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ABSTRACT

The effects on classification accuracies due to changes

in data resolution are examined in timber stand classifica-

tions using remotely sensed multispectral data. Such an

investigation is valuable in deciding on optimal sensor and
platform designs. Data resolution means the actual, ground
area covered by a pixel recorded on the multispectral data;

high resolution implies small ground area.

To date results in the data resolution study indicate

that classification accuracies for data with high resolution

are actually less than the accuracies for data with lower

resolution. This conclusion is supported by theoretical

justifications and by experimental verification. The
verification was performed on multispectral data sets over
the Sam Houston National Forest.
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1.0 OBJECTIVES

This data resolution investigation is designed to;

• Study the theoretical effects on classification

accuracies clue to changes in data resolution

• Verify the theoretical conclusions by performing

a forestry classification, using real and simulated

data with various reduced resolution.
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2.0 JUSTIFICATION

It is often expected that multispectral data with

different data resolution permits different classification

accuracies for varied hierarchies of ground features, This

follows from photointerpreters' experience in mapping ground

features, using varied scales of imagery. In this paper,

data resolution means the actual ground area covered by a
pixel, or picture element, recorded on the multispectral

data, e.g., as recorded by the multispectral scanner.

The question naturally arises; "What is the optimal

data resolution for classification of remotely sensed data?"

For specific applications, e.g., forestry applications, the

same question must also be answered for the specific features

of interest. In forestry applications, the features are

timber stands of different species and/or condition classes.

Species composition defines the timber type of the stand,

while the age and/or size determines the condition class of

the timber stand.

Forest scones are particularly complex, especially

when viewed from low altitudes. The complexity is due to

the nonhomogeneity of the tree patterns, nonuniformity of

the composition of trees in the stand, variation in the

undergrowth and spacing between individual trees, texture

effects due to shadows, etc. All these effects are signifi-

cant for data with resolution less than perhaps 20 meters

square.

we
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Low altitude data, i,e., high resolution data, is
sometimes undesirable for machine processing and recognition.
This is contrary to the belief and practice in photonterpreta-

tion. The reason is machine processing of multispectral data
is not completely parallel with the human interpretation pro-
cess. The latter process actually extract infDrmation such as
texture, shape of tree crowns, shadows of trees indicating

their proilles, etc., from high resolution data, which are
used for detection of details. However, the machine process
has not been advanced to j.ising these nonspectral information
that photointerprotors use; the standard training field pattern

recognition technique of Laboratory for Application of Remote

Sensing System (LARSYS) (ref. 1) uses spectral, information
alone. Thus, forest scene complexities in high resolution
data make stand identification difficult. Smoothing out the
complexities would be expected to improve classification

accuracies.

Guided by this intuition, the complexities in forest

scenes are smoothed by simulating lower resolution data from
high resolution data. This is achieved by an averaging

process, which simulates data sets obtained at higher
altitudes. With this kind of modeling, the theoretical
effects on classification accuracies due to resolution
reduction can be examined, And with this kind of simulation,
experimental work can be performed to verify the theoretical

conclusions.



3.0 SCOPE OF APPLICAT IONS

Since this work is part of the Forestry Applications

'Project on Timber Resources (FAP/TR) (ref. 2), forest

scenes over Sam Houston National Forest (SHNF) were examined.

Mission M230 of the C-130 aircraft was flown over SHNF on

March 21, 1973 at 10,000 feet altitude; the Bendix 24 channel

multispectral scanner (MSS/24) onboard the aircraft collected

MSS data. Light edits from the MSS/24 coverage were selected

for study, as discussed in section 2.6 and appendix H of

reference 3. These are called Ldit numbers 3, 6 1 9 ) 12, 140

18p 53 and 54. Each edit is approximately 11 square kilometers,

The forest features of interest arc listed in table T,

The data sets over the eight edits were preprocessed.

Preprocessing riteans calibration, scan-angle correction and

registration to ground (ref. 2 and 4-8). The resulting data

resolution is approximately 5 meters square.



TABU I. -- T1 ,01 ' ^Pfi (CLASSES) AND CONDITION CLASSES (SUBCLASSES)

OF FOREST FEATURES OF INTEREST IN SM HOUSTaN NATIONAL FOREST OF TEXAS

Type No. Typo (Class) Subclass No. Condition Class (Subelass)

I Shortleaf pane 1.l Plaritation :. 3 years old
1. 2 Poletimber r immature

1.3 Sawtimber - immature

1.4 Sawt:Wber - mature
2 Loblolly pine 2.1 Plantation - 1 year old

2.2 Plantation	 3 year old

2.3 Seedling and Sapling -

adequately stocked

2.4 Polotunber - immature

2.5 Sawtimber = i,-munature

2.6 SawthDber - mature

3 Laurel. oak - 3.1 Sawtimber - immature

willow oak

4 Sweotgun - nuttal 4.1 Sawtimber - low quality

oak - willow oak 4.2 Sawtimber - immature

4.3 Sawtimber - mature

5 Post oak - black 5.1 Sawtimber - immature

oak

6 Loblolly pine - 6.1 Sawtimber - immature

Hardwoods

7 Cut-over hand 7.1 Site prepared and windrowed

7.2 Not site prepared

t^



4.0 TECHNICAL APPROACH

4.1 Simulation of Data with Reduced Resolution

An averaging or weighted averaging relationship is

assumed between data at different resolutions.

For example, data W has a resolution of (5 motor)2

Data M has a reduced resolution, i.e., courser resolution,

of (10 motor) 2	Thus, the same (10 motor) 2 ground area

e-wered by one Y measurement, y , will be covered by four X

measurements, x, , x 2 , XV and X4 . The averaging relationship

is
y a !,I(X 

I 
+X 

2 
+X 

3+x4 )	 -

The weighted averaging relationship is

y - wl x 1 +W 2 X2 +W 3X3 +W 4 x 4 	 F, w i 
x 1 p wiz 0 -

Data set W and set M could theoretically be acquired

using the same sensor, flown at two altitudes; the altitude

for	 is half the altitude for	 (See section 2.5 of

ref.

4.2 Classification and Evaluation Procedures

The classification toclinique is the widely used scheme

of supervised pattern recognition. That is, training fields

are selected to train the maximum likelihood classifier, such

as in LARSYS (rof. 1). Normal statistical distribi,itions are

assumed on the training classes. Equivalently, the Bayes'

classifier using equal a priori probability is employed

(ref. 9).

W-
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The evaluation procedure is the calculation of classi-

fication accuracies of training fields/classes. The classi-
fication accuracy is a measure of the statistical probability

of correct classification (PCC) (ref. 10) , which is another
widely accepted evaluation parameter. Also, the divergence
measure (ref, 10) is calculated to convey the extent of
separability between classes. In special cases, it has been
established that the divergence measure has direct relation-

ship with PCC.

4
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5.0 THEORETICAL RESULTS

5.1 Probability of Correct Classification

The following discussion shows that there is a gain in
the PCC when the data resolution is lowered. Actually, the
probability of misclassification (PMC) for the 2-class
classification case is computed below; PMC = 1 - PCC
Data sets {X} and {Y} are studied, where {Y} is a mX
(i.e. to times) reduction of {X} ; i.e,, a generic data
point in {Y} is an average of m 2 data points in {X} .

Assume the following notations for the means and

covariance matrices for the two classes C l and C 2 in the
data sets {X} and {Y}

Cl : 11 Xl,EX1; uYl,EY1

C 2' u X2, EX2; "Y2,EY2

These parameters can be estimated from the {X} and {Y} data
sets, using the normal method of training field selection
and statistics calculation. By the averaging process which

simulates {Y} from {X} , it can be shown that:

PX1 ^ uYl

EX1 m 2 EY1

	

u X2	 uY2

_	 2m E

	

EX2	 Y2



Using these statistics to train the classifier, the Bayes'

regions (ref. 10) for equal a priori probabilities are

established and denoted by R
Xl' RX2 for data set {X} and

	

by RYI, RY2 fo r data set {Y}	 It can be shown that

RX1 
R 
Y 1

RX2 = RY2

By the definition of PMC, which is (ref, 10)

PMC = Urob (Rl/C2) * '-^Prob (R 2 /C 1) ,

it can be seen that

PMC) Y >_ (PMC) Y

That is, PMC is lower for data set {Y} than for {X} ,

because the distributions in data set {Y} tapes off quicker

than in {X} ; this is a result of the relationship between

the covariance matrices. Therefore,

	

(PCC) Y, _>	 (PCC) x .

That is, the classification accuracy will be higher for the

lower resolution data {Y} than for the higher resolution

data {X} .

W
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5.2 Separability: Divergence Measure

The following establishes that the divergence between

C 1 and C 2 increases with the 1r)weri.,i of the data resolution;

the same situation as in section 5.1 ; assumed. The diver-

gence measure is used because it has been shown (ref. 11) that

the divergence value relates to PCC. In fact, when El = f2
for C l and C 2 , the divergence J(C 1 ,C 2) between C 1 and C2

has a one-to-one relationship with PCC; and, J(C1,C2)

increases if and only if PCC increases. Generally, the larger

the divergence value, the more separable C 1 is from C2

The divergence J(C l ,C 2) between C l and C 2 is defined

I^ s

J(Cl1C2) = ,ztr[F1-E`][E
2 -1-E 

l-
1

.J L 

+ ?2Iu1- u2^T[^ 1 1+ ' 2 -11111 1'u2]

By the relationship established in section 5.1 between

ux l and u Yi' EXi and EYi' 'PX2 
and UY2' EX2 and EY2'

Jx(C 1 ,C 2) and JY (C 1 ,C 2 ) for data sets {X) and M can be

related by the :following inequalities;

JX ( Cl , C 2 ) < JY ( C1 , C 2 ) < m2 JX(Cl,c2)

JY=m2J X in the special case when ^ 1 ^^ 2 ; and JY= JX when

there is no averaging, i.e., when data set {Y} is identical

to data set {x1.

i
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In general, when {Y) is a weighted average. of {X) ; i.e.,

a generic data point, y , in {Y} relates to the generic data

points, xi , in {X} in the following manner:

M2

Y = E wix i 4, Ewi = 1 wi>O

i=1

the m2 factors in the above discussion will be replaced by

m2 times a constant. This constant equals E w i t , and takes

values between 1 and 1/m 2	That is,

JX (C l ,C 2 ) < JY (C l ,C 2 ) < k JX(Cl,C2)

where 1 < k < m 2 .

d



6.0 FORESTRY APPLICATIONS: TO DATE RESULTS

6.1 Data Set Studied: Edit 9

During this reporting period, only Edit 9 out of the

8 edits was investigated. A three-channel color rendition

of the MSS data is shown in figure 1, with the timber stand

and compartment boundaries delineated on the imagery. The

codes for timber stand types are found in table I of

section 3.0.

The unreduced data plus two simulated data sets were

studied: I.X, 2X, and 3X, where 1X has a data resolution of

approximately (8 Meters) 2 ; 2X, (16 meters) 2 ; and 3X, (24

meters) 2 . The simulation is by the data resolution reduction

program discussed in section 2.5 of reference 3.

Only 12 channels on the MSS/24 were operating during

M230. They are the channels numbered 1 through 11 and 13

on the scanner. However, in Edit 9 data, these channels

are numbered 1 through 12. The spectral coverages of these

channels are shown in table II.

6.2 Field Selection

The fields selected for classification and divergence

studies are shown in figure 2. The entire Edit 9 area is

divided into 3 sections, left (L), middle (M) and right (R);

hence the labels of fields, e.g., L2.5, R2.5.

1



TIMBER STAND AND COMPARTMENT MAP OVER

SAM HOUSTON NATIONAL FOREST M5,S/14 EDIT

MISSION NO. 130 — EDIT NO. 9

APPROXIMATE SCALE 1:18.000

1	 ---___
STAIUII MUS

NAUTICAL MUS

A11011111FTERS

Figure 1. — Edit number 9.
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TABLE IT	 SPECTRAL COVERAGES OF 12 CHANNELS OF

THE EDIT 9 MSS DATA

Channel No. Spectral coverage (micrometer)

1 0.375-0.405

2 0.40-0.44

3 0.466-0.495
4 0.53-0.58

5 0.588-0.643
6 0.65-0.69
7 0.72-0.76
8 0.770-0.810

9 0.82-0.88

10 0.981-1.045
11 1.20=1630
12 2.10-2.36

ff`'
r
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Figure 2.	 Locations of fields selected on Edit
(Used in classification and divergence studies)



Because it was felt that the scan-angle correction

performed earlier in the project did not adequately correct

for the scan-angle effects, the left fields, middle fields
and right fields were studied separately. Actually, it was
found that the mean values for 2.5 fields in the left differ
by a few counts from the 2.5 fields in the right; hence
the conclusion on inadequate scan-angle correction.

The same physical fields were selected from 1X, 2X, and
3X. Thus, the field coordinates in 1X, 2X, and 3X are directly
related.

6.3 Data Processing

The 1X, 2X, and 3X data were processed on the Earth
Resources Interactive Processing System (DRIPS). The left

tour fields, middle two fields, and right three fields were
studied separately.

Statistics of these fields were generated; pairwise

classification and divergence calculations were made. For

example, for the right three fields R1.3, R2.3 and R2.5, there
are three pairs: R1.3/R2.3, R1.3/R2.5 and R2.3/R2.5.

Classification and divergence calculations were performed
using three different channel sets. (1) 8 channels: numbers

2, 4, 5, 7, 8, 9, 10, and 11. 	 (2) 4 channels	 ni.mmbers 3, 5,
8; and 11. (3) 4 best channels as dictated by the channel
selection processor on ERIPS: numbers 2, 7, 10, 12 for 1X.

and 3X; numbers 2, 3, 7, and 11 for 2X.



In case 1, the 8-channel set was chosen arbitrarily

because of the limitation of BRIPS in the divergence

calculation. Channels 1 and 3 were arbitrarily dropped,

because channel 2 contains very similar information (at

least visually); channel 2 was retained; channel 6 was

dropped because of data drop-out; channel 12 was dropped

because data values were very low. In case 2, the 4-channel

sot was arbitrarily chosen, and spaced throughout the 12

channels. The channel set in case 3 was dictated by the

channel selection processor on ERIPS.

6.4 Analysis Results

The results of performing the classification and

divergence measurements are summarized in figures 3 through

S. Each figure is in bar-chart form.

Each bar-chart shows the classification accuracy for

the pairwise classification (on the ordinate) versus the

specific pairs of classes used in classification (on the

abscissa). The classification accuracy is a measure of

PCC and is given by h(classification accuracy of C 1 +
classification accuracy of C 2 )*; classification accuracy of

C i = the number of points of C i 
correctly classified into

C i
 /the number of points of C i*

*Besid tHis Uefinition oF -classiTication accuracy,
other measures have also been commonly used; for example:
number of correctly classified points of C 1 and C2/total
number of points of C l and C2.

6X
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The pairwise divergence values are also indicated in
the bar-charts. The velues are written in the bars.

Figures 3 through 5 correspond to cases 1, 2, and 3
of data Processing discussed in section 6.3. The 1X, 2X,

and 3X results are shown Side -by -side.

.6.5 Inference from Analysis Results

Figures 3 through 5 lead to the following conclusion,
Classification accuracies increase with the lowering of data
resolution. Also, classes are more separable at lower

resolution.

This conclusion reinforces the theory discussed in

section 5.0.

4
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7.O THE PARADOX AND SOME REMARKS

7.1 The Paradox

t

The theoretical and experimental results conclude that

classification accuracies increase with the reduction in

fidelity of data resolution. This gives rise to the
hollowing paradox:

"If ground features can be classified
using low altitude data, they can also

be classified, and even with higher

accuracies, using high altitude data."

7.2 The Paradox's Intuitive Explanation

The paradox should not cause any alarm, because the

statement is asserted for classification accuracies alone,

and because the classification technique employs spectral
information. alone.

The accuracy measure used in the analysis comes from
evaluating training/test data which are well defined. a.nd

delineated due to prior knowledge. The loss ill boundary

accuracy and mensuration accuracy in the analysis of higher

altitude data has not been accounted. for. These two factors
are most often deciding factors on optimal data resolution.
Also, the gain in details at higher resolution is not an
asset to the spectral classification rule. In fast, the

details in texture, etc., add to the complexity in machine

processing in this case.



Another explanation for the increase in classification

accuracies for lower resolution data is that a "PERFIELD"

classification (ref. 11) is performed on the lower resolution

data, compared to a "PERPOINT" classification on the higher

resolution data. A "PERFIELD" classification rule has been

suggested to be superior to the "PERPOINT" classification

rule. That is, nonhomogeneity in the higher resolution data

is reduced by the averaging process, which gives the lower

resolution data. This explanation is readily acceptable,

especially for forest scenes, where complexities abound

with high resolution.

7.3 A Remark on Detection

An interesting remark follows from the conclusion of

the above analysis. For detection purposes, ERTS-1 for

example, will outperform aircraft data analysis, as long as

the features to be detected have physical sizes larger than

the ERTS-1 resolution (preferably at least four times larger,

in order to assure total containment of the feature in at

least one pixel). Detection here means the detection of

the presence of the feature, disregarding its size.

7.4 Decision on Optimal Data Resolution

An optimizing criterion can be set up where the optimal

choice of data resolution is a compromise between classifica-

tion accuracy, boundary accuracy and mensuration accuracy.

The criterion, D, could then be written as

D = d 1 
0 
c 

+ d 
2 

a b + d 3 0 
m

y^
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where d l , d2 , and d 3 are weights in the criterion, and

0 c , O b , em are respectively the accuracies in classification,

boundary location, and mensuration. An optimal solution for
s	

data resolution will be obtained by achieving maximum value

of the criterion D . Different applications will call

for different weights d l , d 2 , and d 3 ; and will produce

different solutions. Other factors such as the cost of data

acquisition, cost of data processing, etc., can be also

incorporated into the criterion as follows:

D' = dl 0 c + d 2 e b + d 3 0 m + d 4 
C a + d 5 C p

where C a and C 	 are the respective costs.

An optimal decision on data resolution will lead to an

optimal design of sensors and platforms.

_> ^7
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8.0 CONCLUSIONS

This study has derived the theoretical effects on

classification accuracies due to the changes in data

resolution. The modeling of the data reduction scheme

led to simulation of forestry data at lower resolutions.

The performance of the forestry applications experiment
led to analysis results that reinforce the theoretical

inferences. That is, classification accuracies increase

with the reduction in fidelity of data resolution using

the training field and maximum likelihood classification

scheme.

This apparent paradox is explained in section 7.0.

Suggestions are then made concern ."Ing the optimal design of

data resolutions, and thus the optimal design of sensors

and platforms.

Further efforts in this data resolution study will be

spent in: (1) Extension of the results and analyses to

other areas in the Sam Houston National Forest; (Z) Expansion

of the results and analyses to obtain classification images;

(3) Quantitative and qualitative evaluation of the resulting

classification images.

,8-yyyy
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