
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 

https://ntrs.nasa.gov/search.jsp?R=19800020288 2020-03-21T16:53:11+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42864129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JU^^ggO JSC-13036
LEC•-10532

t Y^

"IT, "30FR91wom`Me
f

"" 0808111e Under NASA sponsorship
in the interest of earli an 	 '
semination r

t

^esources Survey
Program infnd without liability
for any useeof; R

g,0-10.
NASA t;rc-

16

A DISCRIMINANT APPROACH TO PARAMETER ESTIMATION

IN THE LINEAR MODEL WITH UNKNOWN

VARIANCE—COVARIANCE MATRIX

C. R. Hallum

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center

Houston, Texas

and M. D. Pore

Lockheed Electronics Company, Inc.

Sy:;:ems and Services Division

Houston, Texan

(E80-10192) A DISCRIMINANT ,APPROACH TO
PARAMETER ESTIMATION IN THE LINEAR MODEL
WITH rj micm O wm VARIANCE - COVARIANCE MATRIX
(1,ockheed Electronics Co.) 10 P	 Unclas

HC A02/MF A01	 CSCL 05B G3/43 00192

Annual Meeting of the American Statistical Association

Chicago, Illinois

August 15-18, 1977

NBO-28789

a



A DISCRIMINANT APPROACH TO PARAMETER ESTIMATION

IN THE LINEAR MODEL WITH UNKNOWN

VARIANCE-COVARIANCE MATRIX

C. R. Hallum
National Aeronautics and Space Administration

Lyndon B. Johnson Space Center
Houston, Texas

M. D. Pore
Lockheed Electronics Company, Inc.

Systems and Services Division
Houston, Texas

ABSTRACT

An estimate of the nonrandom vector, 0, of parameters is obtained
in the linear model Y = XO + c, where c is an unobservable random

vector of disturLances and is assumed to satisfy E(e) = 0 (the

zero vector) and E(ec T ) ='V, with V assumed unknown. The esti-

mate obtained is the one which yields maximal similarity to the

sample Y l ? Y21 •••, Y N 
via the Sebestyen similarity function.

Under the normality assumption, the resulting estimate is seen

to be an unbiased astimate and justification given for selecting

the maximum likelihood estimate for V in the Gauss-Markov osti-

mato for B.

1. INTRODUCTION

Consider the linear model Y = X0 + e, where Y is an n x 1 observ-

able random vector, X is an n x m matrix of fixed elements and

rank W = m _< n, 6 is an m x 1 nonrandom vector of parameters

to be estimated. and E is an unobservable random vector of dis-

turbances with e assumed to satisfy B(c) =, 0 with unknown

variance-covariance matrix E(ECT V. It is well known that in

case V is known (up to at least a scalar multiple), the Gauss-

Markov theorem [1] applies and the best linear unbiased estimate

of 0 is given by



i

(XTV-1X)- XTV-1Y

Other authors [2, 3 0 4] have considered the problem of obtaining

optimal estimates for 0 when V is unknown. Rao [4] showed that

the estimate of S obtained by merely substituting an estimate
A
V for V in equation (1) is not necessarily best; in particular,

it may be possible to use known or inferred knowledge of the

covariance V to obtain an estimator with better characteristics.

Born [2] has written a recursive estimator when V is not known

but is assumed to be blc.;:k diagonal with equal diagonal blocks.

McElroy [3] obtained necessary and sufficient conditions on V

for equation (1) to be equivalent to the least-squares solution

jj	 1
s = I XTx

1
t XTY

In this paper, we assume that the only available information is

that contained in a sample Yl, Y20' 	 YN , and an estimate,,

of 0 is obtained which results in maximal similarity to the given

sample via the Sebestyen [5] similarity function. The resulting

estimate appears in the form of equation (1), with V replaced by

the standard (and in the normal theory case, the maximum likeli-

hood) estimate of the variai.ce-covariance matrix.

2. THE SEBESTYEN INTERSET SIMILARITY FUNCTION

If R  denotes Euclidean n-space and P is the class of finite

sequences of sample observations in R  (i.e., W,Z C P, provided.
W = {Wl, W2' ..., W N I and Z	 jz l , Z 21 ..., ZMJ where
Wi ,Z

j
 E R  for i = 1, 2, ..., N; ]	 1, 2 ?	., M), the

Sebestyen [5] similarity function is defined as follows.

Definition: If W,Z E P with N and M elements, respectively, and

if A is any m x n matrix, define the function S A : P x P-)-RO , where

R0 is the set of nonnegative real numbers, by

A

(2)



SA(W'Z) = NM La 'E (Wi - Z
j ) TATA(Wi - Z j }	 (3)

i=1 j=1

(The superscript T denotes the transpose.) Given a tranpforma
tion A, SA ('W,Z) is a measure of the similarity of the two samples

W and Z in the transformed space (i.e., the resulting space after
transforming R  by A), and if W and Z are random samples from
populations w 1 and 7t 2 , respectively, then SA (W,Z) may be con-
sidered as a measure of the similarity of n1 to ff2,

If W,Z E P have sample variance-covariance matrices V 1 and V2,
respectively, that is,

N
V1 N
	

^Wi - W 1 Wi - W1T

i=1	 I
(4)

_	 M	 T_V2 	 M	 ^Zi 	 Z ) (Zi - Z `

i=1	 )

and Tr denotes the trace operator (and S(W,Z) 11 S1(W,Z)],

then the properties below are easily verified.

Properties:

1. SA (W,Z) = Tr [A(V1 + V2 )AT] + (W - Z) TATA(W -Z) .

2. S (W, W) = 2Tr (Vl ) and SA (W, W) = An-Tr ^AVIAT)

3. SA WIZ) = SA (Z,w) .

4. SA (W,Z) > 0 for every W,Z E P and for each m x n matrix.

5. If V E Rn then SA (W, V) = SA (W, M ) = Tr (AVAT)

+ (W - V) T A T A (W - V) .

6. If W = { W1 , W2, ...' WNf and Z	 Z1, Z2, ..." ZM 1, then

1 M
M	 SA(W'{ZJ) 

__ SA (W I Z).

j=l

ri



The Sebestyen decision rule is to classify an unknown u as belong-

ing to category W provided

SA (we {u}) 
< SB (Z,{u})	 (5)

A transformations for W and Z,

the function

is the discriminant function for

with classification of u into W or Z

the sign of f(u); that is, u is

or Z depending on whether f(u) > 0

where A and B are preselectei

respectively. Consequently,

f(u) = SB ('Z,{ u}) - SA(Wf{ u })

the Sebestyen decision rule,

being accomplished by noting

classified as belonging to W

or f(u) < 0, respectively.

3. A TRANSFORMATION TO MINIMIZE THE INTRASET DISTANCE

Thus far, no specifications have been placed on the transforma-

tion A; however, if A is an orthogonal matrix, the transformation

results in a rotation of the original space whereby distances and,

hence, angles are preserved. If the determinant of A [Det(A)) is

1, A is a volume-preserving transformation. The transformation

of interest in this paper is specified in Theorem 1 1 the proof

of which is dependent on the following well-known relationship

between the arithmetic and geometric mean.

Lemma 1: If di > 0 for i = 1,1 2, • - - , n, then

n	 n	 1/n

n E di	 fj di
	

(6)

with equality holding if and only if d 1 = d2 =	 = dn.

Phc^orom 1: Under the condition Det (A) = 1 and S A is positive
definite, an n x n matrix A minimizes SA (W,W) [that is, the



similarity of a set with itself] if and only if AV 1AT XI,

where a = [Det(V1 )] 1/n and V1 is the sample variance-covariance

matrix of W specified in equation (4).

Proof: If B is any n x n matrix with Det(B) == 1 and A is the

matrix specified in the hypothesis, from Property
/ 
3 and the fact

that AV1AT 	XI, we have S B (W,W) - SA (W,W) = 2TrIBV1BT )
` 
 - 2nX.

Letting U be the orthogonal matrix such that UBVIBTUT = D. where

D is diagonal, then

2TrIBV1BTl - 2nX = 2Tr(UBVIBTUT ) - 2nX

2Tr(D) - 2nX

n	 n	 1/n

= 2n n	 di -	 di	 (7)

i-1	 i=1

But equation (7) is nonnegative, by Lemma 1, with equality hold-

ing if and only if d 1 = d 2	••• = dn , in which case BVZBT 	 = XI,

which was to be demonstrated. Note that Aw exists if V 1 is

positive definite. Indeed Aw EV, where E is the matrix whose

columns are the eigenvectors of V  and V is a diagonal matrix

whose ith diagonal element is a /R i , i = 1, 2, •••, n, where
^ i	th eigenvalue of V1.

Theorem 1 associates with each sample W E P, a transformation,

AW, with the property that AW causes W to cluster in a spherical

fashion after transformation with uncorrelated variates having

equal variances. If W and Z are samples from populations f1 and

72 and if A and B are selected such that

A = X1-1/2A0	 B	
a2-1/2B0
	

(8)

51'

y _,,. __	 y



where h l 	[Det(V1))l/n^ a2 = (Det(VHI/n , and AO and HO are
determined independently for W and Z, respectively, by Theorem 1,

the effect is that of a normalization of the intraset similarity

in that not only are the intraset distances minimal but

SA (W,W) = SB (Z,Z) = 2n as well (i.e., the normalization gives

each intraset similarity the same value). Moreover, if instead

of a threshold of zero in the Sebestyen decision rule [see

eq. (5)], we choose the threshold

T = 1nDet(Vl)p2	
(9)

Det(V2)pl

the resulting decision rule is the Bayes maximum likelihood

decision rule [61(wthen the population distributions are Normal)

with equal costs of misclassification and a priori probabilities
pl and p2 for Tr l and Tr 2 , respectively.

4. THE ESTIMATE FOR S

In the weighted least-squares procedure, an estimator of R was

selected which minimized (Y - XS) TV- 1 (Y - XR). The optimal
estimate is specified in equation (l) and the significance of

such an estimator is that of being able to predict, or adjust in

some applications, Y to a given matrix X. Since V is ordinarily

unknown, we proceed as described below.

Collect N sample values; denote this sample by

W _ ; yl' y2' " " YNI and the sample variance-covariance
matrix by

N

V _ N L^ (Yi - Y) (Y i - Y) T	(10)
i=1

If A is selected such that

TAVA = ^I	 (11)



where

CDnt (V) ] 1/n	 (1,2)

then Theorem 1 guarantees that the similarity of W with itself

is a minimum after transformation by A. For prediction or adjust-

ment purposes, what we now want to do is to select the vector

Z = Xp which, after transformation, is more similar to the repre-

sentative sample W than any other such vector. Equi. 3alently, we
want to select ^ such that SA (W,{Z}) is a minimum where Z = X(3
and A satisfies equation (11).

Theorem 2: The value of a which minimizes SA (W,X5) is given by

(XTV-1X)-l -lY 	
(13)

where V is the sample variance-covariance matrix of W, A is the

transformation specified in Theorem 1, and Y is the sample mean
of W.

Proof: From Property 6 of SA,

SA(W,XS)	 Tr(AVAT) + (Y - Xa)TATMY - XR)	 (14)

Differentiating this expression with respect to $, equating to 0,
and solving for R yields

y 1
R	 XTATAX l - XTATAY 	 (15)

However, from the condition that AVA T = a2

ATA = (1/X) V-1
	

(16)

which results in equation (8) after substitution into equa-
tion (9), which was to be demonstrated.

7

R =



Under the normality assumption on Y [i.e., y u MVN(XR,V)] where

V is unknown, V and are independent; therefore

E(0)  = EN T V -1 X) 
-1 

XTV-lY

= E [ ( XTV 1X)
l 

XTV_ "] E (Y )
(17}

1	 _
E [(XTV

-lX XTV 1^ Xa

E [( X
T

V-1X 1 XTV 1X

_

Consequently,	 is unbiased under these conditions.

5. SUMMARY

An estimate,	 of 0 in the linear model Y = XR + e was obtained

such that X^ yielded maximal, similarity to the sample Y l , Y21

•••, Y  via the Sebestyen similarity function. The unobservable

random error term, e, was assumed to satisfy E(e) = 0 (the zero

vector) and E(EeT) = V, with V assumed to be unknown. The

resulting estimate is seen to be in the same form as the standard

Gauss-Markov estimate

„ 
	(XTV-1X)

1 
XTV-lY
	 (18)

except V is replaced by the standard (and under the normality

assumption, the maximum likelihood) estimate of the variance

covariance matrix.
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