phase is used to latch data and
address information required for external data transfers to
I/0 ports and memory. Each clock cycle has a period of 120
nanoseconds which yields a maximum clock frequency of 8.33 mHz

(31.

3.3 The System Software .

Each class of processor executes a unique software rou-
tine. The three different routines are: The Input Service
Routine, the Routing Service Routine and the Output Service
Routine. A detailed explanation of each routine's function

is presented next.

74

o ————tiiii, - ©

L~

MictoProgram Wo rd Bit Foemu?d
(‘onfrol Fields Loput Prucoar | Rodding Qucccoe | Ofpui Thorcicar
Im-\udia%u‘ chu\ncl ﬁ'- S ¢" \S ¢%-1s
- - '0- ’},,’
Sourte (oﬂfl‘ol 16 ‘27; 16 3?’5 1 .
s -as
. A1-d5 al
Funt+;cn Conffa." a1 a5 Q .
65
- 20 a6-30
DQ%‘\;AQ*;on Con*r.;l ab 3
31- 32 31
Bue Lalch Conttol 31
a3~ 35 2a- 3%
16V Hotdaure Conital 3a- 34 Ay
36 - 4! 3¢
: 4, 35 -3V
‘D‘J S?Qm Hl-h)wo;g (bﬁ"h‘. 4a) 44 4J) 44
- 29
pext Addeecs e ket 3% g
3 465 - 4% 45
Sump ﬁr\’"\’ﬁs 4-0 - 4 .
ToTRL oW it 5 44 61t 49 6 50 ¢
::ﬂ u1'| ¢, ;\\" -_»(\T o %‘\,_ ;‘\ T
Peocessor Haedwited aW Coalre) Sine ,(,(I/l'/ ROM WIDTIH
Logic O Logic 1
Ingu“’ IEN, Cn, T3, I, I I.,) EA 33 &g
TJAy~TAy4 :
. TEN = A 2 53*5
Roui'mc) LEN, c", IS, Is I.,’ EA 4
— — e
IcHh, (A,Tg 15 Iq. I'), EA 4’1 QTS
oJtp ot TRy, Tay P

Table 3.2 Microprogram Word Bit Divisions

75

I T S P S St SPTOP

BETITRS 7 T R vy P SRR PRy

o idniatidem ks 4

et ot 4 ot e 0 R £ APy AT WA AL i T e e e

y
_ 4, {5k
0, ,
3 Y 1 2 1 I 1 i) I
s - ST T e 1o ik t
- '. _ ’ ‘ : ' - nSec

(®) current instruction is latched into pipeline
reglster, '

3 . b) Data is clocked into Q register:

(:) a) A and B latches intemnal to 2903 are open;
L . b) IBUS latch is open, ‘

€¢) READ line is low during this time in a read operation,

(:) a) A and B latches, IBUS latch are closed,
b) ALU output is stable, |
¢) VE is low if storing into register £ile.

(:) Address is latched on this edge during an

address. generation operation,

A (:) If Write microprogram word bit is high, WRITE

gfoes low during this pulse.

Fig. 3.30 Processor Clock Waveforms
(Courtesy of James Burnell)

76

T

3.3.1 The Input Service Routine
The Input Service Routine is executed by the Input
Processor. Shown in Figure 3.31 is the flowchart of this
software routine. This routine is sense-loop driven. The
Input Processor loops on a status bit which is controlled by
the Input Polling Circuit. Wwhen the poller finds a full in-

put bvffer, it updates the sense-loop status bit. Once the

~ procz:sor leaves the loop, it fetches the address of the full

input butfer. This address is supplied by the polling cir-
cuit. N=~xt, the processor clears the buffer's DAV flag and
restaxts the poller. Restarting the poller, before service
is complete allows the poller to find the next full buffer
before the prdcessor returns to the sense-loop. This scheme
reduces processor idleness due to poller scan time.

The Input Processor then fetches the address of a free
data path in the Input Switching Network. This address is
supplied by the Input Data Path Status Port.. The ELIST ig
acceséed next. Using this list, the Input Processor fetches
the address of a free shift register in the array. After ob-
taining the address stored in the location selected by the
EPTRZ index pointer, the Input Processor increments the EPTR@.
EPTRZ now points to the next empty shift register address
stored in ELIST. Using the three addresses mentioned above,
the Input Processor links the full input buffer to the empty
shift register via the free data path. Upon completion of the

link, the Input Processor initiates the packets transfer into

the array. The Input Trocessor then returns to the sense loop.

717

S

NEXT

Octermae the

. address of ¢he

) bulfee fequestiag
Service,

. l

Clesr the buller's
Secvice ‘h, and
fastart tre Qeiir,

Fina & £ree
shifd Reyister

from ELIST

Find o

Cree path.

od vp the
dala foth
L'.Ak .

|
Ih |1l0’&

the
fror.-,‘e\’.

- Q
B
@ 2,

Nexr) @, o,

" “’cx@@

Fig. 3.31 Input.Service Routine Flowchart
[]
78

s i d s e a

A listing of this routine is given in Figure 3.32. Since
the instruction set of each processor is custom tailored, no
standard compt;ter language exists to describe the packet
switch's software. 1In order to document the software, a simple

format is used to code each line of software:
<lst operand><operation><2nd operand> +'<destination>.

In the listing, instructions performing a single task are

grouped together, followed by a comment explaining their function.
Concurrent task execution is noted by ";%. 1In addition, the uP
Address Code is listed next to the instruction thch genefates
that particular control signal. This is done to help explain how
the software interfaces with the system hardware. Each line of

code listed requires 120 nanoseconds of execution tame.

3.3.2 The Routing Service Routine

Execution of the Routing Service Routine is carried
out by the Routing Processor. The flowchart of this software
routine is illustrated in Figure 3.33., This routine is sense
loop driven. The processor loops waiting for the Shift
Register Polling Circuit to indicate that a newly arrived
packet has been found in the array. When a new packet is
found, the Routing Processor leaves the loop and fetches the
packet's array address from the poller. Using this address,
the Routing Processor fetches the packet's syndrome from the
Syndrome Generator. -This gyndrome is latched into the address

input of the Syndrome Decoder Rom. Simultaneously, the shift

79

e T — _W_,r1

INPUT: If IBSR-A = @, JMP TO INSU

*Is there an input buffer
reqguesting Service?
NO: Loop @ INPUT.

Ingut Polling Port -+ Q

*YES: Input the address
of the buffer requesting
service.

[ELIST) @EPTR@ -+ Scratch l; Reset Poller

*Find a free shift regis-
ter, clear IBSR-A and
restart ~oller.

Input Data Path Status Port Address -+ Address Latch (uPl-A)
Data Path Busy Status Pert -+ Q; Update EPTRg

*Find a free dats path
and increment EVTR@.

Scratch 2+Data Path Latch A Base Address~+2ddress Latch (uP2-2)
Q -+ Data Path mux select Latch A(D)

*Link the input buffer
to the data path.

Scratch 2+4Data Path Latch B Base Address—-Address Latch (uP3-3a)
Scratch 1 + Data Path Demux select Latch B(D)

*Link the empty shift
register to the data
path.

Data Path Transmit Control Address - Address lLatch
Scratch 2 + Data Bus Decoder (Ml-A); Jump to INPUT

*Start data transfer
and return to the
sense loop.

Fig. 3.32 Input Service Routine

80

WP PR a— T
.

TOoP

whLeticed sh

Odemoe The
address of the

shift Cfeginter
fepoediea SEviCe,

Feteh and

Cotrect header,

1

Restaet 1he
Po).“{n.; C.\'f\)l't-

1

Stote coteected
‘ header n S.R,

atray,

l

D("’Gf mine *‘\Q
packet’s

desfu'naiu'oh t

1 Pig. 3.33 Packet Routing Service Routine Flowchart
81

Y
v

ot Lis ale ott
op RCOH(\;AL PACE 5 Q # gala G,
R‘u”uutz _ 'i

Place the pual
Addcesy, into the

RQQ ve s‘l‘ '“'Q
Ouvtput Queve
Lish

No

List Free
[+

== ek emny
: Packel's address ! 1
t

| the Queve ligt. ¢

- e o

Set Osw
= EmPTY,

-

Fig. 3.33 Packet Routing Service Routine Flowchart, continued

82

'
! 15 Stoced into I ?ngccrmc(l 5\3 av Omn'}:c

hatd wace,

Relesse Oulpul
Queve LisT,

TOP

Fig. 3.33 Packet Routing Service Routine Flowchart, continued

E
:

register status flag is cleared and the poller is restarted.

:The output from the Syndrome Decoder Rom is exclusive-ORed

with the packet's header. This operation yields the corrected
header, which is stored back into the shift register.

Using the corrected header, the kouting Processor deter-
mines the packet's destination. 1In order to route the packet,
the Routing Processor mﬁst place the packet's array address
into the proper Output Queue List. As stated earlier, these
lists are shared resources which have contention problems.
Thus, they are regulated by hardware locks which permit access
to only one processor at a time. Therefore, before accessing
any list, the Routing Processor must request access. In order
to minimize the time spent accessing these resources, the
shift register address data is first placed into the Output
Queue List Data Port. The Routing Processor then reguests
access to the selected queue list. If access is granted, the
data in the data port is automatically strobed into the queue
list at the location specified by the IPTR. This scheme per-
mits the Routing Processor to move on to the next task rather
than writing to the list.

Once the shift register address is placed into the proper
queue list, the Routing Processor checks the associated OSW.
If the OSW indicates that the corresponding buffer is not in
the Idle state, the Routing Processor releases the Output
Queue List. The signal generated to release the queue list
also activates the IPTR update circuitry, which automatically
increments the IPTR counter. After releasing the queue list,

the Routing Processor returns to the sense loop.

84

Should the 0OSW indicate that the output buffer is in the
Idle state, the Routing Processor updates the OSW. After this
update,.the OSW indicates that the buffer is now in the Empty
state, waiting for Output Processor service. The Routing
Processor then releases the queue list and returns to the
sense loop. _

If the selected Outpuf Queue List ;s nof available, the
Routing Processor loops request service. This loop is called
a SPIN LOCK since the processor spins on the hardware lock
while waiting for the busy resource to be freed [5]. There
exists an alternative locking scheme called the SUSPEND LOCK.
This alternative scheme requires the processor to suspend the
current task which needs the busy resource [5]. This task
is temporarily put aside as the processor moves on to a new
task. Implementation of this scheme was considered, but was
abandoned. Several reasons led to the abandonment of the

Suspend Lock:

1) The additional hardware and software required to sus-
pend and resume jobs.

2) The next task selected may also require the busy
resource.

3) The time wasted idling in the spin lock is far shorter
than the time required to suspend and resume the exe-
cution of a job.

4) The possibility that no new task existed, resulting
in wasted time as the processor suspended the only

job available.

85

e heaiiamana

Rl v, TTORTEE T— - Enctandl R— .-
. P — - T S T —————

Thus, the Spin Lock is used in both the Routing Service
Routine and the Output Service Routine. A listing of the

Routlng Service Routine is contained in Figure 3.34.

3.3.3 The Output Service Routine
The Outbut Service Routine is executed by the Output

Processor. Figure 3.35 cortains the flowchart of this rou-
tine. This routine is sense loop driven. The Output Proces-
sor remains in the loop until the Output Buffer Polling cir-
cuit locates an empty output buffer. When the poller finds
an empty buffer, it notifies the Output Processor by changing
the sense loop status bit. Once the processor leaves the
loop, it fetches the buffer's address from the poller. Using
this address, the Output Processor selects the corresponding
Output Queue List. Access to the queue list is then requested.
As in the Routing Service Routine, a spin lock is implemented
for quéue list accesses. The Output Processor must spin on
any activated queue list lock. Once access is granted, the
Output Processor checks to see i£ the selected queue list is

- empty. If the queue list is empty, the Output Processor up-
dates the buffer's OSW to indicate that the buffer is now in
the Idle state. Then the Output Processor releases the queue
list, restarts the poller and returns to the sense loop.

If the selected queue list is not empty, the Output
Processor fetches the oldest packet address in the list. The
associated OSW is changed to indicate that the output buffer
is in the Busy state. After updating the OSW, the Output

Processor releases the gueue list and restarts the poller.

86

START: If NEW-B = @, Jmp to START

*Is there a shift registerx
requesting service?
NO: Loop @ START.

SRS Polling Port -+ Scratch 1

*YES: Input the address of
the shift register.

Syndrome Generator Base Address+Scratch l+Address Latch (uPl-E
Syndrome (R) -+ Decoder ROM Address Latch; Reset Poller ‘

*Fetch header Syndrome and
send it to the Decoder ROM.
Clear NEW-B and restart the
poller.

' Decoder ROM Address -+ Address Latch (uP2-B)
[Decoder ROM]@Syndrom(R) -+ Q

*Fetch error word from ROM.

Header Base Address+Scratch l-+Address Latch (uP3-A)
ALU EXOR Q =+ Scratch 2, Header Port(R)

*Correct the header. Store it
back into the S.R. Array and
into Scratch 2.
Scratch AND Destination Mask + Q
*Determine packet destination.
Q+Output Queue List Base Address-+Address Latch (uP4-B)
*Select the gueue list and the
OSW of the destination out-
put buffer.
Scratch 1 -+ Output Queue List Data Port
*Place the packet's S.R. Array

address into Queue List Data
Port.

Fig. 3.34 Packet Routing Service Routine

87

W TRy -

LT T T R eamae

et S

REQUEST: Request access to Queue List (N)

*Request access to the Output
Queue List selected. If
access is granted, the data
in the port is automatically
written into the queue list.

If STATUS-B = 1, Jmp to REQUEST
*If access is not granted,

loop @ REQUEST. Proceed
otherwise.

If OSW(N) = NOT IDLE, Jmp to END
*Is output buffer idle?

Set OSW(N)=EMPTY; Release Output Queue List; Jmp to START
*YES: update OSW, release
gueue list and return to
the sense loop.

END: Release Output Queue List; Jmp to START

*NO: Release queue list and
return to the sense loop.

Fig. 3.34 Packet Routing Service Routine, continued

Determine the
address of the

oudput bufCer
fequesting Sawce,

—
4

Rei OQS* OUfPuf
Gueve List.

Fig. 3.35 Output Service Routine Flowchart

89

Set OSW
IOLE,

|

Release Oulput
Queve List and
Restart the lier,

90

Cet OsW
= Busy,

|

Release Oulput
Queve List and
testart the pller,

1

Find a Scee
o\a'*'a Paﬂi.

!

Se'\' v 'H\Q
data path link,

|

Teansm. "'

Packet:

Y

Update ELIST,

Fig. 3.35 Output Service Routine Flowchart, continued.

ST e T T TR T A

Next, the address of a free data path in the Output S8witching

Network is fetched from the Data Path Busy Port. The Output
Processor 1inﬁs the shift register containing the packet
awvaiting transmission to the empty output buffer via the free
data path. Once the data link is established, the Output
Processor 1nit1atés the packet transfer and increments the
ELIST index pointer EPTRl. EPTR1 now points'to an unfilled
locatiqn in ELIST. After this update, the address of the
shift register containing the packet being transmitted is
placed into ELIST at the location specified by EPTRl. The
Output Processor then returns to the sense loop,

A listing of this routine is given in Figure 3.36.

921

OUTPUT: If SERVICE-C = ¢, Jmp to OUTPUT

*Is there an output buffer
requesting service?
NO: Loop @ OUTPUT.

Output Feclling Port » Q

*YES: Input the address of the
buffer requesting service.

Q+Output Queue List Base Address-Address Latch (uPl-C)
Request Queue List (N)

*Select the buffer's output
Queue List and OSW. Then
raquest access.

If STATUS-C = 1, Jmp to REQUEST

*Was access granted?
NO: Request access again.

If EMPTY-C = ¢, Jmp to IDLE

*YES: Determine if the list
is empty. List Empty: Jump
to IDLE.

[Output Queue List(N))@OPTR(N)~+Scratch 1; Set OSV=BUSY:;
Release Output Queue List; Reset Poller

*List Not Empty: Input the
S.R.# which contains the
packet to be transmitted.
Then update the OSW, restart
the poller and release the

" queue list.

Output Data Path Status Port Address-Address Latch (uP2-C)
Data Path Busy Status Port + Scratch 2

*Find a free data path.

Scratch 2+Data Path Latch A Base Address-Address Latch (uP3-C,
Scratch 1 » Data Path MUX Select Latch A(D)

*Link the shift register to
the data path.

Fig. 3.36 Output Service Routine

92

»

— ———
—pr———T

Scratch 2+Data Path Latch B Base Address-+Address Latch (uP4-C)
Q + Data Path Demux Select Latch B(D)

*Link the output buffer to
the data path.
Data Path Transmit Control Address -+ Address Latch
S8cratch 2 + Data Bus Decoder (M1-C); Update EPTR1

*Start Packet transfer anid
increment EPTR1.

Scratch 1 + [ELIST])@EPTRl; Jmp to OUTPUT
*Place S.R.# in the Empty

S.R. List and return to the
top of the program.

Set OSW=IDLE: Release Output Queue List; Reset Pollef:
Jmp to QUTPUT

IDLE:

*U'pdate OSW, release gqueue
list, restart poller and re-

turn to the top of the pro-
gram.

FPig. 3.36 Output Service Routine, continued

93

e e e st o el

o T T TR T TR TR TR e T T TR TR T W R

4.0 THE MULTIPLE PROCESSOR DESIGN

With the three processor design complete, the next logi-
cal step in the expansion of the system is to include multiple
processors in each processor class. The major incentive be-
hind this idea is to increase the system throughput through
the use of a multiprocessor architecture. However, two major
problems must be overcome before this goal can be achieved.
The two problems are contention and throughput-limiting func-
tions. The solutions to these problems are presented as
topics in this chapter since they shape the final system
architec;ure. Also included in this chapter is the system
architecture, the processors, hardware and software required
for implementation, and the design trade-offs made. Many
hardware components used in this design are exactly the same
as those used in the three processor design and, therefore,
are not presented in much detail. This chapter begins with

an overview of the system architecture and its operation.

4.1 The System Architecture

The system architecture is shown in Figure 4.1. This new
architecture is controlled ky four classee of processors. The
new class of processors and the system recuirements that caused
the additional worklozad division are discussed in 4.4. 1In
order to examine the duties of each class of rrocessors, a
packet's transfer through the packet switch is traced.

The first function of the switch is to receive and to
store each incoming packet. When a packet arrives, it is

temporarily stored in an input buffer. Au input buffer

94

e - R S o e

S T e e = s B T R e TR TR R R T T

. o
< 4
Sod

13113

M0

AYyYY

J4IHS

Y3LSI93Y

Ty k> ¢ <
W Janad
T M_CH -c&
¥ I e —2
...%awz, saang
Gunpy ﬁi‘H
+zhﬁnu)
_ _ R 5
1
| | I3
3 4
| | mmmw
ol B N
11T Sie)
_ |
_
| _
< .
_ .Ii.HIIV Ve < %..&0
! v T
- < a] |
i Swpas ._-ch
|~ pdez!

i

containing a newly received packet requests processor service.

Qw) Dedicated hardware pollers sequentially scan their assigned

group of input buffers searching for full buffers. One group
of input buffers is assigned to one Input Processor. Upon
finding a full buffer, a polling circuit signals the Input
Processor it is serving. Immediately, this processor estab-
lishes a data link between the full buffer and the Shift
Register Array. In order to set up this link, the processor
must first find an available data path in the processor's
dedicated Input Switching Network. Next, the processor must
find an empty location in the Shift Register Array. Once the
address of an empty location is fetched from the Empty Shift
Register List (ELIST), the processor completes the data link.
The processor then initiates the packet's serial transfer into
the array. As in the previous systems, this transfer is hard-
ware monitored and terminated, allowing the processor to move
on to a new task.

The second function of the switch is to sort each packet
in the array into groups of packets that are destined for the
same group of ground stations. Each unique group of stations
is serviced by one unique Routing Processor. Shift registers
containing newly arrived packets signal for Packet Sorting
Processor service. Dedicated hardwaré pollers scan their
assigned group of shift registers for new packets. Once a
polling circuit locates a new packet, the Sorting Processor
it is serviny is notified. This processor fetches the packet's

: {f} header and corrects it. As in all previous systems, the header

96

e

is protected by the Bcnlerror-correcting code. The packet's
destination is then read from the header. Using this infor-
matiqh, the Sorting Processor sends the packet's destination
.information and array address to an input/output port asso-
ciated with the packet's destination. Each different 1/0
port belongs to one Unique Packet Routing Processor. Any
Sorting Processor may access any 1/0 port.

The Packet Routing Processors carry out the switch's
third function, which is the updating of the Output Queue
Lists with the addresses of sorted packets. Once an I/0 port
is found to contain valid packet routing data, the I/0 port
polling circuit signals the Routing Processor it serves. The
Routing Processor responds by fetching the packet's destina-
tion information. Using this information, the processcr
determines to which ground station the packet is destined.
Packets leave for a ground station via an output buffer which
porresponds to that ground station. Each output buffer is
assigned to only a single ground station. In order to route
. a packet to a particular ground étation, the Routing Processor
must assign the packet to the softwaie output queue list which
corresponds to the proper output buffer. This assignment is
made by fetching the packet's array address from the I/0 port
and.placing'it into the proper queue list. Each Routing
Processor controls a unique group of output queue lists. A
packet is considered routed once its array address is placed

into one of the N queue lists.

97

¥ ait< dadinth

R o S etk S e S b S L C AR N 5

S TR e e TR T

The fourth and final function of the switch is to trans-
mit the routed packets to their final destinations. This job
belongs to the Output Processors. When an output buffer
empties due to a completed packet transmission, the buffer
requests processor service. Dedicated hardware pollers
sequentially scan their own group of output buffers in search

of empty buffers. Whenvan empty buffer is found by a polling

. circuit, the Output Processor served by this poller is in-

formed. The processor then accesses the output queue list
belonging to the empty buffer. The address of the oldest
packet waiting for transmission to this destination is fetched
from the queue list. Next, the processor finds a free data
path in its dedicated Output Switching Network. A link is
established between the shift register containing the packet
to be transferred and the empty buffer via the free data path.
Once this link is complete, the packet transfer is initiated
by the processor. Automatic hardware controls this serial
packet transfer. As soon as an output buffer is loaded, the
packet is automatically transmitted to the ground station by
hardware external to the packet switch. While the internal
hardware transfer takes place, the Output Processor updates
ELIST by placing the packet's array address into ELIST.

If an output queue list is empty when its associated
output buffer becomes empty the Output Processor must place
the buffer in the "idle" state. An idle buffer will remain

idle until a new packet arrives for that buffer. The Rouating

Processor will assign the new'packet to the empty queue list.

98

P Py : e L Y

<
-

Next, the Routing Processor must change the buffer's status
to indicate that the buffer is empty and requires service from

the Output Processor servicing that particular buffer.

4.2 Shared Resources

In the three processor design, contention problems be-
tween the different classeé of processors aré discussed in
depth. A workable solution is found and implemented for each
shared resource. In this multiple processor design, new con-
tention problems arise. Since there can be more than one
processor in each processor class, contention may occur between
processors of the same class. The contention problems of these
resources can be solved with design changes within the sub-
system they serve. These design changes may affect the archi-
tecture of that subsystem, but they do not affect the other
packet switch functions. Thus, the resource allocation schemes
required by these shared resources are discussed in the sec-
tions which describe each subsystem of the swifch.

However, there are several resources which are shared
by two or more classes of processors. The design of these
"Multi-Access Resources" and the formation of their alloca-
tion schemes may affect the architecture of two or more packet
switch subsystems. Thus, these resoufces must be considered
before the entire architecture of the packet switch can be
designed. A review of the three processor design reveals
that there are three resources which will become Multi-Access
Resources in the multiple processor system. These resources

are:

99

Sen i TR, e— e — | —— ———— -

t
:
i
e
k

1. The Shift Register Array
2. The.Output Queué Lists
3. ELIST

Now identified, each of these resources must be investigated

and redesigned if necessary.

4.2.1 The Shift Register Array

Each Input (Output) Procésgor's switching network.
may be linked to any location in the Shift Register Array.
However, no two Input (Output) Switching Networks will ever
access the same location simultaneously. This is due to the
fact that two or more Input (Output) Procesgsors can never
fetch the same address for a purticular array location from
ELIST (an Output Queue List) simultaneously as they service
packets. As mentioned earlier, the array is capable of re-
ceiving a new packet while concurrently transmitting the older
packet from the same location. Thus, no contention problems

will arise between the Input and Output processors even if

they access the same location concurrently. However, unless

only one Sorting Processor is allowed to access a single lo-
cation at one time, contention problems will arise. These
problems can be eliminated by the assignment of groups of
locations to one Sorting Processor. Since packets may be
stored in the array with an uneven distribution, the locations
assigned to each Sorting Processor should be interleaved.

This ensures against the Sorting Processors being forced to

carry unproportional workloads due to uneven packet storage.

100

i o o

4.2.2 The Output Queue Lists

In the three processor design, the Output Queue
Lisgts ar? not completely free from contention problems. They
are shared between the Routing Processor and the Output Pro-
cessor. In the multiple processor system, the lists are needed
by the multiple processors in both the Routing and the Output
classes of processors. This requirement addé new contention
problems for these already contention-plagued resources. In
order to keep the amount of processor contention from increas-
ing, a restriction regarding processor access to these lists
must be made. Only one Routing Processor and only one Output
Processor will be allowed to share a list. This requirement
changes the workload of the Routing Processor used in the
multiple processor packet switch.

In the three processor design, the Routing Processor
services the entire Shift Rigester Array and all of the N
output queue lists. A packet in any Shift Register Array
location can requir~ routing to any output buffer. A packet
is considered routed only after its array address is placed
into the proper queue list.

As described earlier, the Shift Register Array is now
divided into groups of locations, each of which is serviced
by a unique processor. This architecgure, using the previous
Routing Processor structure, would require that all the
Routing Processors be allowed to access any of the N queue
lists. Since this requirement is in conflict with the pre-
vious design decision that limited one Routing Processor to

a list, a new architecture is needed.

101

SoahEsEe <B Haiti A

The new architecture will force a division of the Routing
Processor's workload. This workload division requires the

implementation of a new class of processors which is needed

"to carry out some of the tasks formally assigned to the Routing

Processor. The new class of processor is the Sorting Pro-
cessor. Each Sorting Processor is assigned to a group of
shift register array locations. They are allowed to send
routing data to any Routing Processor. Each Routing Processor
is assigned to a unique group of Output Queue Lists. These
two classes of processors are linked by a contention-free
hardware interface. Details concerning the actual implementa-
tion of this interface and the new processors are presented

in section 4.4.

4.2.3 ELIST
The Empty Shift Register List (ELIST) is accessed
by eveiy Input Processor and every Output Processor as well.
The previous ELIST structure cannot handle this requirement.

Since only one Input Processor and only one Output Processor

" can access ELIST without interference, a new ELIST allocation

scheme is needed to provide the multiple processors with
contention-free access. V

The first scheme considered is the division of ELIST
into smaller lists. Each list would then be assigned to one
Input Processor and to one Output Processor. However, in
order for this scheme to work properly, the workload must be

distributed evenly among the Input Processors and also among

102

T T T —— T T —— -

the Output Processors. An example of how an uneven packet
distribution can cause this scheme to fail is easily illus-
trated.

Assume each user is transmitting packets at his maximum
allowable rate. Assume even further éhat most of the packets
sent are destined to on;y one or two users that are serviced

by the same Output Processor. After a short time, all but

" one of the input Processors will have depleted their supply

of array addresses. Only the Input Processor that shares the
same ELIST with the busy Output Processor will continue to -
receive new array addresses. This case illustrates the need
to supply ELIST data to each Input Processor through the use
of a data distribution scheme. 1In addition, this case
example clearly demonstrates that ELIST must remain as a
single resource that is shared through the use of an alloca-
tion scheme. The idea of an ELIST data distribution system
is the foundation on which two ELIST implementations are
based. One design is based around an Elist Support Processor
while the other design uses only automatic hardware. These

two designs are discussed in detail below.

4.2.3.1 Processor-Controlled FLIST

Since there are no constraints regulating the use of

support processors, the use of a processor to coordinate the
operation of the ELIST data distribution system is a logical

choice. The processor controlled ELIST system architecture

is presented in Figure 4.2,

103

2103093 TYDIV LSITI Po1[OIIUCD-I0SS220xy Z°¥ "BTJ

|
I ,,.
_v

| olg— — =~ I o4
. n 10403 S\/\m . 2SIV youza vy
-
o034 ds112 JdsI13 - ! _.:%w..r
: indano -
: woysd |
W)
M ! 2 8,
M o & |
§7
w I 58
i
| > =&
o~ :
¥oss3204d | | 54
PR O % <
o ~ l—'xommaw \“ m 1
& #
p . ny
| vl 15173 v |
_ : iy | !
. TOOYI
T, | NI o | e
yosmoyy | P sapisant] | st
a0 . | vy PVY | 10030t
“ Lo © |eNTHod—— - by
woyd M| [—e vIitod . |U T S
: 1n4NT 43173
L. 15113

e e bl dh Sl o Uik ol

R b ateaine o JiinC L e e A S

The operation of this ELIST data distribution system is

straightforward. Each butput Processor sends its ELIST data
to a.dedicated I/0 port. These ports support the common
DAV/ﬁAC handshaking protocol. A dedicated poller scans these
ports in search of a full port. When the poller finds a full
port (identified as full by its activated DAV flag), it signals
the Elist Support Processor. The support processor then
fetches the data anq sets the DAC figg. The Elist Support
Processor then checks to see if any Input Processor-linked
I/0 port requires data. Each of these I/0 ports is assigned
to one Input Processor. Again, the DAV/DAC flag handshaking
is used and a dedicated hardware poller is also used to scan
these ports. If the poller had located an empty »ort (sig-
nalled by an activated DAC flag), the Elist Support Processor
sends the ELIST data directly to the empty port. If no I/0
port is empty, the data is stored into the ELIST RAM. If an
Input Processor's I/0 port empties before the Elist Support

Processor has received data from an Output Processcr, the

support fetc' es the data from the RAM and then sends it to

the empty port.

Since this ELIST data distribution system is controlled
by a prncessor, it can serve the Input Processors and the
Output. Processors only as fast as the Elist Support Processor
executes its task. The Elist Support Processor can support
any packet switch throughput up to 3 Mega-packets per second
(see Appendix). This ELIST structure is a throughput-limiting

function. Therefore, 'adding additional processors to the

1c<

Dl ok . M A A

other four classes will never increase the system throughput
beyond the upper boun§ of 3 Mega-packets per second. Thus,
tn .8 system is replaced by a hardware-controlled data distri-
bution system, which is the next topic of discussion.
Although the processor-controlled system is not used in
this particular architecture, the processor architecture, the

interface hardware and the software required for implementa-~

. tion are located in the Appendix. This material is presented

because the processor-controlled ELIST schewr~ is less complex
than the hardware-controlled ELIST and it can offer the user
some degree of flex/bility in that the processor software can
be custom tailored. Thus, the processor-based ELIST is the
recommended implementation for packet switches operating below

3 Mena-packete per second.

4.2.3.2 Haidware-Controlled ELIST

Since hardware is relatively faster than software,
a completely hardware-controlled ELIST will éerve the packet
switch at the fastest rate possible. This design removes the
previous throughput limitations encountered in the ELIST
Support processor-bascd design.

¥LIST interfaccs to the Input Processors and the Output

¥rocessors throvql: input/output ports. A dedicated port is
ass :;nud tu each processor accessing the list. 1In order to
explain how the system services the two classes of processors
(Input and Output), the operation of the data storage func-
tion is described first.

106

— -

Pigure 4.3 contains the ELIST Data Input Port architec-
ture. When an Output Processor has a new array address for
BLIST, it cheéka the port's Data Accepted (DAC) flag. 1I1f the
previous data was fetched by the ELIST hardware, this flag
is set. A set DAC flag allows the Output Processor to load
its port with the.new data. Once the data 19 loaded into the
port, the processor sets the Data Available (DAV) £lag., If
the Dhc flag is not set, the Output Proéessor must wait until
this flag gets set.

The ELIST storage hardware is controlled by a polling
circuit which is driven by a counter. All the ;LIST Data
Input Pcft DAV flags are sent to the ELIST DAV MUX. The Out-
put of this MUX generates the FULL PORT signal which reflects
the status of the DAV flag selected. Selection of the DAV
flags is controlled by the value of the counter. The value
of this counter is also supplied to the ELIST Input Enable
Demux. The activated Demux output anables the handshaking
logic and the tri-stated port output of the addressed I/0
port.

If the addressed 1/0 port's DAV flag is set, the FULL
PORT signal becomes activated. This activated signal sets
the STORE DATA F.irx~-Flop. Once set, this flip-flop halts the
poller'’s counter. Simultaneously, thé flip-flop activates
the one-shot that generates the active-low WRITE signal.
While the WRITE signal is activated, the two-port ELIST RAM
is ensbled in the write mode. The data from the enabled I/0

port is then strobed'into the RAM.

107

3204 Indur e3eq ISITI £'p -BTJ

N4 Wy WYy
Ln1rd wiyy _.,“.2_ vivo
= 1 153713
W ~90 V__‘.,,.S $A9 wibQ Lraex 13313 > L0 or
an
1 —
ﬂ Ilm n 3nws
Yy O
AYQ=D -l a]._)
294q t———] " Xr 2
e/ JTE) P u— av>
_ ! +
g ;] | t 1S3
| 11 _
o~ o .ﬁ ﬂ I35
— ¥ INvNa >
_ o Mo
_ . Vauwne)
' T o 9o300Y) | '] : — n avg
M 108100 ~ova |1yey | avs o vy @ ’ 0 S1vin
S | :
”, . g2 L | xnu
s & ur
N 'YL TN S4Ivn
| va 1304 M0y e
T E] e04S
¥ Avg

T P T P

gsAI3)3y Y1JQ

P

108

" The ELIST RAM Structure is shown in Pigure 4.4. The

ELIST Data Structure is presented in Figure i.5. In this
data structure, both‘the read and write operations are per-
formed before the index pointers are updated. Both pointers
are updated by being incremented. Once the bottom of the
list is encountered, they roll over and return to the top of
the list. '

Once the writg operation is complete, the low-active
WRITE signal goes high. The leading edgg of this low~-to-high
transition fires the one shot which activates the DATA ‘
RECEIVED signal. This activated signal clears the DAV flag
and sets the DAC flag belonging to the enabled I/0 port. The
clearing of tﬁe DAV flag clears the STORE DATA flip-flop. The
reset flip-flop activates the UPDATE@ signal which increments
the counter which serves as the write index pointer (EPTR{®).

In addition, the reset flip-flop enables the poller to re-
start. Figure 4.6 contains the timing diagram and the signifi-
cant events for this entire operation.

The second function of the ELIST data distribution system
is to supply each Input Processor with the address data stored
in the ELIS" when required. Figure 4.7 contains the ELIST Data
Output Port system which carries out this task. The primary
function of this system is to keep each ELIST Data Cutput Port
filled with valid data. If the ports are kept full, no Input
Processor will be forced to wait for data.

As with the ELIST Data Input Ports, each Data Output Port
is assigned to one processor. Each'port has its own hand-

shaking f£lags. When an Input Processor needs data from the

109

B P P S O WP T ey T A o proo—.

ow.ﬂh

aan3onx3s Wvd ISITE LA

s(g
wivq 164000
181173 94
4n0 WiYd
e v mwmwag L Wl 21903N
. o |
ﬂw._.tﬁ.zllll' VO ——— 353% Soaue WY ¥31M00) S
i
it wyy 1sIN3
| ‘anNo
N
e
LR NI VIYQ
[ANE]
m wyLygQ 14T
Mun 45172 woyd
o) g
M &
o
O
mmm A
cd
N
o _J o o

EPIRL — i 4 S.R. # 1 €————— CEPTR &

‘S.R. * A&
3 s.R. # 3

L

Y S.R.*N

X XX g———FEPTR B
X X X
X X X
S.R. *
s.R #*

EPTR L —

U EN) FVR FEY FEN

o]

Fig. 4.5 ELIST Data Structure

111

wexberq Butwyl Saempaey 3xod Indul LSITA 9°p *HTJ

Swil

Tt ¢ 240dN
payenpY ays Lo po|rewadIv} @
St Jopied et swvy L @ .

<doj3-dny vero 0Ly’ gt WP
SyL P> W \ovhs Ave 241 ®

dogy-diy Coryoqspwony popads e
of 24rd v sany Jous Ve ™My @

‘paethisy

S ._.on IO GITIIY WYd ML Q\b @
‘pajomiprap Sy \ovbis StIum ayi

Pvo poiops wisq Sey vprp ML ®
. ‘wyy

vop a1k Sunaevd jeulis aiyum v-9 v-1

344 593032926 gous 2vo e ®

jovs wo My sany |ovbig
Y99T3L YL "|°vSiS UI9IWL
2 safeang oy dopy-diy s WL @

cday-d1y dava

1S dvp S4IS (PvEIS LYoy 104

Peepe 24L jgped v Ga purey
‘ viag Sey +uo¢ +>s¢.. TR @

i L s i A «4 s ceoRedan oAaL L aande | P ey Sy

¢ 3Lvadn

a0I 333y
Vivyg

31LIYM

YI2991Yy]1 -

NEXN

Jyoyg
RRIAE!

0715
Y3100

112

T p—_——

o

3104 andano ejeq LSITI Ly "b1d

wyy)
d3173 woy

. , \/

M T 3Lyagn —-— AVA YW ¢ !

o IPIv AYQ __ Hvkwvlv
|

AN O 3 VeliNoyd
1s373| LMNT oL

LIS
Yiva | 15373

—| - e o L1

s | _I_ ||

e
_ O Spa— ~yg-vY
) P-) _
xowreq | : _ ¥-avq
s — — N o1
= QYo av _ I
L-MH'—W — < ~ N
12215 ._.j.\ FY p _
T | 3
|
|||Iv Te “
gme M.mww T yorsaony M
(o) dllOA 42215 |- 1SIN3 trevt oL m
- FE.3) — _ e L) .
xnw _ ,
d S — o v
¥3951¥1 iwog Algwa| WA | | e sle— 40- 4
s1v3) | L yenc |

‘
)

ELIST, it checks the 1/0 port's DAV flag. 1If this flag is

set, valid data is held in the port and the Input Processor
fetches this data immediately. If the DAV flag is not set,
the processor must wait for service.

Once data is fetched from an I/0 port, the Input Pro-
cessor accessing this port sets the DAC flag. Every I/0
port's DAC flag is sent to the ELIST DAC Mux: The output
of this MUX generates the EMPTY PORT siénal. Selection of
the DAé flag is controlled by the counter which drives the

mux. The value of this counter is also sent to the LOAD
Demux and to the DATA SENT DEMUX. The activated Demux out-
puts enable the handshaking logic and the data ioading cir-
cuitry of the addressed I/0 port.

If the selected I/0 port's DAC flag is set*, the EMPTY
PORT sicnal is activated. This signal then sets the SEND DATA
flip-flop. Once set, this flip-flop halts the poller and
activates the one-shot that produces the active-low LOAD sig-
nal. While the LOAD signal is active, the data on the ELIST
Output Data Bus is strobed into the enabled I/0 port. The
data on the ELIST Output Data Bus is supplied from the RAM
location selected by the read index pointer.

Once the data transfer has been finished, the active-low
LOAD signal goes high. The leading edge of this low-to-high
transition activates the one shot that generates the DATA SENT
signal. The DATA SENT signal then clears the enabled port's
DAC flag and sets its DAV flag. The reset DAC flag clears

the SEND DATA flip-fiop, enabling the poller to restart its

114

ML AR D A S s

ST TSR

s e

o e e T

A S AN

scanning. Simultaneously, the DATA SENT signal goes low
reau}ting in the updating of the read index pointer. This
update increments the hardware counter which serves as the
read index counter. A timing diagram of the complete ELIST
output function, along with the significant timing events,
is presented in Figure 4.8.

4.3 The Input System

The Input System consists of the Input Buffers, the
Input Processors, the Input Switching Networks and the Input
Polling Circuits. This sytem interfaces to the Shift Register
Array and the ELIST Data Distribution System. The architec-
tural organization of this system is presented below.

However, before the architecture can be designed and
explained, the contention problem related to the Input
Switching Network must be solved. As in the previous designs,
the Input Switching Network provides programmable data paths

from the input buffers to the Shift Register Array. 1In order

~ to provide the address of an available data path in the net-

work, the status of each path is monitored by the hardware in
the Data Path Busy Port. This port is accessed by the Input
Processor.

. If a single Input Switching Network is used in the
multiple processor system, access to the status port must be
granted to only one Input Processor at a time. Since several
Input Processors will require access to this resource, 2

resource allocation scheduling scheme is needed. This scheme

115

T, w————— o — e _

weibeta BUTWTL axempiey 3304 Indino ISIIA 8° *brg

PR s aard g @y

PopPdn 51 spv0d
VP wy 1t WL (9)

“Cu3 AvQ

Y % S Cppempv
St ™S 1ves Wi 24t (§)

PAPR S |wers

Qi.xh.tsuug.éj
rood wag ey opp . Q)

104 papaps

g Sunoeva |ty guoy
g Sa210v26 foys w0 oy ®

. s

wo Gyoy 2y suYy jovbis

sy o jovSes WassTy) M
Dpupe dy-dyy 4 s @

‘15 St Jopy

=d43 Vivo owol % pvo

SHOY saiied oy *nyqy

s Lq PYrey vasg ey
$29d gadpoo. Gyduwn wy @

WId

e

T 21040

lozs

viva

ayo

V-9

YISOIyL

~

@

12353y

S 20D
WIIUNOOD)

116

T TR T A

will require new hardware and additional software. The addi-
tional software will reduce the throughput of the Input Pro-
cessors. Throughput may be reduced even further if the Input
Processors are forced to wait for the resource whenever it is
busy. This contention problem needed to be solved. The solu-
tion implemented in this design eliminates contention com-
pletely by allocating a dedicated Input Switching Network to

each input processor.

4.3.1 Architectural Workload Division
In the three processor design, the workload is

divided into three relatively independent tasks. This scheme
works quite well, in that each processor cén carry out its
assigned task without interference from the other processors.
However, in the multiple processor design, the workload of
the packet switch must be sub-divided within the three func-
tions. Processors in the same class must share the workload
within the function assigned to that processor class. There-

fore, if the proper architecture is not implemented, a pro-

' cessor may be faced with interference from the other processors

in its own class. .

The processors controlling the Input System can be
organized using one¢ of two techniques: Master/Slave Scheduling
or Separate Systems [5]. The Master/Slave Scheduling scheme
is organized such that one processor maintains the status of
all the "Slave Processors" and the uncompleted tasks. This
"Master Processor" schedules the work for each of the Slave

Processors.

117

ST T R X K

The Separate Systems scheme is organized such that each

processor carries out its assigned tasks in parallel with the
other processors. The assignment of tasks for each processor
is fixed by the system architecture. There is no dynamic

allocation of processors to tasks, as in the Master/Slave

Scheduling System. In addition, each processor is assigned
dedicated memory and de&icated I/0 devices.

These two schemes are the foundation on which two archi-
tectures for the input system are based. Each of the two
architectures are presented below. Also included are the
design considerations which led to the selection of the

Separate System scheme.

4.3.1.1 Master/slave Scheduling

One possible irhplementation of the Input System
using the MAster/Slave Scheduling scheme is presented in
Figure 4.9. This figure contaihs a block diagram of the
Input‘System Architecture A.

Input System Architecture A uses a hardware poller to
locate full input buffers. Once the poller finds a full buf-
fer, which is indicated via an Input Status Word (ISW), it
stops and signals the Job Schaduling Processor (Master Pro-
cessor). The Job Scheduling Processor inputs the address of
the full buffer from the poller. The Job Scheduling Processor
then updates the ISW to indicate "partial service" and re-
starts the poller. Next, the Job Scheduling Processor fetches

", the address generated by the priority encoder. This encoder

118

V. 2I03093TyoaV wa3sis andur 6°¢ "BTJ

P
M - 3"
|
1 [9%033 HU
} [Aronyg
374 3/4
f !
-5 S
o \/
I & 12 2
,aowuvuo« dl - YOSINOYY
SNYIS

SNYIS

WossN oY

YaLs YW

K>

ES (13 1°) &

HSMINCY
933309

indnNT
.

0= Fy

<¥32409
104N

119

g W S T REEREEEE T W TN

is driven by the Busy flip-flops that indicate the current
i ;{»f status of each Slave Précessor. The encoder supplies the
! addr;ss of the free Slave Processor which has the highest
assigned priority. Using this address, the Job Scheduling

Processor assigns the task of servicing the full buffer to

the free Slave Processor. This Slave Processor sets its Busy
? £2ip-flop and begins the task of inputting the packet to the
Shift Register Array.

The main advantage of this scheme is that the workload
is shared by all the available Slave Processors, regardless
of the distribution of the incoming packets. Since the Slave
Processors are assigned to tasks (incoming. packets) and not
to the input buffers, all the processors will be utilized
even if only one or two channels are heavily loadec. An addi-
tional advantage of this system is that under lightly loaded
* conditions, the low priority Slave Processors will be free.

These low priority processors could be programmed to execute
background functions. Service for the input buffers could
_then be interrupt driven.

There exist two disadvantages in Architecture A. The
first disadvantage is a reliability problem. If the Job
Scheduling Processor fails, the entire packet switch becomes
inoperative. One possible solution to this problem is the

i implementation of additional Job Scheduling Processors that
are assigned their own dedicated Slave Processors. Another
possible solution is to have a Slave Processor replace the

Job Scheduling Processor in the event of a failure. Both of

120

- TemTRETETERETTE o o

these schemes will add complexity to the hardware and/or
software.

The second disadvantage is the amount of hardware re-
gquired to allow any Slave Processor to serve any input buffer.
This architecture could require thousands of control lines
for just one control signal. An example of this problem is

given below for a typical system:

N = 100 Users (100 input buffers required)
¢ of Slave Processors = 4 processors
of Input Switch.iag Network Data Paths

=)10 paths/processor

of DATA IN lines = 1 line/user/data path
(100 users) - (4 processors)- (10 paths/processor)-1 line/user/

data path = 4000 DATA IN lines.

As a result of this finding, a new multiprocessor archi-

tecture for the Input System is proposed. The new architecture

_ is discussed below.

4.3.1.2 Separate Systems

The Input System Architecture is presented in
Figure 4.10. Each Input Processor controls a complete input
system. Each of these systems operate independently of one
another. The size of these systems is determined by the rum-
ber of input buffers assigned to each system. Once a group
of buffers are assigne to an Input Processor, they remain

fixed to that processor. Therefore, in this scheme,

121

|
_ 21n3023TY2IY weisks Indur OT° ¥ *b1d
|

15113 woyd > > L —
.m 130391D
| La ¥24209
1adNT T B
m. . IV E N Y,
M | q SY3J30Y
| S , LOgNT
1N T
: Avssty 2345r57 . A
; HTHS 3N oL _ |
4 1
|
|
W wodi
w 451 w T " —
| < A30WLD
¥95S30YJ O SNINY O ;
Ta AOJNT ¥32409 Wa™ e
A L04NI <¥232309
Styorms 3t A1 Vﬁ
OdiN
LONT 21T F d I
. lagox
1 AvVIsY STy A
w s 24U ©L

tasks are assigned to processors, while the reverse is never

,1k*) true.
In'order to compare the hardware complexity of this
scheme to the complexity of the Master/Slave Scheduling scheme,

the previous example using the DATA IN lines will bé continued:

N = 100 users (100 input buffers required)
of Input Processors = 4 processors ‘
of Input Switching Network Data Paths

= 10 paths/processor

of DATA IN lines = 1 line/l user/l data path

(25 users/separate system/processor) - (4 separate systems) - (10

data paths/processor) - (1 DATA IN line/l user/l data path) =

1000 DATA IN lines

s The Master/Slave Scheduling scheme required 4000 DATA IN
lines. Since the DATA IN line is only one of two Input
Switching Network signals that requires 1 line per 1 user per
1 data path, the Separate Systems scheme is clearly less com-
plex.

The one major drawback with this architecture is that
idle or lightly loaded processors cannot be assigned to
heavily loaded channels if those chanﬁels are under the con-

‘ trol of another processor. Thus, some Input Processors may
% become heavily loaded while the other Input Processors remain

idle or under-utilized. However, this architecture is con-

E 15 k sidered to be the best compromise since it is not as complex

123

as Architecture A. The;efore, this is the architecture that
is chosen for the actual implementation.

Since this architecture merely divides the workload by

'means of buffer assignments, no major hardware changes are

required. The Input Buffers, the Input Switching Networks
and the polling circuits are identical to those used in the
three processor design. Therefore, these system components
are not presented in this chapter (See 3.1 for a .review of

these components).

4.3.2 The Input Processors

The Instruction Execution Units and the Microprogram
Control Units for the'Input Processors are-the same as those
used in the Three Processor Designs (see section 3.2 for a
review). However, since ELIST has been redesigned to meet new
requirements, the Input Processors' Micrdprogram word is dif-
ferent. Figure 4.11 contains the IEU Control Fields in the
microprogram word. Figure 4.12 contains the MCU Control

Fields and the Jump Control logic function for the Input

Processor. Again, their functions are similar to those in

the three processor design as discussed in 3.2.4.

4.3.3 The Input Software Routine
The Input Service Routine is sense loop driven. The
Input Processor remains in the loop until the Input Polling
Circuit locates a full input buffer. Once a full buffer is
found, the processor leaves the loop and fetches the address

of the buffer from the poller. Next, the Input Processor

124

SpTaTd T0I3U0) wexboxdoaoTW NII Iossaocoag ndur - [T°p *bTd

| g v &
“ 10 k) 08T s [T (T T P
VS
| oy spax| T XTI T ..ap\o.
" Q
W m 9% sn3T | @ IS|[T| T L
". . py e My | BT IONT Oﬁ.
|
_ v
_ durr ssiyoay| T e Huwws| T .mUma M T|x|2 .,w
#3247 509 [3TY 3n0os 9 [sKY S Y ["x|20)tz|iv3
. 3ynos NIY
SLI§ I0YLNOD
” s e 91 ‘%0 ‘b1 . 0
| sw-y |-y sm| 59| %30| 37w T oo frrooobr|swl T 27T eg — . *q o
ST DINVoOwmSINW
2y 9 | 13s3y| sowe| s90wms| wwwa| HILOVOTNILSAY (3 VO LDV %,gwu.omv quom Y940
LLST3 | Wouag | s+3um|wiomag|ndenol SN N7 A3¥YD 1
o4 v |4 Ny 8 [ovms 70 SLYIIIWWT
| S SE & tE eg IS og-%¢ se e - te g 41-9/ Si-9

NEXT ADDRess SELECT | TUMP ADDRESS

39-38

39-4Q

NEXT ADPRESS

JumpP ADPRESS

Na
@
@
1

i

e B QF

MPC+ A

UNCONDITIONAL Fump

TJumP o IBSR-A = @

JumpP oN DAV-A= &

Tﬁg) TA:_) rﬁi)?ﬂpf

ELIST

I8sR-A pavy My

X X &

X X &
. 5 x 1
1 x 1

X ¢ 1

x 1 1

Ng FE Cn S Sy ADDRE‘SS SOURCE
gl1 4 & # MPC+ 4
i 1 QS 1 1 Tump Addtess
¢ 1 g 1 1 Jump _ Address
114 4 ¢ & MmPc + 4
1 1.8 1 1 Tuep Address
111 14 @ & s+ 4

m“m.m—::;_:—:r—« e

Fig. 4.12

Input Processor MCU Control Fields
and Jump Control Logic Function

126

fetches the address of a free data path in its dedicated Input
Switghing Network. Simultaneously, the processor clears the
buffer's service request flag and restarts the poller. The
‘Input Processor then checks the DAV flag at its ELIST Data
Port. If this flag is not set, the processor loops until the
flag becomes set. When the flag is set, the Input Processor
fetches the address of an empty shift register from the port
and sets the DAC flag. |

Using these three addresses, the Input Processor links
the full input buffer to the empty shift register via the
free data path. Once this link is established, the processor
initiates the data transfer and returns to. the loop. A flow
chart of this software routine is presented in Figure 4.13.

A listing of this program is given in Figure 4.14.

4.4 The Routing System
The Routing System consists of the Shift Register Array,
the Sorting Processors, the Shift Register Array polling cir-
. cuit, the Pouting Processors, and the Packet Routing Data I/0
ports. The Routing System interfacés to the Input System,
the Output Queues Lists and the Output System. The archi-

tectural organization of this system is presented below.

4.4.1 Architectural Workload Division
As discussed in section 4.2, the Routing function
as defined in the three processor architecture can no longer

meet the requirements of the multiple processor design. The

127

ST ——

R A Rl L 2oaal Lo JEERHAS R S

:
,
5’
]

DAt Sk i et Ak MR G A At skt EE
%) . 4

e T e

Fig. 4.13

od'ecm'mg the
addcess of dhe
buffer Cequerting

Service, |

L .

Clear the buffer’s
Secvice clcs and
restoct Hhe pollee,

'

Find a {ree
_o\afq Pauth.

ELYIST dala
avalable

Find a feee

shift Register
Ceom ELIST dota
Poct ard et DAC

&

Input Service Routine Flowchart
128

it e el

et i i

ol

Set vp the
data poth
Li(sk .

Intiate
the
+ (‘ms{? ¢ s

Fig. 4.13 Input Service Routine Flowchart, continued.

129

e s

T P o e

Input: If IBSR-A=f, JMP to INPUT
' *Is there an input buffer
requesting service?
NO: Loop € INPUT.
Input Polling Port =» Q

*YES: Input the buffer's
address.

-Input Data Path Status Port Address-Address Latch (upl-3);
Reset Poller Data Path Busy Status Port-Scratch 1

‘*Find a Free data path,
clear IBSR-A and restart
the polle:.

ELIST Data Port Address-Address Latch (pp2-3)
. WAIT: If ELIST DAV = @, JMP to WAIT
ELIST Data Port-Scratch 2; Sent a DAC

*When the data becomes
available, input the shift
register number from the
ELIST port.

Scratch l+Data Path Latch A Base Address-+Address Latch (uP3-2)
Q -+ Data Path MUX select Latch A(D)

*1,ink the buffer to the
data path.

Scratch l+Data Path Latch B Base 2ddress-RAddress Latch (uP4-A)
Scratch 2 -+ Data Path DeMUX select Latch B(D)

*Link to empty shift
register to the data path.

Data Transmit Control Address-Address Latch
Scratch l-+Data Bus Decoder (M1l-A); JMP to INPUT

*Start data transfer and
return to sense loop.

Figure 4.14 1Input Service Routine

130

principle requirement is that each Output Queue List be
accessed by only one Routing Processor. This constraint is
satisfied by dividing the Routing function into two smaller
tasks. Each task, the sorting of packets and the routing of
packets, is assigned to one class of processors. The Packet
Sorting Processor is assigned the task of sorting each packet
in the array. The sorting function requires that a packet's
destination and its location in the array be sent to the
proper Packet Routing Processor. The Packet Routing Processor
then ﬁses this information to route the packet by placing the
packet's array address into the proper output queue list.
The system architecture for a single Packet Sorting Processor
is presented in Figure 4.15. Figure 4.16 illustrates the
system architecture for a single Routing Processor.
Implementation of this scheme does not require the re-
design of the chift Register Array, the Shift Register Array
Polling Polling Circuit, or the Output Queue Lists. There-
fore, these components are not discussed in this chapter (see
section 3.1 for a review of this hardware). However, the
processors and their software routines are different from
those in the previous design. In addition, the new component,
the Packet Routing Data Port, is implemented in this archi-
tecture. Therefore, these topics are discussed. The Packet

Routing Data Ports are presented below as the first topic.

4.4.2 Packet Routing Data Ports

The Packet Routing Data Ports provide the necessary

interface between the Packet Sorting Processor and the Packet

Routing Processor. Each Packet Routing Processor is assigned

131

e e e N R WNR———— N I 0 G o aaemeem o

-

108830014 burjaos 3ayoeq a1butrs e 103 3IN3d33TYDaY WwoIsks Gr°p *b13

Yu
1¥909

N
SuzLO0Y

L3%v4

&

S#

1903

i -
m HVIINOY

FERYY

T
Loy

<] v2ve <]

“SWTINney

Ly

9
-~
h }
S

2 i
s

YOS NOY
MINOS _LIMDYY

/\

S g
LI Hv HJJO&

YIIIFY LITHS

132

\/

AV
3HL NI SVOTI L O0T

Y3LSIV3Y LA4TIHS

40 M>019 VY

{

o

e et ettt et e s oo

B] T P T S T I TP

X0883001d BUTINOY 3I3Yded STBUTS ' 103 2IN3IDSITYDIY wWR3ISLS 9T° ¥ g &

nSO

s
4317 -
330 <

dndin0

T, . ' @tm d4
19¢4

el g Y035370Y4 <_
UARIE

11
A HVLLNGY LINOYJ 94T LOON
. T S 13304

e

Y

133

S e i 1

I A . o

TR T e

i i it e e

,A<—-rw‘—-.—-,—-q,»—-uv.

its own Packet Routing Data Port. Any Packet Sorting Pro-
cessor can send data to any Packet Routing Data Port. Asso-

ciated with every Packet Routing Data Port is a dedicated RAM

which is external to the Routing Processor it serves. The

function of these ports is to accept the routing information
from the Packet Sorting Processors, to store the routing infor-
mation in the external RAM and to provide this data to the
Packet Routing Processor when needéd,

There exists an alternative to using the external RAM
for storage, but it is considered too costly to implement.
The alternate scheme requires that whenever a Sorting Processor
places data into a Routing Processor's data port, the Routing
Processor is to be notified by an interrupt. This interrupt
signal is activated by the Sorting Processor. The Routing
Processor responds to the interrupt by suspending the Packet
Routing Routine in order to fetch the data from the full port.
Once fetched, this data is stored in an internal software gueue.
This scheme is considered too costly because:

1) Additional processor hardware will be required to

handle the interrupts. |
2) The additional required coftware overhead will
increase execution times and reduce throughput.

These are the reasons the hardware stack scheme is implemented.

The operation of a Packet Routing Data Port can be best
explained by tracing the procedure that a Packet Sorting Pro-
cessor follows to send data to a port. Once a Packet Sorting

Processor determines which port is to receive the data, it

134

checks the associated DAC flag. If this flag is not set, the
processor waits for it ﬁo be set. When the flag is set, the
Packet Sorting Processor serds the packet's destination infor-
mation to the Packet Destination Data Latch. Next, the
Packet Sorting Processor sends the packet's shift register
array address to the Packet Array Address Data Latch. Once
both latches are loaded, the Packet Sorting Processor sets
the DAV flag which automatically clears the DAC flag. A
single Packet Routing Data Port is illustrated in Figure 4.17.
Every DAV flag is scanned by a hardware polling circuit.
This polling circuit is presented in Figure 4.18. When an
activated DAV flag is found by the poller, the STORE DATA
flip-flop is set. The set flip-flop halts the poller and
activates the one~shot that generates the low-active WRITE
signal. The outputs of the two data latches associated with
active DAV flags are enabled. The enabled output of the
Packet Destination Data latch is sent to the Packet Destina-
tion Data RAM and the output of the Packet Array Address Data
~ Latch is sent to the Packet Array Address Data RAM. Both of
these RAM'g are enabled in the write mode by the activated
WRITE signal. The WRITE signal is held activated until the
data is strobed into the RAM's. This data is stored into
the two RAM's at locations which have the same address since
both RAM's share a single index pointer. The architecture
of the Packet Routing Data RAM's is presented in Figure 4.19.
Once the write operation is complete, the active-low

WRITE signal goes high. The low-to-high transition of this

135

Rl aghits - e ot Sl R

R id

T Ehnsi i 4 -l M i A i A T TRRRRATREIART T T T
sttt bt £ 0 S LR AL - Lo e el

- ey
o DAC-D
D-DAV
MP4 ~D
To txay “"‘"J<__'T RL®
OtinIMATIN L ‘
oM RAM DATA
LATCH
. FRom SoRTING
o8us < PAvtessor ¥ 4
o 0F
. JPACxeET

To Pt ‘
my :::::s <

Am::m ATA oA) b4 -D
RLS

o DAC-D
DAV S = fas . 0- DAV
R
DAC il
enAsLE S MP4 -D

A
PACKET RLS

To PRy (VTP DOV
ey @ DATA (_

OATA RAM LATCH
CRoem wohkT1006
O8usS § ficgsomns
Packer
Yo Phcest ARRAY

AReay A <
AODRESS OMA 02": " uf4-0
W . LANN ur-_m_ R' S

Fig. 4.17 A 8ingls Facket Routing Data’ Port

136

i v i el .,

ITROITD BuTTTOd 3IXO4 e3eg SUTINOY 3I™Oed GI°v "BTJ

X L D e———
! Sk 5
| sovma ™ A+

€ NWNI - !

DY T R e —

T Ny]

a

137

= . \/ | | . |
Y R B "v0||1 y © 31380 3T
. —s au'lvﬂ. 1 gl ELT) -

vivo
DvouS

‘ANIVT 90 WOSSINNY)
SUTLY LMY INL ol

- wERee T TSR T T e TR TN

SWYY eaed burtanoy 3aded 6T

1n0 V0

Q

-4
> ssmoy $$9300Y

wyd sitay
I . AvgYY 13%>Yd
| 3113 i ELLS ‘30

vave =

*Bta

‘SLvey varg
swiinay Lhovg
Hy woyd

et 93 HNNCY)
IVILAGY (V] L Of

= - *aND
YOLYW T
> 9
QY e 9- WHDOK
v
Iy

Y FdwnoD

< q w

e 321y4dn-9g

WILNT N0 Yiyg
J1vdén | v MSQ
i <53
¥3IANT SSa0w
wiyy vivgQ
NOZLYVTISIHG LIDYY
LT YM EL N 30

‘SL¥oy
Viys sviuoy
430w9 ML wo¥d

PP P S Y- 2

NS

138

i
H
1
i
i
'
;
3

signal activates the one-shot that generates the Flag UPDATE
signal. The Flag UPDATE signal clears the DAV flag and sets
the DAC flag. The clearing of the DAV flag resets the STORE
DATA flip-flop. The reset flip-flop activates the INDEX UP-
DATE signal which increments the hardware counter that serves
as an index pointer. The data structure for the Packet
Routing Data List is giQen in Figure 4.20. Both the read and é
the write operations take place before the index pointers are
incremented. When the two index pointers are equal, the list
is assumed to be empty.

When the Packet Routing Processor needs to fetch data
from the RAM's, it first selects the Packet Destination Data
RAM and then fetches the data. Next, the Packet Routing

Processor selects the Packet Array Address RAM and fetches

the data. The processor increments the index pointer once
both read operations are finished. Two-port RAM's are used
to allow a simultaneous read by the processor and write by
the hardware. Since the list is assumed to be empty when the
index pointers are equal, a read and a write operation will

never occur at the same location.

4.4.3 The Packet Sorting Processors
The Instruction Execution Units and the Microprogram
Control Units of the Packet Sorting Processors are similar to
those used in the three processor design for the Routing Pro-
cessor (see section 3.2). The IEU control fields in the Micro-

program Word for the Sorting Processors are presented in

139

PTRe

. 4.20 Packet Routing Data List Data Structure

. A hanaadine _Jdih o g I —

T e —— - ————

Figure 4.21. Figure 4.22 contains the MCU control fields and
the Jump Control Logic Function for the Packet Sorting Pro-

0688033 . ¢

4.4.4 The Packet Sorting Service Routine

The Packet Sorting Service Routine is sense-loop
driven. While the Shift Register Array Polling Circuit
searches for unserviced packets, the Packet Sorting Prdcessor
loops on the test bit. Once an unserviced packet is found by
the polling circuit, the Packet Sorting Processor exits from
the loop. The processor fetches the address of the packet
from the halted poller. The packet's syndrome is fetched
and sent as an address to the Syndrome Decéder ROM. Con-
currently, the packet's service request flag is cleared and
the poller is restarted. The ROM output is fetched and
exclusively-ored with the fetched packet header. The cor-
rected header is stored back into the array. Using the cor-
rected header information, the Packet Sorting Processor

determines the packet's destination. The destination informa-

" tion is then used to determine which Packet Routing Processor

is to receive the packet's routing data. Tbis is accomplished
by sending the destination data to the Sorting Processor's
Address Decoder. This decoder will generate the address of
the.Packet Routing Data Port associated with the destination
of the sorted packet. Since a Routing Processor may route
packets destined for different ground stations, the different
destination codes of these packets must generate the address

of this Routing Processor's port. Since the different codes

141

s e g bt e sy

SPT9Td TOX3U0) weaboxdoIOTW NAI 108820013 HutrlIog Ioyoed tz°v °b1r4

ey snax |G LTI T LT
O s {T{X | TV
90%lsnex Bl | TIT
au..a«”“.u_.« ewwys | T woy BV Pl mw Q1T @ 12
veroeeg § ? Twwes | D $S3YAaY 1 & 2 MY TIX|D T
HLen 1¥04[sv 3%00s 9 Jswg] - svon | B | D 3| M A1 1O10T
w2y sl v |wy S o) 21 |%30| 1 ||v3
>900S NIY
S1I9 0VLINOD
ava-a}msm-aposs-a] Sy %30 | M| Y 3WYIsr e us ir... 1| syg|®T 0 'rita - - - sy
’ Ny NIT .(Iw
Se7314 dIMoWINVWW
4383¥] atzum 3939 awal 3uva| Gusy| HALYN peuvwnisad VY | MOTLIVNY sy aum%.. w,‘moﬁ QY Y30
AYQ H A
vty powan| | nein0 suajwoy | sng | (V1Y j4awwd) Ny T [oms 1y | 21vTosuw
b2 88 4z 9t SE P eg ®¥e-le Pe-9° se e - e g &l = 91 si-%

pai e I e i diiaiacas o o e R P i g

T T S L U TP

I Tt S

142

S R TR h T e

NEXT ADDRESS SElecT | FumP ADDRESS

46-44 4a-4s

Ny [Ng| NEXT ADLRESSS JumpP ADDRESS
MPC+ 4

|2 . 3ﬂ3>3ﬂa)1ﬁﬂ4)Uﬂy

¢ 1 iwmnoxmuu Sump

4 ¢ SumP o NEW-D = ¢f

4.1 4 [svmp ov BAZ-D= ¢

NEW-0 DAC-D N, Ng Fe Cn S, Sg ADDR.ESS SOURCE
X X @ ¢ 1 1 &8 & MuPC+ 1
X X ¢ 1 1 ¢ 1 41 TumP ADDRESS
g X 41 & 1 @ 14 4| dSume AvORESS
L X 14811 105 & M+ 4
X & 1 1 1 s 1 A| sump AODRESS
X 4 414 14 1 B » MPC+ 4

Fig. 4.22 Packet Sorting Processor MCU Control
Fields and Jump. Control Logic Function

143

o T e d W e, T T e, AL an o

T, e TTT— gy T e - —— = wepwe—r, ————

will enable different address decoder lines, an encoding

scheme is needed. WIRE-ANDing the different address lines
that mth enable the same port will provide the system with
the single port address lines needed. The only constraint
associated with this scheme is the requirementAthat the address
decoders have low active, open collector outputs.

Once the proper Packef Routing Data Poré is addressed,
the Sorting Processor checks to determine if the port is
empty. If the port still contains valid data, the Packet
Sorting Processor waits for the port to be emptied by the
automatiq port hardware. When the port is empty, the Packet
Sorting Processor first sends the packet's destination data
to the port. The processor then sends the packet's array
address, sets the port's DAV flag and returns to the sense
loop. Figure 4.23 containg the flow chart for this routine.

A listing of this program is supplied in Figure 4.24.

4.4.5 The Packet Routing Processors) -
The Microprogram Control Units of the Packet Routing
Processors are similar to one used in the three processor
design for the Routing Processor (see section 3.2). However,
the Instruction Execution Units (IEU) of the Packet Routing
Processors are redesigned to handle the Packet Routing Data
Ports. Since the Packet Routing Processors need no polling
circuits, the Direct Data (DB) is used to supply the pro-
cessors with the Packet Routing Data. This scheme saves
execution cycles since the processors are not required to

generate the addresses of the external data RAM's. A single

144

Fig. 4.23 Packet Sorting Service Routine Flowchart

145

hece, an

Detremune the
addeess K rhe

shif} teyigter
tequesting Service,

:

Fetch and cotvect

+he headec, R&“H’

the Rolling Cinroit,

l

Stote. Cotrected
header a the

5-‘ R. “ﬂa\j v

l

betecmire the
packet’s

Destination.

RMM’ Dota Qort

Qpty

- T T The s T TR W e S T s T
v

Send the Pockells
pestination Yo the

c‘kﬂ 003‘ indion
Data LQ*C’\ .

1

send 1 Packel's
Occoy addass 1o
+he Packet attay
o dast data Ladew,

F;i'g. 4.23 Packet Sorting Service Routine Flowchart, continued

146

i i ie. et LR CAL LA o

IR

b i ufhat g T e— T ——— T —————

START:

If NEW-D=f, JMP to START

*Is there a shift register
requiring service?
NO: Loop @ START.

SRS Polling Port-Scratch 1

*YES: Input the address
of the shift register.

Syndrome Generator Base Address+Scratch 1 Address-Latch (uPl=D)
Syndrome (R) -+ Decoder ROM Address Latch; Reset Foller

*Fetch header syndrome and
send it to the Decoder ROM,
clear NEW-0 and restart
the poller.

Decoder ROM Address-Address Latch (up2-D)
(Decoder ROM] @ Syndrome (R)-Q

*Fetch error word from ROM.

Header Base Address + Scratch l-Address Latch (up3-D)
ALU EXOR Q+Scratch 2, Header Port (R)

*Correct the header. Store
it into the S.R. Array and
into Scratch 2.

Scratch 2 AND Destination Mask+-Q

*Determine packet destina-
tion

Q + Packet Routing Processor Base Address-Address Latch
(up4-D)

If DAC-D = @, JMP to LOOP

Q#selected Packet Routing Destination Data Port

Scratch l+selected Packet Routing Shift Register # Data
Poxrt; set DAV flag; JMP to START.

*Select the proper Packet
Routing Processor's Data
Port. Send the packet's
destination data. Then
send the packet's S.R.
array address. Set the port's
DAV flag and return to the
top of the program.

Pigure 4.24 Packet Sorting Service Routine

147

CoT T e T e TR

O

control signal fcom the processor's microprogram word controls
the DB SOURCE MUX, which selects either the Packet Destination
Data RAM or the Packet Array Address Data RAM. The output

btrom the MUX is tristated because the DB data bus is inter-

nally shared by the output of the ALU's register file. The
redesigned IEU used by the Packet Routing Processors is dis-
played in Figure 4.25. The IEU control fields in the Micro-
program Word fof the Packet Routiné Processors are given in
Figure 4.26. The MCU control fields in the Microprogram Word
and the Jump Control Logic Punction are presented in

Pigure 4.27.

4.4.6 The Packet Routing Service Roufine
The Packet Routing Service Routine is sense-loop
driven. The Packet Routing Processor loops, testing the
status bit which informs the processor when packet routing
data is available. When a packet's routing data is available,
the Packet Routing Processor leaves the loop. The processor

then fetches the packet's destination information. Next, the

' packet's array address is fetched. Using the destination data,

the Packet Routing Processor selects the proper output queue
list. Concurrently, the Processor's index pointer for the
Packet Routing Data List is incremented. The packet's array
address is loaded into the Queue List Data Port by the pro-
cessor. The Processor then requests access to the queue list.
Requests for access are generated until the Packet Routing
Processor is allowed to access the queue list. Once access

is granted, the hardware automatically strobes the array

148

SPIaTd T0I3uU0) weaboxdoxdIW NJI 10883001, HUTINCY

dYoed 9z°y °bH1a

3:7cs 9 <9 | GNHNTIT L T
sswNY [T wvn o S| T — W% smT 22| THT
aoN |P wyg ve *yma] B srves| & Ve 3] MW DT ON T
RN L 3%ecs B4] 590 3:905 § [sve 9%yl mw |O2llo|NT
S ¥ _ [P x||*=['T [[va
<300S NY
\
25 NIY-3 !
swesged fones La0] MWL .- B3] w5 I ... J_mz svg|’ I ‘3ol - — %
avor-3 .E va .
=Cdii0d)
._.un..e Wik U] e HaAIvoryvTls NT [NoxLONDS w&.ﬁ&wﬁLwam w“&m Qv vy 340
3030 C)
SO =t unavo | 3ium| SNG| N Azovd
FTYITY) : v NIV | 90| 9 o my] 2+vTOWwI
b2=42 %S ST HE SE et [E-4C 9€ SC-te € pe bl -97 SI-@

150

A o S

@

INEXT ADDRESS SeLecT

TJump ADDRESS

46 - 43

T | NEXT ADORESS

Jump on

-8 elF
= 8 B S el

’J’ual’ onv

3
1
X |5umt on Rovie-B = 4
X
X

M0+ 4

UncomdaTionAal Fump

swvs-g = 1
INE-8 = 1

43 - 46

TJumpP ADDRESS

TAS, J-Ae) B-Ai, Tﬁ”

RWE-B SHNS-8 OB N, Ng T e ¢, sy s..,, ADeess Sorte
X X X & 83 |118 0| a1
X X X g @ 1 1 & 4 1 |sume noseess

| 1 @ ¢ | Mt 4

g 4L X 1
¢) X ¢ 1 x A ¢ 4 4 Sunt ALORESS
1 X X RS |
5 x 1.8 % [118 ¢ s

. 4 X 1 QS X 1 & 1 4 | SumP Adbress
X 1
X W ¢ 1 1 X, 1 1 ,6 ¢ MPC+ 4
X X 1 1 1 x |18 1 4 | Tume Atoress

Fig. 4.27 Packet Routing Processor MCU Control Fields
and Jump Control Logic Function

151

R

Rl st oo o0 At

2aaiB e 4

DN L A R L PR N

Snhatie.. “NASRILANEM A

T S T

address data from the port into the queue list RAM. Meanwhile, ;
the Packet Routing Procéssor checks the status of the queue
listfs corresponding output .buffer. If the buffer is in the
‘Idle state, the processor updates the buffer's status to the
Empty state, releases the queue list and returns to the sense
loop. However, if the buffer is not in the Idle state, the
processor simply releases the queue list and returns to the
loop. The flow chart for this soffware routine is shown in

Figure 4.28. A listing of this program is given in Figure 4.29.

4.5 The Output System

The Output System consists of the Output Buffers, the
Output Processors, the Output Switching Networks, and the Out-
put Polling Circuits. Interfacing to this system are the
Output Queue Lists, the Shift Register array and the ELIST
Data Distribution System. The architectural organization of

this system is presented below.

4.5.1 Architectural Workload Division
The two major system constraints that influence the
architectural organization of this sytem are:

1) Only one Output Processor must contfol an output
buffer. Each output buffer must be assigned to only
one Output‘Processor in order to eliminate resource
contention.

2) Only one Output Processor can have access to an out-

put queue list.

152

Bt x & 0 LI UEEE

I"PV* the packe :
dettination data
Ctom the Port.

!

SQAA +he P“ke‘f
S.R.# Jo the

Proper oulput @ueen
"GY" Ju{q Cort.

NoO

.Fig. 4.28 Packet Routing Service Poutine Flowchart

153

1

‘RQ10€S* +he

Ovipvt Queve
List.

YES

o T TR TEe s T s

1

Il
<

Get oOsw Rdease +he
= emery, ovlput Quese
List.

Rélesse the
Ou'*Pu{ Qe

ust : ;
3
| () |
1
1
3 Fig. 4.28 Packet Routing Service Routine Flowchart, continued
;' 3 ("&

154

P TR N AT

B

e T T T

e TR T T

TEST: If ROUTE-B = 1, JMP to TEST

*Are there any packets re-
questing routing?
NO: Loop @ TEST

Destination Data RAM =»' Scratch 1
S8hift Register Address RAM -+ Scratch 2

*YES: Input the packet's des-
tination and array address.

Scratch l+Output Queue List Base Address-+Address Latch (uPl-B);
update packet data pointer

*Select the Output Queue List

and OSW of the.destination
buffer

Scratch 2 + Output Queue List Data Port (N)

*Send the packet's array address

to the Output Queue List Data
Port.

REQUEST: Request Queue List (N)
*Request access to the Output
Queue List selected. If access

is granted, the data from the
Port is automatically stored.

If STATUS-B = 1, JMP to REQUEST

*If access is not granted, Loop
@ REQUEST. Proceed otherwise.

If OSW = NOT IDLE, JMP to END

*Is the output buffer idle?
Set OSW=EMPTY; Release Output Queue List (N); JMP to TEST

*YES: Update OSW, release Queue
List and return to the top of
the routine.
END: Release Output Queue List (N); JMP to TEST

*NO: Release queue list and re-
turn to the top of the routine.

Fig. 4.29 Packet Routing Service Routine

155

I

The Separate Systems Scheme as discussed in section 4.3.1 is
considered the best technique to use in orgamizing the Output
System in order to fﬁlfill the above requirements. The system
architecture of a single Output Processor in the Separate
System Scheme appears in Figure 4.30.° Each output processor
is assigned to a fixed number of output buffers. In addi-
tion, each processor is assigned a dedicated Output Switching
Network, a dedicated Output Polling Circuit and is allowed

access to the Output Queue Lists that corresponded to the

| asaighed output buffers. Since the implementation of this
] architecture did not require the redesigning of the Output
Buffers, the Output Polling Circuits or the Output Switching
Networks, theée hardware blocks are not discussed in detail
in this chapter (see section 3.1 for a review). The Output

Processors and their software are discussed below.

4.5.2 The Output Processors

Both the Instruction Execution Units and the Micro-

program Control Units used by the Output Processors are
similar to those used by the Output Processors in the three
processor architecture (see section 3.2). Shown in Figure
4.31 are the IEU control fields of the Output Processors'
Microprograms Word. Figure 4.32 displays the MCU control
fields of the Microprogram Word and also the Jump Control

Logic Function for this class of processor.

4.5.3 The Output Service Routine

Like all the software roufines, the Output Service

Routine is also sense-loop driven. The Output Processor

156

- r——

et

e e R e e e e e - et e

z & - £
S¥I4INY
1ndIN0

1v A1sI113
o4

#
S¥33409

4ndunQ

xu.f.

108892014 IndanQ 9THUTS B 103 2IN3IOVITUYDIV weISAS 0€°y *b1d

:x Du
< 2™ | wosmon Ny
ONINCJ _)
a4l
404 DO v Sy yom.L3|
| Y NIHILINS
. Lvyyy
104100 A JaIsTsy L9THS
3N woyd
1113
Q.
Te T4
KT ot ™ oo T4
-ONT|
™ 104100 > Stwom LN
DNTHMIMS
Lyaay
4103100 =T YNTNY LITHS
A PN s\o¢u

~
[Ts]
—

| . sprotd TOI3U0CD wexboxdoadT NI IO0SS220ad andano Tg°p "ST4
L e Cug| shaX |l TIT|T
| © |snsT|T|Xx|TF
W a Oy snsx i@l T T
pySomcyl pwr || T IP|T
e 2w T ssaey| ¥ o M (ELX|8HT
S LA oy | P 9d%y| mv |2 (P |BIT
; . Sr4cos 9 | SU9 : ot 99 | 9V S v % %% ST l[va
)
_ 51193 ColseD
[y
m IYNIY -O 370X -2 S 8 3 + by ‘9o brlf 23 b
, A¥a-) " leowo} 4201 M| 20| 3T T oo 87| v |'r... 'I| SVO|'T 20 brjfe--—T0
LS 2 F FIR> L ITETT DY
10YLNeD 3ncs] 3N
M 4517 ouLn MSO 1953%) noma] amwal snve Hupn|VomuNILsI0) ux [vOTLIVAL|SSHWN S N Qvy ¥y 240
. nda
4513 .w D.Z.DMW w104 | 1neinol saxum|mso3a] SN ANy |ren oy g Svorcs MY FYCAET 4
P> . bE-8¢ 1z -9c St #t <€ eg Ic PE-%¢ se T -Te 92 &F -7 ST-9
W .

— . I.-ll‘-l ot W Py T e i‘i:‘t&bi.\.{}t‘!tr}if«!& -

44 - 4%

[VexT Apoeess setect

TJumpP ADDRESS

NEXT ADDRELS

3
@
A
v/
1

4
i

P e’] alz
L U S RTINS

MmPCH+ 4
jUnNtonpaTioNAL SumP

Tunt on Stvate~C = ¢

yump o STATUS-C % 4
|~” on DAC-C2 @

S on EmPTY-C =

SERYIXE = STAS-C DAL-C émery-< N,

44-48

TJumP ADDRE &<

ADDRESS SOURCE

X

X
@
1
X
X
X
X
X
X

K

XX x X > X XXX
X % | X XXX X X
X X X X

e X X X

- s e an B0 a Q

N NS
H»@ﬂpp*&“&léﬂ'—l
)A’_;l-\l—\l'—\l—sp_i—\iél—"al
Pe P8 8 e e e
U TR U ST -} A
ar s P Paw Pl

MmPc+ 4
JumpP ADDRESS

sump AODRESS
Mmbc+ 4
- MPCH A
Sump ADDRESS
~vumP ADDRESS
MPC+ 4

umpbc+ 4
JumP AODRESS

Fig. 4.32 Output Processor MCU Control Fields
and Jump Control Logic Function

159

leaves the loop once its polling circuit locates an empty out-

put buffer. After leaving the loop, the processor fetcnes the
address of the buffer from the halted poller. Using this
information, the Output Processor selects the buffer's corre-
sponding output queue list. A request for access to this

list is generated by the processor until access is granted.

When access is granted, the Output Processor determines if

~ the queue list is empty. If the processor f£inds the list

empty, the processor changes the buffer's status from the
Empty state to the Idle state. COncurrehtly, the processor
releases the queue list, restarts the poller and returns to'
the loop.

However,'if the queue list accessed is not empty, the
Output Processor fetches the address of the packet to be
transmitted. Simultaneoﬁsly, the output buffer's status is
changed from the Empty state to the Busv state, the queue
list is released and the poller.is restarted. After the Out-
put Pfocessor has completed all these tasks, it finds a free
data path in its dedicated Output Switching Network. This
data path is linked to the shift register containing the
packet to be transmitted. The Output Processor then links
the empty buffer to the data path. Once the path is complete,
the processor initiates the packet's transfer into the output
buffer. While this transfer is taking place, the Output
Processor checks the status of its ELIST Data Distribution

I/0 port. If the Data Accepted (DAC) flag is not set, the

processor loops until it becomes set. Once the Output

160

- Processor £inds the flag set, it sends the array address of
the freed shift register. After loading the I/0 port, the
processér sets the port's DAV flag and returns to the sense
loop. Figure 4.33 contains the flow chart for this routine

and the listing of this program appears in Figure 4.34.

161

Delecmine The
addtess of the
ovtevt Buffer
Ngoeﬁing Setvice,

—
4

| Request the
Oviput Qwr |
L‘sic

Fe"c\n Pmkef o

Fig. 4.33 Output Service Routine Flowchart

162

.
|
1
|
: |
Cel OSW Rejease vt
Guese Lt end
= IDLE, - g
fesiory fee (e
i
Reltese 0v'pvt [Find o free
Qute L.ﬁ’ enrd
"'ﬁﬁ(’ ‘N‘ (oleor, d‘1‘ P.‘“ *
\
Set up the
_OOP deda path link,
| |
Teorsm T |
+he
- Packet. |
. No

Poet Cmply

[Cand wldteis

Oy,
Guy,
AL' dela 1o CLINT

’ &mok Q;ACE I3 omn Poer oed
s wm ‘ sel the DAV ni]

Fig. 4.33 Output Service Routine Flowchart, continued.

163

e ng o—r — 1 - e

e - g,

U

Cel OSW
= IOLE,

1

Reltase 0viput
Quise List and

cedard dre Oler,

L

LooP

' Release Ivipat

Joardoed fre gore

Gt st Lol ond

Find & St
date poth,

;

Set vp the
deta padh Link,

|

Teorsmit
+he

No

Packet.

YES

Seand wldtess
dala fo gLIVT
omn Coar ord
sel the 0Av flg,

OUTPUT: If SERVICE-C = @, JMP to OUTPUT

*Is there an output buffer

requesting service?

NO: Loop & OUTPUT
Output Polling Port=Q

*YES: Input the address of
the buffer.

Q@ + Queue List Base Address-Address Latch {upl-C)
REQUEST: Request Output Queue List (N) '
*Select the buffer's Output

Queue List and OSW. Then
request access.

If STATUS-C=1l, JMP to REQUEST

*Was access granted?
NO: Request access again.

If EMPTY-C=@, JMP to IDLE

*YES: Determine if the list
is empty.
List Empty: Branch to IDLE

[Output Queue List (N)] @ OPTR (N)-Scratch 1l; Set
OSW=BUSY; Release Output Queue List; Reset Poller

*LIST NOT EMPTY: Input the
S.R.# which contains the
packet to be transmitted.
Then update the OSW, restart
the poller and relecase the
gueue list.

Output Path Status Port Address-Address Latch (up2-C)
Data Path Busy Status Port-Scratch 2

*Find a free data path.

Scratch 2+Data Path Latch A Base Address-+Address Latch (up3-C
Scratch 1 - Data Path MUX select Latch A(D)

*Link the shift register to
the data path.

|
{
i : Fig. 4.34 Output Service Routine

| 164

A 5 S

T P YU RO

R AL L S R

Fig. 4.34 Output Service Routine, continued.

Scratch 2+Data Path Latch B Base Address-+Address Latch (up4-C
Q -~ Data Path DeMUX select lLatch B(D)

*Link the output buffer to
the data path.

Data Path Transmit Control Base Address-Address Latch
Scratch 2-+Data Bus Decoder (M1-C)

*START Packet transfer.
¥LIST Data Port Address-Address Latch (up5-C)

If DAC-C=@, JMP to LOOP
Scratch 1-ELIST Data Port

*Send the empty S.R.# to the
ELIST data port when the
port is empty.

Send a DAV; JMP to OUTPUT

*Send a DAV to the port and
return to the top of the
program.

Set OSW=IDLE; Release Output Queue List; Reset poller; §
JMP to OUTPUT

*Update OSW, release queue
list, restart poller and
return to the top of the
program.

165

AT T TP € A0 Ane tAe mee

SRS

§
:
¥
[
+
f

()

5.0 EVALUATION AND THROUGHPUT ANALYSIS
The evaluations of the two packet gwitch architectures

are presented in this chapter. The evaluation of the packet

‘switch's performance is in terms of throughput. This evalua-

tion is based on the software execution times. In the multiple
proceséor architecture, additional parameters affect the sys-
tem throughput. Therefore, equations relating the number of
processors and the number of usersvto the system throughput

are presented.

5.1 Performance Evaluation

In order to compute the maximum system throughput, two
assumptions must be made. Both assumptions hold true for the
two architectures. The first assumption is that the system
is heavily loaded such that all output queues contain at least
one packet awaiting transmission. The second assumption arises
from the fact that processors never wait for internal hardware

and that each system is virtually free from resource conten-

~ tion. Thus, each processor is assumed to be busy 100% of the

time under heavily loaded conditions. Therefore, a processor
can process one packet in the amount of time required to exe-
cute the assigned software routine completely without inter-
ruption. Using these assumptions, an estimation of throughput

for each multiprocessor architecture is presented below.

5.1.1 Throughput Estimation for the Three Processor System
In order to estimate the system throughput, equations

and relationships are developed. 1In these calculations, system

166

I I T T O T T T T T o T

parameters are introduced. These parameters are:

1) tPl = Input Service Routine execution time

2) tpy = Routing Service Routine execution time _

3) tp3 = Output Service Routine execution time |
|

4) R =.Bit Rate per user

5) N = Number of Users

6) B = Number of Bits per Packet

7) FP = System Throughput in Packets per Second

8) Fp = System Throughput in Bits per Second

A procéssor can process one packet in the amount of time
required to execute the assigned software routine. Since ;
each packet must be serviced by all three routines, the pro- #
cessor with the longest execution time will determine the]
maximum system throughput. The software execution time for
each processor is listed in Table 5.1. A processor clock
cycle of 120 nanoseconds is assumed. Table 5.1 shows the
number of instruction cycles required and the time taken.

Some routines have several execution times listed. Each of
the different values illustrate the various effects of re-
source contention, the state of the output queue lists and]

the state of the output buffers. : ;

167

Normal Operation (No memory
(l) contention) :

Input Service Routine 11 cycles = 1.32 u Sec

Output Service Routine

(a) Transmit Packet 16 cycles = 1.92 u Sec
(b) Empty Queue 7 cycles = .84 u Sec

Packet Routing Service Routine

(a) Enqueue Packet 15 cycles = 1.8¢'u Sec

"(b) Enqueue Packet
and Update OSW 15 cycles = 1.88 u Sec

Worst Case Due to Memory Contention:

Input Service Routine 11 cycles = 1.32 u Sec

Output Service Routine

(a) Empty Queue g cycles

(b) Transmit Packet 18 cycles = 2.16 u Sec

Packet Routing Service Routine

; (a) Engqueue Packet

g (Default) 19 cycles = 2.28 u Sec
f (b) Enqueue Packet
‘ and Update OSW
(Default) 19 cycles = 2.28 pu Sec
(c) Enqueue Packet 17 cycles = 2.088 u Sec
(d) Enqueue Packet and
update OSW 17 cycles = 2.8 p Sec

Table 5.1 Software Execution Times for the Three Processor
System

168

. —— e

.

As stated earlier, the packet switch's maximum throughput
is achieved when the processors are busy 100% of the time and
when no output queue lists are empty. Therefore, in order to
determine the maximum throughput, the slowest execution time

must be selected from one of the following values:

1) The execution time for the Input Service Routine
under normal operating conditions.

2) The‘execution time for the Packet Routing Routine
when it enqueues a packet under normal operating
conditions. .

3) The execution time for the Output Service Routine
when it transmits a packet under normal operating

conditions.

Selecting and comparing the above values from Table 5.1,
the execution time for the Output Processor is found to be
the largest of the three values. Therefore, the three pro-

cessor system has a maximum throughput which is limited by:

Fp < l/tP3 . (5.1)

The system throughput in terms of bit rate is found by
multiplying the maximum packet throughput by the packet bit

length:

BXFP = FB < B/tp3 . (5.2)

169

ket

PPV S S Y @ T 2 4 7 2P P e e T T

O S WP

o rad CER Xt 5 as o e .-

e 3 . ,
B T O S LA N

N

The system throughput in terms of bit rate is related to the

number of users by:

FB = NXR . (5.3)
This can be expressed as:

NxR < B/tP3 . (5.4)
Or,

tpy < B/(NxR) . _ (5.5)

In a heavily loaded system free from resource contention,
the Output Processor services one packet every 1.92 micro-

seconds. Therefore, the maximum packet throughput is:

Fp < 1/1.92 ySeconds = 520,833 packets/second (5.6)

If a packet length of 10,240 bits/packet is used,

the maximum system bit rate is:

Fp = 10,240xF, = 5.3x10° bits/second. (5.7)

An important point to note is that the system is de-

signed such that the processing time of each packet is inde-

pendent of the packet size. Therefore, an increase in the

170

packet length will increase the system bit rate proportionally.
However, due to the two internal serial transfers, a packet's
delay is affected by the packet's size. An additional draw-
back of overly large packet sizes is that & significant por-
tion of a user's throughput is wasted when snort messages are
transmitted. Therefore, the system's throughput in terms of
a bit rate may be quite large while the actual information
rate could be small. All these points also hold true for the
multiple processor architecture.

5.1.2 Throughput Estimation for the Multiple Processof

System
The maximum throughput in bits/second of the multiple

processor packet switch varies depending on the values of two
parameters. These parameters are the packet size and the num-
ber of processors implemented. In this section, the relation-
ship between the throughput and the number of processors is
presented. 1In order to evaluate this packet switch, new para-

meters are needed. These new parameters are:

1) ¢y Number of Processors in the Input Processor Class

2) c2 Number of Processors in the Packet Processor Class

3) Cq Number of Processors in the Packet Routing Pro-
cessor Class

4) Cy Number of Processors in the Output Processor Class

5) C

Total Number of Proceséors

171

e o gl o

I S iae - S

Hv-—.w(-..vvw,

6) tpl = Input Service Routine execution time

7)'1:Pz = packet Sorting Routine execution time

L]

Packet Routing Routine execution time

8) tp,

9) tpg = Output Routine execution time

10) FPcl = Input Processor Class throughput in packets
per second

11) Fpe2 © Packet Sorting Processor Class throughput in
packets per second

12) FPc3 = Packet Routing Processor Class throughput in
packets per second

13) Foes = Qutput Processor Class throughput in packets
per second

The maximum throughput of the switch is limited by the
maximum throughput of the class of processors thch has the
smallest maximum throughput. The throughput of each class
of processor depends on the software execution times and the
number of processors assigned to each class. Therefore, the
throughput for each processor class is:

F < (l/tP.)ci' 1

1

A
.J

A
S
-
(&}
00
S

Pci

In order to use this equation in the performance evalua-~

tion of the multiple processor packet switch, the software

172

L AArE . ik i AL A mmy o

BTWE AU DT s et = - -

et
et & RN L

execution times must be known. Table 5.2 contains the soft-~
ware execution times for each class of processor. Various
values are listed since the-execution times of some routines
'vary depending on the current state of the system. As stated
earlier, the packet switch's maximum throughput is achieved
when the processors are busy 100% of the time and when no output
queue list is empty. Therefore, the execution times used in

this throughput estimation are:

1) The execution time of the Input Routine when data
from the ELIST is available immediately.

2) The execution time of the Packet Sorting Service
Routine when the Packet Routing Dafa Port's DAC flag
is set.

3) The execution time of the Packet Routing Service
Routine when it enqueues a packeﬁ under normal opera-
ting conditions without updating an OSW.

4) The execution time of the Output Service Routine when

it transmits a packet under normal operating conditions.

Using the data from Table 5.2 in equation 5.8, a table
listing the throughputs as a function of the number of pro-
cesses is constructed. Table 5.3 contains this data compiled
from the evaluation. A graph displaying the relationship be-
tween the number of processors and the upper bound on the
system throughput is presented in Figure 5.1. This graph is

plotted using the data contained in Table 5.3.

173

o itk e s e b mia sk AT S Nt A JBES 1 o te 3 A de it hemot o A el D

- 4Vg, @ TTwemE e - g~

Normal Operation (No Memory Contention):

Input Service Routine 13 cycles = 1,56 . Sec

Packet Sorting Service Routine 13 cycles = 1.56 u Sec

Packet Routing Service Routine

(a) Enqueue Packet 9 cycles = 1.08 p Sec

(b) Enqueue Packet and
Update OSW 9 cycles = 1.08 u Sec

Output Service Routine

{a) Tra-smit Packet 19 cycles = 2.28 u Sec

(0) Empty Queue 7 cycles = 0.84 u Sec
Wort Cast Due to Memory Contention:

Input Service Routine 13 cycles = 1.56 u Sec

Packet Sorting Service Routine 13 cycles = 1.56 u Sec

Packet Routing Service Routine

(a) Enqueue Packet
{DEFAULT) 13 cycles = 1.56 u Sec

S (b) Enque Packet and .
Update OSW (DEFAULT) 13 cycles =.1.56 p Sec

- (c) Enqueue Packet 11 cycles = 1.32 u Sec

’ (d) Enqueue Packet and
E Update OSW 11 cycles = 1.32 u Sec

: Output Service Routine

(a) Transmit Packet 23 cycles 2.96 u Sec

(b) Empty Queue 11 cycles = 1.32 u Sec

Table 5.2 Software Execution Times for the Multiple Processor
System

174

SSeTD IOSSIaD0Id Yoes I03 u:&nmao.uﬁ. €°6 atqel

6E° ¥ 92°6 w9 1v°9 . N3L
S6°€ £€°8 LL*S LLs ANIN
1s°¢€ 14 202 €1°S €1°S LHOII .
LO°€ 8v°9 6v° ¥ 6v° b NIAIS p
£9°2 95°G S8°¢€ s8°¢ XIs |
| 61°2 €9° ¥ 12°¢ 12°¢€ TS &
M SL°T oL°€ 95°2 95°Z unod
| ze1 8L°2 26°1 26°T ATIHL
LLg* s8°1 82°1 8Z2°1 OML
6EV° 926" 1v9° %9° aNo w
LOJLOO ONILNOH LANOVd _ONIT¥OS LA3Ovd LOJdNT | S40SSad0ud M
(ANODIS ¥Ad o01 X SILAAOVA) do ,
SSVID ¥0SSAD0Ud EWQN JO0d LOJHONOIYHL YT IHON M

(. o BT

SI0SS3001d JO I3QUNN Y3 JO uoridung e se ndybnoayl waysis T°g *bia

SJossadoyf O JaqwhN |vjo |
b e) b + s
O i\ La ¥ L] '
- g7 .M,n
e
”\W.l
- ge =+
- g
+ 9%

.T.m

(Pvo3s /BT X SIP5d) 4

176

A specific example is prus: (°d below to illustrate how

the number of processors required t... a desired throughput is

determined:
Packet Length
B = 10,240 bits per packet
Desireé Throughput

P, < 30x10° bits per second

6

Fp/B = Fp < 3.0x10" packets per second

The processor assignments are determined using equation

5.8,
Number of Input Processors

Pcl * 3 MPS < (1/tp1)c1

6 6

0
v

> (3x10° packets/sec) (1.56x10"
processor)

seconds/packet/

0
v

12 4.68 processors.

Since C; must be an integer value, C, > 5 processors.
Number of Packet Sorting Processors

F = 3 MPS < (l/t

Pe3 p2’C2

. C 6

2 seconds/packet/

> (3x10° packets/sec) (1.56x10"
processor) :

177

¢ —— e vt e+

k. . e an " ——

c, 2 4.68 processors

C, 2 S5 processors.

Number of Packet Routing Processors

Ppoo3 2 3 MPS 2 (1/%p,)C,

C, 2 (3x10° packets/sec)(l.oaxm'6 seconds/packet/
processor)

Cy 2 3.24 processors

C5 2 4 processors.

Number of Output Processors

=3 MPS < (1/t

Pcd pa’Cy

> (3x10% packets/sec) (2.28x:57% seconds/packet

/processor)

(2]
'
v

C4 2 6.84 processors

C4 > 7 processors.

There is an important point to note regarding the
system throughput. As mentioned earlier, the system through-
put depends on the packet size and the number of processors
implemented. The important point of this relationship is
that the number of processors that can be implemented is

limited by the number of users. Each user is considered to

178 “F oy

e T TR

TR F oo

have one input and one output buffer. If one ground station
user is allocated tﬂ6 sets of buffers, he is viewed as two
distincé users by the switch. The number of usefs limits the
throughput because the number of Input, Packet Routing and
Output Processors can never exceed the number of users. This
limitation arises since each user's workload cannot be effi-
ciently divided among more than one proqessof of the same class.
Therefore, the maximum attainable packet throughput for a fixed
number of users is achieved when one processor from each class
listed above is assigned to one user. As seen in Table 5.2,
the Outpqt function requires the longest execution time of

the three classes listed above. As a result, this function
limits the system's maximum attainable packet throughput as

given by
Fp < (l/tp4)N . (5.9)

This equation, which expresses the relatiénship between
the maximum throughput and the number of users, is plotted in
the graph of Figure 5.2, The importance of this relationship

is illustrated in the example given below.

Desired System Features:

N = 5 users
B = 10,240 bits per packet

Fp = 30x10° bits per second

179

B R P - - e e ——— e IR

i e e e ekt P A o o

sx98n JO I@qUNN 3YI jo uorjdund © SPE andybnoayl wo3sks T°S 6T
sjps))0 IqUAN

se e PP St 27 S T

betd,

T
sre 4 T4

_Lndanoaq 1

T 98
+ #'b

PO
(uas/,pv X sew™) 4

180

e

LW SRR G
i

T

Sysécm Performance Evaluation Using Equation 5.9: ;
Pé < (1 packet/2.28 microsecoands):5
FP'< 2.19*106 packets per second

Fp = BxFP < 22.5x109 bits per second

As seen by the results above, the system performance
falls short of the desired goals. The system designer has
three options available: '

1) Build the system and reduce each user's throughput to
- meet the lower performance rating.

2) Increase the packet length. This solution faces the
problems described in section 5.1.1.

3) Assign the ground station users additional sets of
buffers so that the packet switch serves more than
five users. This sclution allows additional pro-
cessors to be implemented, which will increase the

system's throughput rating.

“he purpose of the above example is not so much to ex-
plain how to solve performance problems as to stress the
importance of the last relationship presented in equation 5.9.
Without this relationship, one would determine the number of
processors required by referencing Figure 5.1. This obtained

value may be impossible to implement due to the user/processor

‘limitations.

181

B N . " . . LT
N T e e v b oy "y

A final point regarding the maximum obtainable through-
put of the multiple processor system is that Equation 5.9 has
avfinité upperbound which is not solely limited by the number
of users. As stated earlier, service for each packet requires
a read and a write operation at ELIST. Therefore, ELIST will
limit the maximum packet throughéut of the packet switch.
Using the hardware technoiogy currently available, ELIST is
designed to provide an& accept address data approximately
every 100 nanoseconds. This fact limits the system maximum
attainable packet throughput as given by '

9

Fp < (1/tp,)N < (1/100x1077)

P (5.10)

Fp < (l/tp4)N < loxlo6 packets/second

A system using a packet length of 10,240 bits will have

a maximum bit rate limited by

6

Fg = BXFP < (10,240 bits/packet) x(10%x10" packets/
second)
Fp < 102.4x10° bits/second. (5.11)

As new and faster hardware and pfocessor technology
becomes available, the overall performance of this packet

switch will improve.

182

I —

5.2 Evaluation of the Processor
Implementation of the packet switch may require the con-

struction of a customized processor chip. Therefore, a review

‘of the characteristics of the aMD 2903 ALU will provide the

system designer with an insight into the design of a processor
which is better tailored for this particular application. This
review begins with the available features of the AMD 2903 ALU
and ends with the features not proﬁiéed by this chip that
would enhance processor performance.

The_AMD 2903 ALU provides ample arithmetic and operations
for the packet switch. In fact, the number of operations can
be reduced to save hardware complexity. The only functions
required are the addition operation, the logical AND and the
logical OR. The on-chip register file is ideal for holding
scratchpad variables. In both multiprocessor designs, the
full capacity of this file is never used. Therefore, this
component could be reduced in size without degrading system

performance. The singie Q Register, which provides a work

_area for some operations, was quite adequate. The provided

ZERO flag went unused and could be eliminated from the custom
designed processor.

There are several features the AMD 2903 ALU architecture
does not support. These features would make the processor

better suited for this particular application. They are:

l) Internal tristate control of the DB Direct Data Input
Bus. This bus is not currently tristate because this

bus is bidirectional. This allows data to enter the

183

2)

ALU from external hardware as well as allowing data

from the register file to be sent directly to external

hardware. S8Since direct transmission of data from the
register file to external hardware is not required,
this bus could be tristated internally to save ex-
ternal hardware. A possible alterna;ive would be to
increase the size bf the internal select MUX. 1In this
scheme, the DB input bus would no longer need to share
the internal data bus with the register file.
Additional Direct Data Inputs. These ihputs save
execution cycles since the processor does not need to
generate a device's address before a read operation
can be performed. These inputs can be used whenever
the processor is required to access a single unique
system device. Since the Data Path Busy Sfatus Ports
are unique system devices, this feature would reduce
the software execution times for the Input and Output
Processors in both architectures. Thié scheme may
require larger internal Select MUXs and more select
control signals. However, there does exist one way

to increase the number of direct data inputs without
increasing the Select MUX sizg or the number of con-
trol lines. As mentioned earlier, only a small por-
tion of the register file is used. 1In fact, the A-
Register File is never used. Therefore, this component
could be removed and its input to the Select MUX could

be replaced with a direct data input. This particular

184

-y ——

et S et 5

feature would increase system throughput directly and
should be considered an important design criterion.
. 3) Internal data bus latches. This feature would provide
| for the stabilization of ALU data inputs without the

use of external latches.

All these features are recommended for any processor

custom designed for the packet switches.

5.3 Packet lLosses
If the throughput rating of the packet switch is exceeded,

packets will be lost even when there are no hardware or soft-

‘ware failures in the system. However, an important point to

make concerning these packet losses is that the system will
always recover at some point in time. 1In both architectures,
packets can be lost due to overflow in three components.
Overflbw can take place in an additional component of the
multiple processor system. The components which are suscep-

tible to overflow are:

1) The Input Buffers
2) The Output Queue Lists
3) ELIST
~ 4) The Packet Routing Data Ports' gqueues.

Even with double buffering, an input buffer will over-
flow if its user exceeds his allotted channel capacity. The
oldest of the two packets residing in the input buffer will

be lost as the new packet is shifted into the buffer.

185

R SR

5%

TR FT TR IY N I e IR TS) - o vepmry
r “ ey i’ ka1 2 o

If any output queue 1ist becomes full, the packet switch

will encounter serious problems. When a queue list becomes

full, the two index pointers will be equal in value. This is
the same situation for an empty list. When the two pointers
are equal, the Output Processor assumes the list is empty and
does not access the list until new data is placed into the
queue list. Therefore, the list remains full until new data
is placed into thg list, overwriting valid@ data. Only after
overflow has occurred can the Output Processor access the
list.' Two serious problems arise from this overflow condition.
The first problem is that once overflow takes place in the
queue, no less than the entire list of original data will be
lost. The seéond problem is a result of the first problem.

As stated earlier, the data stored in the Output Queuc Lists
are the array addresses of routed packets. Therefore, if these
addresses are lost, the routed packets will never be trans-
mitted and they will remain in the Shift Register Array inde-
finitely. Since they are never transmitted, their array
addresses will never be returned to ELIST. This fact could
cause ELIST to become empty. An empty ELIST and the asso-
ciated problems of this situation are discussed next.

If ELIST becomes empty and a new packet arrives at the
input, the oldest packet in the shift register array will be
lost as the new packet is stored in its place. Packets will
continue to be lost until the Output Processors return enough

array addresses to ensure that the next shift register address

fetched by an Input Processor is valid data. ELIST will

186

become empty when the system users exceed the packet switch's
throughput rating.

In the mﬁltiple processor design, if a Packet Destination
Data list becomes empty, the system will face problems similar
to those caused by a full Output Queue list. This is due to
the fact that both lists share the same data structure. Again,
packets will be trapped in the Shift Registef Array because
the data lost during overflow is needed'for routing. 1If a
packet‘is never routed, it can never leave the array. There
is no way to re-sort these packets, which means the lost
routing information can never be recovered. As with a full
Output Qﬁeue list, the entire list of original ﬁata will be
overwritten before the system can recover.

Packet losses reduce the actual throughput of a system
since users must retransmit all packets lost in transmission.
Since a large and effective throughput is the primary goal of
this work, care must be taken to ensure against packet losses.
The system designer must research the queuing problemsg of the
switch before deciding on the size of the Shift Register Array
and all the various queue lists. If the packet switch is
built with an insufficient amount of array locations and/or
queue lengths for its throughput rating, packet losses will
be inevitable. In addition, part of the responsikility of
ensuring against packet losses belongs to the users themselves.

They must not exceed the channel capacities assigned to them.

187

et e e d + e i

g

L
i
)
7
i”?
L
?
:

S.4 FPault Detection and Fault Tolcrance
S8ince the packet switches presented in this work are

part.ot a proposed communication satellite network, fault

‘detection and fault tolerance are desirable features. Once

the satellite is placed into orbit, maintenance and repair
work will be quite expensive or 1mpos§ib1e. Therefore, if
the packet switch could handle its own maintenance problems,
the useful life of the satellite will be extended.

The failure of some components will cause an entire
channel to fail. An example of such a component is an input
buffer. If an input buffer fails, the channel it serves will
also fail. Some component failures will cause intermittent
packet losses. An example of this type of failure would occur
if one location in the Shift Register Array failed. Only the
packets stored in this location would be lost or corrurted.
Both of these types of failures will degrade system perforn-
ance but the packet switch can still operate. However, there

are certain component failures which will cause the entire

_ packet switch to fail. These components should be either

fault tolerant through the use of redundant circuitry or self-
diagnostic. The self-diagnostic components should be able to
hand over their tasks to a spare component upon detection of

a fault. The components which fall into this category for

the three processor system are:

1) The Input Processor
2) The Routing Processor

3) The Output Processor

188

4) All the polling circuits
5) Both Data Path Busy Status Ports

6) ELIST

The components which can cause a channel loss in the

three processor design due to a failure are:

1) Input Buffers

2) Output Queue Lists

ORIGINAL pA~r IS

3) Output Sta
OE POOR QUALITY]

4) Output

The components which can cause intermittent packet losses

in the three processor design due to a failure are:

1) Data paths in the Input Switching Network
2) Shift Register Array locations

3) Data paths in the Output Switching Network

In the multiple processor design, the only system com-
ponent that may cause the entire packet switch to fail, should
it fail, is the ELIST. Single or multiple channel failures

could result if one of the following fails:

1) Input Buffers

2) Input Polling Circuits

_3) Input Processors

4) Data Path Busy Status Ports
5) Packet Destination Data Ports

6) Packet Routing Processors

«~3) All the polling circuits
(;) o 5) Both Data Path Busy Status Ports
6) ELIST

The components which can cause a channel loss in the

threé processor design due to a failure are:

1) Input Buffers

- i 0 13

2) Output Qu:u;i._f.ﬂ'?is

~ 3) output St '
P 4) Output‘:

]

f

f

F

:

|

|

ORIGINAL PACE 19
0OF POOR QUALITY

e R AN S

The - components which can cause intermittent packet losses

in the three processor design due to a failure are:

1) Data paths in the Input Switching Network
2) Shift Register Array locations ‘ §
3) Data paths in the Output Switching Network

In the multiple processor design, the only system com-
ponent that may cause the entire packet switch to fail, should @
it fail, is the ELIST. Single or multiple channel failures

could result if one of the following fails:

1) Input Buffers
2) Input Polling Circuits

Ay onsi— ey - ma o

3) Input Processors

i “.

4) Data Path Busy Status Ports i
5) Packet Destination Data Ports ‘

(6) Pac}et Routing Processors

189

Pt i . g P e s x|y o e

()

7) Output Queue Lists

8).0ntput Processors

9) Output Status Words

10) output Polling Circuits L4
11) Output Buffers

As noted above, if the Data Path Busy Status Port of an
Irput or Output Switching Network fails, the loss of some
channels will occur as a result. However, if only a single
Input (Output) Switching Network is used by the switch (as in
the case of the Qee processor system), a status port failure
will result in the failure of the entire packet switch. Thus,
system reliability and elimination of resource contention is
achieved with multiple Switching Networks.

The components which can cause packet losses in the

®
multiple processor design due to a failure are:

1) Data paths in the Input Switching Network
2) S8hift Register Array locations |

3) Shift Register Polling Circuits

4) Packet Sorting Processors

S) Data paths in the Output Switching Network

Now that the impact of each component failure is identi-
)
fied, ' > system designer c2n decide ¥what level of faf@it

detectiun and fault tolerance is needed for é;ch component.

190

6.0 QUEUE THEORETIC MODELLING FOR CALCULATION OF THE AVERAGE
RESPONBE;?IMES AND TIRE AVERAGE QUEUE SIZES

6.1 Introduction

In this section qgueue theoretic analysis and evaluation

of the proposed designs are presented. Analytical relationships

between the average response times and the design parameters

of the switch are obtained. These expressions are to be used

to evaluate the perfurmance of the three designs of the switch

for various values of these parameters. Also, the average queue

sizes in the shift register array are obtained. This gueue

size gives an idea as to the required size of these shift

register arrays in the various designs.

6.2 Design Parameters of the Switch

The average response time of the switch and the average

size of the shift register array depends on a number of para-

meters.

1)

2)

3)

4)
5)
6)
7
8)

The more important of these are:

¢ = clock cycle time of the microprocessor - This
speed determines the time taken by the processor to
serve a packet at the various gtages of its service.

duration of the in}ut interrupt service routine.

t

pl

tpz = duration of the output buffer'interrupt service
routine for packete,

tp3 = duration of the routing service routine.

tp4 = duration of the sorting service routine.

R = bit rate/user.

N = number of input lines connected to the switch.
B = number of bits/packet.

191

.10)

11)
12)
13)
14)

15)

16)

17)
18)

Yit destination function - this function determines
the fraction of the total number of arriving packets
going to individual output iines.

8; = output line speed - this speed determines the
time required to transmit a packet to a particular
destination. Different lines may have different
speeds.

Fp = system packet rate in packets/sec.

Fg = system throughput in bits/sec.

M = number of output lines.

K = number of packet size storage locations in the

shift register array.

Ty = time taken for unsuccessful polling of one line
at the i-th queue.

A = overall average arrival rate (packets/sec.).

T = time needed to shift one bit internally.

Nj, j=1,2,3,4 = number of processors at the input,

output, routing and sorting service points respectively.

6.3 The Single Processor Design

6.3.1 Introduction

It appears from the proposed single processor

architecture and operation of the switch thet queues build

up in the switch as shown in Figure 6.1. In this queueing.

model packets queue for service by the processor in three

places. Firstly, the arriving packets qﬁeue for inputting

into the shift register array. Secondly, these packets await

192

e et At e LA M

Rl g it At o 2

LTI T - e
-

the routing service which includes header analysis, error
analysis, generation of ACK's and NACK's, and separating the
packgts into software queues. Finally, these packets queue
for outputting. The routing service is to be performed

by the processor whereas the inputting and the outputting
functions involve service by a polling circuit in addition
to that by the processor. Also, the inputting function has
the highest priority, the outputtinéifunction has the second
highest priority and the routing service has the lowest
priority. This priority aésignment is assumed as the incoming
packets have to be attended to upon their arrival, otherwise
they will be lost. Also, the output lines, being slower than
the switch itself, causes a bottleneck in the system. Hence,

whenever an output line is free to transmit messages, it

should be serviced as quickly as possible. Thus, the outputting

process is given the second highest priority.
The packets change priority class after receiving service

and the whole system can be modelled as a single server (the

_ processor) serving customers of three levels of priority as

shown in Figure 6.2. The packets of various priorities queue
separately for service. The average time spent by a packet

in the switch (average response time) is the sum of the
waiting times and the service times at the three queues. Next,
expressions are derived for the average waiting times, the
overall averaée response time, and the average gueue sizes at

the various queues.

193

(ST,

R A T i e

s recaes ki mn

S s b o By kA BT

6.3.2 Paramaters of the Input Queue (highest priority)

ﬁ 4‘(5) The Arrival Process

| The total arrival at the input queue is the

sum of the arrivals on all the input lines. It is assumed
that the arrival on the i-th input line is Poisson with average
rate Ali' Then the overall arrival at the input queue is
Poisson with arrival réte

N A

(b) Service Time

The service time at this queue consists of
polling time to locate the packet, transfer setting up time
and the actual transfer time. However, the processor is
free to sefvice other lines as soon as a transfer is set up
and also there are sufficient number of transfer paths
available so that the actual process of traﬁsfer of any
packet does not cause any delay in servicing any other packets.
Thus, for the purpose of calculating the average waiting time

for packets in this queue, we consider the service time

'1‘1 = polling time + setting-up time
(6.2)
=ttty
where tpl is a constant.

We need the mean and the second moment of Tl and, hence,

those of ty. If there are N input lines, polled equally,

194

P+ 1 A AP

e e e

then a particular packet may be polled immediately or it may

‘have to wait until N-1 other lines are polled and the proba-~

bility of staring the scan at any one particular line is % .
Thus, the average number of lines polled before the particular
one is polled is

-] : K

2]

N-z-l
i=0
and the average time spent for unsuccessful polling is

(Egl)t1 where T is the time taken for unsuccessful poll of

one line. Also, the mean square value of the polling time is

N-1 (111)2 (N-l)(2N—l)ti
N = 6

(6.4)
i=0

Hence, the average service time

_ N-1

and the mean square value of Ty is

2

E[T,] = < + t

2
pl

(6.6)

(c) Utilization Factor

= A -E[T,] = (? AL o+t
P = M1"B TR S A I

pll (6.7)

195

o, §1 SIT ERARTE. O T PN

0 Aesa 5 s UL

6.3.3 Parameters of the Output Queue (Second highest
priority) .

(a) The Arrival Process

This queue, in fact, consists of M separate
queues, one for each output line. A packet from this queue
is serviced when tﬁe corresponding output buffer is empty. An
empty output buffer produces an interrupt that is recognized
by a polling circuit, and is serviced by the processor if there
is a packet to be tiassmitted in the corresponding output quéue.
If there is no packet in the corresponding output gqueue, then
this interrupt is disabled until a packet is available.

The time spent in this queue is calculated in two stages.
Firstly, the time spent in waiting for and being serviced by
the processor and secondly, the time spent in transferring and
transmission of packets from the shift register array to the
output lines.

All the packets in all the output gqueues and the packets
in the input queue affect the time spent by any packet waiting

in any of the output queues for the processor. However, the

"time for transferring and transmission of a packet depends only

on the speed of the corresponding output line because the pro-
cessor can attend to other packets as soon aé a transaction has
been set up. Hence, to find the waiting time, we shall consider
all transactions in the output queues to form one queue. It
should be noted that it is the interrupts by the output buffers
that are serviced by the processor. However, the interrupts

are serviced only if there is a transaction available for

transfer in the corresponding cutput queue. Thus, we are

196

b R AT v,

. A e e

i»~4

assuming that the arrival of the interrupts follows the same
distribution as the a?rival of the packets to the output
queues. This arrival process is, in fact, nonpoisson. How-
ever, we shall assume it to be Poisson with the understanding
that the results obtained are the worst case ones. The arrival
rate is A, = A = A. |

(b) Service Time

" The relevant service time for calculating the

waiting time is

T2 = polling time + setting time

=t, +t (6.8)

p2

where t is a constant.

p2
The transfer time is not included here because it does not
affect the waiting time for service by the processor. Following
the arguments given in connection with the polling time for the

input queue, it can be shown that the average service time

M-1

e a2 ¢ e g Pt e e e e . . S

and
,. M-l M-,
E[Tzl = . + tp2 (6.10)
(c¢) The Utilization Factor
The utilization factor connected with the
gservice by the processor, for this queue is
Py = AZ-E[TZI (6.11)

197

2 g 1% i+ o e P I e e o Wome—— s o N TR

e R e R N

FUPRLENER OISV NSV VT S

[ERNN

NP RPN

e et i

s

e o m TR g

6.3.4 Parameters of the Queue for Routing Service
(third highest priority)

. (a) The Arrival Process

The arrival process is not exactly Poisson.
However, for the purpose of this analysis, it is assumed to
be Poisson with the understanding that the results obtained
are the worst case ones. The arrival rate is-l3 = Al = A

(b) Service Time

The service time Ty = Polling Time +
Processing Time

=¢t, + t

3 p3 (6.12)

where tp3 is a constant. Following the arguments given in

connection with the input queue, it can be shown that

= K21 '
E[T3] 5 T3 + tp3 (6.13) |
and 1
2, _ (R-1)(2K-1l) _2 2

where K is the number of storage locations (in packets) in ;
the shift register array and T4 is the time spent in unsuccess-
ful polling of a storage location.

(c) Utilization Factor

The utilization factor for this queue is

Py = A3-E[T3] (6.15)

198

6.3.5 Expression for the Average Response Time
Eguations derived in the previous section are now

used to obtain expressions for the response time ®f the switch.

fhe queues use random dispatching (polling) and pre-emptive
queueing disciplines and do not give preference to packets with
shorter service times. As this dispatching discipline is
independent of service time, the mean waiting times are the same
as those for Head-of-Line service discipline. Hovever, we take
the polling function.into account by adding the average time
due to unsuccessful polling to the actual processing time by the
processor. Then the average waiting time at the queue with the

j-th priority is [7,8])

j = 1,2,3.

‘The average of the total time spent by a packet in the input

queue (highest priority) (time spent in waiting, being ser-
viced by the processor and being transferred to the shift

register array from the input buffers) is

where T is the transfer time at this queue 1. The average
of the total time spent by a packet in the output queue (second

highest priority) is calculated in the following way:

199

(6.16)

P YPITIIE S T

o byt

O

(a) Arrival Process

This queue consists of M separate queues and the
waiting time is different in the different queues as the waiting
time in a queue depends on the arrival process and the speed of
the corresponding output line. The arrival to each of the gueues
is assumed to be Poisson. However, the arrival rate may be dif-

ferent for different queﬁes. The arrival rate to the i-th

.component queue of this second priority queue is

A (6.18)

21 = Yira = v4h
where Yi‘is specified by the destination function such that
Yi of the total arrivals at this second priority output queue

go to its i-th component queue.

M
Yy Sl o 12171 =1 (6.19)

Hence, the average service time at the i-th component

queue is

E{Tzil = E[thl + t + E[T,]

p2 t2i
(6.20)

+ T

= Elt,,) + ¢t tyy

where Tt2i = transfer time, is a constant and tpz the setting
up time, is also a constant. E[TtZi] = average transfer time
from the shift register array to the output buffer + average

transmission time over the i~-th output line

e At b 7 A e T BN e mate e

200

tilbasd

average transmission time = %: (6.21)

where 81 is the transmission speed in bits/sec of the i-th
output line. The utilization factor at the i-th component

gueue is

- Also

(6.23)

2
2,58 2
ElTy3) = 37 * ®p2
i

neglecting the cross multiplication terms and E(tgz) as
small. Then, the average time spent in waiting at the i-th

component gueue of the second priority queue is

2
_ A *E(T2,)
Elt,] = yoa——2i

(6.24)
Wayt o Z(1 = pyy)

Thus, the average total time spent in the i-th component

queue of the second priority queue is

Agy "EIT;) 6.3
E[tqu] = E[TZi] + m—_—az—ir (6.25)

The overall average time spent in waiting and in service at

the second priority queue is

E[t = =
- LT " is

v Elty) (6.26)

1 24

The total average time spent by a packet in the queue for
routing service (the third highest priority ~ =2ue) is
201

o dnstesmi

s

T VSRR T

~ Putting back the expressions for the relevant quantities in

Eltyy) = Elt, ;) + EIT,] - (6.37

Thus, the overall aveiage response time = the average total

time spent by a packet in the switch

n(tql - E(tqll‘* B[tqzl + Eltq3l (6.28)

equation (6.28) we get the overall average response time

Blt) = Elt)] + Elt,) + Eltg,)

M
- E[twll + tpl + n['ru] + 1-2-1 N n(thl + tpz
N 2 :
2 B
Y. () AL (e, + =)
LB, 1 M3 e * o

517 20 - vAEe,y) + b, +ED)

R~=1 :
+ E[tw3] + tp3 + == 14 (6.29)

neglecting E[tizl compared to tgz + 5; » where B(twj) ?
j=1,2,3 are given by equation (6.16). :

Equations (6.16) and (6.29) show the relationship of
the average response time for the packets to the various
design parameters of the switch, namely, the total arrival | [
rate A, the number of input lines N, the size of storage at
the shift register array K, the number of output lines M,

packet size B, transmission rates of the output lines §;, the i

202

(

processor times tpl' tpz and tpa, the times Tyr Tge Ty needed
¢.r unsuccessful polling of a packet at the first, second and

third priority queues respectively, and Yqo the destination

function. This relationship can be used to study the effect

of variation in any of these parameters on the average resyponse

time. In this respect, it is useful to draw graphs showing

the variation in the average response time as some or all of &
these parameters are varied. Graphs of (inis type are presented

in Pigures 6.3 - 6.22. PFurther explanation of these graphs is

presented in sectiou 6.3.7.

6.3.6 The Average Queue Sizes
For this pre-emptive resume queue one can also obtain
average queug sizes. The average number of packets waiting in

the j-th queue is (7,8]

4-1 Ay { AE1T2)
BIW,] = —3iy—] o, + —32 (6.30)
(1~ { pi’ 2(1 - g 91]
i=1 i=1
N
where)} =), =), = 121 = A4 = A Pys Py, and p, are given

by equations (6.7), (6.11) and (6.15) respectively, and E[T2],
n{tzl anéd m&rgl are given by equations (6.6), (6.10) and (6.14)
respectively. We are specifically interested in the gqueue size
in the shift register array. This shift register array stores
the packets that are waiting for the output function and the
routing function. Hence, the required average queue size

is Blwzl + z[w31. A number of graphs showing the variation in

203

/ 3
i 5}
2]

B(Wj), j=1,2,3 have been obtained from equation (6.55‘. These

graphs are shown in Pigure 6.23 - 6.29., Puricher explanation i
of these graphs is presented. in section 6.3.7. Theae graphs :
show the average queue sizes. However, we may be interested

in £inding queue size necessary for given utilization factor

ani probability of overflow. These results can be used to ob-
tain an approximate answer to this question. If the utilization
factor is about .6 and the probability of overflovw is 10'3, then
the required buffer size is approximately ten times the average
buffer occupancy. Por smaller utilization factors, the required

buffer size is further less ([%).

6.3.7 Interpretation of the Graphs Showing the Effect of
Various Design Parameters on the Performance of the
Proposed Packet Switch

A number of graphs showing the effect of the various

! design parameters on the average waiting times and the average

gueue sizes at the three queues and the overall average response

time are presented in Pigures 6.3 through 6.29.

(a) The Average Waiting Times at the Three Queues

Effect of A, ¥, M, ¢ and K on the average waiting

times at the three queues are shown in Figures 6.3 through 6.13.
Average waiting time &* gueue 1 vs. A, N, £, and tpl’

Pigure 6.3 shows the effect of Pye the utilization factor {
on E(twl). the average waiting time at queue 1. E(twl) increases
as p; 1ncrea£es and becomes very large as p; approaches l. The

effect of A, Nand t on B(twl) can also be obtained from this

pl
(graph by calculating the corresponding 2 using equations (6.1)

through (6.7) and using this value of Py in Figure 6.3.

204

oAverage waiting ti‘t queuve 2 vs. A, N, tl-'—szl—s’pll—'-;p2 and M.

(;) The effect othpz. the utilization factor on E(t _,), the
average waiting time at queue 2 is shown in Figure 6.4. Because

(the packets at the input queue (queue #1) has priority

} over those at the output queue (queue #2), the E(th‘ depends
on both Py and Py- The family of graphs in Figure 6.4 show the
effect of p, on E(t, ;) for a number of values of Py It should

. be noted that p, has a dominant effect on E(t,;) and for values
of P close to 1, E(t _,) increases rapidly. This indicates that

3 vhen the input queue is heavily loaded, -the processor does not

have much time for the second queue. It is also observed from

egquations (6.8) through (6.11) that Po is related tc the number
of input lines N, the arrival rate A, the polling tine ty the
processor setting up time tpz and the number of ortput lines M.
Hence, the effect of any of Fhese parameters on E(t _,) can be
obtained from Figure 6.4 by using the corresponding values of

Py and Py- It can be seen from Equation (6.16) that E(th) con-

1
tains a term i“pl'pz

B(t,,) increases rapidly. Also, if Py + Py > 1, then E(t,,)

. Hence, if Py + Py approaches 1, then

may become negative. Thus, to have a reasonable value of

| B(th). Py + P, should be less than unity.

Average waiting time at queue 3 vs.), NL_;I, tzx_sz K and M.
Figures 6.5 through 6.10 present the effect of P3e the

utilization factor on E(tw3). the average waiting time at gqueue

3 for a number of values of Pye Py and K, the number of packet-

size storage units in the shift register array. Figures 6.5

(- through 6.7 show the effect of K on E(t_,) for same values of

o e ——
[}

205

i aane sl
. W TR ey, W T - TR T T T —— g e ———

R A bt kRGO A

b

v e
i

pi, Py andvpa. It is seen from these graphs that for any given

valu.? of Pye Py and p3.l(e.g., Py = .156, Py = .18 and Py = .343),
E(tw3) is smaller for K = 10 than for both K = 5 and K = 20.
This indicates that for a given data arrival rate and processor
speed, there is an-optimum value of K that produces minimum
E(t,3). For values of K below this optimum value E(t,3) increases
as there may not be sufficient storage space available. Hence,
the processor cannot immediately set'up a transfer from the input
buffer to the shift register array and thus the processor has to
spend more than usual time for servicing each incoming input
packet which, in turn, increases the delay in servicing the
shift register array. This points to a possible tie-up situation
and, hence, sufficient storage should be provided to avoid this
breakdown of the process. On the other hand, as K increases,
E(tw3) increases simply because more time is spent in polling
these storage units.

Figures 6.7 through 6.10 show the effect of Py on E(tw3)
for given values of Par Py and K. These figures show that as

f1 3)
increases very rapidly indicating a dominating effect of Py

increases (with the same values of Por p3 and K), E(i;w

on E(tw3). Tr"s is because if the input queue is utilized
heavily, then the processor does not get time to serve the
second and the third queues giving rise to higher delay at
these latter queues.

It should be pointed out that E(gw3) involves a term

1
(1=p;=py=p3)
P3 approaches unity, E(gw3) increases rapidly and if Py + Py *

, (cf. equacion (6.16)), and, hence, as Py + Py *

Py 1, then E(§N3) mav be negative. Hence, Py + Py + Py

should be kept less than unity.
206

A e e e T e

e o

o e m———

U

Average waiting times vs. clock cycle time of processor.

One of the objectives of this work has been to find out
the effect of the speed of the microprocessor on the performance
of the packet switch. For this purpose, graphs have been ob-
tained showing the effect of ¢, the processor clock cycle time
on E(t,;), B(ty,y) and E(t,3;) as shown in Figures 6.11, 6.12 and
6.13 respectively. |

Seven valurs of the clock cycle time, namely 0, 25 ns, 50 ns,
75 ns, 100 ns, 125 ns and 150 ns have been considered. It is
seen from these graphs that the clock cycle time has a prominent
effect on the waiting times. An arrival rate of A = 8x104
packets/sec has_been used in generating these graphs and the
corresponding values of Pyr Py and Py as obtained from equations
(6.7), (6.11) and (6.15) respectively are also shown on these
graphs. For the AMD 2900 bit slice microprocessor used in the
present design, the clock cycle time is approximately 120 ns.

The corresponding Qalues of E(twl), E(th) and E(tw3) are 250 nSs,
1.7 uS and 11.5 uS respectively.

In the future as more powerful microprocessors (with smaller
clock cycle times) become available, the corresponding waiting
times at the various queues can be obtained from these graphs.
Other arrival rates also can be used in obtaining similar graphs
provided that the corresponding Py + Py + Py remains less than
unity.

(b) The Overall Average Response Time

Effect of the various parameters on E(tq), the
overall average response time is shown in Figures 6.14 through

6.22.

207

o m——a

o T T T — — | —w— T p———— e ppp—m— ———

Overall average response time vs. packet size B.
Figure 6;;4 shows the effect of the packet size B on the

overall average response time E(tq). Four graphs each corre-
éponding to a different set of (pl, Pyr p3) are shown. It is
seen that in each case the overall average response time

increases at the same moderate rate as B goes from 1000 bits

- to 10,000 bits. This is a éery useful result. Because the

throughput of the switch increases directly as B, whereas the
corresponding response time increases at a much slower rate.
Thus, the throughput can be increased considerably without
suffering severe penalty in response time. It is to be noted
that Pyr Py and P3 do not depend on B. It is the shifting times
that depend on B. Hence, the response time for a given B can be

reduced by employing a faster hardware for shifting of data.

Overall average response time vs. destination function Y-

Figures 6.15 and 6.16 show the effect of destination
functions on the overall average response time g(tq). In figure
6.15, all output lines are assumed to have equal capacities.
Aléo, five different sets of destination functions have been
used. The destination function sets 1 and 2 represent random
distribution of data to the various output lines. Set 3 repre-
sente uniform distribution of data to the output lines. The
fourth set is such that half of all the data go to the output
line number 1. The output lines 2, 3, 4 and 5 receive only ten
pt rcent of the data each. The rest of the lines receive only
two percent of the data. This is a biased destination function.

The f£ifth set again represents a biased destination function

208

with the output line number 2 receiving f£ifty percent of the
data. The capacities of all output lines are the same. It is
obsefved from Figure 6.15 that the overall average response

time'is minimum for the uniform destination function. Also,

for the biaéed destination functions, the response times are con-

siderably higher than that for the uniform destination function

case. The input arrival rate is chosen such that the utilization

factor for each of the output lines'ig_less than unity.

For Figure 6.16.the same sets of destination functions
and same values of other parameters are used except that in
this case the capacities of the output lines are given by
8; = 5ABy;. Here, the capacity of each output line is propor-
tional to the amount of data destined for it. Because of this,
the response time remains constant for all the destination

functions.

Overall average response time vs. output line speeds Si-

Figures 6.17 through 6.22 show the variation of the over-
all average response time due to changes in the capacities of
_the output lines. Three types of capacity assignments are con-
sidered: uniform, proportional and équare root. In the uni-
form capacity assignment, the capacities of all the output

A%g). In the proportional assignment,

lines are the same (S; =
each.output'line is given capacity proportional to the traffic
on it (Si = ABYia). In the square root capacity assignment,
every line is assigned minimum capacity equal to the traffic
expected on this line. Additional capacities are then assigned

to each line in proportion to the square root of the traffic

expected on that line. Figures 6.17 through 6.19 show the

209

k4 i

response time for uniform destination functions (Yi = ,1 for
all i). With this destination function, identical response
t;mBS‘arQ obtained for all three types of capacity assignments
aé sﬁown in Pigures 6.17 through 6.19. This is so because

-with this destination function all three capacity assignments

result in the same capacity values for the output lines. The
case when a = 1, i.e., the'capacity assignmen£ is equal to the
avarége‘traffic on a line, the response time is undefined as
the one or more terms in equation (6.29) may be negative. It
is observed from these graphs that the response time decreases
as o increases, the decrease being sharper init;ally and more
sluggish for a > 5. Thus, after certain values of a, increasing
the line capacities may not reduce the response time corre-
spondingly. That means a point of diminishing return sets in.

These general comments apply to Figures 6.20 through 6.22
also. However, for these cases, the destination function is a
biased one and, hence, the response time does not have the
exact same value for the three different capacity assignment
strategies.

(c) The Effect of the Various Design Parameters
on the Average Queue Sizes

The number of packets waiting at the various
queues for various design parameters is shown in Figures 6.23

through 6.29.

Average queue sizes vs. A, N, M, K, tl' t2, t3, tpl' t?z and t?3.

Figure 6.23 shows the variation in the average queue size
E(wl) with Pyr the utilization factor at queue 1. This curve
has similarity with that for E(twl). This follows from Little's

210

-~

formula which states that the average queue size = average
arrival rate x average time spent in the system. 2As Py

approaches unity. the queue size increases rapidly. However,

as the queue 1 has the highest priority, the queue size is

rather small for p < .9.

Pigure 6.24 shows the average queue size E(wz) as a

function of p,, the utilization factor at queue 2 for a number

of valugs of p,. For reasonable results Py + py should be less
than uﬂity. It is also seen from this figure that Py has a
dominant effect on E(w,).

Figures 6.25 through 6.29 show how E(w3), the gqueue size
at the third queue changes with Pyr Pys P4 and k. Figures 6.25
and 6.26 show E(w3) for K = 10 and K = 50 respectively for given
values of Pye Py and Py- It is seen that the cxpected queue
size E(w3) goes up somewhat for K = 50 than for K = 10. This
is due to the additional polling time necessary for finding the
stored packets. It appears that K = 10 is reasonable for p = .l.
However, it is seen from Figures 6.26 through 6.29 that E(w3)
increases rather quickly as Py increases. Hence, for higher
values of Pys @ larger value of K should be used and the corre-
sponding queue size be determined. For the purpose of this
report, K = 50 is uséd and the corresponding E(w3) are shown.
If a higher value of Py is intended to be used, then a K larger

than 50 has to be used.

211

G ”

LI

R £ E A A

—m T w———

6.4 The Three Processor Design
6.4.1 Introduction

It appears from the proposed three processor archi-
tecture and operation of the switch that gueues build up in
the switch as shown in Figure 6.30. In this queueing model,
packets queue for service by the processors in three places.
Firstly, the arriving péckets queue for inputting into the
shift register array. Secondly, these packets await the
routing service which includes header analysis, error analy-
sis, #nd separating the packets into software output queues.
Finally, these packets queue for outputting. All the packet
switch functions involve service by polling circuits in addi-
tion to proceésor sexvice.

The average time spent by a packet in the switch (average
response time) is the sum of the waiting times and the service
times at the three queues. Next, expressions are derived for
the average waiting times, the average response times, and the

average queue sizes at the various queues.

6.4.2 Expressions for the Waiting Times at the Various
Queues and the Overall Average Response Time

The assumptions made for the queueing model for the
single processor design are also assumed here. Also, the
analytical developments used in section 6.3 are valid
here except that in the three processor design, each processor

is performing only one function. Hence, the average waiting

time at each gueue depends on the corresponding utilization

212

factor only. Thus, the average waiting times at the routing
and the output queues depend on Pa and Py respectively and
not on 6ther p's.

Following the definitions and analytical developments
similar to those gor the single processor design (cf. section
6.3), it can be shown that for the three processor design, the

overall average response time E(tq) is _

Elty) = Elt ;] + Elt] + Eltg,]
M
= Elt,)) +t,; + EIT,] + 121 Vi |[Elty) + £

N 2 g2

Yi(jzl "13’ (t5p + -s-z-)
B i

+ =— +
8

+ 2y

+ E[tw3] + t (6.31)

p3

2
2 2 B
neglecting E[tw2] compared to tpz + ;7 , Where E(twj)
1
j=1,2,3, the average waiting times at the j-th queue

are given by [7,8]

AE[T?]

E(t,) = ETT=%;Y . §=1,2,3 (6.32)

where E[T?]. j=1,2,3 and pj. j=1,2,3 are given by equations
(6.6), (6.10), (6.14) and (6.7), (6.11]) and (6.15) respec-
tively. The difference between equations (6.16) and (6.32)

213

R TR T T TR RN, T T e T

T

should be noted. Also, the polling times Ty Ty and 1,
are assumed to be negligible as polling at all three queues
are done by hardware in this case.

Equations (6.31) and (6.32) show the relationship of the
average response time for the packets to the various design
parameters of the switch, namely, the total arrival rate A,
the number of input lines N, the number of output lines M, ?
packet size B, transmission rates of the output lines Sy the
processor times tpl' t

p2
function. This relationship can be used to study the effect

and tp3, and Yi' the destination

of variation in any of these parameters on the average response
time. In this respect, it is useful to draw graphs showing

the variation‘in the average response time as some or all of
these parameters are vagied. Some graphs of this type are

presented in Figures 6.31 - 6.55.

6 4.3 Expressions for the Average Queue Sizes at the
Various Queues

Following the developments in section 6.3.6 for
the average queue sizes for the single processor design, it
can be shown that for the three processor design the average
number of packets waiting at the j-th queue [7,8] is

A2g [12)

= pj + ' j=1,2,3 (6.33)

E[W.]
J Z(l-pj)

where E[Tgl, 3=1,2,3 and pj, j=1,2,3 are given by equations
(6.6), (6.10), (6.14) and (6.7), (6.11) and (6.15) respec-

'tively.

214

We are specifically interested in the queue size in
the shift register array. This shift register array stores
the packets that are waiting for the output function and the
routing function. Hence, the required average queue size is
zth] + B{W3]. A number of graphs showing the variation in
E(W,), 3=1,2,3 have been obtained from equation (6.33). These
graphs are shown in Figures 6.56-6.64. Further explanation
of these graphs is presented in section 6.4.4. These graphs
show the average queue sizes. However, we may be interested
in £inding queue size necessary for given utiliiation factor
and probability of overflow. These results can-be used to
obtﬁin an approximate answer to this question. If the utiliza-
tion factor is about .6 and the probability of overflow is 10
then the required buffer size is approximately ten times the
average buffer occupancy. For smaller utilization.factors,

the required buffer size is further less [9].

6.4.4 Interpretation of the Graphs Showing the Effect
of the Various Design Parameters on the Performance
of the Proposed Three Processor Packet Switch

(a) Effect of Contention on the Average Waitin
Times and the Average Queue e Sizes at the Various

Queue 8

In the three processor design, the problem of

contention among the processors for using common resources has

-3
’

IO,

been resolved as much as possible. However, possible contention

over the use of the output queue lists by the routing and the
output processors could not be‘totally removed. It appears

from Table 5.1 that the durations of the routing service

215

. pon)

oy T AR TR A

e s TE TRTRARTIEL TN Ty R

routines and the output service routine increase by two cycle
timeg each in the preseﬂce of contention over those in the
absepce of contention. Early on we wanted o0 £ind out the
effect of contention on the average waiting times and the
average queue sizes at the three queues. The graphs in Figures
6.31 through 6.41 show the effect of contention on the average
waiting times and'the average queue sizes. An examination and
comparison of the corresponding grafhg with and without conten-
tion show that the effect of contention on the average waiting
times and the average queué sizes at the routing and output queues
are negligible. The input queue, of course, is not affected by
contention. For this evaluation, two possible situations have
been considered: no contention and contention at all times.
The corresponding results give the lower and upper bound on the
effect of contention. Results for other degrees of contention

lie in between these two limits.

(b) The Average Waiting Times and the Response Times
at the Three Queues

Figure 6.42 shows the effect of the utilization

factors Pyr Py and P3 On the corresponding average waiting

times. The average waiting times increase as the corresponding
p increases. For values of p beyond .8, the'waiting times
become very high and these go to infinity for p equal to unity.
Actual values of these waiting times for a given value of p
differs due to the difference in the values of E[Ti], E[Tgl

and B[Tgl which happens due to the difference in the values of

and t_. as noted on Figure 6.42. Figure 6.43 shows

similar effects on the average response times at the three

queues.

P

ru———

Average waiting times vs. clock cycle time of processor.
One of the objectives of this work has been to f£ind out

the effect of the speed of the microprocessors on the performance
of the packet switch. For this purpose, graphs have been ob-
tained showing the effect of‘o, the processor clock cycle time
on E(t,;), E(t,,) and E(t ;) as shown in Pigures 6.44, 6.45 and
6.46 respectively. |

Eleven values of the clock cycle time have been considered.
i The corresponding values of the respective utilization factors
are shown on these graphs. It is seen from these graphs that
the clock cycle time has a prominent effect on the waiting times.

An arrival rate of A = 83104

packets/sec has been used in
generating these graphs and the corresponding values of Pyr Py
and Py as obtained from equations (6.7), (6.11l) and (6.15)
respectively are also shown on these graphs. For the AMD 2900
bit slice microprocessor used in the present design, the clock
cycle time is approximately 120 ns. The corresponding values
of E(t), (t_,) and E(T_,) are 80 ns, 150 ns and 166 ns
respectively.

In the future, as more powerful microprocessors (with
smaller clock cycle times) become available, the corresponding
waiting times at the various queues can be obtained from these
graphs. Other arrival rates also can be used in obtaining
similar graphs provided that the corresponding p's remain less
than unity.

(c) The Overall Average Response Time

Effect of the vafiou; barameters on B(tq). the
] overall average response time, is shown in Figures 6.47 throuch

6.55.

217

Overall average response time vs. packet size B
FPigure 6.47 shows the effect of the packet size B on

the ovarhll average response time B(tq). Four graphs each
corresponding to a different set of (p,, 0, 93) are shown.
It is seen that in each case the overall average response time
increases at the same moderate rate as B goes from 1000 bits to
10,000 bits. This is a very useful resqlt. becavse the through-
put of the switch increases dizectly as B whereas the corre-
sponding response time increases at a much slower rate. Thus
the throughput can be increasea considerably without suffering
severe penalty in response time. It is to be nqted that Pyr P2
and'p3 do'not depend on B. It is the shifting times that depend
on B. Hence, the response time for a given B can be reduced by
employing a faster hardware for shifting of data.
Overall average response time vs. destination function y,.
Figures 6.48 and 6.49 show the effect of destination func-
tions on the overall average response time E(tq). In Figure
6.48 all output lines are assumed to have equal capacities.
Also, five different sets of destination functions have been
used. The destination function sets 1 and 2 represent random
distribution of data to the various output lines. Set 3 repre-
sents uniform distribution of data to the output lines. The
fourth set is such that half of all thé data go to the output
line number 1. The output lines 2, 3, 4 and 5 receive only
ten percent of the data each. The rest of the lines receive
only two percent of the Zata. This is a biased destination

function. The fifth‘sct again represents a biased destination

218

i % s L it

T e T TR TR

e S T3 W s e et et s e,

e g e s St a2

function with the output line number 2 receiving fifty percent
of the data. It is obserf¥d from Picure 6.48 that the overall

average response time is minimum for the uniform destination

function. Als® for the biased destination functions the

response tiu? is considerably higher than that for the uniform
destination function case. The input arrival rate is chosen
such that the utilization factor for each of the output lines
is less than unity.

FPor Figure 6.49 the same sets of destination functions
and same values of other parameters are used except that in
this case the capacities of the output lines are given by
8; = Slsyi. Here the capacity of each output line is
proportional to the amount of data destineé for it. Because
of this, the response time remains constant for all the
destination functions.

Overall average response time vs. output line speeds Si

Figures 6.50 through 6.55 show the variation of the overall

average response time due to changes in the capacities of the

output lines. Three types of capacity assignments are

' considered: uniform, proportional and square :"0ot. In the

uniform capacity assignment the capacities of all the output
lines are the came (8 = Aﬁg). In the proportional assignment
each output line is given capacity proportiopal to the traffic
expected on it (si = Asyia). In the square root capacity
assignment every line is assigned minimum capacity egual to
the traffic expected on this line. Additional capacities

are then assigned to each line in proportion to the square

root of the traffic expected on that line. Figures 6.50

219

through 6.52 show the response time for uniform destination
functions (v = .1 for all i). with this destination function
identical response times are obtained for all three types
of capacity assignments as shown in Figures 6.50 through 6.52.
This is so because with this destination function all three
capacity assignments result in the same capacity values for
the output lines. The case when a = 1, i.e., the capacity
assignme:t is equal to the average traffic on a line, the
response time is undefined as the one or more terms in
equation 6.29 may be negétive. Hence thé values of response
time for 2 < o < 10 are shown in these graphs. It i; '
observed from these graphs that the response time decreases
as o iﬁcreases, the decrease being sharper initially and
more sluggish for a > 5. Thus after certain values of a
incréasing the line capaéities may not reduce the response
time correséondingly. That means a point of diminishing
return sets in. ‘ _

These general comments apply to Figures 6.53 through 6.55
also. However, for these cases the destination function is
a biased one and hence the response time does not have the
exact same value for the three different capacity assignment
strategies.

(d) The Effict of the Various Design Parameters
on the Average Queue Slzes

The number of packets waiting at the various
queues for various design parameters is shown in Figures

6.56 through 6.64.

220

Sems v srbaron s M

Figure 6.56 shows the variation in the average queue i
size E(w;) with Py the utilization factor at gueue 1l. ;
This curve has similarity with that for E(ty,). This
follows from Little's formula which states that the average
queue size = average arrival rate x average time spent in

the system. As (2 approcaches unity the queue size increases

rapidly. However, the queue size is rather small for p < .9.

. Similar comments also apply to Figures 6.57 and 6.58 which

show the variation of average queue sizes at the routing and

the output queues respectively.

Figures 6.59 and 6.60 show the effect of varying M, the
number of output lines, on the average queue sizes at the
output queue for two proportional capacity assignments to
these lines. It follows from these graphs that even with
proportional capacity assignment the output queue size
increases with the number of output lines. This increase
is mainly due to the work involved in demultiplexing data to
so many lines which may or may not be ready to receive data.

It is seen from Figure 6.61 and 6.62 that the average i
queue size at the output queue does not increase much with
increase in the packet size. This is an encouraging result
as the throughput can be increased by increasing packet size
without making the corresponding storage requirements too
high.

Figures 6.63 and 6.64 show that the queue size at the

output queue cannot be decreased much by using faster

221

coooTT e R R ERE TR VR

processors. This is mainly because at the output queue
major part of the service time is due>to shifting time and
many packets wait for the output buffers to be available
rather than for service by the processor itself. It also
appears from a comparison of Figures 6.63 and 6.64 that
increasing the capacities of the output lines make the

queue size to go down considerably.

6.5 The Multiple Processor Design

6.5.1 Introduction

In the multiple processor architecture queues

build up in the switch as shown in Figure 6.65. In this
queueing model every packet queue for service by appropriate
prdéessors in four places. Firstly an incoming packet queue
for service by one of the input processors for inputting
into the shift register array. Secondly, this packet awaits
service by one of the sorting processors that assigns it to
one of the routing processors. The routing processor services
it by putting it into one of the output queues. Lastly this
packet is serviced by one of the output processors. Each of
these services involve service by appropriate processors and
polling circuits. However, the hardware polling times are
negligible.

It is assumed that at every stage of the service, e.g.
at the input service, the total number of packets arriving
there for service are equally divided among the processors
performing that function. This assumption is physically
reasonable as this will ensureithat all the processors are
equally busy. Operation of the multiple processor design
indicates that at each stage of service there are a number of

single server queues in parallel.
222

- ») o - o o

The averaée time spent by a packet in the switch
(average response time) is the sum of the waiting times and
the service times at the four gueues.

- Analytical expressions'are derived next for the average
wéiting times, the average response times and the average queue

sizes a£ the various queues.

6.5.2 Analytical Expressions for the Waiting Times
at the Various Queues and the Overall Average
Response Time ‘ '
Assumptions made for the qﬁeueing model for the
single processdf design are assumnicd hére. Also the
analytical developments used in section 6.3 are valid here
except |

i) there is no ingerdependence among the functions as each
function is performed by a number of processors dedicated

for this function.

ii) ‘The packet arrival rate to each processor assigned for
the j-th function is Aj/Nj where Nj is number of
processors performing this function an lj is the
overall packet arrival rate for this service. 1In
normal operation Aj=A for j=1,2,3,4.

It should be noted that
j=1 -+ input function
j=2 + output function
j=3 + routing function

and Jj=4 + sorting function

Following the analytical developments similar to those for

the single and three processor designs, it can be shown that

223

v m———————— 5

the average waiting times at the j-th queue are given by [7,8].

2

.,
ALE[T2] At
E(t) = —{——37—& RJ ; §=1,2,3,4 (6.34)
wi® 2{l=py) 28y (1 - %;tpj)

where B(szl = mean square value of the service time = tpg (6.35)
S
=A 2 esmws .

and pj 3 E[Tj] 'Nj tpj (6.36)
(neglecting the polling times). 4

For the gueueing analysis the following values of the
service times have been used.

tpl = 15 ¢

t.,.=19 ¢

p2 (6.37)

tp3 = 9 ¢

tp4 =:13 ¢

These values differ slightly from the values shown in table 5.2.
The values in table 5.2 are the final refined values obtained
after the queueing models have been developed using the earlier
estimates of these quantities. However, the queueing results
will not be much different using the values in table 5.2.

The average response times at these queues are

E(tql) = E(twl) + tpl + Ttl (6.38)
= E(twl) +15 ¢ + 2 ns x B
(t..) '2‘ (t,.) B
E(t = v: [E(t + t + = ¢+
q2 j=1 1 w2 p2 Si
2
B 2
. YiA ‘siz + th) :
- B (6.39)

224

e

|

Bltyg) = Et,g) + o3 = Elt,3) +9 ¢ (6.40)

Eltgy) = Eltyy) + t, = Blt,,) +13 ¢ (6.41)

E(tqz) is obtained by following the development in section 6.3.5.

The overall average response time of the switch is

4
E(ty) =j£1 Bltyy) . (6.42)
where E(tqj); j=1,2,3,4 are given by eqﬁations (6.38) through
(6.41) respectively.

Equations (6.34) through (6.42 show the relationship of
the average waiting and response times for the packets to the
various design parameters of the switch, namely; the total
arrival rate A, the number of input line; N, the number of
output lines M, packet size B, transmission rates of the output

lines si, the processor times tpl' toa and t and~tp4. Yy

p3
the destination function and Nj the number of processors at
the various queues. These relationships can be used to study
the effect of variation in any of these parameters on the
performance of the switch. 1In this respect, it is useful to
draw graphs showing the variation in the average waiting and
response times as some or all of these parameters are varied.
Some graphs of this fype are presented in Figures 6.66 - 6.79.
The aim here is to see how the waiting times and response

times vary as the number of processors at every service stage

is varied. Hence these Figures show family of graphs with “j

as a parameter. The effect of variation of other parameter
should be similar to that shown for the single and three

processor designs.

225

e mEmEe R R AR

£ o s e L VAR e A e b e s e

I T TN " o 2y - aais T T T T U P P PRIt T T i s S T T T P AT ¥ v

e T o

6.5.3 Expressions for ‘.he Average Queue Sizes at the
various Queues

Following the developments in section 6.4.3 for
the average queue sizes for .the three processor design, it
‘can be shown that for the multiple processor design the

average number of packets waiting at the j-th queue [7,8] is

A, 2 2
2. m2 (==~ t
- ASEITS) N, P
E[Wy] = py + —Ii-——"-’»2 =5 = Fj- thy t T S ;
- N PJ
j = 1,2,3'4. (6.43)

We are specifically interested in the queue size in
the shift register array. This shift register array stores
the packets that are waiting for the outpuf, sorting and the
routing functions. Hence, the required average queue size is
E[Wzl + E[W3] + E(w4). A number of graphs showing the variation !
in E(Wj), j=1,2,3,4 have been obtained from equation (6.43).
These éraphs are shown in Figures 6.80 - 6.83. Further
explanation of these graphs is presented in section 6.5.4.

These graphs show the average queue sizes. However, we may

" be interested in finding queue size necessary for given

utilization factor and probability of overflow. These results
can be used to obtain an approximate answer to this question.

If the utilization factor is about .6 and the probability of

overflow is 10’3, then the required buffer size is approximately
ten times the average buffer occupancy. For smaller utilization

factors, the required buffer size is further less ([9].

226

s L T oy T

T— — ~—p——

6.5.4 Interpretation of the Graphs Showing the Effect
of the Various Design Parameters on the Performance
of the Proposed Multiple Processor Packet Switch

Major aim of the analysis is to see how the

average waiting times at the various queuves vary for given
overall arrival rate as the number of processors at these queues
are varied. Figurés 6.66 - 6.68 show the effect of varying

the number input processors on the average waiting time at the
input queue. These graphs also show the effect on the average
waiting time of varying the overall packet arrival rate for a
given number of input processors. These three figures differ
in the maximum value of A, the packet arrival rate that is

6 7

allowed. Maximum packet arrival rates of 2x10~, 2x10° and

7

5x10° packets/sec have been used in Figures 6.66 ~ 6.68

respectively. The rationale for using these three maximum

values of A is the following: For Amax = 2x106 one can

observe clearly how the average waiting time varies for a
single input processor. However, the effect is not at all
clear for other higher number of input processors. The

7

using of Amax = 2x10° and leo7 shows the effect on average

. waiting time »f the varying the number of input processors.

For the same reason three values of Amax have also been

used for the sorting, the routing and the output queues.

Figures 6.69 - 6.71 show the effect of varying the
overall packet arrival rate on the average waiting time
at the output queue. These graphs also show the effect
on the average waiting time of varying the number of output
processors. Similar ;esults are shown in Figures 6.72 - 6.74
and Figures 6.75 - 6.77 for the routing and the sorting

queues respectively.

227

T e ey e e

ot et e e . i it gt e

Figure 6.78 shows the effect of varying B, the packet

size on the overall average response time for a fixed number

of processors. The ovefall average response time increases
slightly as B increases.

Figure 6.79 show the effect of destination functions on i
the overall average response time E(tq). In this figure all
output lines are assumed to have equal capacities. Also
five different sets of destination functions have been used.
The destination function sets 1 and 2 represent random
distribution of data to the various output lines. Set 3
represents uniform distribution of data to the output lines.
The fourth set is such that half of all the data go to the
output line number 1. The output lines 2,.3, 4 and 5 receive
only ten percent of the data each. The rest of the lines
receive only two percent of the data. This is a biased
destination function. The fifth set again represents a
biased destination function with the output line number 2
receiving fifty percent of the data. The capacities of all

output lines are the same.

It is observed from Figure 6.79 that in the case of
multiple processor design the E(tq) is almost constant for
all the sets of destination functions. One ‘explanation
is that in the case of multiple processor design any output
line with more packets destined for it may be provided
with a dedicated processor. Also since the output lines are
slower than the processor no large queue will build up, of
course the capacity of the output lines should be high enough
to absorb the packets destined for them. It is to be noted

that in Figure 6.79, the ratio of maximum packet arrival rate

228

w

to the line capacity is .5 M AB/)\B8 = %. Thus the channel
capacity is large enough to handle the packet arrival rates
for even the line with destination function of .5.

Thus it is seen that E(tq) is almost constant for all
sets of destination functions.

Finally figures 6.80 - 6.83 show_the effect of variation
in the number of processors on the average queue sizes for a
given packet arrival rate at the input, output, routing and
the sorting queues respectively. These Figures also show

the effect on the average queue sizes of varying the packet

arrival rate for a fixed number of proceesors at the corresponding

queues. It should be noted that the queue sizes decrease as

the number of processors increase at the various queues.

229

-

6.6 Conclusions

Queue theoretic models have been developed for all the
three proposed architectures. Graphs showing the average
waiting times, the overall average response times and average
gueue sizes as functions of various design parameters have
beon obtained. It is observed from these graphs that in most
cases the average waiting timec and the avefage queue sizes
' are reasonable. The overall response times and the queue
sizes are much smaller in the three processors case than in
the single processor case. These quantities a: 2 further
reduced in the multiple processor case, however, not propor-
tionately. '

The main incentive for using multiple processors is to
increase the throughput. However.'the response times and the
queue sizes (the storage requirement) are also reduced in the
process. Thus it seems that the multiple processor design is

the one to be used.

230

JE e aitnd

dnsrind

ol

W ———_—T—— al

7.0 Summary
7.1 Suggestions for Future Work
. Several suggestions for future work in the area of
_processor-controlled packet'switches are presented in [2].
An additional feature which is possible in the multiprocessor

architectures is the transmission of system status data to

each user. This scheme would require an additional processor
which would be required to monitor the system status. This
processor could monitor the status of ELIST, the Output Queue
Lists, and important system hardware. If this processor dis-
covered a hardware failure, a near empty ELIST or a nearly
filled queue list it could generate a packet-length message
that would inform the user of the system problems. This

processor would be required to inform the Output Processor to

send a system status data packet to each user. Using the
received status information, user could re-route messages
around nonfunctioning channels, reduce their overall through-
put, or reduce their throughput to a specific user to avoid
packet losses.

Any system enhancements will be paid for in terms of

throughput and/or the number of required processors.

7.2 System Throughput
All three packet switch architectures are capable of handling

large system throughputs as shown in the following examples.

231

7.2.1 8ingle Processor Packet Switch

?p < 1.5*10s packets/sec.

Using a packet length of 10,240 bits, the maximum bit

rate for the system is

Fp = F%B < (1.5x10%) x (10,240) bits/sec.

Py < 1.54x10° bits/sec.

7.2.2 Three Processor Pack Switch

Pp < 5.21*10s packets/sec

Using the packet length of 10,240 bits, the bit rate for
this system is
Fp = BB < (5.21x10°) x (10,240) bits/second

FB = 5.33x109 bits/second

7.2.3 Multiple Processor Packet Switch

Example System

P < 30x10°

B bits/second

N = 10 users

B = 10,240 bits/second
Packet Throughput Requirement for this system
rp = rB/B < (30*109/10,240) packets/second

P, < 2.93x10% packets/second

232

Since the throughput is limited by Equation 5.9, which
states the packet throughput is limited by the number of users,
the value calculated above may not be obtainable for this

system An evaluation must be made.

P < 2.93x10° : (1/t.,)N = 4.39x105
p [] P‘ []

is true, the proposed system can be built to handle the desired
bit rate. By using Equation 5.8 for each class of processors,
the total number of processors required for this system is
determined. Twenty-one processorg are peeded: five Inpur Pro-
cessors, five Sorting Processors, Four Routing Processors and
seven Output Processors. This system using twenty-one proces-
sors will provide a bit rate of 30x109 bits/second. As shown
above in the evaluation using Equation 5.9, this throughput is
not the maximum obtainable bit rate. Thus, if additional rrco-
cessors were implemented, a larger throughput could be provided
to the ten users.

The cost o. achieving these large throughputs is paid for
in terms of the number of procesgors required, the wid+h of
the Microprogram ROM and the special purpose hardware and soft-
ware required to deal with contention problems. T.e major
trade-off in both designs is that a reductinn in the software
executions is paid for i% hardware complexity. Two prime
examples of this type of trade-off are the use ¢f hardware
pollers and the large number of microprogram control bits,

which enable the execution of concurrent tasks.

233

L L

. e e A T kbt e e e e e —————

7.3 Queue Theoretic Results

(:) Queue theoretic models have been developed for all the
three proposed architectures. Graphs showing the average
waiting times, the overall average response times and average
queue sizes as functions of various design parameters have
been obtained. It is observed from these graphs that in most

cases the average waiting times and the average queue sizes !

are reasonable. The overall response times and thé gueue
sizes are much smaller in the three processors case than in
the single processor case. These quantities are further
reduced in the multiple processor case, however, not propor-
tionately.

The main incentive for using multiple processors is to
increase the throughput. However, the response times and the
queue sizes (the storage requirement) are also reduced in the ;
process. Thus it seems that the multiple processor design is i
the one to be used.

The major contribution of this work to the area of digital

ST .

communications is the design of efficient multiprocessor packet
switches which can provide large throughputs, special functions
and flexibility not available in non-programmable systems. The
overall performance of these packet switches will improve as

faster hardware and processors become .available.

234

1.

3.

-

REFERENCES

Roberts, Lawrence G., "The Evolution of Packet Switching,"
Proceedings of the IEEE, Vol. 66, No. 11, pp. 1307-1312,
November .

"pesign of a Microprocessor Based High Speed Space Borne
Message Switch," Annual Report to NASA on Grant No. NSG-
3191, Clarkson cOllege of Technology, Potsdam, N.Y.,
April 1979.

Burnell, James F., "The Design of a Mlcroprocessor-Based
High sPeed Packet Switch,"” M.E. Thesis, Clarkson College
of Technology, Potsdam, N.Y., August 1979.

Russo, Paul M., "Interprocessor Communication for Multi-
Microcomputer Systems,” IEEE Computer Magazine, pp. 6
76, April 1977.

Madnick, Stuart E. and Donovan, John J., Operating Systems,
McGraw-Hill, Inc., New York, N.Y., 1974.

Advanced Micro Devices Inc., "The AM 2900 Family Data
Book," 1978.

L. Kleinrock. Queueing Systems, Vol. 2. John Wiley &
Sons, New York, 1975. Ch. 3.

James Martin. Systems Analysis for Data Transmission.
Prentice Hall, New York, 19/7/2. Ch. 31.

M. Schwartz. Computer-Communication Network Design and

Analysis. Prentice Hall, New York, 1977. Ch. 7.

235

. OUTPUT 1) |
P BUFFER - -
0 1
) C o
°® o
®
®
@ : | € '
I "
'gbl R
1] SiFTING
| ® |
" Legend:
§ Fig. 6.1. The Queuing Model @ The input queue with
. i priority 1.
: _ ' ' . Th tput ith
| @ e oyt e v
236 (:) The queue for background

service with priority 3.

fouT-

—PUT M- T

BUFFE

ouT-
BUFFER

1]

TOUVLLDVMOODU

SHIFTING

st laa it}

Fig. 6.2. The Modified Queuing

Legend:

(:) The input queue with
priority 1.

(:) The output queue with
priority 2.

(:) The queue for background
service with priority 3.

[onand 3T 1030€J UOTITZITFIN °SA 3wrl SBuyiyey a8eaaay g g 314

sng
4
-5
[+ o]
o
- (o]
SNyt
.
!
i
("na
. ¢
| snsi
[

. *a33j2weaeyg vy
SV d yagm z anand e & 10308] UOTIBZTITTIIN °*SA awyl Suyiyey a8easay °4°9 *S1i

¢ e e m-JQ

€0
snse -
N
s€'o
"z
i
n
s @ 0" 0 re=l 4 snes

P PP Y ST A T 1 2 S T T ST

*gJojauweaed sy

%9 pue U9 yagm ¢ onemd e €9 30308g UOTIEZTTFIN "sh SWEL Supayem o8easay g9 "3

|
ﬁ
|
w : +«—*% S0 '@ she
|
_

ﬁ

|

_ - ‘ (¢ anand)

_ *saajyameaed SY 2 pue Ty YyIrmM €g 103083 UOTIBZITYIIN °"SA awyl Suyiyem a8eaaday °9°9 313

€
e oty S0 20 sNY

~—

snes

241

Y
AG)

sneoi

R ol et el e

*s1ajdweaeg

sy Nc pue .na .—u.ml € snand e 103083 UOTILZTITIN °SA Swy]l Suyiyem a8easay °2°9 I3

L] B

=T | /

i
0z - 3 /
/

S’

snes

™3

SMeo!

242

. *gsI932weaRy SY
Na vew Ha Aummnusu90u< na uoucchuowuwuﬂﬁuub.nboauhwnau«azu&mum><.w.c.wam

Ll LJ L

Anzuvm

SNev i

shes

243

*gIajowexeyd sy Zq pue Tg YITM €9 ao3jdeg uUOTIBZYITIIN °SA 2uyl Buyayey a8eaaay °6°9 313

| e - g S'® e SN

L 2 LJ L L2 L L] L] L v .

|
|

ﬂnl.ﬂﬂ

0z =X f
/ | srees
/
toup-30" i \ \ |

244

> —
-
N

E"na

| S—

“egp” 17517 2 Mg se'sp

*gi9jomWeaed SV N._ pue .no yam m.. 303983 UOTILZFTTIN "SA WYL Suyayep a8eaaay -Q1°9 813 ~ hr
o
o1 e S ® ee smo &
| e L] : J) J L] 14 L] J L hd %

No'.ﬂﬂ
oz =12

245

\ sws 2

(t™)
swg

Na.ﬂom—. N. -

(°su ¢Z1 = ¢ udysaq pesodoag ayl 103)
*10883201d YL JO IMWEL ITILH AO07) °*sA T snand v awy) Sujiren aBeasay °[1°¢ 814

sups| Suee | ¢ sugs e
1, .
) -9} -
& 9L
gssi - .
1 sveee
-7- 70
9c6! 9
Ve
. }
T01E2 @
o €9y cg 5 I, . . 1d
¢ 92 3 ‘0T 3 ‘¢ 61 3 A.—:uvm
JesMmaxoed 01X = Y - supes

Y

. -
~

s . A e e, i e WA ST LR N b

246

(*su 0Z1 = ¢ uvdysaq pasodoag 3yl 1904)

* 208832014 IYl jJO SWEL 9[94D WIOTD °SA ¢ 203Ny I wy] Suyayep a8eiaay “T1°9 *814

sYes| -—9 s-00 | sSYes o

%l =0160° @ 96
9SEI @ 911

%% = g6s1 @ 9SS}

8vri2'e 98"
%%y « gc22'@ 9E61I"

41 sr2z

S |

247

g/92°'@ 91EC' O

d
ooz =% <02z =% 4 1= "3

+d9s/s39oed cgnw =X - snS

T TR TRTTRGAT TR R T e TN ETREE TTTRREE TN

(*su 02T = ¢ uBysog poasodoxag ayil x04)
*10883201J 3YL JO JMUT] I[OL) NOOTH °SA € @nand Iy aufl Suriyem afeasay *€1°9 °3S1d

SuUes | -— SuUPo ! sugs e
2] Bl L . _ mm S Ql-ﬁ
f9<%0™ = 6c2 0 26
162 B°9E} B° ‘@]
sng
- ©
€92l 2cpc 2’081 @791 'O ~
-
n_ SNald
Sgc ' @°Siz 28984 '© 4
09z =% 92z %% w1 h 1 ¢
S8E B°'v22 0 ¥61I © 3 C
*d9s8/s39oed co.ﬁnm =Y - gng|

s e e e e . b Ane A it s A ds s L ameA

*s3333weaeyd sy €9 pue Nn..na YITM g 92TS IR °SA dwWE] asuodsIy 98eaaay [IEBIBA0 °91°9 ‘874
0000 | 4+ S37q g 800S 2001

nQ &NQ Aﬂg = \‘\I\\\I\\

A L‘;Ill\l\‘\\\\.
s'8°zezw --.-\\\|\\\|\\\\x\|t||||||\\\z
i'e‘'s'e‘z2wo

ORIGINAL PAGE IS
OF POOR QUALITY

RN R S]
L

M ﬂﬁ QNQO.HQ = \\\\\' -y
! P 1
| 1'e‘z'e’'se]
! P
m . |)
i
' -y
w
| -
*d9s Mayoed c0TXZ = X -
na»na - «m -
su 02T = ¢ h

SN0l

®aa
sro02

249

etk ks

R —— R

mma « Y5 ¢gr0py =0 oz =l ‘czeze='0 ‘su ozy=¢ *S3Tq 9ZOT=@ *°dos/s35xdEd (OT=V)
*SUOTIDUN UOTIBEUTISAQ °SA WL dsuodsay IBeasay TYBIMA0 ¢cy-g -S1g
s,7A jo 395 2y3 jo aequny TeyIag
el s 0

N°ol~°.‘~°o‘N°otﬂo n.ﬂoa.ﬂl nNoo .mh ..Ho n“..ﬂ? wo n% Uom
T0°“20°°Z0°°20°“T0° ‘T ‘1" ‘1" ‘1" ‘¢S" "m.ﬁ> 30 %4 39S

ﬁ.ﬂﬂc.ﬂa n.ﬂ.aﬁ.‘.ﬂ‘.ﬁbn.ﬂcaﬂl Q.HO um-.ﬂ> uo n“ Uum
€0°“ST°“Z°“CT0°“SLO°“T1°*S0"*S0* ‘1“2 uu.ﬂ> 3O Z# 3I®S : S~

€0 “ST"“Z°“SLO°*SZO"*“ST"“S0°“ST°*S0°*‘T"° "u.ﬁ> 3o T# 3I8s

[

snes

SNEo |

®aa
sndaz

250

WV, b o Ll Mobred 6

- T e AN e, TR

(sax*A = ¥

*SUOTIOUN UOTIBUITS] °*SA W] asuodsay a8eaaay preaaanp 9179 ‘812
: .m.«> 3o 39g 9yl jo aaquny TEIISS
] . S I

S sL08y"=%d G89z°=70 ‘Sz6z°='0 ‘SU OZT=b ‘SITQ HZOT= *°do5/sIedRd

Nco QNQO 0N°n QNQQ A.H- A.Ho Q.H. QN°¢ aﬂo O.Ho

Nco nﬂoe .NO. .NOo .NQ. ..Ho Q.HQ a.ﬂo a.ﬂo oﬂo

Q.H. n.H. n.HO O.HO QH. OHO Oﬂo o.ﬁo n.Ho Q.Ho

S0 “ST* “Z°*SZ0° *SLO" “T° *S0° “S0" ‘T° 2"
neo .mﬁo nNc nﬂth 0“N°o nﬂ.ﬂ. aﬂ°o nnﬂo amco Q.Ho

Lt ekl o e A L S itk R =2 . e e ededoledl,

“a.ﬁr Jo ¢ 398
»m.ﬁ> Jo 4§ 39S
un.ﬁr 3o ¢ 398
nw.ﬂr 3o Z# I®S
um.ﬂ> 30 T# 39S

| I .

I U § I |

snes

sreol

Pz

sheec

251

gl

. S .wm up © *sp awy) IsuodsAny a8eaaay [reaeap LT°9 -3 £

< D : S

L v L 4 s Ll L v

et i e d o M T e el

¥ TR 303 T* = A

‘su 021 = ¢ mvwvm
*23s/839d8ed eoaxw =YX snee

71 sres

Jsneel

A

I . |

bl

e e e mabaeieBed g

252

o WEERETRER TR

.aarna - ﬂm uy 0 *s) awW}] 9suodsay aBeasay [TEIBAQ °81°9 314

ol G D S |
r— T T T v A v v I
-d
T SMes
/ -1 o
I..Itl.liol n
-~ o~
1 sreel
IA
N
\ y
/ L
. T Q
T 118 303 T° = A b
...g (a3
*su Oz = ¢ %
*d3s8/s3oed ,O0T%8 = Y 4 sneac

ST . e I AL I J S T

L a7 e i M e e

FAgqys 2

ol

WA gy (T-0)gY

+ w>m< = ﬂm Ul © °sp Jwl] 9suodsay afeasay [TeIANQ

G 0 . S

*61°9 814

r v

N | . A L] L] RS L]

T II® 303 T* = QA
‘su oZT = ¢

* 098 /s3ayoed .»o.nnm -y

ORIGINAL PAGE IS
@F BOOR QUALITY

44 1

J

snes

sree|

®na
WJMQN

254

gy
__ el . o s } .)
M 1 sres
-1 [Te]
vy
. . . 1sreol N
v. -
< Aﬂuvm
€0°“20° “Z0° *Z0° *Z0° “Z0° *S0° “ST0° “STO"°‘SL” = 78 - snge2

el s i A o i e Yol 9 o

.ajrnd = «m U ® °sp Swj] 3asuodsay adeaaay TIRI3A0 °*1Z2°9 °*3714
Qi G p S i
.
J
/’/ J
—— -

20°°20° ‘20" 20" ‘Z0 “T°*T°“T°‘T°°¢* = M

e e are

T T L T P SUR T LU S

€l s

Y SN NS NN NN S R S S

snes

sSnoo |

®z
w:%ow

256

T -
L ¥
3 + AGY = s ur o °sp amyy asuodsay a8easay [rRaOAQg °2Z2°9 9713
AfYA(T-0) gy
el D0 S]
J
7 sres
T SMeol
IA
-
I
= n%vm
~°. QN°O QNO. ONOO .Noo ..HO O.Ho AM. Qﬁ. .mo - ﬂ? L wJQQN

257

-
. ?
_ w -1 snond 3¢ 10308 UOYILZFTIIN °SA 9ZFS anand sPeavay *(7°9 "3
M o —
| r | T - v Y X — e ¥ A M
|
W. \\\\ -
_,
o -
| ;
|
S
| = [--]
w
] o~
: .. i
] ;
m. L
f <
!
] ?&m
\ o1

*3239weIeyd V SV T3 yays z anond e 103de3 UOYIBZFTFIN “SA IZIS snand a8e1aAv -yz°g 813

259

TS ————ee W § 8 S4SW 0 B IR =) O B SEm

*sidjameaed

sy [pue T YaTA € anand IV 103Id08J UOTILZITTIN °SA I2¥S anandh aBeaaay 'ST°9 ‘314

| L

Hol.ﬂ&

- Hap-30°

*si1ajameary

sY Nc pue nn YITM € anand Iy 103d8] UOFILZYOFIN °SA 22§ anand a3easay "92°9 314

® 2%

a)3
ol

o T R TR

*s1932Weled

sy (2] pue Hq YIIM € °nand Iy 10303 UOTIBRZITTIIN °*SA 92FS anand ageiaay

"Lz'9 "81d

DRIGINAL PAGE I8
DE POOR QUALITY,

% a1t 2! glset plop! Tae

oc

¢Ema

@S

N
W

, .
d -gaajouweaed sV
N ez11130 ‘SA °21S anan)h a8eaaay 8779 374
| %9 pue Tg y3gm ¢ onand IV 20308 uoylez}
- 0
. ¢ S0
Q — 1] Q | Al L]
: | L]
|
i | U
| ge 19 “
o = 3
| ‘ 0@z .
%u p-30" | ﬂ . .
(o]
| \ \
.
. .
b
| __ ‘
[|
y P (e
A \ ¥ oes

_ .N o
Yagp gy | Tzt ¢! sgt o

*saajsuexeq sy

(2 pue Ty YITM € onan) Iy¥ 1030BJ UOTILZTTITIN] °SA 92FS anonY adeaaay *67°9 *T1d

o W WO TTTNNEETT s R RN T R TR
o e A .13 AR A5

Y9u -30° |

\‘

S

NQ' — . m— . NQIN.

aes

)3

Boo!

264

ubrsag I0SS3001d 99aAYL IAY3I
103 T9poW Hurenan) ayL °0¢°9 °BTd

o 2R

oADK

W# ¥aaand
1ndLno

(—

\ -

Z# ddadand
LAdLN0o

1# yadand
L04dano)

]

ODHAMDH AMOUHONWVONX

:

Al

4

llle

anand buranoy €
ananyd andano 2

anand 3ndul 1

$aNIOI1

£
1 M0SSAD0¥d l _ _= _.
ONILNOY

d0ss3I20dd
LNINT

265

Il

T

"enand Indur ayy 3y x03owRg UOTI®ZTITTIN

"SA awry bur3iTem obeaaay

"1€°9 *bra

SNe

N T ¥ N ST -y - R T T S

1 sns

266

sSne|

(®3a

SNSi

* (UOT3Ud3UOD ON) Mwm\
-onand Hurinoy IBYL I¥Y I030eJ UOTILZTITTIIN °SA SWIL putyl2M abeasay °zg°9 °brg &

. . € .
o't S0 20

Y T T v T X e — w:a

S T e R T

7 SNS ~
o

snet

——e.
|

4 ¢
‘ ("0z
“snSst

. *(SswT3 TTe 3P UOT3US3UO)D
anand bHuranoy ayl v I1030®yg UOTIRZTITTIN °*SA Swury burjTem mmmuo>w ‘€€ °9 *HTg

gt

€y

SNo

e et e e el ARt e i A - h.

i

-

SNS

268

Sne!

("3

SNS|

VORI e, e e e

*onsnd IndIno 8yl IV I030BJ UOTIRZITIIN

.Acowu:wu:oo ON)

*SA BuwTy bur3itrem abexsay ‘$£*9 bty

g o o aadoaogden

i

sSne

SNS &
c

sSnal

("3

sSNsit

. a ek

e T T W T R T
- o S R TR TR

B s L

Z

* (sawt3 [ie e uoTUuldjUOo)d)
*anand »:muso 8yl IV Iojoed UOTILZT[TIN °"SA SUWIL furztem abeadav °GE°9 *b13

e'e

SNe

SNS o

Snel

("z

SNSi

P S It i e A O A P Y S S

e AT ahne

* (UOT3IU33LOD ON)
-gonand burinoy ayj puy Induy oYl IV IOIdeJd UOTIRZTIIIN °*SA 92TS onand abeasay °9¢°9 °brg

€ 30 *
to s'e e

L L L4 L v v X —— T — T L o

|
271

-

(" "M)3

ni

SNeg |

* (sugz1=¢ ubrsag pasodoad aylL I0J)
*snand anduy 8yl IV IO0SS9001d YL 30 SWTL 3T2AD YO01D °SA awyl HurateMm abexaav

SNeg ¢

*Lg*9 °b1a

ve1="%

0Tx8=YX

v

2800

272

] SNS!

*onsnd HUTINOY IYL IV I088300Id SYL JO AWYL ST2LD YO0[D °*SA owyl Bur3lyeM o9beraAay °8c°9 °b1d

‘ . ._

* (suQz1=¢ ubisag pasodoad ayl 103 UOTIUSIUOD ON)

SNe9!

SNeS8 ¢

273

-] SNSI

0Tx8=Y

("3

~ SNeg¢

® - S

* (suQzI=¢ ubysaq pesodoig oyl 104 SIWIL [TV IV UOTIUS3UOD)
-onend HUTINOY SYL IV IOSSS00Id YL JO SWEL STIAD YJOTD *SA Swll BurITey BHRISAY “6E€°9 *bra

274

7 SNSI

s61="%3

Xgs
ve.nud

("z

~ SNOE

i

* (suQgzT=¢ ubrsag pasodoxd ay3 I0J UOTIUIIUOD ON)
-anand INdINQ 9YL IV IOSS300Xd YL JO AMTL ST2AD 001D °SA awil buritvem abexaav °0b°9 °bT4

SNe9 | ¢ SNes

18! "0

-£€02°0

SNS}

275

o R

S8’

* (sugz1=¢ ubrsaq pesodoag Syl I04°*SswWT] TIV IV UOTIUSIUOD)
*anand anding 9yl IV I0889001d SYL IO AWTL STOLD }OOTD °*SA awrl butiteMm obexday

¢

*I9°9 °bTa

m
" |
ﬁ m wzabm

3
0TXg=Y

e e i o m e s o

276

SNS

A.

D

("

SNeE

pue

*sanand Suranoy
Inding ‘3Indur 2yl Iy 103081 UOTILZFTFIN °SA 2wl Burayey a8eadAy -zyeg 83

€2'T 4
80 o..s b'e 2’0

L

-+

sng°tT =

sfzé°t = 3
la

snze't = 3
anonb 8urinox - ¢
anand Indano - 7
ananb Indur - |

sni

sne

sne

Y4

SNS

gcer=f

"»a

277

;
M
i
)
u,

AN . o

v sgonany Jujinoy pue ndang
¢sanduy 2Y3 3B 8I03108] UOTILZITIIN °SA SUI] asuodsoy a8viaay TIRIAA0 °g%°9 314

€2t 4 .
8'0 99 . v9 i ?

} } } ~+ } ; i 1 t SN .
i
[
{ |
w
T snp !

T sng

278

snel

'SNY|
ananb Suyanoa - ¢ 1 gez1=fl
ananb 3ndino - 2 (p
snanb andur - T (N3

*snez |

o 1 3 AR 5

P S T 7 S . 7 - T

anduy 3ay3 v I0883ad01g U3 JO W] 9T24) YO0T) °sA awyl Surirep uwwwwww ‘99*9 314
¢
supec suegl suvacl Sves suvev svo
3)] T T T T W_JQ
veL
88U
--w:_ro
TSNC 06
oLl’@ | 1
TSNe 0
Tsv e
-+ T
("a
*298/83930ed00008 = Y

snhS'e

279

*anand Indang
a3yl 1B 10889201g 3yl JO 3wyl ITIL) NO0TD °spA awyl Suyiyem adeasay -cy°9 313

suer S

¢
mmwm_
sne

sues

sueac SYect

O

Tsr1'0

Tsne e

280

TSshe '@

[4
998 /839300de0008 = Y (M)

Suvod Sug

A

!aﬂ "~ b gl dnssin il o alofie el 1 i 311%!.3.141!.11 ‘
|
w anan}) Surinoy
_ Y3 ' 10889001g Y3 JO W] ISTIL) YOOT) °Ssp swy) Suriyepy a8easay ‘999 *B14
|
_ : SyYoec Sueg | ¢ supz | Sups
3] 3 L 2 3 N ’ ' ,
L} L s 1 1] t { }
|
|
|
|

o e goNEe ui “

'SP1°8

R

SNE°0

- *o9s8/839q28d 00008 = Y (zuvm

281

*gi9jomeaed se

€g pue ¢ «Tg YITA g I3ZFS INOwgd °SA Sull dsuodsay a8eaaay [TeIPA0 °L%°'9 °I¥g

800s

nchNaﬂdﬂ . ﬂ.ﬂnﬁo Qﬁo

I:igoig:

QO Q‘o .Qo

-

0801
} { } Sh g
T sn 0ol
sh @2
o :
&
SN 8¢
s'Adt-7s +gn gp
mo,nNN = Y
= J
- FA T
-u Pz
T sh @s

e ot ——

+guof3dung UOFIBUTISAQ °SA WL asuodsay o8eaaay [[eIdA0 °8Y%°9 *314

-s,FA 30 395 Y3 3o JoqUNN TETIAS .
Q-— I 1 % o .m 2 1 N —
, | e L]] |}) L)] L}) T m: Q
T shs
T s 9l
.N°0Qg|.N°o.N°onﬂcnﬁoa.Ho.Ncoamoaﬁ. m —t—
N°O.N°QQN°O.~°QQN°| ..Hl a.ﬂla.ﬂoa.ﬂoam' Q
”CO.H...HOO.HQQ.H.O.HOO.Hca.ﬂol.ﬂooﬂn ﬂ A m: vN
maoanﬂflﬂonmﬂoccnhcoa.ﬂonﬂoonmctn.HouNo N
8J0200N0.““°00“N°0aﬂ.ﬂoameonﬂ.ﬂo..notaﬂc .H . A4
¥ —_— 0T = R
A IIMI = ﬂm
BaY 1 e
cg9z" = °0
szez” = 'O .
83749 %701 = € NI
+oes/s3onded 0T = X ..ﬁ
s SN v

N L. © T T

283

v = TR o, 71 oo Sreotn . o
_“ *SUOTIOUNJ UOTIBUTISAQ °*SA awl] dsuodsdy aduvadAy TIRIdAQ °6%°9 '914
“ .m.ﬁP JO 33§ 3yl 3jOo oquny TVIaSS
_ -] S . 1
| i t i t+ -t t i i t sh 9
J
, . Ts~e
"
NcoaghagcaNcoa.Hoa.ﬂo..Ho.Nco.aﬂoQ.HQ m
NooQN°.QN°.ANQ.QN°QQ.H.Q.HOA.H|Q.HOQ“Q * _
rebyoeSyoebTobyoebrebrebCTebyes rW.JO—
rfrirtrirtrirtrtttts €
3oaaonﬂonmﬂccnmh°o..Ho.ncJuﬂcoaHanNo N
“°Qlaonﬁiﬂnh°.02°onmﬁonﬂeoa“‘ﬂoaneon.ﬂc .H
o5, A 30 -
s A 3039 Sh pe
-T
sav’A = ¥g .
cL08Yy* = s TS 2¢
$89z° = °d
LT = Y T
Y201 = 4 b
It = Y (N3
14

e

284

ORIGINAL PAGE IS
DE POOR QUALITY

m.J 0@

.m.J @Nn

nv M3

285

-o¥AgY = ¥s up o +3A oWyl ssuodsey s8eisav TTRI2A0 °T5°9 ‘S¥3

Q.— % 3 % % .w 3 4 } -
*d98/839%oed 00008 = X -+
W/T = TA
suz = 1
otAgy = 's
8379 000S = €
OT=HN -
1

s" o

sn ¥

sn 8b

sh éL

s” 96

sn ecl

»
()3

286

s s e Dl loea sy s

3
Yagvs 2

— YAgyy (1-0) g

+ TAgy =

-

S UF » °sj 3wyl asuods’y d8easay [reIaAQ

*28°9 *81a

-

sn o

.M.Mm = «w Ul » °SA W] dsuodsay aBeiaay [IeIAQ °gS°Q 814
»

| Ql— 'l 4 2 i -m 4 'y 2 —
,1 | g s 4 1 T T T 1 14 w: o
| 1
-
W * N | : T S e
T snsy
- - -]
@
[y] 4
T sn 2t
$UZ =
~d9s/s39%ded eeﬁua = X \ +
$3¥9 0005 = € s 96
oT = H
20°°20°°T0°°T0°“T0° ‘T ‘T “T°°1°°S° = A T Ae&u

AT

i Bt Ta Rt

a«.é - ﬁm UT © °Sp awy] 9suodsay 98vaaay yrEI9AQ

o . S

Tg

%S 9 813

RE
&3
m &
&4
1
Frogy = Fg 2
BUZ = J o0
83¥q 000§ = ¢
. ~°oﬁ"°oQN°..N°0QN°.‘-HOQ.HQQ.—..QO.HQnno - .ﬂ?

0T = K
_oﬂu\nuono!_oogwu«

sh o

s” pe

sh 8t

sh 2cL

sh 96

289

Pz

sh acl

2
Fagyr 2
ﬂ?& (T-0)8Y UF o °SA UEM.—. 9suodsay afeasay [IeISAQ °6G°9 313
2]} : S
L]] 1 [}] [1 bl
)] ¥ L |] ¥ 1 1)
T
NQOQNOlQNc.Q0N°0QN°QA.H.A,.H.Q.H.Q:H.Qmo - ﬁ? -
Fagva o
g2 X
3 = + .m)ﬁ& = .mm -T
AgYA(T-0) Y
sSuUzZ = J
8319 000§ = 4 1
d8s8/8390ed ecﬂnw = X)
0T = H
B
.,rl\\ Rt BEE Ll RS R by aas o] - o 7 rrewe o -~

N 6T DT et e A 0

sh o

sn ¢

sn ob

sh @9

sh 88

%&u

SN 00l

290

‘anandh Induy 3y 3y 10308y UOTIBZITTIIN °*SA 92FS ananp 33eaaay °gg'9g *814
T, . u
| 80 9'0 b0 20 e |
L 1 1 1 L 1 2 1) 1 .
s Y T Y s U ¥ ¥ T ¥ T Q ;

T e

T 14

—
[=3)

- w o~ h
_,

tFray = ¥ T ¢

T II® 303 1+ = FA
S3ITq 000S = ¢ 1
SuozZT = ¢ 1
0T = R ("ma

P' M

gl
M
.

L

*soneny) dupinoy oyl IV 1030vg UOFIVZTITFIN *SA 92ZS anany) advasay *6°9 814

€9
. Q..Q 9'0 v'o c'0 (%]

¥) ¥ T T T T 1 e ———T Q

T ¢

. T ¥
o
(-3}
N

T g

T 8

SITq 000§ = €
Fagy = Ts 1
0T = K | Ema
9l

R L el ol

-anand 3nding 9yl IV 1031084 UOTIBZETFIN 'SA 9z}S 2nand adeasay °gg°y 314

(P
80 90 . vo 2’0

-1

n
ot
7]

eFagy
T TI1e ao3 T°
S3Tq 000S

suoct
ot

ord
>

s 0o
=oem

) »

R R ST P

Aasvm
ol

P R T T T N R T DY L N oF S e

293

o

N T o T DV N

L,

P ST © SR U (PN WP TRK I P Y

g

By

*gauy] IndIng Jo aaqunN YL

14

.gp ononh 3IndIng 2yl IV 9zFS N3N 3deIdAY 669 "31d

sauyy Indano jo iaqunN ‘K
e¢
[

ac

. T e

hﬂ>n< n ﬁm

298 /s33)oed eo.nuw = X

suQzT = ¢
z\.ﬂ - .ﬁ?
83F7q 00058 = €

1

ma

294

w *saup IndIng jo JaqunN ayl °sp anand Inding 3yl v 9zy§ anony aduvasaay °(g9°9 814
w sauy Inding ayr ‘y
es "1 4 (%1 ' ec ol
| - 2 (] I 1 [4 [l [l
_ ¥ o L 1) s L} T T Q
@

zFAgy -

o988 /s3ayoed coaxw =
suQZT =

R/T =

' 8379 000§ =

-

295

Cmya
;-sm

. B TS P L VDT T O T
P T T T T e U T S I S L P PSPy

_v *aZ]g I9OBd YL °SA anand Indang Yl IY 3zys e 98eaaay °19°9 °*814
, q ‘
| 00001 8e0eL 008Y 0001
| - “ " 1 " n " + " e |
T 2 .
T ¢V
)
o
1 ~
g
: gy = s T 8
. . . d9s8/s39)oed eo.nnw = Y
SuozT = ¢ 1
) . 0T =N
OT-T = T 303 T* = 'A Cwa
—el
-

T — NSy T

| S
*3218 3I9O8g °*SA Inand IndIng I3YL IV 22§ Inend adeasAay °z9°9 °8yj
q
— @ospm . . 8@\. . . ooorv . . es0|
s ¥ 13 T T L § T N | T Q
-
_ :
} . | .
’ T ¥
T 9
b . tFray = s T 8
i das/syaoed couuw =Y
supzl = ¢ i
0T = K
Oﬂnoooa.ﬂ'ﬂ uou ﬁo - .ﬁr ANau
~ol

297

,w *aWEl ATI4D YOOTD YL °*sp ananY nding ayy 3y azjyg anond sdeaaay °gg9+9 814 M
| . o
| — ~ Sves| . suezi Sues sueg svee sve |
i L) L} L} L) T T T } " Q |
| _
| | [e
_
i i A
. 1,
1
(-]
1 &
. 9
0T = K I
) J98/s39y08d 40178 = Y T &
Zfaay = g
OT*I=F TT® 303 [* = FA T
8379 0005 = & ¢z u,
.]
) -

v | }
ﬁ ‘3wl 3T YOOT) 3yl °sA sanandh Indang Ayl Iy 923§ anond aBeasay °y9°9 8313
_. ¢
| Ssves| svacl mcs.m . Syes Syvpe SY9 ’
v ™] L 1} T T T T 1] 1] Q
|
| [
T b .
w
m
o |
- ” !
T 9 j
98 /839y0ed coﬁuw =Y T 8
Ol = N
h.ﬂzd = .ﬂm L-
OT*T=T TT® 303 T* = 'A A
837Q 0005 = @ ¢na
~ ol
ﬁ\;w

.!x:;.v TR TR FOI BN
3

,u132p 20882301d ardyItnm :MONH butnuy \\um,/\
Y3 303 (9pow buyenanb oyt -¢9°9 b3 anand Indind 3
I enand Indur @) ronilc
‘.'lll'll s 834308 o -
ik)
. . c —.h
Ger———— T-.2 ¥35:20€ ((] — - ~
2340 le _ _ o
! zaaxt i
| 104100 HTT] |
LI
b [
S s .
g L g
g . ..
N .

IIF

[k
i+

_F

I

AR il

00

"
|

= i

OF PO.:? QU Loy |

ORIG'™NAL PAGE IS

-arand Indul oyl IV 2IVY TPATIIV I9xded °SA Swyl buyjvem sbexsav °99°9 °b1a

%0002 50821 Y e

301

1
(")

.Hlﬂz Lﬁl

*anand Indur YL IZ 9IVY [RATIIV I19YORd °SA owyl buriTem sbeaaay

Jgeasc deeac|

*L9°9 *bya

L 4

ot

snS

("33

302

a W T TETTTNEE T e

*snond Indur BYL IV 9IvY TRATIIY I9YOed °SA Swy], buriTeMm sbexaay

Yeeees Y Joeeec

OSOw O.m..ﬂ.m

-
-
-

g

S"o

sni .

rsn2

Tsne

T S™

"
(3
~SNS

ot! 1Tyl

w
!
_W ‘onand 3ndino 9yl IV 93ey TPATIIY 3I9Oed °*SA Surl burjteMm abeasay °69°9 °bty
, »
“ %0002 - 5002 | ¥ o
| 00T . 4 $
" 0s
__ 0z
_ ot
_
|
|
m
<
- (=]
o
TSre
TS
4
) ("= |

508082

39002 |

X

00T

+

0S 14 0t =

e
L o
1

conong 3ndang oyl IV 93Ivy [PATIIV Iaxyded °SA suwry buritem sbeisav -0L°9 ‘614

sne

1T s

TS

N

- shs

305

("z

P T TV Y

*anand andang Syl IV 93ey TeATIIY 3I9xOed °SA SwilL Burjtem obexsay °TL°'9 °*B1a
5000808S X p La]5]5] 4 (4]
(o t i + t } } } } } 2%
B
sne
"Sne
s~v
| ¢
(")z

SnNS

306

i L

-onond HUTINOY YL IV d3IBY T[eATIIV ISYOE] *gA owyl but3teMm abexsav ‘CL°9 bt
. »
J008ce Jeaci (%)
00T E‘ : -gng
S
4
B4
TS™
T ™~
B o
o
TS"9
Tsre
€
("a
-gn
1=f Sne |

o o S T I R

‘onand burInoy BYL IV 83y TeATIIV 39yoeg

¥®@W@N

¥&@QN_
00T °®

*SA swytl burjtem abexsay

0s

SN

- Shg

Rk

Shel

(®a

308

T S

e

anand) buranoy aylL IV =g TeATIIV 3IOBJ “SA SWTL furytem aberaav “pL°9 *btd
14

N0000S X p 1u141414}>

1
L] L]

|

“

w i

N 001 __——
w

|

-onand HurlIog OYL IV 9IWH TRATIIV 3IIOed °SA UL but3item 2bexsav °gL°9 °BTa
cmﬁsam N002Z | \
Tsng
Tsrg
1="n <sngl
0

310

(33

-anand HUTIAOS BYL IV 93VY [EATIAV II)Oed °SA aut] butritem abeasaav *9gL°9 BT ’

Y eescl %}
!QJW&N $ { t { Sne
00T
0
TSN
TS
T (]
-
o
TSS9
TSng
T v
("=

0z vy S"el

i e

‘onand HuUylIIOS HYL IV SIVY [PATIIV 19)Ovg °SA SWTL HuriITRM sbeaaay

0000S \! 3POV0E

*LL°9 °bya

1
s

-
(g

L -
: L]

DS o

Ao gt s

+32]S I9yORd °*SA euyl Huritem abeisav [[eISA0

*gL*9 °bra

88— % 1 QQ.QQ 1 -ﬂ % 3 % °
| p— T 1} T v T T Y T T m,Q
T snel
T s™ve
T snge
-3
T T1e 103 T°=A -
.OwN\m#o.nand shey
p=u
saxfa=fs T b
oT=R (33
¢I=N

313

el

b i, A e

*SUOTIDUNJ UOTILUTISSF °*SA auwtl burjtem abeiaay TTeIaA0 °6L°9 °bya

M.ﬁ? dO0 S13S dHL 40 °“ON TVvIyaS

| S o
- $ } -+ $ + u — } - sno
T sl
s"ye
T
83¥q yZ01I=2) -+
.oou\uuoxocmmomu« sNee
0T=H
ﬁ L. od
gav >
ZT=N
T S"8v
20°°20°°'20°°20" ‘T°‘1°‘1°‘20°°‘S° ‘1" :s# i3S
© 20°‘T0°’T0°‘TZO0°‘T°‘T°‘T°‘1°“‘S" :v# &3S -4
Hon.ﬂosﬂo..ﬂosﬁou.ﬂo~.ﬂo-.Hos.HOQ.Ho um* Pdumm v
. §0°°*ST°*2°’S20°'SLO"*T1°’'S0°’'S0"°‘T°‘C° :z# i3S (33
60°“ST°“Z°’SL0°‘ST0°“ST°“S0°*ST"“S0"‘T° :1# i3S 1
s"oS
) B}

314

ey

.

e TR e e R

*anand Induy YL IV 93IVY [PATIIY Ia)Ovd °"SA 92ZTS anand obeaaay

HS|

-l
=l

001
0s

S

T

*08°9 °bya

I=

(ln)g

315

- N A A T S

‘anand INdINO IYL IV 330y [PATIIV 3I3YOLd °SA 92TS onand aberaay

:M_ W6

00T

0s

*d9g/s39)0red ~ Y

am—

ST

*13°9 *bra

1=°n

-1

n)a

316

*Snend BUTINOY SYL IV PIBY [EATIIV I9YdRd ‘SA 9zZTS Onand sbexsay

*09s/s3ayoed ‘Y

ST

*Z8°9 °b1a

cl

n)a

Sl

317

[N

*Snand HUTIIOS YL IV 93BY TRATIAY Foyoed °SA 92Ts anand abexsav °gg°9 *b1g

WS .
f [
00T - -
0s

318

(*m)a

0z ST - S|

e e A et =

O

e S R PTS T T A TXeath e e

B SV PP S T T Oy T TP

APPENDIX A

INPUT SERVICE ROUTINE MICROCODE

319

S T T SR e e R T R TR T

T P L B R T g o e T L I P T U T T T A S

b AEARERAEARAK: 9 @ v | | T
Aed Uyes s 13| pw
T lon | o | on [on| on| on |awon| o @ | “otS=d fvwemsi | M
O & py Suey T
€ dgle|T|T|2]| 2|9 14 @ 9 % €
I : vy 4y 2 0| v
dngT | $2v-oT| oy | ON | ON | ON | ON | 53K | 3woN Aed | @ 24374 | vwps| F
~o Jwong .
NI 03 gws ‘@ = -ySIT IT §I0NI
1233239 , Iynos| 3rye0S
L oo eay | 439Y] 2w0an] QU | amewa| weal Somurvi| HxUI|WOLKUTLSIY x| NOILIVNY (SSRY] | o G Y9340
h%nY9 4 %IN |¥nog| 4113 1213 | J1zem sSz_ESo SA9 Ny |~ NIy 3 Dwos NY| S4vIoswwr
Uv ¢"

320

2 |oflv|{v|d[a]| o] ¢ vy |9 5 v +
T4 | on | SIAL ON | S34] on SON| gwm} A< o Y842 d | eqens| 30| ST
Fatga »ppdn § e wymes €= 129 Sopis RSeg qird %0
v v |e y |v] @
Huv COVEC
sany| A< D | Y= feom | 305 AW $rra Tt
, W) 2v=g
t—b...cu nht‘%q <~ SSupPPY *uﬂQ wafe*w c:de ‘.—.60 h.u.;u(H
¢ v | ¢} 9 [®| *
JnoN A 4 & Uy4y =3 IS .d@n& T

Jojey jesey C ppns &= ¢y4d3 @ (151727

321

L

[~

S R

glv|v|d]0]| 7 4 2 € T @
oN | o | oN | ow | SIK i B A< d @ | HSHY T fepws| 90Ny mw ssapey 999G
S0y : B 1) 270
9477 BUPPY € SupPlf 2B g 43> P o0+ TPPSS
glv|v|d|o]|® v |9 v+ | 4
od | o] o] on | SR || A& d | & 4523 legms| © | ex
@) ¥ P77 Pa1es xow upy >0 < O
gl v|T|ole|7T y | o € |7 @
o) | oy | oN | o | SIK indd BV D | wrvs+y:zd]eans|{galy| AW | sieniy 29
. Inwewy yo vet) BIed

gopey SMPPY &= Tapfy %8 ¥V F) MKY V170 4+ e PSS

322

O cp oy m

T gl v|T|7|%8|9% b 9 ¥ T 2
Aed | | “r+5=d |eapss| 29S| MY
dwos | ov | ov | on | on | SIA| S3A| e
hlaa‘H WoemgLIgvo 0N . A
2aguT o) dwe § JpQ 50D Y0 & TIRRES
o
P
& sglelv|v|o|2d]|7T r |8 9 1 @
. Huv : _ Ssaffy "W 7*?
12" 14 onN | o on | OnN | oN s34 SSHOOV Aed s ICACREN b el $etul 23%9 TERQ
.) . W) BupPY e SIPPY (224> 4rw Rl “ted ed
2 g\l @ il 2|92 |@ ¥ @ v g ¢
T ._..u‘.c\ od| ov | oN | on| o | S3~ oo | L& 4 D | >+S =4 [anx]| 30| MW
(0) § WD petes o0 4B TG <= TANDS

i A

rarernripd

Al a "

m
]
-
2
(]
&
<

PROCESSOR-CONTROLLED ELIST

324

WP L gt

Vs
YOSIN0YY -

N Loy
1odvx
15123

*2INn3593TYDxY ILSITII P2IT0I3U0D~-I0S83D02d

wvd
4113 -

LINDYL D

VDIVRSONYH!
1:6

YOsS3N0YHJ

1Y04ddnS
AS I3

‘19 °*b14

.

T 1304

| BTV..
_ N
Fa
F:
e
PR] —O m
N Ay _
|
110031 |
! T
ySQMH ##
ot | _ 90533504 4
) ddd i 103NT
L QL
ONTI(10d

325

83304 VIVd INdNI ISII3 °zZ9 °Bra

|
]
" :“E
104200 v | Na ¥oss2>0%d)
‘ Vc.e i 03 40NT 90 > Lvodns .
o . 45173 oL :
| -
_r Y n Nyn3d
AYO-D s o Xrw30
359 _— we=3 . agyN3
) 199 | g
404Y
451V3
Po1es
-]
N
-
Pan
xnw
AYO —S O——— 5-ayg
T Y § , .
45193 | - . -

L T SRS

2IN30NX3IS WWY ISITI °gd °H13

Yo n0Yd
d¥edaes 15373 o)

sn91

ssoy wv¥ 1SI13

8/

20
——_- LR X MWW

JogDPg Luegdyes
45133 WOy 4

g . N g

327 .

R R A

T e e e -

. From Gutty
' WA 0T

' A N
TInPuT _ .
' _Mux |

\/

DA DR

IBVS
LarcH f— &,

e oM
A g
|

/\ FRom £ 15T

RAM

ACPRESS
LATCH

ADORE S
DECCOER

'

fAn 38T ourper
e PR Pory

Fig. B4, FELIST Support Processor

g N o < b o

328

\Zo €LIsT onva '

PoRT and ELIST
RAm 39007

T ..

-4Vg, WO T -

>

T T e .y

Infuf the
addwg data
Com te ok,

YES I
Access ELIST Send o DAC
and 2 and cesdert
‘d‘\n A ‘o’o ‘h(Po""-

1

Send s doin
to The Qrecessec's

Aola Cordi.

Send i dola
4o the emply
M‘pa’ FAM fvd.

SYhore +he
dg*; Qa '“N

ELIST RAM,

]

Send o« DAV
ond Cestort
the pollec,

Pig. BS.

&

329 -

ELIST Service Routine Flowchart

el

T————— .

ELIST:

STORE:

If DAV = @, JMP to DAC
*Is there a Shift Register num-
ber to input? NO: Jump to DAC
Routine.

[(Data Port]@Input Polling Circuit - Q

*YES: Input the data from the
selected port.

If DAC=g, JMP to STORE; send a DAC; Release Input Port Poller
*Send a DAC to the input port and
clear the Irnput Port Poller.
Meanwhile, check to see if any
output port regquires new data.
If none 4o, jump to the STORE
Routine.

ELIST OUTPUT PORT BASE ADDRESS - ADDRESS LATCH
Q + Selected Output Port

*If a port requires data, enable
it onto the data bus and send
the Jata.

SEND A DAV; RELEASE Output Port Poller; JMP to FLIST
I1f DAC=¢, JMP to ELIST

*Is there an output port request-
ing service? NO: JMP to ELIST
Routine.

ELIST BASE ADDRESS -+ ADDRESS LATCH
(ELIST] @EPTR ~» Q

*YES: Fetch a S.R.# from ELIST

ELIST OUTPUT PORT BASE ADDRESS-ADDRESS LATCH; Decrement EPTR
Q » Selected Output Port

*SEND DATA and update EPTR
SEND A DAV; RELEASE OUTPUT PORT POLLLCR; JMP to ELIST

ELIST BASE ADDRESS <+ ADDRESS LATCH; Increment LEPTR
Q +» [ELIST)@EPTR; JMP to ELIST
*STORE the data in ELIST

Fig. B6. ELIST SERVICE ROUTINE

330

i an p—

et . THE - T L -

ELIST Service Routine

a) S.R.# available as well as requested
b) S.R.# required from RAM
c) S.R.# stored in RAM

d) No data available or required

Fig. B7. Software Execution Times

331

LS B)

LT

cycles
cycles
cycles

cycles

0.72 uSec
0.84 uSec
0.60 uSec

0.24 uSec

	1980019056.pdf
	0006A02.TIF
	0006A03.TIF
	0006A04.TIF
	0006A05.TIF
	0006A06.TIF
	0006A07.TIF
	0006A08.TIF
	0006A09.TIF
	0006A10.TIF
	0006A11.TIF
	0006A12.TIF
	0006A13.TIF
	0006A14.TIF
	0006B01.TIF
	0006B02.TIF
	0006B03.TIF
	0006B04.TIF
	0006B05.TIF
	0006B06.TIF
	0006B07.TIF
	0006B08.TIF
	0006B09.TIF
	0006B10.TIF
	0006B11.TIF
	0006B12.TIF
	0006B13.TIF
	0006B14.TIF
	0006C01.TIF
	0006C02.TIF
	0006C03.TIF
	0006C04.TIF
	0006C05.TIF
	0006C06.TIF
	0006C07.TIF
	0006C08.TIF
	0006C09.TIF
	0006C10.TIF
	0006C11.TIF
	0006C12.TIF
	0006C13.TIF
	0006C14.JPG
	0006C14.TIF
	0006D01.TIF
	0006D02.TIF
	0006D03.TIF
	0006D04.TIF
	0006D05.TIF
	0006D06.TIF
	0006D07.TIF
	0006D08.TIF
	0006D09.TIF
	0006D10.TIF
	0006D11.TIF
	0006D12.TIF
	0006D13.TIF
	0006D14.TIF
	0006E01.TIF
	0006E02.TIF
	0006E03.TIF
	0006E04.TIF
	0006E05.TIF
	0006E06.TIF
	0006E07.TIF
	0006E08.TIF
	0006E09.TIF
	0006E10.TIF
	0006E11.TIF
	0006E12.TIF
	0006E13.TIF
	0006E14.TIF
	0006F01.TIF
	0006F02.TIF
	0006F03.TIF
	0006F04.TIF
	0006F05.TIF
	0006F06.TIF
	0006F07.TIF
	0006F08.TIF
	0006F09.TIF
	0006F10.TIF
	0006F11.TIF
	0006F12.TIF
	0006F13.TIF
	0006F14.JPG
	0006F14.TIF
	0006G01.TIF
	0006G02.TIF
	0006G03.TIF
	0006G04.TIF
	0006G05.TIF
	0006G06.TIF
	0006G07.TIF
	0006G08.TIF
	0006G09.TIF
	0006G10.TIF
	0006G11.TIF
	0006G12.TIF
	0006G13.TIF
	0006G14.TIF
	0007A02.TIF
	0007A03.TIF
	0007A04.TIF
	0007A05.TIF
	0007A06.TIF
	0007A07.TIF
	0007A08.TIF
	0007A09.TIF
	0007A10.TIF
	0007A11.TIF
	0007A12.TIF
	0007A13.TIF
	0007A14.TIF
	0007B01.TIF
	0007B02.TIF
	0007B03.TIF
	0007B04.TIF
	0007B05.TIF
	0007B06.TIF
	0007B07.TIF
	0007B08.TIF
	0007B09.TIF
	0007B10.TIF
	0007B11.TIF
	0007B12.TIF
	0007B13.TIF
	0007B14.TIF
	0007C01.TIF
	0007C02.TIF
	0007C03.TIF
	0007C04.TIF
	0007C05.TIF
	0007C06.TIF
	0007C07.TIF
	0007C08.TIF
	0007C09.TIF
	0007C10.TIF
	0007C11.TIF
	0007C12.TIF
	0007C13.TIF
	0007C14.TIF
	0007D01.TIF
	0007D02.TIF
	0007D03.TIF
	0007D04.TIF
	0007D05.TIF
	0007D06.TIF
	0007D07.TIF
	0007D08.TIF
	0007D09.TIF
	0007D10.TIF
	0007D11.TIF
	0007D12.TIF
	0007D13.TIF
	0007D14.TIF
	0007E01.TIF
	0007E02.TIF
	0007E03.TIF
	0007E04.TIF
	0007E05.TIF
	0007E06.TIF
	0007E07.TIF
	0007E08.TIF
	0007E09.TIF
	0007E10.TIF
	0007E11.TIF
	0007E12.TIF
	0007E13.TIF
	0007E14.TIF
	0007F01.TIF
	0007F02.TIF
	0007F03.TIF
	0007F04.TIF
	0007F05.TIF
	0007F06.TIF
	0007F07.TIF
	0007F08.TIF
	0007F09.TIF
	0007F10.TIF
	0007F11.TIF
	0007F12.TIF
	0007F13.JPG
	0007F13.TIF
	0007F14.TIF
	0007G01.TIF
	0007G02.TIF
	0007G03.TIF
	0007G04.TIF
	0007G05.TIF
	0007G06.TIF
	0007G07.TIF
	0007G08.TIF
	0007G09.TIF
	0007G10.TIF
	0007G11.TIF
	0007G12.TIF
	0007G13.TIF
	0007G14.TIF
	0008A02.TIF
	0008A03.TIF
	0008A04.TIF
	0008A05.TIF
	0008A06.TIF
	0008A07.TIF
	0008A08.TIF
	0008A09.TIF
	0008A10.TIF
	0008A11.TIF
	0008A12.JPG
	0008A12.TIF
	0008A13.TIF
	0008A14.TIF
	0008B01.TIF
	0008B02.TIF
	0008B03.TIF
	0008B04.TIF
	0008B05.TIF
	0008B06.TIF
	0008B07.TIF
	0008B08.TIF
	0008B09.TIF
	0008B10.TIF
	0008B11.TIF
	0008B12.TIF
	0008B13.TIF
	0008B14.TIF
	0008C01.TIF
	0008C02.TIF
	0008C03.TIF
	0008C04.TIF
	0008C05.TIF
	0008C06.TIF
	0008C07.TIF
	0008C08.TIF
	0008C09.TIF
	0008C10.TIF
	0008C11.TIF
	0008C12.TIF
	0008C13.TIF
	0008C14.TIF
	0008D01.TIF
	0008D02.TIF
	0008D03.TIF
	0008D04.TIF
	0008D05.TIF
	0008D06.TIF
	0008D07.TIF
	0008D08.TIF
	0008D09.TIF
	0008D10.TIF
	0008D11.TIF
	0008D12.TIF
	0008D13.TIF
	0008D14.TIF
	0008E01.TIF
	0008E02.TIF
	0008E03.TIF
	0008E04.TIF
	0008E05.TIF
	0008E06.TIF
	0008E07.TIF
	0008E08.TIF
	0008E09.TIF
	0008E10.TIF
	0008E11.TIF
	0008E12.TIF
	0008E13.TIF
	0008E14.TIF
	0008F01.TIF
	0008F02.TIF
	0008F03.TIF
	0008F04.TIF
	0008F05.TIF
	0008F06.TIF
	0008F07.TIF
	0008F08.TIF
	0008F09.TIF
	0008F10.TIF
	0008F11.TIF
	0008F12.TIF
	0008F13.TIF
	0008F14.TIF
	0008G01.TIF
	0008G02.TIF
	0008G03.TIF
	0008G04.TIF
	0008G05.TIF
	0008G06.TIF
	0008G07.TIF
	0008G08.TIF
	0008G09.TIF
	0008G10.TIF
	0008G11.TIF
	0008G12.TIF
	0008G13.TIF
	0008G14.TIF
	0009A02.TIF
	0009A03.TIF
	0009A04.TIF
	0009A05.TIF
	0009A06.TIF
	0009A07.TIF
	0009A08.TIF
	0009A09.TIF
	0009A10.TIF
	0009A11.TIF
	0009A12.TIF
	0009A13.TIF
	0009A14.TIF
	0009B01.TIF
	0009B02.TIF
	0009B03.TIF
	0009B04.TIF
	0009B05.TIF
	0009B06.TIF
	0009B07.TIF
	0009B08.TIF
	0009B09.TIF
	0009B10.TIF
	0009B11.TIF
	0009B12.TIF
	0009B13.TIF
	0009B14.TIF
	0009C01.TIF
	0009C02.TIF
	0009C03.TIF
	0009C04.TIF
	0009C05.TIF
	0009C06.TIF
	0009C07.TIF
	0009C08.TIF
	0009C09.TIF
	0009C10.TIF
	0009C11.TIF
	0009C12.TIF
	0009C13.TIF
	0009C14.TIF
	0009D01.TIF
	0009D02.TIF
	0009D03.TIF
	0009D04.TIF
	0009D05.TIF
	0009D06.TIF
	0009D07.TIF
	0009D08.TIF
	0009D09.TIF
	0009D10.TIF
	0009D11.TIF
	0009D12.TIF
	0009D13.TIF
	0009D14.TIF
	0009E01.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

