NASA

AVRADCOM Technical Report 80-C-14

THE RESPONSE OF TURBINE ENGINE ROTORS TO INTERFERENCE RUBS

Albert F. Kascak
Propulsion Laboratory
AVRADCOM Research and Technology Laboratories Lewis Research Center Cleveland, Ohio

Prepared for the 1980 Army Science Conference
West Point, New York, June 17-19, 1980

THE RESPONSE OF TURBINE ENGINE ROTORS TO INTERFERENCE RUBS

ALBERT F. KASCAK
Propulsion Laboratory AVRADCOM Research and Technology Laboratories
Lewis Research Center
Cleveland, Ohio 44135

SUPIARY

A study was confucted to develop a method for the direct inter, ration of a rotor dynanics systen experiencing a blade loss induced rotor r ub. The anoroach was first to insure the numerical stability of the intestration technique: and secont. to provile a variable tine step. This was inmortant because durinc the rub hioh frenuencu, vibration components coult he exciteit and staller time stens woull he necessary to calculate the vibration conponents accurately. Durin? other tines laraer tine steps could be used to conserve convitational tive. The zethod was numerically stable for any time step u to a third order interator. The time sten was controlled so that the aximu error was less then $.01 \%$ and the probable error was between $.001 \%$ to $.0001 \%$.

An existine rotor, (which dyanically sinulates a tupical siall (ras turbine) was modeled. The rotor bearin? systen consisted of a shaft with three disks momed on two preloaled ball bearinas, (twn disi:s outboard of the bearinos). The bearings were mounted in squeezefilm dampers, which hat centering sprincs. The first three critical speeds were calculated to be 7600 , 9200 , and 11200 rpm all three modes are hent-shaft type. Prior to the blade loss sinulation the rotor was assurtef to he halanced and onerating at $950 n \mathrm{rpm}$. The blate loss was simulater by an instantaneous application of 5 mils o: mass excentricity in the far disk. The rotor rub was sinulated by surroundine, eac'l ilisk with a shrout that hal a 2 mil radial clearance and a stiffness of 100 , onn "/in.

In reneral both the hlade loss and rotor rub phenomenon generate
 localizel but with time prosesses to other parts of the rotor fy
means of traveling waves. The traveling waves fron several rubs can interact with one annther causinc very complicated rotor motion. Nen if there is no rub, (just a blade loss), the travelin; wave can cause the rotor to beat at frequency which is the fifference between the operating and the critical speeds. Rotor rubs oferate a frictional force which tends to drive the rotor to wirl in a direction opposite to the direction of rotation, (backward wirl). For the rotor typical of sall o as turbines, a small chanse in the cocfficient of friction, (from .l to . 2) caused the rotor to change fron forward to backward whirl and to theoretically destroy itself in a few rotations. This method provides an analytical capability to strify the susceptibility of rotors to rub induced backward whirl problems. A 10 minute, 16-millimeter, color, sound motion picture supplement is available, on loan, from the NASA Leris Research Center, that shous the conputer made motion pictures for the blade loss ind uced rotor rubs.

INRONIUCTIO:

In a typical aircraft gas turbine there are gany instances in which rotor rubs occur. Two of the most comion are blale tin and seal rubs, which are caused by thermal misnatch, rotor inbal ance, hioh "s" maneuver loais, aerodymaic forces, etc. Current interest in fuel efficiency is a conslleration which drives the enoine desi;n toward closer operating clearances. Thus increasin: the probablity of rotor runs. The interaction $n \in$ a rotor with its case, (rotor rubs), has been studied in ref 1 and 2. Ref 1 studied a steady state interaction between a rotor with a ri? ill case ne?lecting friction at the finterface and Ref 2 studied a stealy state interaction hetween a linear flexible rotor and case includina, friction at the interface. Ref 1 and 2 dii not consifer the critical transient situntion in wich the rotor bounces off the case.

It is known that rotor rubs can have an inportant effect on the rotor dynaics. 'hen a rotor rins on the case, a frictional force is generated wich can drive a rotor to wilirl in a direction opposite to the direction of rotation, (backward whirl). This frictional force is relatively constant up to the backuard wiirl speed at which the rotor rolls aroul the case. Since this rolling contact speed is proportional to the rotational speed of the rotor times the ratio of the diameter to the rotor clearance, the wirl speet can be hundreds of tines the rotational speed of the rotor: and thus be potentially very Jancerous.

There are two basic methots for studyin? transient rotor dynanirs. One is the aodal 7ethol (ref 3 ant 4) which exnants the
solution in terms of s few of the lower frequency mode shapes. If the transient under study is localized (like a blade loss or a rotor rub) the high frequency components are. at least initially, doninant. Thus the modal method is not applicable to this type of transient. The other method involves the direct integration of the equations of motion, which can be done in either of two ways. explicit or implicit integration. For example, ref 5 used explicit integration of the equation of motion. but this solution is plagued with numerical stability problems. Further. ref 6 showed that explicit integration of the equation of motion was unstable when the product of the critical frequency (for any mode numerically possible) and the time step was large. Therefore. the explicit integration can only be done for simple rotors.

In contrast, the implicit integration tends to be stable (ref 7 and 8) but it requires the solution of a large number of nonlinear simultaneous equations at each time step. Ref 9 used a technique similar to ref 7 excert that it was applied directly to the second order equation of motion. Ref $?$ also noted that the generalized forces on a rotor were functions of the generalize position and velocity of the point where the forces were applied and its nearest axial netzhbors. This allowed the variables to be arranced so that the Jacobian of the set of nonlinear equations was block tridiagonal. Therefore, conputing: time becanc proportional to the nurber of elements in the rotor dynamics model rather than to the cutce of the number of eleaents. The objective of this study is to refine the method used in ref 9 to include an automatic time stef routine and then apfly the tecinique to study blade loss induced rutur rubs. The autonatic time step routine is necessary so that the trae step can be varied as the rotor impacts the case. Aiso. the numerical stability of the wethod used in res 9 will be investigated.

S:「BOLS

a	reference amplitue
c	radial clearance
E	absolute error estimate
F	force
0	order of errer in Tayine serles
9	order of Taylor series
r	radial displacement
S	stability matrix
t	time
Δt	the step
u	defined in eq.(4)

```
z Independent variable
a given set of constants
\zeta damping ratio
\lambda eigenvalue of stability matrix
\mu coefficient of friction
\omega
```

ANALYSIS

Numerical integration

$\rightarrow(\mathrm{f})$ Given an arbitrary vector function ${\underset{k}{k}}^{(t)}$ whose derivatives exist. $\vec{z}_{k}^{(j)}(t)$, a Taylor series expansion can be written:

$$
\begin{equation*}
z_{k}(t+\Delta t)=\sum_{j=0}^{q-k} \frac{(\Delta t)^{j}}{j!} \vec{z}_{k}^{(j)}(t)+\overrightarrow{0}_{q-k} \tag{1}
\end{equation*}
$$

wh remainder of order \vec{o}_{q-k}. If the arbitrary function is chosen as

$$
\begin{equation*}
\vec{z}_{k}=\frac{(\Delta t)^{k}}{a k!}+(k) \tag{2}
\end{equation*}
$$

the Taylor series for this function becones

$$
\begin{equation*}
z_{k}(t+\Delta t)=\sum_{j=0}^{q}\binom{j}{k} z_{j}(t)+\vec{\sigma}_{q} \tag{3A}
\end{equation*}
$$

where the binomial coefficients are defined as

$$
\binom{j}{k}=\left\{\begin{array}{cc}
\frac{j!}{k!(j-k)!} & \text { for } j \geq k \tag{3k}\\
0 & \text { for } j<k
\end{array}\right.
$$

If the form of the remainder is chosen as

$$
\begin{equation*}
\overrightarrow{0}_{q}=a_{k} \vec{u} \tag{4}
\end{equation*}
$$

the Taylor series becones

$$
\begin{equation*}
\vec{z}_{k}(t+\Delta t)=\sum_{j=0}^{q}\binom{j}{k} \vec{z}_{j}(t)+a_{k} \vec{u}^{\prime} \tag{5}
\end{equation*}
$$

where the alphas are given in ref 7 and \vec{u} can be determined fron the equations of motion at the advanced time. The form of the set of the equations of motion at the advanced time is:

$$
\begin{equation*}
\sum F(\stackrel{\rightharpoonup}{r}, \stackrel{\rightharpoonup}{\dot{r}}, \ddot{\mathbf{r}}, t+\Delta t)=0 \tag{6}
\end{equation*}
$$

Fron the definition of \vec{z}. the various derivatives becone

$$
\begin{equation*}
\vec{x}(k)=\frac{a k!}{(\Delta t)^{k}} \vec{Z}_{k} \tag{7}
\end{equation*}
$$

Substituting for the various derivatives into the equations of motion; and knowing the values at the previous time. result in the equations of motion beins a function of:

$$
\begin{equation*}
\sum F(\vec{u}, t+\Delta t)=0 \tag{8}
\end{equation*}
$$

This set of equations can be solved for \vec{u} and. fron this value of u the remainder can be used as an error estimate to control the time ster. Fron the definition z_{1} represents a nondimensional form of \vec{x}_{1}. Therefore an estimate of the maximum absolute error is:

$$
\begin{equation*}
E=a_{1}\|\vec{u}\| \tag{9}
\end{equation*}
$$

where $|\vec{u}| l$. the vector norm is the maximum component of \vec{u}. The corputer code used in ref 9 was modified to include the following autonatic time sten althrogin. If E>. 01%. re-do the calculation with the time step reduced by a factor of 10 . If . $01 \%>5>.001 \%$ accept the calculation tut decrease the time step by a factor of 2. If $.001 \%>5.0001 \%$ accept the calculation and maintain the same time step. If . 0001%. accept the calculation but increase the time step by a factor of 2 .

Numerical stability:
The analysis of the stability of the nunerical integration technique assumes a model of rotor bearing systen that is linearized at some instant of time. The homoneneous equation of motion for any mode is

$$
\begin{equation*}
\ddot{r}+2 \omega r \dot{r}+\omega^{2} r=0 \tag{10}
\end{equation*}
$$

where onega is the natural frequency and zeta is the danpins ratio for the mode. For every mode that is numerically possible. with
nonnegative damping ratio, the amplitude must either remain constant or decay in time. The numerical integration is defined as unstable if the amplitude grows in time.

Substituting the Taylor series for the various derivatives into the modal equation of motion at the advanced time results in:

$$
\begin{equation*}
u=-\sum_{j=0}^{q}\left[\frac{j(j-1)+2 j \omega \Delta t \zeta+(\omega \Delta t)^{2}}{2 a_{2}+2 a_{1} \omega \Delta t \zeta+a_{0}(\omega \Delta t)^{2}}\right] z_{j}(t) \tag{11}
\end{equation*}
$$

For this value of u, the Taylor series expresses the solution at the advanced time in terms of the solution at the present time as:
$z_{k}(t+\Delta t)=\sum_{j=0}^{q}\left\{\binom{j}{k}-\frac{a_{k}\left[j(j-1)+2 j \omega \Delta t \zeta+(\omega \Delta t)^{2}\right]}{\left[2 a_{2}+2 a_{1} \omega \Delta t \zeta+a_{0}(\omega \Delta t)^{2}\right]}\right\} z_{j}(t)(12)$
Defining the matrix S to be:

$$
\begin{equation*}
s_{k j}=\binom{j}{k}-\frac{\alpha_{k}\left[j(j-1)+2 j \omega \Delta t \zeta+(\omega \Delta t)^{2}\right]}{\left[2 a_{2}+2 a_{1} \omega \Delta t \zeta+\alpha_{0}(\omega \Delta t)^{2}\right]} \tag{13}
\end{equation*}
$$

and the vector \vec{z} whose kthelement is z_{k}. results in the finite difference equation:

$$
\begin{equation*}
\frac{\pi}{2}(t+\Delta t)=s^{2}(t) \tag{14}
\end{equation*}
$$

This equation has a solution of the form:

$$
\begin{equation*}
\vec{Z}(t+\Delta t)=\lambda \frac{\tilde{z}}{}(t) \tag{15}
\end{equation*}
$$

where 1 ambala is an eigenvalue of:

$$
\begin{equation*}
s \vec{Z}=\lambda \vec{Z} \tag{16}
\end{equation*}
$$

If the $|\lambda|>1$, the amplitude grows and the method is numerically unstable.

Rub model:
The interaction of a rotor with its case is a complicated phenomenon. It can involve non-linear defornation of both the rotor and the case. Rotor-case rubs were experimentally studied in ref 10 . Analytically only simple rotor-case rub models are available; therefore, the case was assumed to be linear with dry friction interaction with the rotor. The radial and tangential forces on the rotor are then:

$$
\begin{align*}
F_{\mathbf{r}}=0, \quad F_{\theta}=0 & |\overrightarrow{\mathbf{r}}|<C \tag{17A}\\
F_{\mathbf{r}}=-k(|\overrightarrow{\mathbf{r}}|-C), \quad F_{\theta}=\mu F_{\mathbf{r}} \quad & |\overrightarrow{\mathbf{r}}|>C \tag{171j}
\end{align*}
$$

RESULTS A:T DISCISSIO:

The nunerical method of ref 9 emploved a second order integrator with a constant time step. However to study blade loss induced rotor rubs. it is necessary to modify the method of ref 9 to include higher order integrators with an automatic time step routine. The autonatic time step routine is necessary so that the time step can he varied as the rotor impacts the case. In order to calculate rish frequency components accuratcly, the time step must be less than the perioc of the hish trequency conmonert. When only low freouency components are irportant the time stef can be facreased to decrease corputinc tine. The algorith discribed in the analysis section keeps the maxinua cror in the Aisplacement at less than .01\%. It tries to maintain the error between . 001% to . C001\% by either decreasing or increasing the time step.

Another way to decrease computins time is to use a hisher order integrator. Ref 7 studied the numerical stability of up to a sixth order integrator applied to a first order differential equation. The numerical stabllity of these integrators applied to a second order differential equation was given in the analysis section. The nuserical stability of an inteqrator is based on modal rotor dynamics analysis. If the inte:rator is applied to a mode which is not driven and has damping, the amplitude must decay in time. Figure 1 shows a stability map for the integrators used in ref 7 applied to a second order differential equation. The abscissa is the darpine ratio and the ordinate is the product of the time step and natural frequency for the mode. The stability map has contours on it for which the amplitude does not change from one time to the next. On one side of the contour
the amplitude grows (unstable region). and on the other side it decays. (stable region).

Figure 1 shows the stable regions for a fourth through sixth order integrator. The second and third order integrators were stable everywhere. For the regions where the integrators were unstable, the amplitude grew by a few percent per time step. It would take on the order of a hundred time steps for the amplitude to double. and it would take on the order of a thousand time steps for the amplitude to increase by a factor of a thousand. Due to round offerrors. every mode that is numerically possible in the rotor dynamics model. has a finite amplitude. These amplitudes may be small. but if they are in an unstable region, in a few thousand time steps they can become very large. For this reason, only the second and third order integrators were used. This is still a vast improvement over other types of integrators such as the one used by NASTRAN. NASTRAN uses an implicit form of the Newmark-Beta integrator, ref 8 . This integrator is second order and does not have an error estimate.

The rotor-bearing system described in ref 11. (which dynamically simulates a typical small pas turbine). was used as the example problen. This rotor bearing system consisted of a shaft with three disks mounted on two axially preloaded ball bearings (fig 2). In this rotor-bearing system the bearings were mounted in squeeze-film danper journals, and the journals had centering springs.

The first three critical speeds for the rotor bearing system without oil in the dampers are shown in figure 3. Note that all the modes are bent- shaft modes. The "classical" hierarchy only applies to stiff shafts therefore. the classical mode shapes do not characterize the actual mode shapes. The first mode. about 7600 rpm. classically would be the cylindrical mode. But in this case. it has a large amount of bending outward near the shaft center. The second mode, about 9200 rpm . classically would be the conical mode. In this case, it has a slight amount of bending outward near the shaft ends. The third mode, about 11200 rpm . classically would be the bending mode. In this case, it has a large amount of bending throushout the shaft.

The rotor-bearing system was modeled by using 23 elements. Prior to the blade loss simulation the rotor was assumed to be balanced and operating at 9500 rpa. The blade loss was simulated by an instantaneous application of 5 mils of mass excentricity in the far disk. The equations of motion for this system were directly integrated by the method used in ref 9 with a variable time step. The output was interpolated to equal tine steps (100 time steps per shaft
rotation). and displayed on a CRT. figure 4. The fisplay showed an oblique view of the rotor bearing system. with the bearing center line as the oblique axis. The transverse vibration is indicated by the position of the rotor centerline. The scale of the transverse vibration exaggerates the amplitude of the vibration. The display on the CRT was photographed at each time step. These photographs were then shown as a motion picture.

Figure 5 shows the superposition of the first ten frames of the blade loss simulation without a rub. Initially the rotor. the bearing, and the mass center line coincided. After the blade loss. a traveling wave starts at the blade loss disk and travels down the rotor. During the time high frequency conponents are dominant. (because the rotor as a whole is not moving). A model analysis which only uses the lower modes cannot discribe the motion during this time period.

Figure 6 shows the position of the rotor for the first $81 x$ rotations of the rotor after blade loss without a rub taking place. During the first rotation, the blade loss disk spirals out. During the second rotation, the disk on the other end of the shaft spirals out. Duzing the third rotation. the center disk spirals out. After this the envelope of the rotor positions. seems to oscillate in a conical fashion. with a frequency of about $1 / 4$ operating speed. This beating seens to be at a frequency difference between the operating speed and the lst critical speed. (Ref 12 experimentally showed a similiar beat frequency between the operating speed and the critical speed.) Durinf this time the rotor shape resembles the third critical. except that the bearing center line is not in the plane of the rotor. The maximum amplitude occurred on the blade loss disk on the sixth rotation and on the opposite disk on the fourth rotation. The conclusion drawn from this figure is that if there is clearance space down the rotor and a rub occurs. it does not necessarily occur at the blade loss disk first.

The rotor-case rub was sinulated by surrounding each disk with a shroud that had a 2 nall radial clearance and a stiffness of $100,000: / i n$. The rub was induced by a repeat of the blade loss simulation with the clearance restrain. Two rub simulations were run. one with a coefficient of friction of $\cdot 1$ and the other with a coefficient of friction of 2 .

Figure 7 shows the first 6 rotations of the shaft after blade loss for a coefficient of friction of . l. During the first shaft rotation the blade loss disk spirals outward and bounces off the case four times. Each collision of the rotor with the case sends out
travel ing waves down the rotor. These waves interact with each other causing the envelope of the rotormotion to be very complicated. On the second shaft rotation both outhoard disks bounce off the case four times. As the rotor continues to turn the orbit hecones more circular. That is, the rotorcase interaction becones less of a bouncing nature and more of a continuous contact. The enverope of the rotor motion seems to be oscillating in a conical nature; but both outboard disks seen to redain in contact with the case. The rotor continues to wirl aiout the bearing centerline in the rotional direction (forward whirl). The frictional dray forces are not larze enoush to drive the rotor into backari wiirl.

Figure 2 shows the first 4 rotations of the shaft after blade loss fur a coefficient of friction of. 2. The notion of the rotor on the first rotation is similar to the.l coefficient of friction case. On the second rotation, the blade loss disk has a very hard collision with the wall, causing the rotor to bend considerably. On the thiril rotation the rotor wirl direction changes fron forward to backward whirl and the rotor wirl begins to accelerate in the backward direction. On the fourth rotation, the rotor inotion becomes very lame and it continues to grow on succeeding motations.

This exanple problem has shown that small chanoes in the coefficient of friction, (frow . 1 to . 2) can chance a rotor response to a blade loss condition fron a relatively safe response to a catastrophic response. Kr seal rus the coefficient of friction is probably between . 1 to . 2. For ilate tip rubs, this rub nojel is not accurate. This type of rub involves material renoval. phase change;, and cr non-elastic deformations. If this mojel we re to be usel in a \&eneral omner, then the coefficient of friction wouli probably be greater then . 2.

In conclusion, this conputer code allows us to look at blade loss induced rotor russ and displays the rotor notion in a notion-picture
 supplement is available, on loan, that show the cunputer naie notion picture for the blade loss indued rotor rubs.

SWITARY OF RESILTS ANI CONCLUSIO:S

A method for direct integration of a rotor dynamics sustem experiencing ablade loss induced rotor rub was developed. The following conclusions were iram:

1. The method was nunerically stable for any time stef un to a tiliri order intezrator.
2. The time step was controlled so that the maximur error was less then $.01 \%$ and the probable error was between $.001 \%$ to $.0001 \%$.
3. For the rotor typical of small gas turbines a small change in the coefficient of friction. (frow.l to . 2). caused the rotor to change from forwird to backward whirl and to destroy itself in a few rotations.
This method provides an analytical capability to study the susceptibility of rotors to rah induced backward whirl problems.

REF ERENCES

1. Johnson.D.C. Synchronous Whirl of A Vertical Shaft havins Clearance in One Bearing. J. Mech. Eng. Sci. vol.4. lio.1. 1962. pp 85-93.
2. Black.i.f.: Interaction of A Whirling Rotor With A Vibrating Stator Accross AClearance. J. Mech. Eng. vol.lo. Io.l. 1963. Pp 1-12.
3. Childs.D.h. A Rotor-Fixed Model Simulation Model of Flexible Rotating Equipment. J. Eng. Ind.. Vol.96. No.2. May 1974. pp 659-569.
4. Gunter.E.J. et al. Transient And Stability Analysis Usin!; The : lodal Fethod. UVA/528144/:I77/102. University of Virginia. 1977.
5. Shen, F.A.: Flexible Rotor Dynamics Analysis. (R-9252, Rocketdyne N.SA Contract NAS3-14422.) NASA CR-121276. 1073.
6. Kascak.A.F.: Stability Of Numerical Integration Techniques For Transient Rotor Dynamics. iNASA TP-1092, 1977.
7. Gear, C.V.: The Autonatic Integration of Stiff Ordinary Differential Equations. Proc. IFIP Congress Information Processing $6 s$ (Edinburgh 1968). A.J.H. Morrell ed.. Vol.1. Mathenatics Software. North Holland Publ. Co.. Amsterdan 1969. Pp 197-193.
8. Newnark.N.M.: A Method Of Computation For Structural Dynatics. J. of the Ens. Mech. Div.. Proc. of the American Soc. of Civil En.. Paper No.2094. Vol.85. No. E13, July 1050. pp 67-94
9. Ka scak, A.F. Direct Integration Of Transient Rotor Dynamics. DiASA TP 1597. AVNADCOM TK 79-42. Jan 1930.
10. Bill.P.C. and hisander.D. V. Friction And Vear of Several Compressor Gas-Path Seal Materials. NASA TP 1128. 1973.
11. Cunningham.R.E.: Fleming.D.P. and Gunter.E.J. Design of A Squeeze-Film Damper For A lulti-Mass Flexible Rotor. AS'iE Trans. J. Eng. Ind., Vol.97. No.4, Nov. 1975. pp 1383-1389.

Figure 1. - Numerical stability of Gear's integration inethod applied to a second order differential equation for a 2nd thru 6 th order of integration. inte 2nd and 3 ird order methods are always stable.

Figure 2. - Schematic of test apparatus used in experiments on steady-state unbalance response.

Figure 3. - Critical speeds and mode shapes.

Figure 4-Oblique view of rotor centerline whirling about the bearing centerline.

Figure 5. - Initial movement of rotor after blade loss.

Ftupere 7 . Enveloge a rator molion lor lirst six rotations of rotor atter blate loss liomefficent in friction mquals all.

Figures. - Envelooe of rotor motion for hirst four rotations of rotor after hlade loss cowficient of fricion equals 0.2 .

: \square ■ ヨ

SEP 8

