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FINAL REPURT
ACTIVE DAMPING OF MODAL VIBRATIONS BY FORCE APPORTIONING”

I.  INTRODUCTION

The objectives of this research have been to develop and to evaluate by
analysis and numerical simulation a method of active structufal dambfng known
as force apportioning. This methbd is based upon the method used in modal
vibration testing of isolating modes by multiple-shaker excitation. For
either application, active excitation or active damping, one chooses a distri-
bution of as few forces as possible on the structure which will maximally
affect selected vibration nodes while minimally exciting all other modes.

NASA sponsorship of this research has fully supported the production
of (1) a technical paper presented at a major conference and published in the
proceedings (and presently under review for journal publication) and (2) a
Master's degree thesis. NASA sponsorship has also partially supported the
production of a second Master's degree thesis, which is indirectly related
to the principal objectives of this research. Descriptions and bibliographical
references to these reports are given in Section II.

During the last few months of the project, additional work was completed
which has not previqysly been reported in writing. The results of this work,
which dealt primarily with imperfection sensitivity of the active damping
method, are summarized in Section III and are presented in more detail in
appendices.

A final oral report was presented by the Principal Investigator at NASA
Langley Research Center on July 18, 1980.

*The NASA Technicai Officer for this grant is Mr. Rabert Miserentino, NASA
Langley Research Center. ‘




I1.  SUMMARY_OF ACCOMPLISHMENTS, AND REPORT REFERENCES

II.A The Basic Form of Active Damping by Force Apportioning

This subject has been described in great detail in a Master's degree
thesis [l]* ar<l in a conference technical paper [2]. Reference 2 is included
as Appendix A of this report.

The paper has also been submitted for journal publication. In the
Jjournal paper, Section V of Ref. 2 will be simplified considerably. It hap-
pens that the same force apportioning vector can be derived with a much more
direct approach not requiring the intermediate introduction of a condensed

model. The new derivation is included in Appendix B of this report.

I1.B The Dynamic Stiffness Method for Plane Grillages

This method, which has been discussed in the Semi-Annual Reports for this
project, is the subject of a recent Master's degree thesis [3]. NASA sponsor-
ship supported a part of the theoretical development and computer implementa-
tion reported in Ref. 3. A technical paper describing this work will soon be
submitted for publication in the Journal of Sound and Vibration.

The method provides exact vibration modes for plane grillage structures,
rather than the approximate modes which result from finite element discretiza-
tion. We had originally planned to use these exact modes in numerical simulations
of active damping, such as those described invSection VI of Ref. 2. However,
as the project termination date approached, it became clear that the additional
time and effort required to employ the exact modes, as opposed to finite element
modes, would have no affect on the ultimate conclusions relative to active

damping.‘ So the dynamic stiffness method was not employed in the study of

*Bracketed numbers refer to the References section.
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active damping. However, the dynamic stiffness method itself has considerable

intrinsic value, so our efforts in developing and reporting it have been

worthwhile.

111, SUMMARY OF STUDIES NOT PREVIOUSLY REPORTED

ITT.A. Accuracy of Numerical Simulations of Active Dariping

Since mcdal series truncation and Runge-Kutta integration were used in
the time history simulations described in Section VI of Ref. 2, the results
are not numerically exact. In order to check the accuracy of the numerical
solutions for several cases, we varied the number of modes retained and/or
the integration step size from the values stated in Ref. 2. In all cases
but one, these variations produced insignificant changes in the results. The
one exception was a case in which the integration step size was clearly too
long relative to the periods of the high-frequency modes retained; an oscil-
latory instability resulted which we feel was a numerical artifact and not a

qualitatively correct solution of the equations of motion.

IT1.B. Active Damping of Higher-Frequency Modes

Previous numerical simulations [1,2] have demonstrated only that the
Towest flexible modes of a structure can be suppressed effectively, but these
new results show that force apportioning is applicable also-to the damping

of higher-frequency modes. The results are presented in detail in Appendix C.

III.C. Some Studies of Imperfection Sensitivity

Previous reports [1,2] have described active damping by force apportioning
under idealized conditions. Numerical simulations have shown that the method

can be very effective provided that all necessary modal parameters of the
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structure are known exactly and that sensors, actuators, and narrow-band filters

have ideal operating characteristics. But the effectiveness of the method under

.more realistic conditions is a matter of more practical interest, so we have

conducted a Timited study of the effects of non-ideal conditions. Specifically,
we have analyzed the case in which the controlled structure's modal:parameters

are known only approximately and the case of non-ideal frequency filtering.

ITT.C.1 Inexact Modal Parameters for the Controlled Structure

It has been assumed in previous reports [1,2] that the exact modal para-
meters were known for the purpose of computing the ideal force apportioning,
which is given in Section V of Ref. 2. These new results demonstrate that the
effectivenessof the active damping method is not particularly sensitive to
somewhat inexact modal parameters, provided that the approximate mode shapes
are not drastically different from the actual mode shapes. However, inexact
modal information leads to coupling between the controlled modes (those modes
denoted by the index s in Egs. (10) and (15) of Ref. 2), which produces the
possibility of loﬁg-term system instability. The effects df inexact modal

information are described in more detail in Appendix D.

I11.C.2 Non-ldeal Frequency Filtering

It has been assumed in previous reports [1,2] that the narrow-band fil-
ters required by the active damping method have ideal operating characteristics,
namely, infinitely narrow pass-bands and infinitely steep rolloff rates, so
that ohly the dezired frequency components are passed. The new results ac-
count for filters having finite pass-bands and finite rolloff rates. Numerical
simulation results show that the method's effectiveness in suppressing

initially existing vibrations in the controlled modes is quite insensitive to
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typical filter characteristics. However, non-ideal filters do introduce the
possibility of long-term system instability due to coupling between all modes,
both controlled and uncontrolled. The effects of non-ideal filters are des-

cribed in more detail in Appendix E.

Iv. SUMMARY OF COMPUTER PROGRAMS PREPARED

The computer programs developed for this research are run on the main
computers of the VPI&SU Computing Center, an IBM 3032 Processor Complex, and
an IBM System 370 Model 158. The IBM 3032 runs the 0S/VS2 MVS (Multiple
Virtual Storage) operating system with JES2 (Job Entry Subsystem 2) as job
scheduler, The IBM 370 runs under the control of Virtual Machine Facility/370
(VYM/370); under VM, the Conversational Monitor System (CMS) provides inter-
active time-sharing support to users at remote terminals. The Computing
Center provides Fortran subroutines of the International Mathematics and
Statistics Library (IMSL). Automated plotters used for this research are
the Versatec 1200 electrostatic plotter (for quick, inexpensive plots) and the
Calcomp 1051 drum plotter (for finished ink plots on vellum,suitable for
publication).

A1l programs developed for this research are coded in Fortran IV and
compiled by the Fortran H Extended Compiler. With one exception*, all programs
are run with IBM single precision arithmetic. Two types of programs have been
written: calculation programs and plotting programs. |

The calculation programs generate mass and stiffness matrices for finite

element models of plane grillage structures, perform modal eigensolutions,

*The exception is EIGENR, the locally déve]oped and'undocumented eigensolution
subroutine used to calculate modes of small finite element models. EIGENR
uses IBM double precision arithmetic.
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and do time history numerical simulations of active damping. A1l calculation
programs are run from CMS on the IBM 370, The time history numerical simula-
tion programs, ACTIV for Coulomb-type damping and VIACDA for viscous-type
damping, make extensive use of the interactive mode for entry of data and
inspection of intermediate results by the user. ,

Two slightly differing Fortran plotting programs, DES2 and DES3, produce
Versatec and Calcomp plots, resbectively, of time history numer1éa1 simulations.
Each program is controlled by a different set of job control language instructions.
The plotting programs run under MVS. |

Documentation for the programs developed in this research is fairly com-
plete but informal, and it will remain in the possession of the Principal
Investigator. Appendix B of Reference 1 presents flow diagrams describing
the operation of programs ACTIV and VIACDA prior to incorporation of the ad-
ditional capabilities described in Section III.C.

‘The programs are operational at this writing and will be kept operational

- until approximately six months after publication of the journal version of

Ref. 2. At that time, some of the operating programs will be deleted from
disk storage, and the source programs will be stored as card decks. The

decks will remain in the possession of the Principal Investigator for possible
future use.

In their present form, the calculation programs are restricted to analysis
of unrestrained plane grillage structures having relatively few degrees of
freedom. However, with straightforward modifications, the programs could
handle any type of structure. The calculation programs constitute a stand-
alone package, except that ACTIV and VIACDA presently use(lMSL subroutines

for performing the matrix inversion indicated by Eq. (28) of Ref. 2. However,




the matrix to be inverted is usually quite small (10 x 10 or smaller), so a
short user-supplied subroutine could he employed with no loss of capability,
The programs permit time history plotting of all physical quantities that

a user is likely to desire. The use» may plot the response in any degree of
freedom, the force produced by any control thruster, and the energy. in any
mode or combination of modes. Figs. 4-7 of Ref. 2 include examples of each
of these types of plots. Although all the time history plots incTuded in
this report (others than those in Appendix A) represent total energy (i.e.,
the energy in all modes), plots of several other physical quantities were
generated in each case. Some of these other quantities are very interesting
(e.g., the energy in only the uncontrolled modes), but they have been ex-

cluded in order to limit the length of this report.

V.  SOME POSSIBLE REFINEMENTS OF THIS RESEARCH

The topics discussed in this section are not all of equal significance;
they are presented below in random order,

The target mode suppression time ts is defined by Eqs. (7) and (i3) of Ref.
2 as being the time specified for decay of modal coordinate Es to a prescribed
level. Comparison of Figs. 4a and 7a of Ref. 2 shows that this definition
does nct lead to comparable rates of energy decay for viscous and Coulomb
types of damping with the same value of t. Hindsight strongly suggests that
defining t, on the basis of modal energy decay, rather than modal ?mglitude
decay, would be a more rational approach.

In the development of the mathematically ideal force apportioning vector
in Section V of Ref. 2 (and the revised version in Appendix B, Section 1 of

this report), the restriction is imposed that the number of control actuators
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must equal the number of controlled modes, n, = m. This restriction arises
from the necessity for inverting a partition of the modal matrix, which must
therefore be square. But in actual practice, it will probably be required to

control more modes than there are available actuators, m > n This practical

a’
requirement might be satisfied, within the context of active damping by force
apportioning, by calculation of the pseudo-inverse of a non-square matrix.

The mathematical details of the pseudo-inverse calculation are presented in
Appendix B, Section 2. However, no numerical study has been attempted.

One difficult problem which is encountered in active damping by force
apportioning is selection of the control thruster locations so as to minimize
residual energy. We have addressed this problem in an ad hoc, trial-and-error
fashion, as is described concisely in Appendix C of this report and Section
VI of Ref. 2, and more extensively in Ref. 1. However, it is probable that
a more efficient approach could be devised on the basis of relative values
of the inner products of modal vectors and force apportioning vectors. This
approach is suggested by the discussion in the sixth paragraph of Section VI
of Ref. 2.,

Section II1.C and Appendices D and E of this report discuss the possibility
of system instability occurring if the force apportioning and/or the filtering
do not have the mathematically ideal forms. We have investigated this pos-
sibility simply by integrating the equations of motion and inspecting the time
history plots. It is obvious that a much more sophisticated stability analysis
could be conducted. Equations (E.2) in Appendix E are the most genera! equations
of motion, accounting for non-ideal apportioning and/or non-ideal filtering,

and they would be the basis for a quantitative stability analysis.
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VI. CONCLUDING REMARKS

The concluding remarks in Section VII of Ref, 2 sti11 hold without re-
vision. 1In addition, we may comment now on the new results presented in
Section 111 and the appendices of this report., These results are fairly con-
vincing evidence that the effectiveness of active damping by force apportioning
is not significantly impaired by realistic conditions, as opposed to the
idealized conditions considered in Ref, 2.

The study described in this report has been exclusively theoretical and
computational. It seems reasonable to conclude on the basis of our results
that active damping by force apportioning appears on paper to be a practically
feasible method. Further as¢ more definitive evaluation o% the method re-

quires an experimental study.
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ACTIVE DAMPING OF MODAL YIBRATIONS
BY FORCE APPORTIONING

W, L, Hallauer Jr,* and J, ~F. M, Barthelemy**
Department of Aerospace and Ocean Engineering
Yirginia Polytechnic Institute 3nd State University
Blagksburg, Virginia 24061

ABSTRACT

This paper describes with theory and numert»
cal simulation a method of active structural dampe
ing which requires relatively few discrete con-
trol thrusters suitably positioned on the struc-
ture, For each vibration mode which {s to be
damped (;ar?c: mode), & particular apportioning
of coherently phased control forces s applied
which stron?ly affects that mode while minfmally
exciting all other modes, The force apportion-
ing used is that which would tune a target mode
{f the structure were being shaken in 2 modal
vibration test. In ¢ontrast to modal testing,
howgver, the forces are varfed temporally 50 as
to dampen, rather than excite, the target mode or
mades,

NOTATION
(.} column matrix, vector
( ]T.(a)T transpose of [ 1, (.)
{({ )°C2,(.)° denotes condensation or partition-

ing relative to both medes and
degrees of freedom (d.0.f.)

()] denotes partitioning relative to
modes only

(ov)yTy

{k] n x n stiffness matrix

[m] n x n inertia matrix

(9] nox n omodal matyix

L4 = L6517 = ([a°€1 )T

fs force apportioning vector for damp-

- ing of a target mode

o rth column of (4], mode shape of

i rth mode

Q(t) n x 1 action (force and moment)

- vector

q(t) nx1do.f. vector

g(t) vector of normal or modal coordi-

N nates

= ‘l. rss

rs o, r#s
Mr‘?rT[m]?r generalized mass of the rth mode

» Associate Professor, Member ALAA
erGraduate Research Assistant, Member AIAA

Er(t) energy in the rth mode

Kg feedback c¢onstant for damping of
target mode, Eqs. (8) and {13)

m number of target modes

n total number of d.o.fs in struc~
tura) model

Ne number of modes and d.0.f, in con~

densed model

2
W ge 'usVl - b

o natural frequency of the rth mode

Pe target mode viscous decay ¢riterion,
Eq, {7

r index denoting an arbitrary mode

5 , fndex denoting a target mode

t time

t target mode suppression time, Eqs.

(7) and (13)

bgo *55(0)  initfal value of target mode
normal coordinate

p target mode viscous active damping
factor

1. INTROBUCTION

To suppress the vibrations caused by opera-
tional or environmental conditions, modern vehicle
and building structures may require additional
damping beyond that provided by inherent passive
mechanisms of energy dissipation, The traditional
scurce of artificial damping is a passive device,
but for some current applications such devices
are fneffective or are unsatisfactory for other
reasons, such as excessive wei?ht. For these
applications, additional artificial damping might
be provided kv an active system, i.e. a system
which uses sensing, feedback, and contro) forces
or moments to oppose the structural motion.

Herzberq et al.‘ have observed that the well
established technology of modal vibration tasting
s adaptable to the contro) of structural vibra=-
tions. This paper describes a method of active
damping which fs Just such an adaptation,

A possible application of this method is for
the suppression of vibrations {n proposed large
space structures, These structures will be Sube
jected to sources of disturbance such as propulsive

B




forces or gyroscopic moments to effect maneuvers,
but the vacuum of space will provide no atmos-
pheric damping and 1t seems likely that internal
structural damping will generally be low, The '
potential significance of active damping for large
space structures has inspired a great deal of
current research, No literature review will be
attempted here, but Ref. 2 fncludes a number of
very recent papers and tuch bibl{ographic infor-
mation on the subject.

Most pravious contemporary studies of actijve
structural damping have applied advanced control
theory, e,g, the papers of Balas3d and Meirovitch
and Oza. In contrast, the hasic form of active
dainping by force apportioning introduced here in-
volves no control theory beyond the behavior of
a one-degree-of-freedom damped oscillator.

11. GENERAL DISCUSSION OF FORCE APPORTIONING

The traditional application of force appor-
tioning is for modal vibration testing with two
or more sinusoidally varying, coherently phased
mechanical shakers. The shakers are attached to
suftable points on the structure being tested,
and their force ampliitudes are apportioned in
such a way as to tune a selected vibration mode,
which we call the target mode. Ideally, al] of
the energy is fed into the target mode at its
natural frequency, and all other modes, which we
call the residual modes, are untouched. This
focuséng of energy into a single mode is attrib-
utable to the specific spatial distribution of
shakers and their relative force amplitudes.

In reality, perfect tuning is generally not
possible with a finite number of shakers., The
practical objective of madal testing with force
apportioning is to tune with as few shakers as
possible while still minimizing excitation of
residual modes so that targat mode parameters
can be Zzccurately measured, Several methods
have been developed or proposed for calculating
the apportioning of shaker force amplitudes to
produce effective mode tuning, e.g. the methads
of Lewis and Wrisley®, Asher®, Ibanez’7, and
Morosow and Ayre8,

In moda} vibration testing, the properly
apportioned forces feed energy into the target
mode and stimulate motion by virtue of being in
phase with the velocity of target mode response,
Conversely, for active damping of existing but
unwanted vibration in a target mode, the same
spatial distribution and apportioning of forces,
but 180° out of phase with the velocity, will ex=
tract energy from that mode. The target mode or
modes can always be suppressed in this manner,
but a possible undesirable byproduct is the
pumping of energy into residual modes. Success-
ful application of this method of active damping
requires that the control force locations be
chosen so as to minimize residual energy. This
point is discussed in more detail subsequently,

To describe force apportioning mathematicale
1y, we write the equations of motion for a )inear
?tructu;e discretized to n degrees of freedom

d.o.f.}),

(mlq+(klg=Q ()

e R

Internai passive structural damping is omitted to
simplify the analysis.* We denote a target mode

as mode 5, and the vector of coherently phased
actions (forces and moments) which selectively
affects mode s as Og(t). Substititing into Eq. (1)
Qs and the standard pormal mode transformation

n
At = Ll 6l) =D g glt)  (2)

=)

leads, with mass and stiffness orthogonality con-
ditions, to tne modal equations of motion,

Mr'ér + “rwrz er s (!r'gs)i rs 102!“”n (3)

The mathematical objective of force apportioning
fs to select the constant shape f¢ of Qs(t) so
as to maximize generalized force ig;"953 into the
target mode while minimizing generalized forces
($rsQs)y r # s, into all residual modes, thus
minimizing residual responses, &r(t), r # s.
Existing methodsS=8 for calculating fs have been
developed primarily for application with experi-
mental transfer function data. For purposes of
this study, however, we present in Section V a
simpler method which requires a priori knowledge
of modal parameters.

In the next section, expressions for Qs(t)
are developed (with fg left unspecified) leading
to standard viscous and Coulomb types of modal
damping.

I11. ARTIFICIAL VISCOUS AND COULOMB
TYPES OF DAMPING

From Eq, {2), the portion of response in
any particular d.o.f. 1 due to mode s is

yglt) = o045 £(t) (4)

We specify that motion qi(tj of a single selected
translation, the ith d.o.f., is measured by a
sensor, typically an accelerometer, and that the
quantity qis(t) for each target mode is produced
from qi(t) by narrow-band filtering around the
target mode natural frequencies.

[I1.A Artificial Viscous Damping

To produce simple viscous type damping in a
single target mode, we specify

Qs = =K fs 9y ()

where Ks is a feedback constant to be determined.
Thus, medal equations (3) become

*Note, however, that the actual structural damping
of large space structures is likely to be slight,
If so, it will produce negligible coupling of the
undamped normal modes? and, therefore, can only
complement, rather than detract from, the damping
provided by artificial means, Thus, the neglect
of natura) damping in the analysis should, for
large space structures, lead to conservative
results,
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Mrgr + Hrur ;P = 'Ks(}rv!s) Ois 1 7Y) (6)
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In the pumerical simulations of Section VI,
non-zero initial displacement and zero initial
‘ velocity are specified for each target mode, and
i it 1s required that each target mode exponential
decay envelope be damped to 3 portion ps << | of
its initial value in time ts. Thus, the required
viscous damping factor is

in{1/Ps
bs * "é;é;'l "

and, from the sth equation of (6), the feedback
constant is

2 Ms wg &g
k3
s TeorfT oy

(8)

1f a number m of target modes are to be
damped simujtaneously, then the appropriate
action vector is

i1}
Q(t) . 'Z Ks fs qis (9)

s=]

In Eq. (9), we assume for simplicity that the
m target modes are the first m modes of the
structure, but in general Lhe target modes need
not be only the lowest modes, nor need they be a
series of consecutive modes, With Eq. (9), the
. modal equations become
m

”" 2 . .
Mrererwr Ep * - Z KS(Q,.»_fs) ¥4 G50 (10)
S:

rE 1,200
where Kg for each target mode {s calcujated from
Eqs. (7) and (8), Figure 1* is a conceptual
£ block diagram illustrating the impiementation
‘ of Eq. (10) for active damping of two modes of
a discretized beam, with the use of three control
thrusters. For simultaneous damping of more
than one mode, as in Fig, 1, the elements of
apportioning vectors fs, s = 1,2,...,m, can be
represented as elements of a rectangular matrix.

Artificial viscous damping requires that
! the contro} forces be continuously variable in
: . time, and it leads to a mathematically linear
problem, It is possible, though, that propulsive
contro) units will not be capable of delivering
continuously variable thrust. So we consider
next a type of control force which perhaps is
more likely to be achieved in practice, but
leads to a nonlinear problem.

[11.B Artificial Coulomb Oamping

To_produce damping similar to Coulomb
dampingl0 in a single target mode, we specify

where

* Figures and tables are located at the end of the
paper.

o 13
BJ‘U‘-‘-—“ . R

1 for (»)
son(.) =J 0 for |{.)] ¢

-1 for () < =g

W
fad

”
™

and e, §s a threshold velocity level, which is
zero ¥or pure Coulomb damping. Small ey » 0 is
considered here because any actual propulsive
device must shut off at some npon-zero level of
comand signal, Equation (11) is an approxima-
tion to the type of propulsive thrust often
referred to as "bang-bang" (or "on-off") thrust
with a deadbandd, With Eqs. (4) and {11), moda}
equations (3) becone

Ml + Ml g = = Ko(8,08,) sanleg ), (12)

rs=s l.2....,n

With the initial value of target mode dis-
placement in the ith d.o.f, specified as
q1s(0) = £5(0)/¢45 and zero initial velocity, we
require that mode s be suppressed in time tg,
Provided that ¢y 15 small relative to peak target
mode velncities, the feedback constant Ks which
will give suppression time tg is calculated as
follows. For pure Coulomb damping (ey = 0).
decay per period 2r/wg of Eg(t) in the sth equa-
tion of (12) is10

4 KS <§s’fs) 015
2
194l

My g

The initial amplitude |&4(0)| equals the decay
per period times the pumber of periods to sup-
pression, wsts/21, Thus, a Jittle algebra gives

" Mswslq1s(0)‘

Ks = 7%

[FUCIT AN 13
g \8gefg lp1s (13)

If a number m of target modes are to be
damped simultanesusly, then' the appropriate
action vector {s

m
Q) * =) Kf sanag)  (14)
5=1

and the modal equations become

m
Melp * ”r”reer ’ ':E:: Kg(gpofs) sanfeye0),(18)

s*]
r=1,2,0.040

where Ks for each target mode is calculated from
Eq. (13?.

It should be noted that for small ey the
individual control forces for single-mode damping,
£q. (11), wil) vary with time in nearly a square
wave. However, because a number of nearly square
waves are being superimposed in Eq. (14), the
time variation of each control force for multi-
mode damping generally wil] have the character
of erratic stairsteps. .This is illustrated in
Section VI,

L




IV. SPECIAL CASE: VISCOUS DAMPING
OF ONE TARGET MODE

This relatively simple case is amenable, in
part, to closed-form solution, The solution ob-
tained will provide useful information which is
applicable, at least qualitatively, to the analy-
sis of more comp)icated cases,

We seek solutions of modal equations (6)
with fee/back constant (8). The sth modal equa-
tion. is rewritten as

" » 2
fs t B ugbgru b0

and we specify initial conditions €5(0) = 50 # 0
v and £g(0) = 0. The solution is

. hgwst
Sglt) = Egplugfuy le

where
ds H 5

a tan V(-
9, = tan ( csws/mds)

cos(wust + 65)(16)

Next we substitute Eq. (16) into the right-hand
sides of a1l residual (r £ s) modal equations of
(6) and, again using €q. (8), find the non-homo-
geneous equations
. 2 ';s”st 17
. ME M0 56 = e simgets v ks (17)

where )
C . 2 Mous™ &g &gy (¢pif5)
(@s’fs)

rs
2
LEE N

With initial conditions &.(0) = 0 and ér(o) =0
for r # s, the solution of Eq. (17) can be written
as a convolution integral,

t
! ¢ “f.w.T
i £ (t) = g ;“//' e 55 sinuyrsin (t-r)dr(18)
rr
0

Equations (16) and (17) show that the target
mode eventually decays and excitation of the
residual modes eventually ceases. But after the
target mode is suppressed, the residual modes
remain in a steady state of free vibration. This
steady-state motion can be determined by setting
the upper limit in integral (18) to infinity,

: which also makes' the integral reasonably tractable.
f The result of this evaluatijon has the form

(19)

where &, and 6, are algebraically complicated.

5. 35(8) » T ocos(u t +8)

Rather than examining amplitude &, it is
perhaps more useful to evaluate the residual |
energy, which is a significant global quantity.
The instantaneous energy in any mode is

2 2 2)

E(t) = g M58 0 s, (20)

‘modes with frequencies lJower than that of the

4 .
T 1 S

Thus, the ratfo of steady-state residual mode
energy to initial energy is found to be

s$ 2 =2
£, Moue” &

!;TU)' Mgug™ &gq

M, u.:)]"
2 4
R o

2 w, }2
[u . (5%)2] . [ch —:—]

Equation (21) demonstrates that selection of an
active damping factor g fnv.ives a compromise:
a higher g is desirable to suppress the tar?et
mode more rap‘dly, but a lower Zg is desirable to
minimize resfdusl energy, Equation (21) also
shows that rzsidual modes with frequencies some-
what' greater than that of the target mode are
relatively immune to excitation, the residual
energy varying nearly as the fourth power of the
frequency ratio. On the other hand, residual

target mode are not protected by a favorable fre-
quency ratio and seem somewhat susceptible. In
the limit as wp goes to zero, £q. (21) gives the
residual energy remaining in a rigid body mode,

[Erss]rb 2 Ms (Qr'fs) ¢
utzzﬁy—- = Cs ﬁ: r@;:?;T (22)

Equation (22) shows that force apportioning vector
fs must be orthogonal to all rigid body node
shapes In order not to disturb the structure's
rigid body orientation. ]

V. FORCE APPORTIONING BASED ON A
CONDENSATION TECHNIQUE

We first establish an apportioning of forces
and moments which is applicable t» the full dis-
cretized structural model characterized by £q. (1),
To isolate the sth mode from all others, we set

Qg = [m] ¢ 9(t)

where g(t) is an arbitrary function of time.
modal equations (3) become

2

Then

M6+ Mue &= Mg 6o g(t), r=1,2,,..n

r
where Spe is the Kronecker delta. Thus, the ideal
apportioning of forces and moments is

£ = [nd ¢, (23)

But Eq. (23) implies the presence of a control
force. or moment at each d.o.f. of the structure,
which is generally impossible. So we develop
next a condensed, or reduced order, mathematical
model of the structure, for which an apportioning
analogous to Eq, (23) can be defined.

The condensed mode] {s required to include
ne < n translation d.o.f. corresponding to control
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thrusters and to preserve without alteration ng
selected modes of the structure. Accordingly,
we define the nc % ng condensed inertia and
stiffness matrices by analogy with the standard
orthogonality conditions,

[T ImeCI4%¢) = £ M ]
CoCITIKECIL4°C] = [ u?NE g

vhere [4°C] 15 the nc x ne partition of the full
modal matrix [¢] containing only the d.o.f. and
modes to be retained {n the condensed mode}, and
fPMe ] and [ weNC ] are the nc x ne partitions of
the genera)ized mass and stif?ness matrices, re-
spectively containing only parameters of the re-
tained modes. Provided that [¢¢¢] 1s not singular,
the condensed inertia matrix is therefore

(0] = [o°0 o AT (25)
and [k°C] is calculated similarly.

(24)

Thus, the condensed version of Eq. (1) is

[mCC] '(jc + [kCC) gc = gC (26)

where gcand Q° are the partitions of g and Q, re-
spectively, which contain only the translation
d.o.f, and the associaied forces retained in the
condensed model. It can be proved!l that problem
(26) preserves exactly the modal par:imeters and
thg freefand forced response of the retained modes
and d.0.f,

In apalogy with £q. (23), we define a con-
densed force apportioning vector which completely
isolates mode s from al) other modes retained in
the condensed model,

€C _ . GCq 4 CC
£, = [n°°) ¢, (27)
To simplify £q. (27), we define in Eq. (25)

(] = 0°0T or (g, 8,5) = 6, (28)

Substituting Eqs. (25) and (28) into (27) then
gives

(29)

The constant Mg in Eq. (29) is irrelevant since,

in calculations, f¢¢C is.normalized to a maximum
element value of ti. as are all mode shape vectors.
The n¢ x 1 vector fg©C is the non-zero partition
of the full n x 1 apportioning vector fg, all
remaining elements of f. being set to zero. Since
($ryfs) = Mgéps for all modes retained in the
condensed nndef; this apportioning will control

the target mode without affecting the other re-
tained modes. B8ut, in general, it will excite

the modes which have nat been included in the con-
densed model, When used in £gs. (10) or (15),

this apportioning completely controls n, selected
modes with n. selected control thrusters (pro-
vided that [$CC] is pot singular), but all other
residual modes are uncontrolied. An important
objective in control thruster selection, therefore,
is to minimize excitation of uncontrolled modes,

The condensation-apportioning procedure de- !
scribed in this section requires complete informa- i
tion on the modes to be retained in the reduced :
order model, and it assures that each of the re-
taincd windes can be isolated from all other re- ;
tained 2z des. On the other hand5 gpportioning !
techgicus : used in modal ces:ing -5 do not require
moual rerameters a priori, but they also do not
proiiuge ny assured measure oy mode isolation. So
£q. (29) probably represents the mathematically
best apportioning of a limited number of control
thrusters, but it may not be best in practice be-
cause it requires previously determined modal
parameters.

VI. NUMERICAL SIMULATIONS OF ACTIVE DAMPING

Time history simulations have been calculated
for evaluation of active damping by force appor
tioning, the performance measure of interest being
the residual energy remaining after the target
modes are suppressed.

Figure 2 depicts the unrestrained plane gril-
lage structural model used in the simulations, It
is a relatively simple mathematical model de-
signed to exhibit structura)l dynamic character-
istics typical of proposed solar power satellites!?
in particular, Jow natural frequencies and high
modal density. The model is an assemblage of
straight bending-torsion beam finite elements with
twelve nodes, as numbered in Fig. 2. Each node
has a translational d.o.f. in the Z direction and
rotatfonal d.o.f, about the X and Y directions,
for a total of 36 d.o.f, Accordingly, the model
has a rigid body transiation mode in the Z direc-
tion and rigid body rotation modes about the X
and Y directions, Each of the six square bays
has side length L = 4000 m. A mass of 4,8 x 105
kg (10% of the total mass of geams) with rotational
fnertias of 3.0 x 1010 kg . m¢ is concentrated
at node 2. [Inertias of the beam elements are
represented by consistent mass matrices. Each
element has mass per unit length of 35.3 kg/m, tor-
sional inertia per unit Jength of 5.65 x 104
kg » m, bending stiffness EI of 7,55 x 1012 N . m?,
and torsional stiffness GJ of 5.8] x 1012 N . me,
Natural i'requencies and periods of the first eleven
flexible modes are listed in Table 1. Mode shapes
of the first six flexible modes are shown in Figs.3.

For each simulation, the target modes selected
were modes 4 - 6, the first three flexible modes.
The only non-zero initial conditions specified
were mode 4 initial value £4(0) corresponding to
node 1 translation q14(0) = 1,0 m, =nd initial
values of £5{0) and £5(0) corresponding to equal
inftial potential energy in each target mode, The
feedback signal chosen was node 1 translation
velocity qj(t). In addition to the target modes
4 - 6, rigid body modes 1 ~ 3 were retained in
the condensed mode! in order to avoid disturbing
the rigid body orientaion (cf. €q. (22)). Six
thrusters were required to control these six modes,

[n calculations, only the first 13 of the
total 36 modes were retained, i.e. Eq. {2) was
truncated after r = 14. This truncation is
justified by the (mslwr)4 term in £g. (21) and by
the observation that the highest retained modes
contributed negligibly to the tota) response. The
modal equations of motion were integrated by a
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fourth-order Runge-Kutta Method with constant step
sfze {2 s for viscous damping, 1 s for Coulomb),

Active damping performance was evaluated for
different control thruster locations, different
times to damp the target modes, and different
damping types, viscous or Coulomb. Case 1 is the
reference case, and the parameters were varied
individually for Cases 2 - 4. In Case 1, control
thrusters are located at nodes J, 2, 3, 5, 10,
and 12, and damping is viscous with time tg =
400 s to damp each target mode down to portion
ps = 0,01 of its initial value. Time histories
for selected quantities are shown in Figs. 4,
Individual modal energy values were caiculated
from Eq. (20) and summed to produce i#ig. 4a, the
history of total energy. The active damping in
this case is very effective, with residual energy
being less than 3% of initial energy,

For the damping type and time of Case 1,
several combinations of six control thruster loca-
tions were investigated. A few combinations can-
not be used because the dssociated [$¢C] matrices
are singular {see Eqs. (28) and (29)), but most
can be used!!, The thruster locations of Case 1}
produced one of the best results. For Case 2,

a control thruster was moved from node 5 to node
11, and this change produced one of the worst
results, Figures 5 show that the active damping
is counterproductive: the residusl energy is 28
times the initial energy, with 67% of the residual
energy remaining in mode 8 alone, This poor per-
formance can be explained by examination of the
force apportioning vectors and feedback constants
for Cases 1 and 2 (Table 2) and the mode shapes
for modes 4 and 8 (Figs. 3 a,e), Equations (10)
and (21) suggest that {(#5,fs) should be large in
comparison with ($p,fs)y * # s, For target mode
4 and residual mode 8 in Case 1, this condition
is satisfied. In Case 2, however, (p4,f4) is
very small in comparison with (¢g.f4) and, con-
sequently, K4 is relatively large and a great
deal of energy is pumped into mode 8.

The parameters of Case 3 are those of Case 1,
except that damping time is halved, tg = 200 s,
so that 4g is doubled, Although Eq. ?2!) sug-
gests that the residual energy might be quadrupled
by this increased damping, the actual residual
energy in Fig, 6a is only a little more than
twice that of Case 1.

The parameters of Case 4 are those of (ase |}
except that damping is the Coulomb type, €g. (14),
with =y = 0,0001 m/s for all target modes.
Figures 7 demonstrate that this damping is very
effective. Comparison of Figs. d4c and 7c shows
that lower force levels are required for Coulomb
type damping, but that these levels must be
maintained throughout the damping period. For
t+ 400 s, Fig, 7¢ exhibits thruster chattering,
which results from one target mode alternating
between free and damped motion around the thresh-
old velocity level.

VII. CONCLUDING REMARKS

~ The basic form of active vibration damping
by force apportioning has been described with
standard structural modal analysis and numerical

simylations. For possible application to satel-
1ite structures, rigid body modes have been con-
sidered, but the influence of gravity on orbital
position and attitude has been neglected, Feed-
back control laws producing moda) damping of the
simple viscous and Coulomb types have been used.

To permit evaluation of the method in its
basic form, only idealized conditions have been
considered, It has been assumed that all neces~
sary modal parameters are¢ known and that sensors,
actuators, and narrow-band filters have ideal
operating characteristics, The damping of two or
more modes with effectively identical natural fre-
quencies has not been investigated.

Under these idealized conditions, the method
is effective and relatively simple. It uses a
single sensor and a limited number of discrete
thrusters to control completely an equal number
of modes. The significant measure of performance
is the amount of residual energy fed into the un-
controlled modes during the process of damping
the controlled modes. In the numerical example
presented, a judicious choice of control thruster
Yocations and moderate damping of the controlied
modes produces only an insignificant amount of
residual energy,
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Table 1 Flexible mode natural frequencies and
periods for unrestrained plane grillage

structure
Mode Frequency (Hz) Period (s)
4 0.0062 161,29
5 0.,0065 163,85
6 0.0129 77.52
7 0.0143 69.93
8 0.0155 64,52
9 0.0180 55,56
10 0.0217 46.08
] 0.0232 43.10
12 0.0245 40.82
13 0.0448 22.32
14 0.04389 20.45

Table 2 Force apportioning vectors and feedback
constants for active damping of mode 4

Case 1 Case 2
f1'4 -0.128 =0,244
f2.4 0.923 0.488
f3,4 -0.128 -0.244
f5'4 -1.000 -
fm“4 0.167 0.500
f”,4 - ~1.000
f 0.167 0.500
K4(kg/sec) 5.40 x 10 1.54 x 10

17

M —

| —




R NS Y S MR M M N M MG W N WS We Me Nm e s ep ey

'
/

S e .

Pd P4
Thruster ’

- ’—-------O‘-/-—--—-'—-/ﬁ---'w—t-‘—----\
/, ’ ’ ‘
/ ,/ 4

- —— — M —— — ——t— — — =

B e e S S —
o — — ol e e i e o . e

e L qfuené

mB!
fa \ ‘
| - -t f51
| Narrow-Band
§ Filters
| flo
Integrator
f

l -Kofgat o
2'52%12%
foo |22

Fia. 1 Farce anportioning control system to damp two modes of a discretized cantilevered beam
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a) Mode 4 d) Mode 7

¢} Mode 6 f) Mode 9

Figs. 3 Mode shapes of the first six fiexible modes of the unrestrained plane grillage
structure (diagonal members not included in figures)
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APPENDIX B

8.1 [IDEAL FORCE APPORTIONING
(This section 1s intended to be the replacement for Section V of Ref. 2.

Accordingly, the section title number, equation numbers, and reference num-

bers are those of Ref. 2.)
Y. IDEAL FORCE APPORTIONING

We define "controlled" modes as being the m modes described by the index
% s in Eqs. (10) and (15). Although this set has been defined previousiy as
consisting only.of the target modes, it is clear now, in view of Eq. (22),
that the set of m modes should include not only the flexible target modes,
but also all appropriate rigid body modes. It is assumed in the following
that the m controlled modes are specified.
In order to establish a mathematically ideal force apportioning vector

fs for a single controlled mode (denoted by subscript s), we define Q¢(t) =

fs g(Eg), where g(£g) represents the feedback time dependence descr’bed in
Eqs. (5) and (11). It is generally possible to provide control forces at
only a few translation d.o.f. of a discretized structure. Hence, the n x 1
vector fg must usually include mostly zero elements. We therefore denote
F the actual number of control thrusters (actuators) positicned on the structure
| as Ny, ahd the corresponding ny X 1 force apportioning vector as f:, the
elements of which should generally be non-zero. Accordingly, the ny x 1
partition of modal vector ¢, corresponding to the control actuator d.o.f. is
denoted Q:: Therefore, Eq. (3) becomes
MrEr + Mrwrzgr = (g:. f:) g(E)y r=1,2, ...y (23)
It is necessary in the present context to choose the number of control

actuators equal to the number of modes to be controlled, n, =m Then the m
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equations of (23) which describe the controlled modes can be written in
matrix form as '

IHCJEC + EuPMCIES = [42710 olh) (24)

where[MS], [w?MC], and [43S] are appropriate m x m partitions of the n x n

generalized mass, generalized stiffness, and modal matrices, respectively.

To decouple controlled mode s from all other controlied modes in Eq. (24),

we seek f: such that only the moda) equation for mode s has a non-zero right-

hand side. Clearly, this objective is achieved by setting

a ., .. '
=¥ . (25)
where wsis the column vector corresponding to controlled modes of the matrix
[v] = [4*1T | (26)

In calzulations, f: is normalized to a maximum elemenrt absolute value of 1,
as are all mode shape vectors. Provided that [¢a°] is not singular, then the
entire apportioning matrix of Eq. (26) can be calculated; then the set of
vectors.f:, s=1,2, ... m, from Eq. (25) decouples the m equations of the
controlled modes in modal Eqs. (10) or (15), but leaves the remaining n-m
equations of the uncontrolled (residual) modes excited by the controlled
modes., An important objective in control thruster selection, therefore, is
to minimize excitation of the uncontrolled modes.

The apportioning procedure described in this section requires complete
modal information on the controlled modes, and it assures that each of the
controlled modes can be isolated from all other controlied modes. On the
other hand, apportioning techniques used in modal 1:est:1ng$'8 do not require
modal parameters a priori, but they also do not produce any assured measure

of mode isolation. So the apportioning calculated by Eqs. (25) and (26)
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represents a mathematically ideal apportioning of a 1imited number of control
thrusters, but it may not be best in practice because it requires previously

determined modal parameters.

B.2 NON-IDEAL FORCE APPORTIONING BY MATRIX PSEUDO-INVERSE

We begin with a somewhat more explicit derivation of the results of Egs.
(25) and (26) above. The complete m x m force apportioning matrix is defined
to be

[F%1 = £}, ..., £ (B.2.1)

To uncouple all controlled nodes, we seek [F3] such that (see Eq. (24) above)

(217 [F2) = 1.3 (8.2.2)
where [1 ] is the m x m identity matrix. Clearly,

[F] = [421°T (B.2.3)
In our computations for g:. s=1,2, ..., m, each column of [Fa] is subse-
quently normalized to a maximum element absolute value of 1.

In practice, it will probably be desirable to control a greater number
of modes than there are control actuators, m > n.. For this situation, we
define the force apportioning matrix [F?] just as in Eq. (B.2.1), except that
now each column has length Ny We again seek the solution of Eq. (B.2.2),
where now [¢a°] is an Ny xm matrix. Since the unknownsin this equation are
overdetermined, a unique, exact solution does not generally exist. We pro-

ceed formally as follows:

24

B G




[5°7 [°17 [F*] = [4*1 B1]

Gl I (o I O L L (8.2.4)

Error & is defined as the jth column of [¢“]T [F%] - ClmJ. Then Eq.

(B.2.4) represents the least-squares approximate solution of Eq. (B.2.2) for

m > n,, for which each norm (gj. gj). J=12,...,m is a mindmum, "

£q. (B.2.4) clearly reduces to Eq. (B.2.3) if m = ny. Eq. (B.2.4) is a form
of the so-called matrix pseudo-inverse for the overdetermined least-squares
case. If it is desired to weight the control of certain modes over control

of others, a generalization of Eq, (B.2.4) for a weighted least-squares ap-

proximate solution is easily deve!oped.*

*w. L. Brogan, Modern Control Theory, pp. 90-92, Quantum Publishers, 1974.
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AFPENDIX C
ACTIVE DAMPING OF HIGHER-FREQUENCY MODES

A single case was investigated, the numerical simulation model being
the unrestraine. plane grillagedescribed in Ref. 2. The target modes were
specified to be modes 7, 8, and 9 (rather than modes 4,5, and 6, as in Ref. 2),
and the controlled modes were specified to be the target modes plus the rigid
* body modes, modes 1, 2.,and 3.

Twenty-five combinations of six control thruster locations were consi-
dered in a trial-and-error search for the combination producing the least

excitation of the uncontrolled modes. The combination of thrusters 1, 2, 3,

5, 10; 12, which is quite effective if nodes 4, 5, and 6 are the target modes

(cf. Ref. 2), was found to be very poor for target modes 7, 8, and 9. The

most effective combination for this case (among those investigated) consists

| ~ of control thrusters 1, 2, 3, 7, 9, 11 (cf. Fig. 2 of Ref. 2), and this

; combination was used in time history numerical simulations of active damping.

t Viscous-type damping was used. The initial conditions specified cor-
resporid to an gqual amount of initial potential energy in each of the target
modes, with zero initial kinetic energy in the target modes, and zero initial

: energy in all non-target modes. The feedback signal usea was node 1 transla-
tion velbcity 6](t). The exact force apportioning vectors (Eq. (29) of Ref. 2)
were used, and filtering was taken to be ideal.

é Figures C.1 and C.2 are energy-decay time histories comparable to Figs.

| 4a-7a of Ref. 27 With specified time t, = 400 s to damp each target mode

down to portion Pg = 0.01 of its initial amplitude, the residual energy shown

on Fig. C.l is about 21% of the initial energy. About half of the residual

energy resides in eaéh of modes 6 and 10, the modes immediately adjacent to
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the target modes. Figure C.2 shows that the doubling of specified damping
time to 800 s produces a much'more'satisfactory final residual energy of 6%

of the initial energy.
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Fig. C.1 Active damping of higher-frequency modes:

Model 3 with viscous damping; controlled

- control thrusters 1, 2, 3, 7, 9, 11; equal
initial potential energy in modes 7, 8,
and 9; t, = 400 sec, P * 0.01
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Fig. C.2 Active damping of higher-frequency modes:
all conditions as in Fig. C.1 except
ts = 800 sec
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APPENDIX D |
INEXACT MODAL PARAMETERS FOR THE CONTROLLED STRUCTURE

We haverinvestigated this subject primarily by doing numerical experiments,
i.e., computer simulations of active damping, rather than a theoretical study.
Our first step was to deffne a "model" structure and an “actual" structure,
both of which are réally just mathematica) models. The “errors" in the “"model”
structure relative to the "actual" structure are small differences in the mass
distributions. These “"errors" are presumably typical of the inaccuracies
which inevitably exist in a finftc element model relative to the real structure.

Following definition of the "model" and "actual" structures and calcula-
tion of the vibration modes for both, the ideal force apportioning vectors
were calculated by Eqs. (28) and (29) of Ref. 2 from the modal matrix of the
"model" struéture. Finally, these force apportioning vectors were used in
numericai simulations of active damping on the "actual" structure. The quality

of the active damping then was an indication of the effect of non-ideal force

- apportioning, which results from inexact modal parameters. A short digression

on the theory is appropriate before presentation of numerical results.

The mathematical cohsequence of non-ideal force apportioning is to pro-
duce non-zero inngr products (Qr. fs) for r # s in the modal equétions of the
controlled modes (those modes denoted by the index s in Eqs. (10) and (15) of
Ref. 2), thus coupling the controlled mo&es. It is to be gxpected, then, that

~active damping with non-ideal force apportioning will be less effective than

active damping with ideal force apportioning. Moreover, the coupling of con-
trolled modes could conceivably lead to theif instability, which is not pos-
sible without coupling. Nevertheless, most of the numerical simulations to

be described next exhibit neither substantial damping degradation nor instability.
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The "actual” structure considered here (referred to as Model 5) is

slightly different than the structure described in Ref., 2 (referred to as

Model 3), for reasons to be given below. Model 5 {s identical to Model 3 in

geometry and mass distribution, and its stiffness distribution is the same in

~all respects e;cept that its center longitudinal member (conne ‘ing nodes

2, 5, 8, and 11 1in Fig. 2 of Ref. 2) has a greater torsional stiffness,

GJ = 2;0 X 1014 N-mz. This stiffening separates mode 5, the first flexible
torsion mode, from mode 4, the first flexible bending mode (cf. ngs. 3 and
Table 1 of Ref. 2); mode 5 natural frequency of Model 5 is 0.0097 Yz, in
contrast to 0.0065 Hz for Model 3. The frequencies of bendirg modes 4 and
6 are identical for the two models.

The "model" structure considered is identical to the "actual” structure
except that it has additional small lumped masses at nodes 8, 10, and 11*
(cf. Fig. 2 of Ref. 2); each has mass of 2.0 x \05 kg and rotational inertias
of 8.0 x 109 kg-mz. The effects of these mass perturbations are to make the
"model" structure's lowest natural frequencies on the order of 10% lower than
those of the “actual" structure, and also to alter the mode shapes somewhat.

Ideal force apportioning vectors were calculated for both the "actual"
and “model" structures, with the controlled modes specified as modes 1-6 and
the control thruster locationsspecified as nodes 1, 2, 3, 5, 10, and 12,
These vectors are listed for target modes 4, 5, and 6 in Table D.1. Com-
parison of the vectors for "actual” and "model" structures shows that those
for bending modes 4 an& 6 are quite similar, while those for torsion mode 5

differ substantially.

*
It would be more natural if the "model" structure were symmetric and the
“actual” structure had the asymmetric mass perturbations, but it proved
convenient in computations to proceed as described above.
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Energy time histories for viscous and Coulomb active damping are shown in
Figs. D.1 and D,2, respectively. Simulations for both {deal and non-ideal
apportionings were run to provide a comparison. Viscous damping with the non-
ideal apportioning s, surprisingly, slightly better than that with idea)
apportioning. Coulomb damping with non-ideal apportioning produces a slightly’
faster decay but also excites slightly more residual energy than that with
- ideal apportioning.

The results in Figs. D.1 and D.2 are represéntative of a number of similar
cases investigated in which the modes of the "model" structure are not sub-
stantially different from those of the "actual” structure. The invariable
observation was that non-idgal apportioning resulting from inexact modal |
parameters produces a slightly different damping character than does ideal
apportioning, but never any serious degradation of short-term damping quality‘
nor any noticeable long-ferm instability. The conclusion then is that the
quality of active damping by force apportioning is not very sensitive to small

" errors in modal parameters of the controlled modes.

However, it is not valid to state that active damping quality is always

insensitive to small errors in the primitive physical parameters (i.e., stiff-

- ness and mass distributions) of the controlled structure; the existence of
cloéely spaced modes (high modal density) can cause problems. To jllustrate
this, we evaluated a case for which Medel 3 is the "actual" structure, and the
"model" structure differs only in the presence of a small Tumped mass at node 10.
An important effect of this small additional mass is to reverse the characters
of the two cldsely spaced, lowest flexible modes of the "model" structure
relative to the same modes of the “actual" structure (cf. Table 1 and Figs. 3

of Ref. 2): mode 4 of the “model" structure is torsion, and mode 5 is bending.
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Because 1ike-numbered mode shapes of the “"actual" and "model" structures are
fundamentally different in this case, active damping of the "actual" structure
by force apportioning calculated for the "model" structure produces very poor
results. For this particular example, the problem can be solved simply by
reversing the order of mode shapes 4 and 5 in the modal matrix of the "model"
structure before calculating the force apportioning vectors.* In general,
h&wever. the existence of substantial errors in estimates of mode shapes can
seriously degrade the quality of active damping by force apportioning. It
seems probable tﬁat actual hardware implementation of this or any other scheme

for active vibration control of large space structures will require an adaptive

capability.

*Nevertheless,,we considered it desfiable to avoid this confusing complication

by using Model 5, which has well separated first bending and torsion modes,
for the principal numerical examples of this appendix.
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Table D. 1 Ideal Force Apportionings

“"Actual" Structure Mode "Hod}e‘l“ Structure Mode

£e

Thruster 4 S5 _6 4 5
1 -0.13 1 0.57 -0.18 0.15
2 0.92 0 -1 0.95 0.90

3 -0.13 -1 0.57 -0.M -1
5 -1 | 0 -0.21 -1 -0.07
10 0.17 -1 0.03 0.20 -0.56
12 0.17 1 0.03 0.13 0.59
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Fig. D.1 The effect of non-ideal force apportioning on damping of the "actual™ structure: Model 5 with
viscous damping; controlled modes 1-6, target modes 4-6; control thrusters 1, 2, 3, 5, 10, 12;
equal initial potential energy in modes 4, 5, and 6; ts = 400 sec, Pg = 0.01
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Fig. D.2 The effect of non-ideal force apportioning on dampirg of the "actual® structure: Model 5 with
Coulomb damping; controlled modes 1-6, target modes 4-6; contrcl thrusters 1, 2, 3, 5, 10, 12;
equal initial potential energy in modes 4, 5, and 6; ts = 400 sec, e, = 0.0001 m/sec
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APPENDIX E
NON- IDEAL’ FREQUENCY FILTERING

Equations (10) and (11) of Ref. 2 can be written as

v 2 m{ .
Mty * Mg, = - :E:l Ks(tps TgIna45)s
s =
I"'l. 2’ ....ﬂ (Eo])
where .
. LT for viscous demping

h(a;q) = sgn(d,,) for Coulomb damping

The term ais in Eq. (E.1) implies ideal filtering at each controlled mode
natural frequency wey $ = 1,2, ...y my as is 11lustrated conceptually on
Fig. 1 of Ref. 2. The ideal filter for controlled mode s passes only the
&is spectral component of the total sensor velocity, 61 -rjs:l 6ir‘ The
ideal filter, then, has an infinitely narrow pass-bank and infinitely steep
rolloff rates. Since 615 = 01535. a mathematical characteristic of ideal
filtering is that it does not couple the controlled modes in Eq. (E.1).
Those modes might be coupled if non-ideal force apportioning is used with
ideal filfering. but in such a case the non-ideal apportioning is responsible
for the coupling. If both apportioning and filtering are ideal, then the
controlled modes are not coupled at all.

On the other hand, a non-ideal, more realistic filter has a finite
pass-bénd and finite rolloff rates, and it consequently passes spectral com-
ponents- of all frequencies. The characteristics of a non-ideal filter for
controlled mode s are illustrated on Fig. E.1. For such a filter, the

function h(&is) in Eq. (E.1) must be replaced by a filter output function

Fig = i Agg hldggds s =12 ooy m
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where constants Asj are attenuation factors 1llustrated in Fig.‘E.l. For
ideal filtering, Asj = ch. the .Kronecker delta. Calculation of the at-
tenuation factors for non-ideal filtering is discussed below. For non-

idval filtering, then, the modal equations have the form

M E + M W Er i K (Qr,fs)g sjh““%)n

r=1,2, ..., 0 ) (E.2)

™n Eq. (E.2), both controlled and uncontrolled modes are coupled by the

non-ideal filtering, regardless of the type of force apportioning used.

So it is to be expected that non-ideal filtering will reduce the effectivs-

ness of active damping by force apportioning and, moreover, that it may even

produce system instability due to the coupling. Nevertheless, numerical
results presented below for typical non-ideal filter characteristics ex-
hibit neither substantive degradation of damping quality nor instability.
To calculate constants Asj' one must specify frequency cutoffs and
rolloff rates. Filter rolloff rates are designated in terms of decibels
per octave. So, for a high frequency rolloff at rate R db/oct, we have

(see Fig. E.1)

Solving for the attenuation factor gives,

- R/20 logloz

AJ = (lewsh) » WJ 2 wsh (5.36)

Similarly, for a low frequency rolloff,

i R/20 10gy .2
A j '(“’j/“’sﬁ) 105, wy S gy
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We have run several numerical simulations of active damping by
force apportioning with non-ideal filtering. The structural models used
in these simulations are those described in Appendix D. Simulations with
Model 3 tested the effect of non-ideal filtering alone, since ideal force
apportioning was used, and simulations with Model 5 (as the “actual”
structure) and the related "model" structure tested the effects of non-
ideal filtering and pon-ideal apportioning acting simultaneously. In all
cases, modes 1-6 were specified as the controlled modes and modes 4-6 as
the target modes, and control actuator locations were specified as nodes
1, 2, 3, 5, 10, and 12.

The - filter cutoff frequencies specified for both Model 3 and Model 5
can be described with reference to Fig. E.2. A low-pass filter was used
for mode 4, and band-pass filters were used for modes 5 and 6. The cut-
off frequencieé were selected to Le'

Wap = Y5p " (w4 + u5)/2

Ugp = Ygp = (ws + wg)/2 (E.4)

“en = (m6 + u7)/2
The particularly interesting characteristic of Model 3 is the close proximity
of natural frequencies 4 and 5 (cf. Table 1 of Ref. 2). This closeness
might lead one to expect that non-ideal filtering would produce substantial
coupling between modes 4 and 5 and, hence, would reduce the quality of
'damping. ,

To test this expectation, we ran Model 3 cases with filter rolloff
rates varying from the unrealistically high value of 160 db/oct, through
the practically realistic values of 80 anc 48 db/oct, and down to the un-
realistically low value of 10 db/oct. Cases were run with both viscous
and Coulomb types of damping, and with different initial conditions.
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The adverse effect of non-ideal filtering was found to be relatively
small in all Model 3 cases with.typical rolloff rates of 80 or 48 db/oct.
The energy time history for the very worst of these cases investigated is
shown in Fig. E.3, which may be compared with Fig. 4a of Ref. 2. Whereas
1deal filtering was used for the latter, non-iaeal filtering with 48 db/oct
rolloff rate was used for the former; however, all other conditions were
identical for the two runs. Comparison of the two figures shows that non-
fdeal filtering in this case retards the rate of active damping, but does
not increase the final quantity of residual energy remaining in the structure.

Another Model 3 case of interest is one for which the unrealistically
Tow rolloff rate of 10 db/oct was used. The energy time history is shown
in Fig. E.4, which may be compared with Fig. 7a of Ref. 2. Ideal filtering
was used for the latter and non-ideal filtering for the fcrmer, but all
other conditions were identical for the two runs. Figure E.4 shows a short-
term rate of damping very similar to that of Fig. 7a of Ref. 2. But the
residual energy is greater in the case of non-ideal filtering; and, in
fact, the energy increases after reaching a short-term minimum (at about
700 sec), strongly suggesting the presence of a system instability. This
instability seems relatively weak and manifests itself only after the in-
itially existing vibrations are essentially suppressed, so it might be
regarded as a "long-term" instability. |

Numerical simulations of active damping with Model 5 tested the sit-

uation:-in which both the force apportioning and the filter cutoff frequéncies*

desighed for the "model" structure were used for the “actual" structure.

The filter cutoff frequencies were designed for the “model" structure in
accordance with Eqs. (E.4), with one exception: the high frequency cutoff
for the Mode 6 filter had to be adjusted upward slightly for use with the
"actual" structure, because the computer program requires the natural fre-
quency to be within thz pass-band. '
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Comparison of Figs. E.5a and E.5b shows that in this case the presence of
both non-idegl apportioning and.non-ideal filtering with a rolloff rate of
80 db/oct only slightly reduces the quality of active damping. The case
was repeated for rolloff rates of 48 and 24 db/oct, with almost no further
deterioration of damping quality. One additional halving of the rolloff
rate, to the unrealistically low value of 12 db/oct, resulted in the energy
time history of Fig. E.S5c, which exhibits buth substantative loss of short-
term damping quality and long-term instability. Finally, a Model 5 case
was run for which the rolloff rate was set to 0 db/oct, i.e., no filtering
at_all. For this case, the entire system, consisting of both controlled
and uncontrolled modes, is strongly unstable.

| To summarize and reiterate the observations made relative to non-
ideal filtering in the particular cases studied: (1) the quality of active
damping is not substantively decreased by typical filter characteristics;
(2) both poor damping quality and lony-term instability may occur .r

filtering with unusually low rolloff rates.




I |
S SPOW P3| [043U0D 404 U3[Ly {PIPL-UOU 40 SIL3SLa33oedRy) |°3 By
AIONINVIYS
1+S 0, YSer Sy TSen I=Sery |
\/\ _ | N _ ] ] \/\n
N T
v\ * £ —
_ | |
~ | *
%Y
| o
w 4491j04 _ _ | 440/ 04
w %Usmswmaw :m.E | \Au:wSmmL% MO|
v
#404M2 e

Aousnbaay ybyy

<

U/“anwﬁiﬂll
puvq -ssvd | Asuanbauy moj

OILYYd LNANI /LN LNO MFLT14




S433| L4 apou umm...ﬁ 40 satouanbauy toﬁ_u. 2°3 b4

ADNINOI A

O

01L¥¥ LAdNI/1NdLNO Y3 L7I4

~

42




Fe e e

1% 2

o S o I L i e —m
- - y

)

( x104

ENERGY (N-M)

l 1
0.0 0.2 0.4 0.6 0.8 1.0
TIME (SEC) ( x103 )

Fig. E.3 The effect of non-ideal filtering: Model 3 with viscous damping; non-ideal filters
with 48 db/oct rolloff rate, cutoff frequencies {Hz) of 0.00638 for mode 4 low-pass,
0.0063% and 0.00974 for mode 5 band-pass, 0.00974 and 0.01363 for mode 6 band-pass;
controlled modes 1-6, target modes 4-6; control thrusters 1, 2, 3, 5, 10, 12; equal
initial potential energy in modes 4, 5, and 6; ts = 400 sec, Pg = 0.01
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Fig. £E.4 The effect of non-ideal filtering: Model 3 with Coulomb damping; non-ideal filters
with 10 db/oct rolloff rate, cutoff frequencies (Hz) of 0.00638 for mode 4 low-pass,
0.00638 and 0.00974 for mode 5 band-pass, 0.00974 and 0.01363 for mode 6 band-pass;
controlled modes 1-6, target modes 4-6; control thrusters 1, 2, 3, 5, 10, 12; equal
initial potential energy in modes 4, 5, and 6; ts = 400 sec, e, = 0.0001 m/sec
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(a) Ideal filtering, and force apportioning for the (b) Non-ideal filtering with 80 db/oct rolloff rate,
"actual" structure and force apportioning for the "model" structure

Fig. E.5 The effects of both non-ideal apportioning and non-ideal filtering on damping of the "actual" structure:
Model 5 with viscous damping; filter cutoff frequencies (Hz) of 0.00713 for mode 4 low-pass, 0.00713 and
0.01029 for mode 5 band-pass, 0.01029 and 0.01294 for mode 6 band-pass; controlled modes 1-6, target
modes 4-6; control thrusters 1,2,3,5,10,12; equal initial potential energy in modes 4, 5, and 6;
tS = 400 sec, P = 0.01
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