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Determination of the Time of Occurrence of
Gamma Flares at Different Points 1n Space

B. L. Noval

/3%
l. One of the most interesting results of extra-

atmospheric astronomy of recent years 1s the discovery

of powerful flares of space electromagnetic radiation in
hard x-ray and gamma-ranges. One very important problem
of studying the sources of the flares is the determination
of their position in the heavens (localization). The most
effective method for solving the problem of localization is
to record the time at which the flare arrives or, which is
the same thing, the delay in the arrival of the flare at
different peints in space. This recording is done by sen-
sors which are carried on the spacecraft (SC) at different
distances from each other, Thus the determination of the
celestial coordinates of the source reduces to statistical
processing of recordings of the flare obtained on different
SC.

The localization éccuracy depends on the accuracy of
establishing the position of the SC in space and the accur-
acy of recording the time of occurrence of the flare by the
SC. As follows from [1], for real cases of finding the SC
in space the accuracy of determining their coordinates is
such that the error in the time of occurrence of the flare
can be reduced in every case to the time resolution of the
exlsting sensors. Taking this fact into account, and also
the fact that the flare has a finite duration, we must esta-
blish what we mean by the flare time of occurrence, Let us /4
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consider Dﬁycess of recording the flare. Let us assume
the sequenc rl ‘}J l 2,-qP4 represents the reading of the
sensor carried on the 1-th SC and fixing the calculation (time
spectrum) with the resolution At: o With the very natural
and unlimited assumptions regarding the nature of the radlation
and the recording,the sequence} rv( ‘may be regarded as a
Polsson process with a certain varLable, which 1s unknown
previously, with the intensity_A ? ) If we use ldentical
sensors, then the functions]%‘v ) for different values of 1
differ only by the displacement of the arguments, and thus we
may speak of the function 7\( ) , having in mind allA ( )
Thus, the problem of determining the delay for the flare to
reach 2 SC (we shall call them the zero one and the first one)
is reduced to finding the T , such that ]\“)(l“'t):‘]\(o)( LL\'

(1) ©
If the time spectra lfl , {'li}coincide, then the prob-
lem of identifying them, and consequently determining T ,
would be trivial. However, such an agreement does not occur,
due to the discreet nature of the recording process and the
random nature of the radiation process.

The sensors which are designed to study the flares usually
carry speclal discharge equipment which establishes when the
threshold value has been reached in a certain period of time.
The signal "flare" is thus given. The arrival time of the flare
may be determined in principle, using this equipment. Let us
determine the error At' in determining the delay when using
this equipment. We shall confine ourselves to examining only
the errors due to the discreet recording of the radiation, i.e.,
without considering statistical fluctuations. Using a linear
approximation 1n the estimation, we obtain /5
ALY 6T

A(Tot5T5)
c

or AT (AT + 26T

-‘ ‘ﬁ—-——-

2 (T+ST )-f-,\

Al =

(I)



where ,\ ) ]\o are the parameters determining the linear
approximation of the function ]\(-) ;-T; - value of the
argument of the function AJ.) , corresponding to the beg-
inning of the interval in which the recording reaches the
threshold value on the zero SC; g]. - difference in the
values of the arguments of the function?\(‘) , corresponding
to the beginning of the time intervals in which the record-
ing reaches the threshold value on the zero and the first
SC; ST - quantity, determined by the logic of the dis-
charge equlpment operation,

We shall use K to designate the integer estimate of
the ratilo =2 . Using the formula obtained above (I) and
the characteristics of the equipment "SNEG-2M" [2], we con-
clude that K may reuch 8, This is an impermissibly large
quantity. We therefore turn to the methods based on the
more complete use of the measurement information. We should
ncte that K - the integer estimate of the relationship .&Z s
determined by (I), will be used below, AT

(L), i

2. Each of the n“a' y t=0,I;) '-'“5.’ 2ye 009l 45 the
realization of the random quantity IN » , distributed
according to the Polsson law with a éeruain parameter, It
is desirable for us to have the sequence of realizations
of normal random quantities with unlt dispersions., These
sequences may be obtained by the following normalization /6

xl(i,) . n “,’) \V’AW
i Ty T

d V@
This normalization is based nn..;_?e estimate (c;f A for
the mean square deviations \('.') . For "4\ we may gilve

the following interval with dll_)d slven coni‘id{ence coefficlent

A
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whose magnitude depends on the numb&SC:(QD [3]. Therefore

a study of the difference i may be replaced by
“he study of !
Qf‘ ; V nj 3

o a®
‘13" n‘" WC@)W

Using theL'Hopitalrule, we obtain

Lim ci“’ 4

n—»oo 2
I |
V¢
This result ws the validity of using , as
an estimate for \. C) However, to decrease the scatter
L
for finite values Jf (L we first smooth the estimate
taking 5 polnts for the smoothing. Thus we obtaln the se-
quence \
@ h“,)
3:5- ~H)
&
/7
wh=re
AW _ | 0
l____( (d
=y +2. +zn +nd+z)
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Forming these §gauences. we shall look for the minimum

— L ) o &

Z.__ (\t .

A - ) o (2)
oL M ses /o 0¢§¢ 2K

The minimum of this expression may be written with respect

to the index i . The value, which represents the minimum
will be designated byz*.



Summation in (2) 1is performed with respect to the 1index
S from I to m, where m equals i=K' ; K - the integer estimate
.él determined by the expression (I).

AT

Let us examine the accuracy of identifying the spectl?d,
i.e, finding 7 , done in accordarce with (I). It 1s clear
that when there are no random fluctuations the accuracy would
be determined by the quantity At' . Actually when finding

“L' we replace the solution »f the continuous problem having

the form %

(16 - (0) > e

4

LS
by the solution of the discreet problem
e -

L (st~ s

for funetions 4{1( ) ) %/2‘(') such that there is a ¢ for
whic ( ‘\'L) () Under the assumption that A't is
small with respec€ to the time for a large change in %(
and %2_( )3 the error of this replacement 1is At .

Below we shall estimate the accuracy of identification
taking into account the fluctuations. Since there 1is no
important a priori information regarding the function A(‘)
the estimates will be a posteriori.

3. The first method of accuracy estimation. In accord-
ance with the given normalization, we wlll calculate each

X3y (=04

by the }malivation of a normally distri-
buted rar'}dom quantity

eA, | ¢ with unit dispersign. Therefore,
Z'A 1s the reallzatlion of the random quantity , having
a non-central - square distribution with m aégrees of

freedom and a certaln non-central parameterVA .



Using the normal approximation for the non-central

'}f- square distribution, ‘re formulate the conf‘iiepce inter-

= (m+Y;)
val for N; « In view of the approximation %==-L===4==
d 2 (M~ 2Y;)

1s a normal quantity with parameters of zero and one

If we use ‘&to deslgnate the quantile of rde
of the normal di{tribution (1. e. 1 2—2: for the

normal quaanv $ with parameters 01 se1rv and one), then

_Z ( --nn\’) and {1~ d
8 \J‘““’z(mféy “%

Here i._ ne counsadence coefflclent.

It is appar;nt t(hat (i l
£ m+Y;) ( T+y
{L \-1 2,(m ZV)<Z} ’{0 2.m+4v <

@)

Thus we obtain the relatioshlp for the confidence values of

the parameter Y:

V; 2% (% -m +2L)wZram% 2T m <20 m (o

and the expression for the upper ?ﬁf and lower X& /9
confidence boundaries.

P'-g_. .'_ 9)% 2 '
R = E-m+2) i'zl,“\/z,ﬁzé-% (3)

At first glance it would appear that the expression

under the root sign in (3) may be negative and consequently
real confidence boundarles may not exlst.

We shall show that by considering the probable meaning
of the quantities included in thls expression and making

certain natural assumptions, we can avold this situation.

Let us consider the solutlion of the problem



V. +m-C@N2 (m *2Y§) "”‘ "b;“ (4)

d

under the condition V’ Y0

The quantity\) <~ L(d)v 2(m+2Y, }ietermines, with the
selection of the corresponding C(&) , the minimum possible
value of the random quantity having the non-central distri-
bution Y, - square with the non-central parameter Y; .

The solution of problem (4) 1s zero at 2,((&)\( ms. Usually
in applications of the theory there are not more than U
probabilities C(C\) and therefore the solution is zero
for any reasonable number of measurements,

Thus, the minimum value of the random quantity having
a non-~gcentral X - square distribution with m degrees of
freedom for an unknown \) , 1s determined by the expres-

sion M = and —C(d) 2mo

It 1s apparent that if
- ‘ %
y C(oQP?.m )%L"Zd\ (5)

then the expression under the root sign in (4) 1is not

negative.

It follows from (5) that /10
%‘C(@W},“Z& (6)

Ifr

o - C(@V-Z-t-rr‘) 0

then the inequality 1is satisfied for all Zd. everywhere,

(1)

The inequality (7) leads to the condition



m > 8¢t

and, again considering the probable meaning of C(i) , We
obtain

m Y12

(8)

If it 1is not necessary to satisfy the condition (7), then,
considering that the solution of the problem

M — @)\ 2m' =¥ min,

equals the minus C(d\\ s, We reach the condition

(DLk, ®

Thus, 1 fm>i?.8 for an arbitrary L* or if C(&)<L& atm>2‘

then there are real confldence boundaries & & . We shall
assume that any of these unlimited conditions are satisfied.

Using the confidence intervals formulated, we obtain
an estimate of the accuracy for determ ?an; ?: For this

: (j-0)at

purpose we use the system of intervals

§ \,Q(J'Fi)‘At‘and examine T( ;—Uz:, » where those T's ’

are included for which the following condition 1is satisfied

w, 't (10)

The estimate of A'E willl be determined by the condition that
e

T belongs to the set J‘i)l .

b, The second method of estimating the accuracy. To
improve the estimate of accuracy of identification, it is
necessary to consider the stochastic dependence of the quan-
titles Z for different values of é , for which it is nec-
essary to know the concurrent distribution of the quantitiles.



For this purpose we obtain the ex ressic‘m for the character-
istic function of quadratic form2Q = x HI where lx: is
normal with R YL TS Lyl

& X=p, (11)
@t= (& - unit matrix).

The density function of the quantity :Y, 18 determined

-4
by the expression[ZW\ -'XE.'IP{“:‘;‘- ('I-MT(I' ‘hus we obtaln
the following for the characteri8tic function of the random
quantity and

y(t) =0 \T)-? f-{exp (xilR)exp (-%(x-—r)r(x-p}cfm ,  (12)
where 1 is imaginary unity.
I. 1s apparent that the integrand equals
exp (F(itA -5 v 2 - Fof*)
Let us transform it to the form
(‘JHU)-W(I"'U) +V (13)

forU . w YV we obtain the relationships

W'-’- L'tnq ""g"' ’
ZWU=}4 ’ T
U'WU+v=-f

U=4% (itﬁ-%—)-%ﬂl'
vg——z—f\"(it "fz‘.) "'ZE)f"'

/12

After transformation to the form (13) we may readlly see

9



that the integrand in (12) represents the product of the
distribution density of the normal quantity with the math-
ematical expectation minus U and the covariational matrix

w- and ‘ﬁ_* « Thus
L L LT -£ "f
) =‘E"2.Ltﬁ{ -’z'c%r((m ) E)f‘

or

Pt < |E-2ith| Tt (€2l E)f (i)

Using expression (14) we may readily find the first
two moments of the random guantity

(2 =5 ¢0)= SPH+5“ Ap
EZ = L ‘YQ(O (PTR}“),*_[(JH ﬂfﬁ' (15)
*Zsfﬂj«ﬂp (Sp ) sz% ;

where QSS are the diagonal elements of the matrix A .

e PE=¢ Zz—(SZ)a'--‘ 4 fxrﬁ'}w +) Xas";

Let us set

(c) ©
T= cce(m“(’ B Ly U M)

J‘(zmﬁ(@xﬁ)‘“glg)w ,m(o) t’ (i) 8%)

/13
where 8J . 1s the dimensionality matrix '"KM , such that
its element b‘,(‘d L equals unity at er-‘ij.‘..-,m s and the re-

10



maining elements equal zero,

Then X’_ satisfies the conditions (11) and Z < Lqr
The difference Z: and Ani.. _+the quadratic I‘orm2 1 (P.‘ 9\1
On the other hana, Z and 7\, » in view of the assump-
tions made have g non-central /\ - square distribution.
Therefore L(f"'zAa) equale ')Iy \( ) , and (L(Z‘\_Zi ‘),

according to (15), equals

mibe
. L < (J) (%) U
f\TU\' 'ﬂ’\*\f’ 3 g;l(QS\-Q& )
Let us assume

Zi-3. N YL

—= min

\‘M -V 3 Zw“" N

(16)

We shall assume that a normal approximation is valid for
the difference of the quadratic forms included in the denomina-
tor, Then expressicn (16) represents the realization of the
normal random quantity with zero mathematical ec¢xpectation and
unit dispersion.

T 4
Since j“ is not known, we make an estimate forA (HJ“HAW) r\
We may readily obtain the following from (15)

T(Q ﬂt :\X"—S‘) ( ﬂ - ﬂ 'x\lhpr(ﬂé 'ﬁd!)z’ﬂ\

And we usel Q R ) Sl "‘H )as the estimate for

Iﬂ - i\{“ We shall assume that replacement in (15)
does not disturb the normal approximation.

E."!": - .-:_;.
Let us set tﬁ: J ﬂ Hd‘)L”SP(Qa Qa') kg(“‘frcxi‘,"’)"

Using the statistics t; (~t) , Wwe follow the procedure for es-

timating the accuracy, based on verifying the statlstical

11



hypothesisv.“\g*>o . To solve the problem of verifying
this hypothesis, it is sufficient to use the results of the
most valid non-biased criteria for unilateral alternatives /14
for the exponential sets [3]. Our problem is a very partic-
ular case of this more general problem, Using these results,
we obtain the following procedure. '

Let us assume Z} is the quantile o1 order L."ﬁ of the

normal distribution; 6 - error of the second kind; "={‘t.~

T(J'-I)At {T¢ G*l)A{} , as in the previous section.
A S _

Then, 1if
ts(l)élg% ’ (17)

thf narresponding interval 3'5 is included in the union
(\;‘iz ' .

tor whicn the ,[ corresponding to them are included in
:r‘;f-) must be verified.

=4 f‘“ It 1s apparent that only those values of A s

The error AZ is determined the same way as was done
in the previous section, by the condition of belonging to
the set :rtg « (We should note that both the set ZW@) s
and the set : may be comprised of non-intersecting seg-
ments. Thils case may be interpreted as the existence of sev-

eral solutions of the problem for determining '(" .

5. Computational algorithms and computer programs were
formulated using the procedures gilven above.

In formulating the algorithms, we considered the possible
singularities having the form of measurement information,
particularly the occurrence of inc- srect measurements. Mea-
sures making 1t possible to process this informatlon were
taken 1nto account in the algorithm.

12



The programs were used to process the results of Earth-
pased tests of the "SNEG-2M" equipment. This equipment they
used for the Soviet-French experiment on studying the flares /15
of gamma radiation in space [2]. The total number of measure-
ments M by the equipment equalled 1024, This was sufficient
for the use of the approximations employed in the procedures
mentioned.. The measurement information was obtained by using
a flare model,

We shall give the results of processing the measurement
information. The minimum value of zb was obtained when the
indexes in the first and zero time spectra coincided. This
polnted to the fact that in this case the signal "flare"
was processed very accurately.

When estimating the accuracy by the first method, the
confidence level was assumed to equal 0,9. This moderate
value was selected due to the large rigidity of the solution
rule., The use of the procedure given in this method resulted
in 9 intervals of J , for which the conditlon (10) was
satisfied. The set ) L j was the interval of
the quantity 1_3 At R and the® possible devliations from the
most probable solution were determined by the quantities
A’C;[/At‘ and A’t‘zgat(

This accuracy of determining C was inadequate and there-
fore the second method of accuracy estimation was used., Based
on the same considerations as in the use of the first method,
the error of the second type was chosen to equal 0.1, The
application of this procedure resulted_in the formation of
two mixed intervals and the set 313) L - the interval
of the quantity gAt S The possible aevlaﬁlons from the
most probable solutionAL azA'f’AL—At-

13
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