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i FINAL REPBRT 

I. INTRODUCTION 

The ob ject ives o f  t h i s  research have been t o  develop and t o  evaluate by 

analysis and numerical s imulat ion a method o f  act1 ve s t ruc tu ra l  damping known 

as force apportioning. This method i s  based upon the method used i n  modal 

v i b ra t i on  t e s t i n g  o f  isolatSng modes by multiple-shaker exc i ta t ion .  For 

e i t h e r  appl icat ion,  ac t i ve  exc i t a t i on  o r  ac t i ve  damping, one chooses a d i s t r i -  

bu t ion  o f  as few forces as possible on the s t ruc ture  which w i l l  maximally 

a f f e c t  selected v i b ra t i on  nodes whi le minimally exc i t i ng  a l l  other modes. 

NASA sponsorship of t h i s  research has f u l  l y  supported the production 

I o f  (1 ) a technical  paper presented a t  a major conference and pub1 ished i n  the 

proceedings (and present ly under review f o r  journal  pub l ica t ion)  and (2 )  a 

Master's degree thesis. NASA sponsorship has a1 so p a r t i a l  l y  supported the 

production o f  a.second Master's degree thesis, which i s  i n d i r e c t l y  re la ted 

t o  the p r i nc i pa l  object ives of t h i s  research. Descript ions and b ib l iographica l  

references t o  these repor ts  are given i n  Section 11. 

During the l a s t  few months o f  the project ,  add i t iona l  work was completed 

which has not  previq)rsly been reported i n  wr i t i ng .  The resu l t s  o f  t h i s  work, 

which dea l t  pr imar i  w i t h  imperfect ion s e n s i t i v i t y  o f  the ac t l ve  damping 
I method; are summarized i n  Section I11 and are presented i n  more d e t a i l  i n  

appendices. 

A f i na l  o r a l  repor t  was presented by the Pr inc ipa l  Invest igator  a t  NASA 

Langley Research Center on Ju ly  18, 1980. 

* 
The NASA Technjca i O f f i ce r  f o r  t h i s  grant i s  Mr .  Robert Miserentino, NASA 
Langley Research Center. 



I I. ,SUMMARY OF ACCOMPLISHMENTS, AND _REPORT REFERENCES 

I 1  .A The Basic Form o f  Act ive Damping by Force Apportioning 

This subject  has been described i n  great  d e t a i l  i n  a Master's degree 
* 

thes is  [I) aad i n  a conference technical paper [2J. Reference 2 i s  included 

as Appendix A o f  t h i s  repor t .  

The paper has a lso been submitted fo r  journal  publ icat ion.  I n  the 

journa l  paper, Section V o f  Ref. 2 w i l l  be s in lp l i f i ed  considerably. I t  hap- 

pens tha t  the same force apport ioning vector can be derived w i t h  a much more 

d i r e c t  approach not  requ i r ing  the intermediate in t roduct ion o f  a condensed 

model. The new der i va t ion  i s  included i n  Appendix B of t h i s  report .  

I The Dynamic S t i f fness  Method for  Plane Gr i l lages 

This method, which has been discussed i n  the Semi-Annual Reports for  t h i s  

pro jec t ,  i s  the subject o f  a recent Master's degree thesis [3]. NASA sponsor- 

sh ip  supported a pa r t  o f  the theoret ica l  development and computer imp1 ementa- 

t i o n  reported i n  Ref. 3 ,  A technical paper describing t h i s  work w i l l  soon be 

submitted f o r  pub1 i c a t i o n  i n  the Journal o f  Sound and Vibrat ion. 

The method provides exact v ib ra t ion  modes f o r  plane g r i  1 lage structures, 

r a the r  than the approximate modes which r e s u l t  from f i n i t e  element d iscre t iza-  

t i on .  We had o r i g i n a l l y  planned t o  use these exact modes i n  numerical simulat ions 

o f  ac t i ve  damping, such as those desc.ribed i n  Section V I  of Ref. 2. However, 

as the pro jec t  termination date approached, i t  became c lear  t ha t  the add i t iona l  

time and e f f o r t  required t o  employ the exact modes, as opposed t o  f i n i t e  element 

modes, would have no a f fec t  on the u l t imate conclusions r e l a t i v e  t o  ac t i ve  

damping. So the dynamic st i f fness method was not  employed i n  the study of 

* 
Bracketed numbers re fer  t o  the References'section. 



ac t l ve  damplng. However, the dynamic st i f fness method i t s e l f  has considerable 

i n t r l n s l c  value, so our e f f o r t s  i n  developing and repor t ing i t  have been 

worthwhile. 

I I I. SUIWRY OF STUD1 ES NOT PREY IOUSLY REPORTED 

I I I A - Accuracy o f  Numerical Simulations o f  Act ive Daroping 

Since modal ser ies t runcat ion and Runge-Kutta in tegra t ion  ware used i n  

the t ime h i s t o r y  simulatfons described i n  Section V I  o f  Ref. 2, the resu l t s  

are n o t  numerical ly exact. I n  order t o  check the accuracy o f  the numerical 

so lu t ions f o r  several cases, we var ied the number o f  modes re ta ined and/or 

the in tegra t ion  step s ize  from the values stated i n  Ref. 2. I n  a l l  cases 

but one, these var ia t ions produced i n s i g n i f i c a n t  changes i n  the resu l ts .  The 

one exception was a case i n  which the in tegra t ion  step s ize was c l e a r l y  too 

long r e l a t i v e  t o  the periods o f  the hi'gh-frequency modes retained; an osci 1- 

l a t o r y  i n s t a b i l i t y  resu l ted which we fee l  was a numerical a r t i f a c t  and not  a 

qua1 i t a t i v e l y  co r rec t  so lu t ion of the equations of motion. 

I I I. 0. Active Damping o f  Higher-Frequency Modes 

Previous numerical simulat ions [I ,2] have demonstrated on ly  tha t  the 

lowest f l e x i b l e  modes o f  a s t ruc ture  can be suppressed ef fec t ive ly ,  but these 

new resu l t s  show tha t  force apportioning i s  appl icable a l s o ' t o  the damping 

o f  higher-frequency modes. The resu l t s  are presented i n  d e t a i l  i n  Appendix C. 

1II.C. Some Studies o f  Imperfection Sens i t i v i t y  

Previous reports [I ,2] have described ac t i ve  damping by force apport ioning 

under idea l ized condit ions. Numerical simulat ions have shown tha t  the method 

can be very ef fect ive provided t ha t  a1 1 necessary modal parameters o f  the 



s t ruc tu re  are  known exact ly  and tha t  sensors, actuators, and narrow-band f ll t c r s  

have idea l  operat ing char rc te r i s t i cs .  But the effect iveness o f  the method under 

. more r e a l i s t i c  condl t lons i s  a matter o f  more p rac t i ca l  i n te res t ,  so we have 

conducted a l i m i t e d  study of the e f fec ts  o f  non-ideal condit ions. Spec i f ica l ly ,  

we have analyzed the case i n  whtch the cont ro l  l ed  s t ruc ture 's  modals parameters 

are known on ly  approximately and the case o f  non-ideal frequency f i l t e r i n g .  

I I I. C. 1 Inexact Modal Parameters f o r  the Control l ed  Struc t u z  

I t  has been assumed i n  previous reports [l ,23 t ha t  the exact modal para- 

meters were known f o r  the purpose o f  computing the idea l  force apportioning, 

which i s  given i n  Section V of Ref. 2. These new resu l t s  demonstrate t ha t  the 

i effectiveness o f  the ac t i ve  damping method i s  not  p a r t i c u l a r l y  sens i t ive  t o  

I somewhat inexact modal parameters, provided t ha t  the approximate mode shapes 

j are not  d r a s t i c a l l y  d i f f e r e n t  from the actual  mode shapes. However, inexact 

modal informat ion leads t o  coup1 ing  between the control  l ed  modes (those modes 

denoted by the index s i n  Eqs. (10) and (15) of Ref. 2), which produces the 

possi b i  1 i t y  o f  long-term system ins tab i  1 1 ty .  The e f fec ts  o f  inexact modal 

informat ion are  descvi bed i n  more detai  1 i n  Appendix D. 

I I I .C. 2 Non-Ideal Frequency F i  1 t e r i n g  

I t  has been assumed i n  previous reports [I ,2] t ha t  the narrow-band f i l -  

t e r s  required by the ac t i ve  damping method have idea l  operating character ist ics,  

namely, i n f i n i t e l y  narrow pass-bands and i n f i n i t e l y  steep r o l  l o f f  rates, so 

tha t  only the desired frequency components are passed. The new resu l t s  ac- 

count f o r  f i l t e r s  having f i n i t e  pass-bands and f i n i t e  r o l l o f f  rates. Numerical 

s imulat ion resu l t s  show tha t  the method's effect iveness i n  suppressing 

i n i t i a l l y  ex i s t i ng  v ibra t ions i n  the con t ro l led  modes i s  qu i t e  insens i t i ve  t o  



t y p i c a l  f i 1 t e r  character i  s t l cs .  However, non-idea l f i 1 t e r s  do introduce the 

p o s s i b i l i t y  o f  long-term system i n s t a b i l i t y  due t o  coupl ing between a l l  modes, 

both  cont ro l led and uncontrol led, The e f f ec t s  of non-ideal f i l t e r s  are des- 

c r ibed  i n  more d e t a i l  i n  Appendix E. 

I V ,  SUMMARY OF COMPUTER PROGRAMS PREPARED 
> t  - 

The computer programs developed f o r  t h i s  research are run on the main 

computers o f  the VPI&SU Computing Center, an IBM 3032 Processor Complex, and 

an IBM System 370 Model 158. The IBM 3032 runs the OS/VS2 MVS (Mu1 t i p l e  

V i r t u a l  Storage) operating system w i t h  JES2 (Job Entry Subsystem 2) as job 

scheduler, The IBM 370 runs under the cont ro l  o f  V i r t ua l  Machine Fac i l  i ty l370 

(VM/370); under VM, the Conversational Monitor System (CMS) provides i n t e r -  

a c t i v e  tjme-sharing support t o  users a t  remote terminal s. The Computing 

Center provides Fortran subroutines of the In ternat iona l  Mathematics and 

S t a t i s t i c s  L ib ra ry  (IMSL). Automated p l o t t e r s  used f o r  t h i s  research are 

the Versatec 1200 e l ec t ros ta t i c  p l o t t e r  ( f o r  quick, inexpensive p l o t s )  and the 

I Calcomp 1051 drum p l o t t e r  ( f o r  f in ished i nk  p l o t s  on vellum, sui  tab le  f o r  
I 

i - pub1 i ca t ion ) ,  

A l l  programs developed f o r  t h i s  research are coded i n  Fortran I V  and 
* 

convpi l ed  by the Fortran H Extended Compiler. With one exception , a1 1 programs 

j are run w i th  IBM s ing le  precis ion ar i thmet ic.  Two types o f  programs have been 
i 

wr i t ten :  ca lcu la t ion  programs and p l o t t i n g  programs. 

The ca lcu la t ion  programs generate mass and s t i f fness  matrices f o r  f i n i t e  

element models o f  plane. g r i  1 lage structures, perform modal eigenso 1 utions, 

* 
The exception i s  EIGENR, the loca l  l y  developed and undocumented eigensolut ion 
subroutine used t o  ca lcu la te  modes o f  sma1,l f i n i t e  element models. EIGENR 
uses IBM double prec is ion ar i thmet ic.  



2 and do time h i s t o r y  numerical simulat ions o f  ac t i ve  damping, A l l  ca lcu la t ion  

programs are run  from CMS on the IBM 370, The time h i s t o r y  numerical simuls- 

t i o n  progpams, ACTIV f o r  Coulomb-type damping and VIACDA for  vf scous-type 

damping, make extensive use o f  the i n te rac t i ve  mode f o r  en t ry  o f  data and 

inspect ion o f  intermediate r esu l t s  by the user, 

Two s l  l g h t l y  d i f f e r i ng  Fortran p l o t t i n g  programs, DES2 and DES3, produce 

Versatec and Calcomp p lo ts ,  respect ively,  o f  time h i s t o r y  numerical simulations. 

Each program i s  con t ro l led  by a d l f f e r e n t  se t  of j ob  cont ro l  language ins t ruc t ions,  

The p l o t t i n g  programs run under MVS. 

Documentation for  the programs developed i n  t h i s  research i s  f a i r l y  com- 

p l e t e  but informal, and i t  w i l l  remain i n  the possession o f  the Pr inc ipa l  

I 
Invest igator ,  Appendix B of Reference 1 presents f l ow diagrams describing 

the operation o f  programs ACTIV and VIACDA p r i o r  t o  Incorporat ion o f  the ad- 
I 
I d i t i o n a l  capab i l i t i e s  described i n  Section I11  .C.  
i 

i The programs are operational a t  t h i s  w r i t i n g  and w i l l  be kept operational 

u n t i l  approximately s i x  months a f t e r  pub l ica t ion o f  the journal  version o f  

i Ref. 2, At t h a t  time, some o f  the operating programs w i l l  be deleted from 
I 

d i sk  storage, and the source programs w i l l  be stored as card decks. The 

decks w i l l  remain i n  the possession o f  the Pr inc ipa l  Invest igator  f o r  possib le 
1 

I f u t u r e  use. 

I n  t h e i r  present form, the ca lcu la t ion  progranls are res t r i c t ed  t o  analysis 

o f  unrestrained plane g r i  1 lage structures having r e l a t i v e l y  few degrees o f  

freedom. However, w i t h  stra ight forward n~odif icat ions,  the progranis could 

k 
i handle any type o f  st ructure.  The ca lcu la t ion programs cons t i tu te  a stand- 

alone package, except t h a t  ACTIV and VIACDA present ly use IMSL subroutines 

f o r  performing the matr ix  inversion indicated by Eq. (28) o f  ' ~ e f .  2. However, 



the matr ix  t o  be inverted 4s usual ly  qu l t e  small (10 x 10 o r  smaller), so a 

shor t  user-supplied subroutine could be employed w l t h  no loss o f  capabi l i ty .  

The programs p e m l  t t ime h i s t o r y  p l o t t l n g  o f  a1 1 physlcal quanti t i e s  t ha t  

a user i s  1 i ke l y  t o  desire. The user may p l o t  the response i n  any degree o f  

freedom, the force produced by any cont ro l  thruster ,  and the energy, i n  any 

mode o r  cambfnation o f  modes. Figs. 4-7 o f  Ref. 2 include examples o f  each 

of these types of p lo ts .  A1 though a l l  the time h i s t o r y  p l o t s  incl'uded i n  

t h i s  repor t  (others than those i n  Appendix A) represent t o t a l  energy t i  .e., 

the energy i n  a l l  modes), p l o t s  o f  several o ther  physical quan t i t i es  were 

generated i n  each case. Some o f  these o ther  quan t i t i es  are very in te res t ing  

(e. g . , the energy i n  on ly  the uncontrol l ed  modes), but  they have been ex- 

cluded i n  order t o  l i m i t  the length  o f  t h i s  repor t .  

V .  SOME POSSIBLE REFINEMENTS OF- THIS RESEARCH 

The topics discussed i n  t h i s  section are not  a1 1 o f  equal s igni f icance; 

they are presented below i n  random order. 

The target  mode suppression time ts 1s defined by Eqs. ( 7 )  and ( i 3 )  o f  Ref. 

2 as being the time spec i f ied f o r  decay o f  modal coordinate 6, t o  a prescribed 

l eve l .  Conlparison o f  Figs. 4a and 7a o f  Ref. 2 shows tha t  t h i s  d e f i n i t i o n  

does n c t  lead t o  comparable ra tes o f  energy decay f o r  viscous and Coulomb 

types o f  dalnping w i th  the same value o f  t,. Hindsight s t rong ly  suggests t ha t  

def in ing ts on the basis o f  :!?$dal energy decay, ra ther  than modal amplitude, 

decay, would be a more ra t iona l  approach. 

I n  the development o f  the mathematical l y  idea l  force apport ioni  ny vector 

i n  Section V o f  Ref. 2 (and the revised version i n  Appendix B, Section 1 o f  

t h i s  report) ,  the r e s t r i c t i o n  i s  imposed t h a t  the nuniber o f  cont ro l  actuators 

7 



nus t  equal the number o f  cont ro l led modes, na = m, Thls r e s t r i c t i o n  ar ises 

from the necessity f o r  i nve r t i ng  a par * t i t i on  o f  the modal matrix, which must 

therefore be square, But I n  actual practice, I t  w i l l  probably be required t o  

cont ro l  more modes than there are t v a l l a b l e  actuators, m z na. Thls p rac t i ca l  

requirement might be sat isf ied,  w i t h i n  the context o f  ac t i ve  danlplng by force 

apportloning, by ca lcu la t ion  of the pseudo-inverse o f  a non-square matr ix.  

The mathematical d e t a i l  s  of the pseudo-inverse ca lcu la t ion are presented i n  

Appendix B, Section 2, However, no numerical study has been attempted. 

One d l f f l c u l  t problem which I s  encountered I n  act ive damping by force 

apport loning i s  se lect ion o f  the control  thruster  locations so as t o  rninimlze 

residual  energy. We have addressed t h i s  problem i n  an ad hoc, t r ia l -and-er ror  

fashion, as i s  described conelsely i n  Appendix C of t h i s  repor t  and Section 

V I  o f  Ref. 2, and more extensfvely i n  Ref. 1. However, i t  i s  probable that  

a more e f f i c i e n t  approach could be devised on the basis o f  r e l a t i v e  values 

o f  the inner products of modal vectors and force apportioning vectors. This 

approach i s  suggest~d by the discussion i n  the s i x t h  paragraph o f  Section VI 

o f  Ref. 2. 

Section 1II.C and Appendices D and E o f  t h i s  report  discuss the p o s s i b i l i t y  

o f  system i n s t a b i l  i t y  occurring i f  the force apportioning and/or the f 11 te r ing  

do not have the mathematically ideal  forms. We have investigated t h i s  pos- 

s i b i l i t y  simply by in tegra t ing  the equations o f  motion and inspecting the tinie 

h i s to r y  p lo ts .  I t  i s  obvious t ha t  a much more sophist icated s t a b i l i t y  analysis 

could be conducted. Equations (E.2) i n  Appendix E are the n~ost genera? equations 

o f  motion, accounting for  non- ideal  appo6-tioning and/or non- ideal  f i 1 t e r i  ng, 

and they would be the basis f o r  a quant i ta t ive s t a b i l i t y  analysis, 



V I  , CONCLUDING REMARKS 

The concluding remarks i n  Sectlon V I l  of  Ref. 2 st111 hold wlthout re- 

vlslon. I n  addi tlon, we may comnent now on the new resul t s  presented i n  

Sectlon 111 and the appendices o f  t h i s  report, These resul ts  are f a i r l y  con- 

vincing evldence that  the e f  fec ttveness o f  act lve damping by force ppportlonlny 

i s  not s ign i f i can t l y  impaired by r e a l i s t i c  condltlons, as opposed t o  the 

idealized conditions considered i n  Ref, 2, 

The study described i n  th i s  report  has been exclusively theoretical and 

computational. I t  seems reasotjable t o  conclude on the basis o f  our resul ts  

that  act ive damping by force apportioning appears m a p e r  to  be a practically 

feastble n~ethod, Further a8'raf $lore de f in i t i ve  evaluation o f  the method re- 

quires an experimental study, 
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Th is  paper describes: w i t h  theory t n d  ncrmcrri- 
ca l  s imulat ion a ~ t h o d  o f  active s t r u c t u r a l  damp- 
ing  k t l i ch  requfres relatively few d isc re te  con- 
t r o l  th rus te rs  su i tab ly  post t foned ofi the s t ruc-  
ture, For each v i b r a t i o n  made which i s  t o  be 
damped ( t a r  t t  made), a  p d r t f c u l a r  appor t ion ing 
o f  COhelent!Y p11as3 con t ro l  forces i s  appl led  
whfch s t r o n  l y  a f fects  t h a t  mode whi le  m ln ims l l y  
exciting a17 other  nndes. The f ~ r c e  apportfon- 
Ing used Is tha t  wttlch would tuna rr t r r g e t  mode 
i f  the s t ruc tu re  wcrs being shaken i n  a modol 
v i b r o t l o n  t e s t '  In eontrasr  t o  modal tes t ing ,  
howave~, tnc forces are va r lad  temporal ly so as 
t o  dampen, ra ther  than exc i te ,  the target  moue o r  
made$ 

NOTATION 

(.f colunl~r r~ la t r t x ,  vector  

[ lT,~&lT transpose of [ 1, (.) 

C( ICC] r ( ,lCC denotes condensation o r  p a r t  f t i o n -  
1ng r e l a t l v e  t o  both modes and 
degrees o f  freedom (d.0, f, ) 

[ (  denotes p a r t i t i s n l n g  r e l a t i v e  t o  
modes on ly  

T 
( ? t y ) ~ !  t 

[ k l  n x n s t i f f n e s s  m a t r i x  

[1111 n  x  n I n e r t i a  mat r i x  

t s force apporr loning vector f o r  damp- 
ing  o f  a  ta rge t  mode 

? r r t h  co1u111n of [+I, mode shape of 
r t h  mode 

g t )  n  x  1 ac t ion  ( fo rce  and moment) 
vector  

$ t )  n  x 1 d,o,f. vector 

Er(t) energy in  the r t h  mode 

fig feedback constant f o r  dampin o f  
t r r g e t  nod., Eqs. (8) and (13) 

m number o f  ta rge t  modas 

n t o t a l  number o f  d.olfl I n  s t ruc-  
t u r a l  made1 

"c number o f  modes and d,o.f, l n  con- 
densed model - 

r natura l  frequency o f  the r t h  mode 

s target  mode viscous decay Crf te r fon ,  
En* (7) 

r index denoting an a r b i t r a r y  mode 

s index denoting a target  mode 

target  mode suppression time, Eqs, 
( 7 )  and (13) 

Eso ~ ~ ( 0 )  f n i t f a l  value o f  target  moue 
norma 1 coordinate 

s  ta rge t  mode viscous ac t i ve  damping 
fac to r  

1. INTRODUCTION 

To suppress the v ib ra t ions  caused by opera- 
t i o n a l  o r  envfronmental condit ior ls,  modern veh$c?e 
and b u i l d i n g  s t ructures may requi re addf t ional  
damping beyond t h a t  provided by inherent passive 
mech~nlsms o f  energy df ss ipat ion,  The t r a d l  t tona l  
source o f  a r t i f i c i a l  damping i s  a passive device, 
but  f o r  some current  appl i ca t ions  such devjces 
are i n e f f e c t i v e  o r  are unsdt is factory  f o r  other 
reasoas, such as excessive wei h t ,  For these 
appl fcdt ions,  add i t i ona l  a r t i f ! t f a l  damping might 
be provided t.v an ac t i ve  system, i .e ,  a  system 
which uses sensdng, feedback, and contro l  forces 
o r  moments t o  oppose the s t ruc tu ra l  motton, 

$( t l  Herrberg e t  a 1  have observed tha t  the wel l  
O f  Or coordi* establ ished t e m g y  o f  nndal vibration tes t ing  nates i s  adaptable t o  the con t ro l  o f  s t ruc tu ra l  v lbra-  

* 11, r '  s t ions.  This paper describes a method of ac t i ve  
ddmping which I s  j u s t  such an adaptatlon, 

'rs t o .  r + s  
1 ' 

A possfb le app l i ca t ion  of t h i s  method i s  f o r  
'rr?rTtml*r O f  the rth 'Ode the suppression o f  v ib ra t ions  i n  proposed ldrge 
* Associdte Profesrpor, Ble~nber AIAA space st ructures,  These st ructures w i l l  be sub- 
* * G r ~ d ~ . ? f e  Hesearch Assistant,  llenlber AIAA jec tcd  t o  sources of disturbance such as propulsive 



forces o r  gyroscopic moments t o  e f f e c t  maneuvers, 
k u t  the vacuum o f  space w i  11 provide no atmos- 
phericdampirlgand i t  seenls i i k e i y  t h a t  i n t e r n a l  , 
s t r o c t u r a l  dhmping w i l l  genera l ly  be low, The 
p o t e n t i a l  s l g n l  f icance o f  ac t i ve  damplng fov large 
space st ructures has Inspi red a great  deal o f  
cu r ren t  research. No 1 i te ra tu re  review w i  1  l be 
a t te~np tcd  here, bu t  Ref. 2 includes a number o f  
vetby recent papers and tnuclr b ib l fog raph ic  I n f o r -  
mation on the subject.  

Most provlous contemporary studies o f  ac t i ve  
s t r u c t u r a l  damping have appl l e d  advanced con t ro l  
theory e*g, the papers o f  Balas3 and Meirov i tch 
and 024, I n  contrast ,  the basic form o f  a c t i v e  
darnping by force apport lon ing introduced here in -  
volves no con t ro l  theory beyond the behavior o f  
a  one-degree-of-f reedom damped osc i  1 l a t o r ,  

11. GENERAL DISCUSSION OF FORCE A P P O R T I U  

The t r a d i t i o n a l  app l i ca t ion  o f  force appor- 
t i o n i n g  i s  f o r  modal v fb ra t ion  t e s t i n g  w f t h  two 
o r  Inore slnusoidal l y  varying, c ~ h e r r n t l y  phased 
mechanical shakers. The shakers are attached t o  
s u i t a b l e  po in ts  on the s t ruc tu re  belng tested, 
and t h e i r  force amplitudes are a p p s r t i ~ n e d  f n  
such a way as t o  tune a selected v i b r a t i o n  mode, 
which we c a l l  the ta rge t  mode, Idea l l y ,  a l l  o f  
the energy i s  fed i n t o  the ta rge t  mode a t  i t s  
na tu ra l  frequency, and a l l  o ther  modes, which we 
c a l l  the res idual  modes, are untouched. Thls 
focusSng o f  energy i n t o  a s ing le  mode i s  a t t r i b -  

r *  

u t a b l e  t o  the s p e c i f i c  spa t ia l  d i s t r i b u t i o n  o f  
shakers and t h e i r  r e l a t i v e  force amplitudes, 

I n  r e a l i t y ,  pe r fec t  tun ing i s  genera l ly  not  
poss ib le  w i th  a f i n i t e  number o f  shakers. The 
practical ob jec t i ve  o f  m9dal t e s t i n g  w i t h  force 
apport ioning 1s t o  tune w i t h  as few shakers as 
poss ib le  whi le  s t i l l  minimizing e x c i t a t i o n  o f  
res idual  modes so tha t  t a r g ~ t  mode parameters 
can be bccurate ly  measured, Several methods 
have been developed o r  proposed f o r  c a l c u l a t i n g  
the apport ioning o f  shaker force amplitudes t o  
produce e f f e c t i v e  mode tuning, e.g. the methods 
o f  Lewis and ~ r i s l e y 5 ,  Asher , Ibanez7, and 
Morosow and Ayre8, 

I n  f l ~ d a l  v i b r a t i o n  tes t lng ,  the proper ly  
apportioned forces feed energy i n t o  the ta rge t  
mode and st imulate motion by v i r t u e  o f  being & 
phase w i t h  the v e l o c i t y  of ta rge t  mode response. 
Conversely, f o r  ac t i ve  damping o f  e x i s t i n g  but  
unwanted v i b r a t i o n  i n  a ta rge t  mode, the same 
spat fa1 d i s t r i b u t i o n  and apport ioning of forces, 
but 180' out  o f  phase w i th  the ve loc i t y ,  w i l l  ex- 
t r a c t  energy from tha t  mode, The target  mode o r  
modes can always be suppressed i n  t h i s  manner, 
but  a  possible undesirable byproduct i s  the 
pumping o f  energy i n t o  residual modes. Success- 
f u l  app l i ca t ion  o f  t h i s  method o f  ac t i ve  damping 
requi res tha t  the contro l  force locat ions be 
chosen so as t o  minimize residual energy. This 
p o i n t  i s  discussed i n  more deta i  1  subsequently, 

To describe force apport ioning mathematical- 
l y ,  we w r l t e  the equations o f  motion f o r  a  l i n e a r  
s t ruc tu re  d isc re t i zed  t o  n degrees o f  freedom 
(d.0. f , ) ,  

In te rna l  passive s t r u c t u r a l  damping i s  omi t ted t o  
s i m p l l f y  the analysis,* We denote a ta rge t  mode 
as mode s, and the vector o f  coherent ly phased 
act ions ( forces and moments) which se lectdvely  
a f f e c t s  mode s as Cs( t ) ,  Subs t i tu t ing  i n t o  Eq, (1)  
Qs and the standard rlormal mode transformation 

n 

? ( t )  [+I f ( t )  C tr ~ ~ ( t )  (2)  
I+' 1 

leads, w t th  mass and s t i f f n e s s  o r thogona l i t y  con- 
d i t i ons ,  t o  tne modal equations o f  motton, 

The mathematical ob jec t i ve  o f  force apportioning 
I s  t o  i e l e c t  the constant shape f o f  9 ( t )  so 
as t o  maximize general ized force fdL,.gsf i n t o  the 
ta rge t  mode whi le  minimizing general ized forces 
(dr,Qs), r f s, i n t o  a l l  res idual  modes, thus 
minimizing res idual  responses, ~ r ( t ) ,  r + S ,  
Ex is t ing  methodss-8 f o r  ca lcu la t fng  f s  have been 
developed p r i m a r i l y  f o r  app l i ca t ion  w i th  exper i -  
mental t rans fe r  funct ion data. For purposes o f  
t h i s  study, however, we present i n  Section V a  
simpler method which requires a p r i o r i  knswledge 
of modal parameters. 

I n  the next  sect ion, expressions fo r  Q s ( t )  
are developed ( r t t h  f S  l e f t  unspacif ied) leadtng 
t o  standard vlscous i n d  Coulomb types o f  modal 
damping. 

I 1  I. ARTIFICIAL VISCOUS AND COULOMB 
TYPES OF DAMPING 

From Eq, ( 2 ) ,  the p o r t i o n  o f  response i n  
any p a r t i c u l a r  d.o.f, 1  due t o  mode s i s  

We specify t h a t  motion q i ( t j  o f  a  s ing le  selected 
t rans la t ion ,  the i t h  d.o.f,, i s  measured by a 
sensor, t y p i c a l l y  an accelerometer, and t h a t  the 
quan t i t y  q i s ( t )  fo r  each ta rge t  mode i s  produced 
from q i ( t )  by narrow-band f i l t e r i n g  around the 
ta rge t  mode na tu ra l  frequencies. 

I I1 .A A r t i f i c i a l  Viscous Dampinq 

To produce simple viscous type damping i n  a 
s ing le  td rge t  mode, we speci fy  

as = -Ks t s  4 s  ( 5 )  

where Us i s  a  feedback constant t o  be determined. 
Thus, modal equations ( 3 )  become 

*Note, however, tha t  the actual  s t ruc tu ra l  damping 
o f  l a rge  space st ructures i s  l i k e l y  to  be s l i g h t ,  
I f  so, i t  w i l l  prodlrce n e g l i g i b l e  coupl ing o f  the 
undamped normal modes9 and, therefore, can on ly  
complement, ra ther  than de t rac t  from, the damping 
provided by a r t i f i c i a l  means. Thus, the neglect 
o f  natura l  damping i n  the analys is  should, f o r  
l a rge  space structures, lead t o  conservative 
r e s u l t s ,  



I n  the numerical s l ~ ~ i u l a t i o n s  o f  Section V 1 ,  
non-z@ro i n i  t i n 1  displacement and zero i n i  t l a l  
v e l o c i t y  are s p e c i f i e d  f o r  each ta rge t  mode, and 
i t  I s  required t h a t  each ta rge t  mode exponential 
decay envelope be damped t o  a p o r t i o n  ps t c  1 o f  
i t s  I n i t i a l  value i n  title t s ,  Thus, the requi red 
viscous dafnplng f a c t o r  i s  

and, from the 5th equation o f  ( 6 ) ,  the feedback 
constant i s  

I f  a number m o f  ta rge t  nades are t o  be 
damped sirr~ultaneously, then the appropriate 
a c t i o n  vector i s  

i 
i 

I n  Eq, ( 9 ) ,  we assume f o r  s i m p l i c i t y  t h a t  the 

i m t a r g e t  modes are the f t r s t  m modes o f  the 

i 
s t ruc tu re ,  but i n  general I:he Target modes need 

I 
no t  be only the lowest modes, nor  need they be a 

I se r ies  o f  conlsecuttve modes, With Eq. (9) ,  the 
I '  nrodal equations become 

I nl 

r 5 1,2,.,,n 
where KS f o r  each ta rge t  mode i s  ca lcu lated from 

1 Eqs, ( 7 )  and ( 8 ) ,  Figure I t  i s  a conceptual 
b lock diagram i l l u s t r a t i n g  the implementatlon 
o f  Eq, (10) f o r  a c t i v e  damping o f  two modes o f  
a d i sc re t i zed  beam, w i t h  the use o f  three con t ro l  
th rus te rs ,  For simultaneous damping o f  more 
than one mode, as i n  Fig, 1, the elements o f  
appor t ion ing vectors fs,  s 1 ,2 , ,  . . ,m, can be 
represented as elements o f  a rectangular matr ix .  

t 

A r t i f i c i a l  viscous da~nping requires tha t  
the con t ro l  forces be continuously va r iab le  i n  
time, atrd i t  leads t o  a mathenlatically l i n e a r  
problem, I t  i s  poss ib le ,  though, t h a t  propuls ive 
con t ro l  un i t s  w i l l  not  be capable o f  de l f ve r fng  
cont inuously va r iab le  th rus t .  So we consider 
next a type o f  con t ro l  force which perhaps i s  
more l i k e l y  t o  be achieved i n  p rac t i ce ,  b u t  
leads t o  a rionl inear  problem. 

111.0 A r t i f i c i a l  Coulomb Oalnpinq 

To produce da~nping s i ~ r i i l a r  t o  Coulomb 
damping10 i n  a s i n g l e  ta rge t  mode, we speci fy  

* 

where 

Figures and tables are located a t  the end o f  the 
paper. 

1 f o r  (,) 2 cV 

0 f o r  ) ( , ) I$  c,, 
-1 f o r  ( , )  < -cv 

and c 1s a threshold v e l o c i t y  leve l ,  which i s  
zero t o r  pure Coulo~nb damping, Swll cv ? 0 i s  
cot\sldered here because any actual  propuls ive 
device must shut o f f  a t  some non-zero l e v e l  o f  
comnand signal,  Equation (1 1) i s  arb approximd- 
t l o n  t o  the type o f  propuls ive t h r u s t  o f t e n  
re fe r red  t o  as "bang-bang" ( o r  i'on-off'') th rus t  
w i t h  a deadband4, With Eqs, (4)  and ( l l ) ,  modal 
equations (3) becon,* 

With the i n l t l a l  value o f  ta rge t  mode d i s -  
placement i n  the I t h  d.o.f ,  spec i f i ed  as 
q j S ( 0 )  = FS(0) /+ js  and zero i n i t i a l  ve loc i t y ,  we 
requi re tha t  mode s be suppressed I n  t ime ts, 
Provided t h a t  E V  i s  small r e l a t i v e  t o  peak ta rge t  
mode v e l o c i t i e s ,  the feedback constant KS which 
w t l l  g ive suppression t inw t s  i s  ca lcu lated as 
fol lows, For pure Coulomb damping (av = 0)  
decay per per iod 21rlus o f  C5(t )  i n  the s th  equa- 
t i o n  o f  (12) is10 

The I n i t i a l  amplitude I E ~ ( O ) [  equals the decay 
per per iod tinies the number o f  periods to  sup- 
pression, wsts/21r, Thus, a 1 i t t l e  algebra gives 

I f  a number m o f  ta rge t  ntodes are t o  be 
damped simultaneously , then' the appropriate 
ac t ion  vector i s  

and the modal equatlons became 

where K f o r  each ta rge t  mode i s  ca lcu lated from 
Eq. (13T. 

I t  should be noted tha t  f o r  small r v  the 
i n d i  vfdual contro l  forces f o r  single-mode damping, 
Eq. ( \ I ) ,  w i l l  vary w i th  time i n  near ly  a square 
wave. However, because a number o f  near1 y square 
waves are being superimposed i n  Eq. ( 1 4 ) ,  the 
time v a r i a t i o n  o f  each cotrtrol  force f o r  n ru l t i -  
mode damping general 1 y w i  I 1  have the character 
o f  e r r a t i c  s ta i rs teps.  This i s  i l l u s t r a t e d  i n  
Section V I .  



JY. SPECIAL CASE: VISCOUS DAMPING_ 
OF ONE TARGET MODE 

This relatively slmple case l s  amenable, i n  
par t ,  t o  closed-form solut ion,  The so lu t ion  ob- 
ta ined  w i l l  provide usefu l  Informatfon which I s  
appl icable,  a t  l eas t  q u a l i t a t i v e l y ,  t o  the analy- 
s ts  of more compl i ca ted  cases, 

We seek so lut ions o f  modal equatlons (6) 
w i t h  feedback constant (8 ) ,  The s th  modal aqua- 
t i o n  i s  rewr i t ten  as 

is t 2~~ us is + us2 e s  = o 

and we speci fy  l n l t l a l  condl t lons Cs(0) = Sso j 0 
and j s ( 0 )  8 0. The s o l u t i o n  i s  

where 

ds s 

Next we subs t i tu te  Eq, (16) i n t o  the r ight-hand 
sides o f  a l l  res idual  ( r  f s) modal equations o f  
( 6 )  and, again uslng Eq. (a),  f i n d  the non-hom- 
geneous equations 

where 

With i n i t i a l  condi t ions Er(0) * 0 and i r ( 0 )  a 0 
f o r  r # s, the so lu t ion  o f  Eq. (17) can be w r i t t e n  
as a convoiutfon i n t e g r a l ,  

Equations (16) and (17) show t h a t  the ta rge t  
mode eventual ly  decays and e x c i t a t i o n  o f  the 
res idua l  modes eventual ly  ceases. But a f t e r  the 
ta rge t  mode i s  suppressed, the res idual  modes 
remain i n  a steady s t a t e  o f  f ree  v ib ra t ion .  This 
steady-state motion can be determined by s e t t i n g  
the upper l i m i t  i n  i n t e g r a l  (18) t o  i n f i n i t y ,  
which a lso  makes'the i n t e g r a l  reasonably t rac tab le .  
The r e s u l t  o f  t h i s  evaluat ion has the form 

where 5;. and or are a lgebra ica l l y  complicated. 

Rather than examining an~pl i tude Tr, i t  i s  
perhaps wore useful t o  evaluate the rus idual  
energy, which i s  a s i g n i f i c a n t  global quant i ty .  
The instantaneous energy i n  any flKIde i s  

1 ' E )  = M + d 1 (20) 

Thus, the r a t i o  o f  s terdy-state res idual  mode 
energy t o  l n i t l a l  energy i s  found t o  be 

E:' Mv"r 2 - 2  Cr 

q'* ~~w~~ 4 s t  

Equcltlon (21) demonstrates t h a t  se lec t ion  o f  an 
act  i v e  damping f a c t o r  cs lnu~,lves a compromfse: 
a h igher  65 I s  des i rab le t o  suppress the t a r  e t  
mode m r e  rap+,dly, but  a lower Cs i s  des l rab lo t o  
mlnimize res idual  energy, Equatlon (21 ) also 
shows t h a t  ras jdual  modes w i t h  frequencies sonie- 
what. greater  than t h a t  o f  the ta rge t  mode are 
r e l a t i v e l y  I n u n e  t o  exc i ta t ion ,  the res idual  
energy varying near l y  as the fou r th  power o f  the 
frequency r a t i o .  On the other  hand, res idual  
modes w l t h  frequencies lower than t h a t  o f  the 
ta rge t  mode are no t  protected by a favorable f r e -  
quency r a t i o  and seem somewhat susceptible. I n  
the I l m i t  as w r  goes t o  zero, Eq. (21  ) gives the  
res idual  energy remaining i n  a r i g i d  body rode, 

Equation (22) shows t h a t  force apport ioning vector 
f S  be orthogonal t o  a l l  r i g i d  body nmde 
shapes I n  order no t  t o  d i s t u r b  the s t r u c t u r e ' s  
r i g i d  body o r ien ta t ion .  

V .  FORCE APPORTIONING BASED ON A 
CONDENSAT ION TECHNIQUE 

We f i r s t  es tab l i sh  an apport ioning of forces 
and moments which i s  appl icable t.) the f u l l  d i s -  
c r e t i z e d  s t r u c t u r a l  model character ized by Eq. ( I ) ,  
To i s o l a t e  the 5 t h  mode from a l l  others, we set 

where g ( t )  i s  an a r b i t r a r y  funct ion o f  time. Then 
modal equations (3)  become 

where 6rs i s  the Kronecker de l ta .  Thus, the tdeal 
apport ioning o f  forces and moments i s  

But Eq. (23) impl ies the presence of a contro l  
force.or  moment a t  each d.o, f .  of the s t ructure,  
which i s  genera l ly  impossible. So we develop 
next a condensed, o r  reduced order, mathemat l c a l  
model of the s t ructure,  f o r  which an apport ioning 
analogous t o  Eq. (23) can be defined. 

The condensed model I s  requi red t o  include 
nc < n t r a n s l a t i o n  d.0.f. corresponding t o  cor l t ro l  



th rus te rs  and t o  presvrve wi thout  a l t e r a t t o n  nc 
selected modes o f  the s t ructure.  Accordingly, 
we def ine the nc x nc condensed I r l e r t i a  and 
s t i f fness  matr ices by analogy w i t h  the standard , 
or thogona l i t y  condi t ions,  

t o C C ~ T ~ m C C ~ [ s C c ~  t M~ J 
cc T cc ~o I [k I E I O ~ ~ I  r w 2 ~ C  J 

(24)  

uhere [9CC] i s  the nc x nc p a r t l t i o n  o f  the f u l l  
nlodal m a t r i x  [ # I  containing o t ~ l y  the  d.0.f. and 
modes t o  be reta ined f n  the condensed model, and 
I? Mc J and t w2C1C J are  the n x nc p a r t i t i o n s  o f  
the general ized mass and s t i f f n e s s  matrices, re-  
spect ive ly  conta in ing orrly parameters o f  the re-  
tained modes. Provided tha t  [gee] i s  no t  s ingular ,  
the condensed i n e r t i a  m a t r i x  i s  therefore 

[mCC] = [eCC]'Tr M~J[~C~]-I  (25)  

and [kCC] i s  ca lcu lated s l m l l a r l y .  

Thus, the  condensed version o f  Eq. (1)  1s 

where gCand Q' are the p a r t i t i o n s  o f  g and Q, re-  
spect ive ly ,  Phich con ta in  on ly  the translation 
d.0. f. and the associased forces reta ined i n  the 
condensed model, It can be proved11 tha t  problem 
(26) preserves exact ly  the  m d a l  parmeters and 
the f ree and forced response o f  the reta ined modes 
and d.o.f ,  

I n  analogy w i t h  Eq, ( 23 ) ,  we def ine a con- 
densed fo rce  appor t ion ing vector which completely 
iso lates inode s from a l l  o ther  modes reta ined i n  
the condensed model, 

fs 
cc = [ m C C ~  t s C C  (27) 

To s i m p l i f y  Eq. (27), we def ine i n  Eq. (25) 

[PI = r+Cc~'T o r  (?,, )sCC) = ars (28) 

Subs t i tu t ing  Eqs. (25) and (28) i n t o  (27) then 
gives 

-fsCC = Ms ps (29) 

The constant MS i n  Eq. (29) I s  i r r e l e v a n t  since, 
i n  c a l c u l a t i o r ~ s ,  f cc i s .  normal i r e d  t o  a maximum 
element value o f  *I ,  as are a l l  mode shape vectors. 
The nc x 1 vector  fScc i s  the non-zero p a r t i t i o n  
o f  the f u l l  n x 1 appor t ion ing vector fs, a l l  
remaining elements o f  f s  being set t o  zero, Since 
(9r, fs) = MS6r f o r  a l l  modes reta ined i n  the 
cindinsed alodef ; th fs  apport ioning w i l  l con t ro l  
the target  mode without a f fec t ing  the other re-  
tained modes. But, i n  general, i t  w i l l  exc i te  
the modes which have n o t  been included i n  the con- 
densed model. When used i n  Eqs. (10) o r  (15), 
t h i s  appor t ion ing completely contro ls  nc selected 
nwdes w i t h  nc selected con t ro l  th rus te rs  (pro- 
vided tha t  [ D C C ]  i s  no t  s ingu la r ) ,  b u t  a l l  o ther  
residual modes are uncontro l led.  An important 
ob ject ive i n  contro l  t h r u s t e r  se iect ion,  therefore, 
i s  to  minimize e x c i t a t i o n  o f  uncontro l led ~nodes. 

The condensation-apportioning procedure de- 
scr ibed i n  t h f s  sect ion requlres complete informa- 
t i o n  on the modes t o  be reta ined i n  the reduced 
order model, and i t  assures t h a t  each o f  the re -  
t a i n ~ ~  r ~ i ~ ~ d e s  can be i so la ted  from a l l  o ther  re-  
ta  ined ,J*: les. On the other  hand5 ~ p p o r t i o n i n g  
ttctrniz,tta used i n  modal t e s t i n  - do no t  requ i re  
11101 11 . ~ ~ r l r n e t e r s  a p r l o r i ,  bur ?hey a110 do not  
pro iuc:e rny assured nleasure 01 mode i so la t ion .  $0 
Eq, (29) probably represents the mathematically 
best apport ionfng o f  a I i m j t e d  number o f  con t ro l  
thrusters ,  bu t  I t  may no t  be best i n  p rac t i ce  be- 
cause I t requires prev ious ly  determined modal 
parameters. 

V I  . NUMERICAL SIMULATIOtiS OF ACTIVE DAMPING 

Time h t s t o r y  simulat ions have been ca lcu lated 
fo r  evaluat ion o f  ac t i ve  damping by force nppor- 
t t o n l n g  , the performance measure o f  i n t e r e s t  being 
the res idual  energy remaining a f t e r  the ta rge t  
modes are suppressed. 

Figure 2 depic ts  the unrestrained plane g r l l -  
lage s t r u c t u r a l  model used i n  the simulat ions, It 
i s  a r e l a t i v e l y  simple ~nathematlcal model de- 
signed t o  e x h i b i t  s t ruc tu ra l  dynamic character- 
i s t i c s  t y p i c a l  o f  proposed so la r  power sate1 1 i tes l2 ,  
I n  p a r t i c u l a r ,  low natura l  frequencfes and h igh 
modal density,  The model i s  an assemblage o f  
s t r a i g h t  bending-torsion beam f f n i t e  elements w i th  
twelve nodes, as numbered i n  F ig.  2, Each node 
has a t rans la t iona l  d,o.f, i n  the Z d i r e c t i o n  and 
rotational d.o.f ,  about the X and Y d i rect ions,  
f o r  a t o t a l  o f  36 d.o,f ,  Accordinqly, the model 
has a r i g i d  body t r a n s l a t i o n  mode i n  the Z d i rec -  
t i o n  and r i g i d  body r o t a t i o n  nwdes about the X 
and Y d i rec t ions ,  Each o f  the s i x  square bays 
has side length L = 4000 m. A mass o f  4,8 x 105 
kg (101 o f  the t o t a l  mass o f  eams w i t h  r o t a t i o n a l  f! ) i n e r t i a s  o f  3.0 x 1010 kg . m i s  concentrated 
a t  node 2. I n e r t i a s  o f  the beam elements are 
represented by consistent mass matr ices. Each 
element has mass per u n i t  length o f  35.3 kq/m, t o r -  
sional i n e r t i a  per u n i t  length o f  5.65 x 104 
kg + m, bending s t i f f n e s s  E l  o f  7,55 x 1012 N t m2, 
and to rs iona l  s t i f f n e s s  GJ o f  5.81 x 1012 N . m2. 
Natural ;requencies and periods o f  the f i r s t  eleven 
f l e x i b l e  modes are I i s t e d  i n  Table 1.  Mode shapes 
of the f i r s t  s i x  f l e x i b l e  modes are shown i n  Figs.3. 

For each simulat ion, the ta rge t  modes selected 
were modes 4 - 6, the f i r s t  three f l e x i b l e  modes. 
The only  non-zero I n f t l a l  condi t ions speci f ied 
were mode 4 i n i t i a l  value ~ 4 ( 0 )  corresponding t o  
node 1 t r a n s l a t i o n  q l q  0)  = 1,O m, ?crrl i n i t i a l  
values of ~ ( 0 )  and 46 I 0) corresponding t o  equal 
i n i t i a l  po ten t ia l  energy i n  each target  mode, The 
feedback 5ignal chosen was node 1 t r a n s l a t i o n  
v e l o c i t y  q l ( t ) .  I n  add i t i on  t o  the ta rge t  modes 
4 - 6, r i g i d  body modes 1 - 3 were reta ined i n  
the condensed model i n  order t o  avoid d is tu rb ing  
the r i g i d  body o r ien ta ion  ( c f .  Eq. (22!). Six 
th rus te rs  were required t o  con t ro l  these s i x  modes. 

I n  ca lcu lat ions,  on ly  the f i r s t  13 o f  the 
t o t a l  36 modes were retained, i .e. Eq. ( 2 )  was 
truncated a f t e r  r = 14. This t runcat ion i s  
j u s t i f l e d  by the (ws/wr)4 term i n  Eq, (21) and by 
the observat ion tha t  the highest re ta ined modes 
contr ibuted n e g l i g i b l y  t o  the t o t a l  response. The 
moda\ equations o f  motion were in tegrated by a 



four th-order  Runge-Kutta method w i t h  constant step 
s ize (2  s f o r  viscous damping, 1 s f o r  Coulonlb), 

Ac t l ve  damp'ing perforitlance was evaluated f o r  
d i f f e r e n t  contro l  t h r u s t e r  locat lons,  d i f f e r e l r t  
t i~nes  t o  damp the t a r g e t  modes, and d i f f e r e n t  
danrpitlg types, viscous o r  Coulomb. Case 1 i s  the 
reference case, and the parameters were var ied 
i n d i v i d u a l l y  f o r  Cases 2 - 4, I n  Case 1, con t ro l  
th rus te rs  are located a t  nodes 1, 2, 3, 5, 10, 
and 12, and dampiny i s  vlscous w i t h  time t s  = 
400 s t o  da~np each ta rge t  mode down t o  p o r t i o n  
p~ 0.01 o f  I t s  i n i t i a l  value, Time h i s t o r i e s  
f o r  se lected q u a n t i t i e s  are shown i n  Flgs. 4, 
Ind fv idua l  modal energy values were ca lcu lated 
from Eq. (20) and summed t o  produce i:ig, 4a, the 
h i s t o r y  o f  t o t a l  energy. The a c t i v e  damping In  
t h i s  case i s  very e f f e c t i v e ,  w i t h  res idual  energy 
being less  than 3% o f  i n i t i a l  energy, 

For the dampfng type and t ime o f  Case 1, 
several combinatlons o f  s i x  con t ro l  th rus te r  loca- 
t i o n s  were investigated. A few combinations can- 
not  be used because the dssociated [ s C C ]  matr ices 
are s ingu la r  (see Eqs, (28) and (29)) ,  but most 
car) be usedl l .  The th rus te r  locat ions o f  Case 1 
produced one o f  the best resu l t s .  For Case 2, 
a c o n t r o l  thrust* was moved from node 5 t o  node 
11, and t h i s  change produced one o f  the worst 
r e s u l t s ,  Figures 5 show tha t  the act3ve damping 
i s  counterproduct ive: the res idual  energy I s  28 
times the i n i t i a l  energy, w i t h  67% o f  the res idual  
energy remaining i n  mode 8 alone. This poor per- 
formance can be explalned by examination o f  the  
force apport ioning vectors and feedback constants 
f o r  Cases 1 and 2 (Table 2) and the mode shapes 
f o r  modes 4 and 8 (Figs. 3 a,e), Equations (10) 
and (21) suggest t h a t  h s , f S )  should be large i n  
conlparison w i th  ($r,fs); r '#  s, For  ta rge t  mode 
4 and res idual  m i le  8 i n  Case 1, t h i s  cond i t i on  
i s  s a t i s f i e d ,  I n  Case 2, however, ( 4,f4) i s  
very small I n  comparison w i t h  (48,f4 f and, con- 
sequently, Kq i s  r e l a t i v e l y  large and a great 
deal o f  energy i s  pumped i n t o  inode 8. 

The parameters o f  Case 3 are those o f  Case 1, 
except t h a t  damping t ime i s  halved, t = 200 s, 
so t h a t  5s i s  doubled. Although Eq. T21) sug- 
gests t h a t  the r e s l  dual energy might be quadrupled 
by t h i s  increased damping, the actual  res idual  
energy i n  Fig, 6a i s  on ly  a l i t t l e  more than 
twice t h a t  o f  Case 1. 

The parameters of Case 4 are those o f  Case 1 
except tha t  damping i s  the Coulomb type, Eq. (14), 
w l t h  s, = 0,0001 m/s f o r  a l l  ta rge t  modes. 
Figures 7 demonstrate tha t  t h i s  damping i s  very 
e f f e c t i v e .  Comparison o f  Flgs. 4c and 7c shows 
tha t  lower force l e v e l s  are requi red f o r  Coulomb 
type dampihg, by t  t h a t  these leve ls  must be 
inaintalned throughout the da~nping period, For 
t .. 400 s, Fig, 7c e x h i b i t s  th rus te r  chat ter ing,  
which r e s u l t s  froin one ta rge t  mode a l t e r n a t i n g  
between f ree  and damped motion around the thresh- 
o l d  v e l o c i t y  leve l .  

V I I, CONCLUDING REFlARKS 

The basic form o f  ac t i ve  v i b r a t i o n  damping 
by fo rce  dppovt ion ing  has beer1 described w i t h  
standard s t ruc tu ra l  modal analysis and numerical 

s i m u l a t l o n s ~  For posstble app l i ca t ion  t o  sate1 - 
1 i t e  s t ructures,  r i g i d  body mades have been con- 
sidered, but  the in f luence  o f  g r a v i t y  on o r b i t a l  
p o s i t i o n  and a t t i t u d e  has been neglected, Feed- 
back con t ro l  laws producing modal damping o f  the 
slmple viscous and Coulomb types have" been used, 

To pernl i t  evaluat ion o f  the method i n  i t s  
bas ic  fornl, on ly  idea l i zed  condi t ions have been 
considered, I t  has been assumed t h d t  a11 neces- 
sary modal parameters are known and tha t  sensors, 
actuators, and narrow-band f l l t e r s  have Ideal  
operat ing charac te r i s t i cs ,  The daltlping o f  two o r  
nwre modes w l t h  e f f e c t i v e l y  i d e n t i c a l  natura l  f r e -  
quencies has no t  been invest igated. 

Under these idea l  i r e d  condl t ions, the method 
i s  e f f e c t i v e  and r e l a t i v e l y  simple. I t  uses a 
s lng le  sensor and a l i m i t e d  number o f  d i sc re te  
th rus te rs  t o  con t ro l  completely an esual number 
o f  modes. The s i g n i f i c a n t  measure o f  performance 
i s  the amount o f  res idual  energy fed  i n t o  the un- 
c o n t r o l l e d  modes dur ing the process o f  damping 
the c o n t r o l l e d  modes. I n  the numerical example 
presented, a jud ic ious  cholce o f  con t ro l  th rus te r  
loca t ions  and moderate damping o f  the contro l  l e d  
modes produces on ly  an i n s i g n i f i c a n t  aniount o f  
res idual  energy, 
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Table 1 F l e x i b l e  mode na tu ra l  frequencies and 
periods f o r  untUestralned plane g r l l  lage 
s t ruc tu re  

Mode Frequency (Hz) Period ( s l  
4 0.0062 161.29 
5 0,0065 153.85 
6 0.0129 77,52 

7 0.0143 69.93 
a 0.0155 64.52 
9 0.0180 55,56 

10 0.0217 46,08 

I 1  0.0232 43.10 

12 0.0245 40.82 
13 0.0448 22.32 
14 0.0489 20.45 

Table 2 Force appor t ion ing vectors and feedback 
constants f o r  ac t i ve  damping o f  mode 4 

Case 1 Case 2 

f~ ,4 -0.128 -0.244 
f2,4 0.923 0.488 
f3,4 . -0.128 -0.244 
f j  ,4 -1,000 

f10,4 0.167 0.500 

fll ,4 
- .  -1,000 

i 12.4 0.167 0.500 
K4(kg/sec) 5.40 x l o 4  1.54 x l o 6  
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F fa .  1 Force aoportioning control  system t o  damp two modes o f  a d i s c r t t l z e d  cant i levered beam 
using three thrusters 

F i g ,  2 Unrestrained plane g r i l l a g e  structure  
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a )  Mode 4 d) Mode 7 

b )  Mode 5 

, 

c )  Mode 6 

e )  Mode 8 

f )  Mode 9 

Figs. 3 Mode shapes o f  the f i r s t  s i x  f l e x i b l e  modes o f  the unrestrained plane g r i l l a g e  
structure  (diagonal members not included i n  f igures)  



a) Tota l  energy 

b )  Trans la t ion  o f  node 2 

c )  Control  force a t  node 2 

a) Tota l  energy 

b )  Translat ion o f  node 2 

"! 
- n  1 1 

c )  Control  force a t  node 2 

Figs. 4  Case 1: c o n t r o l  th rus te rs  1, 2 ,  3, 5 ,  Figs. 5 Case 2: contro l  th rus te rs  1 ,  2 ,  3, 10, 
10, 12; viscous damping w i t h  ts = 400 s, 11, 12; viscous dampinq w i th  t, = 400 s, 
p, = 0.01 p, 0,01 
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Figs, 6 Case 3: control thrusters 1, 2 ,  3, 5 ,  Figs. 7 Case 4:  control thrusters 1 ,  2 ,  3,  5 ,  
10, 12; viscous damping with tS = 200 s, 10,  12; Coulomb damping with t, = 400 s, 
ps " 0.01 E,, 0.0001 m/s 



8.1 IDEAL FORCE APPORTIONING 

(?his section i s  intended t o  be the replacement f o r  Section V of Ref. 2. 

Accordingly, the section t i t l e  number, equation numbers, and reference num- 

bers are those o f  Ref, 2.) 
1 

I V . IDEAL FORCE APPORTIONING I 
We define "controlled" modes as being the m modes described by the index 

s i n  Eqs. (10) and (15). Although t h i s  set has been defined previously as 

consist ing only o f  the target modes, i t  i s  c lear now, i n  view of Eq. (22), 

tha t  the set of n modes should include not only the f l e x i b l e  target modes, 

but also a l l  appropriate r i g f d  body modes. It i s  assumed i n  the following 

tha t  the m control led modes are specified. 

I n  order t o  establ ish a mathematically ideal force apportioning vector 
. '  

f~ for a single cor~ t ro l led  node (denoted by subscript s), we define Qs( t )  = 
I ,. 
fs  g(ks), where g ( i S )  represents the feedback time dependence descr! bed i n  - 
Eqs, (5) and (11). It i s  generally possible t o  provide control forces a t  

only a few t rans lat ion d.0.f. o f  a discret ized structure. Hence, the n x 1 

vector fs must usually include mostly zero elements, We therefore denote .. 
the actual number of control thrusters (actuators) positioned on the structure 

a 
as na, and the corresponding na x 1 force apportioning vector as f , the - S 

elements o f  which should generally be non-zero. Accordingly, the na x 1 

p a r t i  t i on  o f  modal vector tr corresponding t o  the control actuator d.0.f. i s  
a* 

denoted $ , Therefore, Eq. ( 3 )  becomes .. P 2 a a 
MrCr + Mror C, = 4 fs )  g(k,), r = 1, 2, +.., n 

It i s  necessary i n  the present context t o  choose the number of control 

actuators equal to  the number o f  modes t o  be controlled, n, = m. Then the m 



equations of (23) which describe the con t ro l led  modes can be w r i t t en  i n  

r ra t r lx  form as 
c "C 2 c  c ,  ac T a CM 3% + tu 3 6  rC 19 1 fs 9 ( i s )  

 where^^^^, and [paC J are appropriate m x m p a r t i t i o n s  o f  the n x n 

generalized mass, general ized s t i f  fness, arld !nodal matrices, respectively. 

To decouple con t ro l led  mode s from a1 1 other cont ro l  l ed  modes i n  Eq, (24), 

we seek f: such t ha t  on ly  the modal equation f o r  node s has a non-zero r i g h t -  

hand side. Clearly, t h i s  ob ject ive i s  achieved by se t t i ng  

f: = 11, (25) 

where t S i s  the column vector corresponding t o  control  l e d  sode s o f  the matr ix 
ac -T [$I IL [#  1 (26) 

In c a l ~ u l a t i o n s ,  f: i s  normalized t o  a maximum elemenl absolute value o f  1, 

as are a l l  mode shape vectors. Provided tha t  i s  not singular, then the 

en t i r e  apport ioning matr lx of Eq, (26) can be calculated; then the set  o f  

vectors f:, s a 1, 2, . . . m, from Eq. (25) decouples the m equations o f  the 

cont ro l led modes i n  modal Eqs, (10) o r  (15), but  leaves the remaining n-m 

equations o f  the uncontrol l ed  (residual ) modes exci ted by the control  l ed  

modes. An important ob ject ive i n  cont ro l  thruster  selection, therefore, i s  

t o  minimize exci t a t  i on  o f  the uncontrol l ed  modes. 

The apport ioning procedure described i n  t h i s  section requi res complete 

modal information on the cont ro l led modes, and i t  assures t h a t  each o f  the 

cont ro l led modes can be iso la ted from a l l  other cont ro l led modes. On the 

other hand, apport ioning techniques used i n  modal do not require 

modal parameters a p r i o r i ,  but they a lso do not produce any assured lileasure 

of  node i so la t ion .  So the apportioning calculated by Eqs. (25) and (26) 



represents a nu ttlenlatlcal l y  Ideal apportionlng o f  a 1 lrni ted nunber of control 

thrusters, but i t  nav not be best I n  pract ice because i t requires previously 

deternrined nlodal parameters. 

8.2 NON- IDEAL FORCE APPORTIONING BY MATRIX PSEUDO-I NVERSE 

We begln wi th  a sotnewhat more e x p l i c i t  der lvat ion o f  the resul ts  of Eqs. 

(25) and (26) above, The complete In x nr force apportlonlng matrix i s  defined 

t o  be 
a C F ~ I  f . n e t  f , ] ,~ (8.2.1) 

To uncouple a1 1 control led nodes, we seek [F' J such that (see Eq. (24) above) 
ac 7 Lo 3 Pal t ClmJ (8 ,2 .2)  

where PImJ i s  the nl x m Iden t i t y  111atrIx. Clearly, 

a '  W a l  LO ac 1 -7 (8.2.3) 

In our computations f o r  $:, s = 1, 2, . n each column of [F" i s  subre- 

quently nom~ial i zed t o  a inaximutn element absolute value o f  1 . 
I n  practice, i t  w i l l  probably be desirable t o  control a greater number 

o f  modes than there are control actuators, n~ na. For t h i s  situation, we 

def-ine the force apportioning matrix [F'] j us t  as i n  Eq. B . 2 1 )  except that  

now each column has length na. We again seek the solut ion of Eq. (8.2.2), 

where now [+aC] -is an na x m matrix. Since the unknoas i n  t h i s  equation are 

overdetermined, a unique, exact solution does not general l y  exist .  We pro- 

ceed fonnajly as follows: 



ac T 
[ + a c ~  14 I = cEC1 EI,J 

I 

ac T -1 Va3 R ( ~ 4 ~ ~ 3  14 1 ~ 4 ~ ~ ~ 1  (8.2.4) 
ac T Error gj i s  defined as the j t h  colunn o f  [( ] IF' J - P1,J. Then Eq. 

(0.2.4) represents the least-squares approximate solut ion o f  Eq , (0 .2.2)  f o r  
.k 

m P na, f o r  which each nornl , ) j 1, 2, . m i s  a mininum. 

Eq. (8.2.4) c lear ly  reduces t o  Eq. (8.2.3) i f  m nil. Eq. (8.2.4) i s  a fornl 

o f  the so-cal led nlatrix pseudo-inverse f o r  the overdetermined least-squares 

case, If i t  i s  desired to  weight the cont ro l  o f  cer ta in  modes over control 

o f  others, a generalization of Eq, (8.2'4) f o r  a weighted least-squares ap- 

proxlnate solut ion i s  easi ly developed.* 

.- - 
.;\ 

W .  1. Brogan, Modern Control the or^, pp. 90-92, Quantum Publishers, 1974. 
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APPENDIX C 

ACT1 YE RPMP1NG 'OF: HIGHER-FREQUENCY MODES 

A s ing le  case was investlgatsd, the numerical s imulat ion model being 

the unrest~a ine,  plane g r i l  laye descri  bed I n  Ref. 2. The ta rge t  modes were 

spec i f ied t o  be modes 7, 8 $  and 9 ( ra ther  than modes 4, '5, and 6, as i n  Ref. 2), 

and the con t ro l led  modes were specif ied t o  be the target  modes plus the r i g i d  

body modes, modes 1, 2, and 3. 

Twenty-f i v e  combinations of s i x  cont ro l  th rus te r  locat ions were consi- 

dered i n  a trial-and-ewer search for  the combination producing the l eas t  

exc i t a t i on  of the uncontrol led modes. The combination of thrusters  1, 2, 3, 

5, 10; 12, which i s  qu i te  ef fect ive t f  nodes 4, 5, and 6 are the target  modes 

( c f .  Ref. 2), was found t o  be very poor f o r  ta rge t  modes 7, 8, and 9. The 

most e f f e c t i v e  combination for  t h i s  case (among those invest igated) consists 

o f  cont ro l  thrusters  1, 2, 3, 7, 9, 11 (c f .  Fig. 2 o f  Ref. 2), and t h i s  

combination was used i n  time h i  story numerical simu.lations o f  ac t i ve  damping. 

Viscous-type damping was used. The i n i t i a l  condit ions spec i f ied cor- 

respond t o  an equal amount o f  i n i t i a l  po ten t ia l  energy i n  each s f  the ta rge t  

n~odes, w i t h  zero i n i t i a l  k i n e t i c  energy i n  the ta rge t  modes, and zero i n i t i a l  

energy i n  a l l  non-target modes. The feedback s ignal  used was node 1 t ransla-  

t i o n  ve loc i t y  {l ( t ) .  The exact force apport ioning vectors (Eq. (29) o f  Ref. 2) 

were used, and f i l t e r i n g  was taken t o  be ideal .  

Figures C . 1  and C.2 are energy-decay time h i s t o r i es  comparable t o  Figs. 

4a-7a of Ref. 2. With specif ied time ts = 400 s t o  damp each ta rge t  mode 

down t o  por t ion  ps = 0.01 of Fts i n i t i a l  amp1 i tude, the residual  energy shown 

on Fig. C.1 i s  about 21% of the i n i t i a l  energy. About h a l f  o f  the residual  

energy resides i n  each o f  modes 6 and 10, the modes imnediately adjacent t o  



the target modes. FIgure C.2 shows that the doubl lng of speciffed damplng 

tltne to  800 s produces a much more 'satlshctory f ina l  resldual energy of 6% 

o f  the i 'n i t ia l  energy. 



1 m0 2.0 3.0 4 0 5.0 
TIME (SEC) ( xlOa 1 

Fig. C. 2 Actd ve damping o f  higher-frequency modes : 
a l l  conditions as i n  Fig. C . l  except 
ts = 800 sec 

I I I I I I I I 

TIME (SEC) (x1O2 1 
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APPENDIX D 

INEXACT MODAL PARAMEtERS FOR THE CONTROLLED STRUCTURE 

We have investigated t h i s  subject pr imar i ly  by dotng numertcal experiments, 

1 
1 

i .e, , computer stmutations of acttve damping, rather than a theoret ical  study. 1 

Our f i r s t  step was t o  define a "model" structure and an "actual" structure, 

both o f  which are r e a l l y  j us t  mathematica'l models. The "errors" i n  the Nmodel" 
i 
1 

structure r e l a t i v e  t o  the uactuall' structure are small dif ferences i n  the mass I 
d l  s t r i  but ions, These "errorsN are presumably typ ica l  o f  the inaccuracies 

which inev i tab ly  ex i s t  i n  a f t n t t c  element model re la t i ve  t o  the real  structure. 

Fol lowing def i n  i t i o n  o f  the "model and "actual " structures and cal  cul a- 

t i o n  o f  the. v ibrat ion modes f o r  both, the ideal force apportioning vectors 

were calculated by Eqs. (28) and (29) o f  Ref. 2 from the modal matrix of the 

"model1' s t r i c tu re .  Final  ly ,  these force apportioning vectors were used i n  

numericai simulations o f  act ive damping on the "actualn structure. The qua1 i t y  

o f  the act ive damping then was an indicat ion o f  the e f fec t  o f  non-ideal force 

apportioning, which resul ts  from inexact modal parameters. A short digression 

on the theory i s  appropriate before presentation o f  numerical resul ts. 

The mathematical consequence o f  non- ideal force apportionirrg i s  t o   pro- I 
duce non-zero inner products ( 4 ,  f,) f o r  r # s i n  the modal equations o f  the 

control  led modes (those modes denoted by the index s i n  Eqs. (10) and (15) o f  

Ref. 2), thus coupllng the control led modes. It i s  t o  be expected, then, that  

act ive davping wi th  non-ideal force apportioning w i l l  be less e f fec t ive  than 

act ive damping w i th  ideal  force apportioning. Moreover, the coupling o f  con- 

t r o l l e d  modes could conceivably lead t o  t h e i r  i ns tab i l i t y ,  which i s  not pos- 

s ib le  without coupling. Nevertheless, most o f  the numerical simulations t o  

be described next exh ib i t  neither substantial damping degradation nor ins tab i l  i ty.  



The "actual " structure considered here (referred t o  as Model 5) i s  

s l i g h t l y  d i f fe ren t  than the structure described i n  Ref, 2 (referred t o  as 

Model 3). for  reasons t o  be given below. Model 5 i s  ident ica l  t o  Model 3 i n  

geometry and nlass d is t r ibut ion,  and i t s  st i f fness d i s t r i bu t i on  i s  the same i n  

a l l  respects except that  i t s  center longi tudinal  member (conne :ing nodes 

2, 5, 8, and 11 i n  Fig. 2 o f  Ref. 2) has a greater torsional st i f fness, 

W = 2.0 x N.R~. This s t i f f en ing  separates mode 5, the f i r s t  f l e x i b l e  

tors ion mode, from mode 4, the f i r s t  f l e x i b l e  bending mode (cf .  Figs. 3 and 

Table 1 o f  Ref. 2); mode 5 natural frequency o f  Model 5 i s  0.0097 Hz, i n  

contrast t o  0.0065 Hz f o r  Model 3. The frequencies o f  bendifig modes 4 and 

6 are ident ical  f o r  the two models. 

The "model " structure considered i s  ident ica l  t o  the "actual " structure 

except that i t  has addit ional small lumped masses a t  nodes 8, 10, and 11* 

(cf .  Fig. 2 o f  Ref. 2); each has mass of 2.0 x lo5 kg and rotat ional  i ne r t i as  
9 o f  8.0 x 10 kg9m2. The ef fects  o f  these mass perturbations are t o  make the 

"modelI1 structure's lowest natural frequencies on the order o f  10% lower than 

those .of  the "actual" structure, and also t o  a1 t e r  the mode shapes somewhat. 

I deal force apportioning vectors were calculated for both the "actual " 
and nmodeln structures, w i th  the control led modes specif ied as modes 1-6 and 

the control thruster locationsspecified as nodes 1, 2, 3, 5, 10, and 12, 

These vectors are l i s t e d  for target modes 4, 5, and 6 i n  Table D.l ,  Com- 

parison o f  the vectors f o r  "actual" and "modeln structures shows that  those 

for bendihg modes 4 and 6 are qu i te  similar, while those f o r  torsion mode 5 

d i f f e r  substantial ly. 

- 
* 
It would be more natural f f  the "model" structure were symnetric and the 
"actual" structure had the asymmetric Inass perturbations, but i t  proved 
convenient i n  col~~puta t ions to proceed as described above. 
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17 

Energy time hts tor ies hr vl'scous and Coulomb act ive damptng are shown i n  

Figs. D.1 and D,2, respectlvely. Sllmrlatlons f o r  both ideal  and non-ideal 

apportionings were run t o  provtde a compari'son. Viscous damping w i th  the non- 

Ideal apportioning is, surpristngly, s l i g h t l y  better than that  wi th  ideal  

apportiontng . Coulomb damping w l  t h  non-ideal apportlonlng produces a s l  i gh t l y '  

fas te r  decay but also excttes s l i g h t l y  more residual energy than that wi th  

ideal  apportionlng. 

The resu l ts  i n  Figs* 0.1 and 0.2 are representative o f  a number o f  s im i la r  

cases investfgated i n  which the modes of the "modelM structure are not sub- 

s t a n t i a l l y  d i f f e ren t  from those o f  the llactualn structure. The invar iable 

observation was that  non-ideal apportioning resul t i  ng from inexact modal 

parameters produces a s l  i g h t l y  d i f f e ren t  damping character than does ideal 

i , +  apportioning , but never any serious degradation o f  short-term damping qua1 1 ty 

I nor any noticeable long-term i n s t a b i l i t y .  The conclusion then i s  that the 
t 

qual i ty of act ive damping by force apportioning i s  not very sensit ive t o  small 
I errors i n  modal parameters o f  the control led  modes. 

However,. i t  i s  not va l i d  t o  state tha t  act ive damping qua l i t y  i s  always 

insensi t ive t o  small errors i n  the prim1 t i v e  physical parameters (i .e. , s t i f f -  

\ L ness and mass d is t r ibut ions)  o f  the control led structure; the existence o f  
i 

c losely spaced modes (high modal density) can cause problems. To i l l u s t r a t e  

this,  we evaluated a case f o r  which Model 3 I s  the "actual" structure, and the 

I'model" structure d i f f e r s  only i n  the presence o f  a small lumped mass a t  node 10. 

An important e f fec t  o f  t h i s  small addit ional mass i s  t o  reverse the characters 

o f  the two closely spaced, lowest f l ex ib le  modes of the 44mode111 structure 

re la t i ve  to  the same modes o f  the "actual" structure (cf. Table 1 and Figs. 3' 

o f  Ref. 2): mode 4 o f  the "model" structure i s  torsion, and mode 5 i s  bending. 

31 
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Because 1 i ke-numbered mode shapes of the "actual 'I and Hmodel " structures are 

fundamentally d i f f e ren t  i n  t h i s  case, act ive damptng of the "actualN structure 

by force apportioning crrlcul ated f o r  the 9nodel fl structure produces very poor 

resul ts,  For t h i s  par t i cu la r  example, the problem can be solved simply by 

reversing the order o f  mode shapes 4 and 5 t n  the modal matrix o f  the "model" 

structure before chlculat ing the force apportioning vectors. * I n  general , 
however, the existence of substantial er rors i n  estimates o f  mode shapes can 

seriously degrade the qua l i t y  o f  act ive damping by force apportioning. It 

seems probable that  actual hardware implementation o f  t h i s  o r  any other scheme 

f o r  act ive v ibrat ion control o f  large space structures w i l l  require an adaptive 

i capabi l i ty.  

* 
Nevertheless,. we consi.dered i t  desirable t o  avoid t h i s  confusing compl i ca t ion  
by using Model 5,  which has well separated f i r s t  bending and torsion modes, 
f o r  the pr inc ipal  numerical examples of t h i s  appendix. 



Table D. 1 Ideal Force Apportionings 

Thruster 

1 

2 

"Actual " Structure Mode 

4 - 5 - 6 - 
-0.13 1 0.57 

0.92 0 -1 

-0.13 -1 0.57 

- 1 0 -0.21 

0.17 - 1 0.03 

0.17 1 0.03 

"Mode3 " Structure M e  

4 - 5 - 6 - 
-0.18 0.15 0.59 

0.95 0.90 -1 

-0.11 -1 0.54 

-1 -0.07 -0.18 

0.20 -0.56 0.01 

0.13 0.59 0.06 



TIME (SEC) 

(a) Force apportioning fo r  the "actual" structure 

0.9 1.0 2-0  3-0 4-0 5 - 0  
TIME (SEC) ( a rm2  1 

(b) Force apportioning f o r  the "model" structure 

Fig. D.l The ef fect  o f  non-ideal force apportioning on damping o f  the *actualn structure: Model 5 with 

t viscous damping; controlled modes 1-6, target modes 4-6; control thrusters 1. 2. 3. 5. 10. 12; 
equal i n i t i a l  potential energy i n  modes 4. 5, and 6; ts = 400 sec, pS = 0.01 
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0 

0.0 1 .O 2.0 3-0 4-0 5 - 0  0-0 1.0 2.0 3-0 4-0 5-0  
TIME (SEC) ( do2 1 TIME (SEC) t x f o a l  

(a) Force apportioning for  the "actual" structure (b) Force apportioning for the "mdel" structure 

Fig. D.2 The effect of  non-ideal force apportioning on dampirrg o f  the "actual" structure: Model 5 w i t h  
Coulomb damping; controlled modes 1-6, target modes 4-6; control thrusters 1, 2, 3, 5, 10, 12; 

1 equal i n i t i a l  potential energy i n  modes 4, 5, and 6; ts = 4UO sec, c, = 0,0001 m/sec 



APPENDIX E 

NON-1 DEAL' FREQUENCY FILTER I NG 

Equations (10) and (11) o f  Ref. 2 can be wr i t ten  as 

where 

I its f o r  viscous dtmplng 
h(4is) ' sgn(iiS) f o r  Coulomb damping 

The te rn  iis I n  Eq. (E.1) Implies ideal  f i l t e r i n g  a t  each control led mode 

natural frequency us, s = 1. 2. . . . , m, as i s  I l l u s t r a t e d  conceptually on 

Fig, 1 o f  Ref . 2. The ideal f i l t e r  f o r  control led  mode s passes only the 

iis spectral component o f  the t o t a l  sensor ve lod ty .  41 $ I  if,*  he 

ideal t i 1 ter,  then, has an i n f  in1 t e l y  narrow pass-bank and i n f i n i  t e l y  steep 

r o l l o f f  rates. Since = +ists, a mathematical character ist fc o f  ideal 

f i l t e r i n g  f s  that  i t  does not couple the control led modes i n  Eq. (E.1). 

Those modes might be coupled If non-ideal force apportioning i s  used w i th  

ideal f i t  tering, but i n  such a case the non-ideal apportioning I s  responsible 

f o r  the coupling. I f  both apportioning and f i l t e r i n g  are ideal, then the 

control l ed  modes are not coupled a t  a1 1. 

On. the other hand, a non-ideal, more r e a l i s t l c  f i l t e r  has a f i n i t e  

pass-band and f in4 t e  r o l  l o f f  rates, and i t  consequently passes spectral can- 

ponents~ o f  a l  1 frequencies. The character ist ics o f  a non-ideal f i 1 t e r  f o r  

control led mode s are i l l u s t r a t e d  on Fig, E.1. For such a f i l t e r ,  the 

function h(iiS) i n  Eq. (E.1) must be replaced by a f i l t e r  output function 



where constants Asj are attenuation factors I l l u s t r a t e d  I n  Flg. E.1. For 

Ideal f l t e n g ,  Asj = eSj, the,Kronecker delta, Calcu l r t lon o f  the a t -  

tenuatlon factors for  non-Ideal f i 1 te r ing  I s  dlscussad below, For non- 

IdQal f i l  te r ing  , then, the nodal equa t lons have the form 

r = 1, 2, ,,., n (E.2) 

?n Eq. (E.2). both control l ed  and uncontrolled modes are coupled by the 

non-Ideal f i 1 ter lng , regardless o f  the type o f  force apportioning used, 

So i t  i s  t o  be expected tha t  non-Ideal f i l t e r i n g  w i l l  reduce the effect ivg- 

ness o f  act ive damping by force apportioning and, moreover, that  i t  may even 

produce sys tern i n s t a b t l l  t y  due t o  the coup1 ing . Nevertheless, n w r i c a l  

resul ts presented below f o r  typical  non-ideal f'i 1 t e r  character1 s t l cs  ex- 

h i  b i  t ntddher substantive degradation of dampinu qua1 i t y  nor instabi  11 ty. 

To calculate constants Asj, one must specify frequency cutof fs  and 

r o l l o f f  rates. F l l t e r  r o l l o f f  rates are designated i n  terms o f  declbels 

per octave, So, f o r  a high frequency r o l l o f f  a t  ra te  R db/oct, we have 

(see Fig. E e l )  

20 loglOAsj R logp(uj/ush) 

- R logl0(uj/ush)/loglO2 

Solvlng for  the attenuation factor gives, 

Similarly, f o r  a low frequency ro l lo f f , ,  

(E. 3a) 

(E. 3b) 



Ue have run several numerical simulations o f  act ive damplng by 

force apportioning w l  th non-ldarl f il tering. 1 he st ructura l  models used 

i n  these slmulatlons are those described I n  Appendix D, Simulations w i th  

Hodel 3 tested the e f fec t  d non-Ideal f i l t e r i n g  alone, slnce Ideal force 

apportionlng was used, and sinrulatlons w l  t h  Model 5 (as the MactualH 

structure) and the related "modelN structure tested the ef fects  o f  non- 

l d e r l  f i l t e r i n g  and oan-ideal apportionlng act ing simultaneously. I n  a l l  

cases, modes 1-6 were specif ied as the contro l led mdes and modes 4-6 as 

the target modes, and control  actuator locations were specified as nodes 

1, 2, 3, 5, 10, and 12. 

The 41 1 t e r  cu to f f  frequencles speclf led  f o r  both Model 3 and Model 5 

can be described w i th  reference t o  Fig. E,2. A low-pass f i l t e r  was used 

1 f o r  mode 4, and band-pass f l l t e r s  were used f o r  modes 5 and 6. The cut- 

i . '  
t 

o f f  frequrncie; were selected t o  k* 

The pa r t i cu la r l y  in terest ing characteristic o f  Model 3 i s  the close proximity 

o f  natural frequencies 4 and 5 (cf. Table 1 o f  Ref . 2). This closeness 

1 mlght lead one t o  expect that  non-ideal f i  1 te r ing  would produce substantial 

coup1 i ng between modes 4 and 5 and, hence, would reduce the qua1 i ty o f  

dampi nq , 
I 

To t e s t  t h i s  expectation, we ran Model 3 cases w i th  f i l t e r  r o l l o f f  

rates varying from the unrea l i s t i ca l l y  high value o f  160 db/sct, through 

the prac t ica l l y  r e a l i s t i c  values o f  80 anci 48 db/oct, and down t o  the un- 

realistically low value o f  10 db/oct. Cases were run w i th  both viscous 

and Coulomb types o f  damping, and wi th  d i f f e ren t  i n i t i a l  conditions. 

38 



The adverse e f fec t  o f  non-Ideal f i l  te r lng  mrs found t o  be re la t i ve l y  

small In  a l l  Hodel 3 cases w l  t hk  typ ica l  r o l l o f f  rates of 80 o r  48 db/oct. 

The energy time h is to ry  f o r  the very worst o f  these cases Investigated 1s 

shown I n  Flg. E.3, whlch m y  be compared w l th  Flg. 4a o f  Ref. 2. Whereas 

Ideal f i l t e r l n g  was used f o r  the l a t te r ,  non-Ideal f l l t e r l n g  wlth 48 db/oct 

r o l l o f  f r a t e  was used f o r  the former; however, a1 1 other condi t lons were 

ldentlcat f o r  the two runs. Comparl son o f  the two f igures shows that  non- 

Ideal f 11 ter ing I n  t h l s  case retards the ra te  o f  act lve damping, but does 

not increase the f i n a l  quant i ty o f  resldual energy remalning I n  the structure. 

Another Model 3 case o f  In terest  I s  one f o r  whlch the unreal I s t i c a l l y  

low r o l l o f f  ra te o f  10 db/oct was used. the energy t ime h is tory  I s  shown 

i n  Fig. E.4, which may be compared w i th  Fig. 7a o f  Ref. 2, Ideal f i l t e r i n g  

was used f o r  the l a t t e r  and non-ideal f i l t e r i n g  f o r  the f c p r ,  but a l l  

other conditions were ident ica l  for the two runs. Figure E.4 shows a short- 

term rate o f  damping very s lmi la r  t o  tha t  o f  Fig. 7a o f  Ref. 2. But the 

residual energy i s  greater i n  the case o f  non-ideal f i 1  tering; and, i n  

fact, the energy increases a f t e r  reaching a short-term minimum (at  about 

700 sec), strongly suggesting the presence o f  a system ins tab i l i t y ,  Thls 

i n s t a b i l i t y  seems r e l a t i v e l y  weak and manifests i t s e l f  only a f te r  the i n -  

i t i a l l y  ex is t ing vibrat ions are essent ial ly suppressed, so i t  might be 

regarded as a nlong-tem' i ns tab l l  i ty. 

Numerical simulations o f  act ive damping w i th  Model 5 tested the s i t -  

ua t ion4n which both the force apportionlng and the f i l t e r  cu to f f  frequencies* 

designed f o r  the "modelw structure were usad f o r  the "actual" structure. 

* 
The f i  1 t e r  cu to f f  frequencies were designed f o r  the "model " structure i n  
accordance with Eqs, (E.4), wi th  one exception: the high frequency cutoff 
f o r  the Mode 6 f i l t e r  had t o  be adjusted upward s l i g h t l y  f o r  use w i th  the 
"actual " structure, because the computer program requires the natural f re-  
quency t o  be w i th in  thn pass-band. I 



Comparison o f  Figs, E,5a and E.5b shows t ha t  i n  t h i s  case the presence o f  

both non-ideal apport ioning and-non-ideal f i l t e r i n g  with a r o l l o f f  r a t e  of 

80 db/oct only s l i g h t l y  reduces the q u a l i t y  o f  ac t i ve  damping. The case 

was repeated f o r  r o l l o f f  ra tes  o f  48 and 24 db/oct, w i t h  almost no f u r t he r  

de te r io ra t ion  o f  damping qua l i t y .  One addi t iona l  halv ing o f  the r o l l o f f  

rate, t o  the u n r e a l i s t i c a l l y  low value o f  12 db/oct, resu l ted i n  the energy 

tima h i s t o r y  o f  Fig. E.5c, which exh ib i t s  buth substantat ive loss of short- 

term damping qual i ty '  and long-term i n s t a b i l  i ty .  Final  l y ,  a Model 5 case 

was run f o r  which the r o l  l o f f  r a t e  was set  t o  0 db/oct, i .e., no f i l t e r i n g  

a t  a l l .  For t h i s  case, the e n t i r e  system, consist ing o f  both con t ro l led  

and uncontrol l e d  modes, i s  s t rong ly  unstable, 

To sumnari ze and r e i t e r a t e  the observations made r e l a t i v e  t o  non- 

ideal  f i l t e r i n g  i n  the pa r t i cu l a r  cases studied: (1 )  the q u a l i t y  o f  ac t i ve  

damping i s  not  substantively decreased by t yp i ca l  f i  1 t e r  character is t ics ;  

(2) both poor damping qual i t y  and long-term i n s t a b i l i t y  may occur ~r 

f i l t e r i n g  w i th  unusually low r o l  l o f f  rates.  







TIME (SEC) 

Fig. E.3 The e f f e c t  o f  non-ideal f i l t e r i n g :  Model 3 w i t h  viscous damping; non-ideal f i l t e r s  
w i th  4% db/oct r o l l o f f  rate, cu to f f  frequencies (Hz) o f  0.00638 f o r  mode 4 low-pass, 
0.0063% and 0.00974 f o r  mode 5 band-pass, 0.00974 and 0.01363 f o r  mode 6 band-pass; 
cont ro l led modes 1-6, ta rge t  modes 4-6; control  thrustars 1, 2, 3, 5, 10, 12; equal 
i n i t i a l  potent ia l  energy i n  modes 4, 5, and 6; tS = 400 sec, pS = 0.01 
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TIME (SEC) 

Fig. E.4 The effect of non-ideal f i l ter ing:  Mode1 3 w i t h  Coulomb damping; non-ideal f i l t e r s  
w i t h  10 db/oct rolloff rate ,  cutoff frequencies (Hz) of 0.00638 fo r  mode 4 low-pass, 
0.00638 and 0.00974 for  mode 5 band-pass, 0.00974 and 0.01363 for  mode 6 band-pass; 
controlled modes 1-6, target fiodes 4-6; control thrusters 1, 2, 3, 5, I C Y  12; equal 
i n i t i a l  potential energy i n  modes 4, 5, and 6; t = 400 sec, E, = 0.0001 m/sec 
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(a)  Ideal  f i l t e r i n g ,  and force apport ioning f o r  the (b)  Non-ideal f i l t e r i n g  w i t h  80 db/oct r o l l o f f  rate, 
i "actuall1 s t ruc ture  and force apport ioning f o r  the "model" s t ruc ture  

Fig .  E.5 The e f fec ts  o f  both non-ideal apport ioning and non-ideal f i l t e r i n g  on damping o f  the "actual" st ructure:  

I 
Model 5 w i t h  viscous damping; f i l t e r  c u t o f f  frequencies (Hz) of 0.00713 for  mode 4 low-pass, 0.00713 and 
0.01029 f o r  mode 5 band-pass, 0.01029 and 0.01294 for  qode 6 band-pass; cont ro l led modes 7-6, t a rge t  
modes 4-6; cont ro l  thrusters  1,2,3,5,10,12; equal i n i t i a l  po ten t ia l  energy i n  modes 4, 5, and 6; 
ts = 400 sec, p, = 0.01 

(continued on next  page) 
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