NASA Technical Paper 1704

The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions

Mary L. Mason, Lawrence E. Putnam, and Richard J. Re

AUGUST 1980

NVSV

NASA Technical Paper 1704

The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions

Mary L. Mason, Lawrence E. Putnam, and Richard J. Re Langley Research Center Hampton, Virginia

and Space Administration

Scientific and Technical Information Branch

SUMMARY

An experiment has been conducted at static conditions to determine the nozzle internal-performance effect of throat contouring, the result of increasing the circular-arc throat radius. Five nonaxisymmetric converging-diverging nozzles were tested in the static-test facility of the Langley 16-Foot Transonic Internal-performance data were recorded at nozzle pressure ratios up Tunnel. Data are presented as internal thrust ratios, discharge coefficients, to 9.0. Throat contouring resulted in a positive and static-pressure distributions. effect on discharge coefficient but showed no significant improvement in internal thrust ratio except in cases of internal flow separation. As an illustration of the use of the data, a two-dimensional inviscid theory was applied to the five converging-diverging nozzles. The generally good comparisons of data with theoretical results indicate that two-dimensional inviscid theory can be applied successfully to the prediction of two-dimensional converging-diverging nozzle internal flow.

INTRODUCTION

Multiengine, highly maneuverable jet aircraft must operate efficiently over a wide range of power settings and Mach numbers. Such aircraft require a propulsion exhaust-nozzle system with a variable geometry for high performance at different throttle settings. The axisymmetric nozzle has generally been implemented in the conventional multiengine jet configuration. Axisymmetric nozzles are relatively lightweight, have high internal performance, and facilitate integration of the nozzle with the jet engine. However, the application of an axisymmetric nozzle system to a typical multiengine jet configuration produces certain aircraft performance penalties, such as high aft-end drag (refs. 1, 2, and 3). The integration of multiple nozzles with the airframe results in a complex aft-end flow field, a source of considerable external drag. The aftend drag effect is increased by the boattail "gutter" interfairing, which is generally required between the jet engines or nozzles (ref. 4).

Investigations of the effects of nozzle design on twin-engine jet aircraft performance (refs. 5 to 13) indicate that a high level of nozzle performance, without considerable aft-end drag, results from use of the nonaxisymmetric nozzle concept. The nonaxisymmetric nozzle geometry is more efficiently integrated into the airframe, eliminating the boattail gutter interfairing. Installation of the nonaxisymmetric nozzle allows design options for thrust vectoring and thrust reversing, capabilities which improve the maneuverability and handling of the aircraft.

Most of the experimental investigations of nonaxisymmetric nozzle performance concerned the installed and isolated performance of specific nozzle designs at realistic nozzle power settings. Recent investigations (refs. 14 and 15) provided detailed parametric data on some internal design geometry variables. Such parametric investigations establish an internal-performance data base for nozzle design optimization.

The parametric analyses included investigation of the two-dimensional converging-diverging (2-D C-D) nozzle geometry, one of the basic nonaxisymmetric nozzle types. However, the current 2-D C-D nozzle data base does not include the performance effect of a systematic variation in nozzle throat contour. Therefore, an experiment has been conducted to determine the effects on internal performance of contouring the nozzle throat by varying throat radius. Two 2-D C-D nozzles having high internal performance (ref. 15) were selected as suitable geometries. Five additional nozzles of similar design were fabricated with different throat radii. These five nozzles, which involved two different throat radius values, were tested in the static-test facility of the Langley 16-Foot Transonic Tunnel. Internal-performance data are presented as discharge coefficients, internal thrust ratios, and static-pressure distributions.

A two-dimensional, inviscid computational model for the calculation of internal nozzle flow (ref. 16) was applied to the five configurations. The computational results are compared with the experimental data at selected experimental conditions.

SYMBOLS

All forces and angles are referenced to the model center line. The center line serves as the body axis. A detailed discussion of the data reduction and calibration is given in reference 14. Extensive definitions of forces, angles, and propulsion relationships used in this report are also discussed in reference 14.

 A_e nozzle-exit area, cm²

 A_+ nozzle-throat area, cm²

 A_e/A_t nozzle expansion ratio

F gross thrust along body axis, N

ideal isentopic gross thrust, $w_p \sqrt{RT_{t,j} \left(\frac{2\gamma}{\gamma-1}\right) \left[1 - \left(\frac{p_{\infty}}{p_{t,j}}\right)^{\frac{\gamma-1}{\gamma}}\right]}$, N

he half-height at nozzle exit, cm

h; half-height at nozzle-connect station, cm

h+ half-height at nozzle throat, cm

h₁ height from nozzle center line to beginning of throat-contour section, cm

2

Γi

h ₂	height from nozzle center line to end of throat-contour section, cm
1	length from nozzle-connect station to nozzle-exit station, cm
le	length from nozzle-throat station to nozzle-exit station, cm
lt	length from nozzle-connect station to nozzle-throat station, cm
11	length from nozzle-connect station to beginning of throat-contour section, cm
12	length from beginning of throat-contour section to nozzle-throat station, cm
13	length from nozzle-throat station to end of throat-contour section, cm
14	length from end of throat-contour section to nozzle-exit station, cm
Md	design Mach number
NPRd	design nozzle pressure ratio $p_{t,j}/p_{\infty}$
р	local static pressure, Pa
Pt,j	jet total pressure, Pa
P_{∞}	ambient pressure, Pa
R	gas constant (for $\gamma = 1.3997$), 287.3 J/kg-K
r _c	nozzle circular-arc throat radius, cm
^T t,j	jet total temperature, K
wi	ideal mass-flow rate, kg/sec
wp	measured mass-flow rate, kg/sec
Wt	nozzle-throat width, 10.157 cm
x	axial distance measured from nozzle throat, positive downstream, cm
У	lateral distance from model center line, positive to left looking upstream, cm
Z	vertical distance measured from model center line, positive up, cm
Ŷ	ratio of specific heats, 1.3997 for air
ε	nozzle divergence angle, deg
Ð	nozzle convergence angle, deg

Configuration designations:

- 2-D C-D two-dimensional converging-diverging
- Al, A2 low-divergence-angle 2-D C-D nozzle configurations
- B1,B2,B3 high-divergence-angle 2-D C-D nozzle configurations

APPARATUS AND METHODS

Static-Test Facility

The experimental investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel. The test area is located in a room with a high ceiling and a large, open doorway. Pressurized air is directed into and through the nozzle model, and the resulting jet exhausts to atmospheric conditions through the doorway.

The static-test facility uses the same clean, dry-air supply as that used in the 16-Foot Transonic Tunnel (ref. 17). The air-control system, also similar to that of the 16-Foot Tunnel, includes valving, filters, and a heat exchanger for maintaining a constant stagnation temperature in the exhaust jet. During the experiment, data were recorded on a 96-channel magnetic-tape dataacquisition system.

Single-Engine Propulsion Simulation System

The experimental nozzles were mounted on a single-engine air-powered nacelle model. A sketch of the nacelle model, with a typical converging-diverging nozzle installed, is given in figure 1. For this experiment, the body shell of the model was removed from station 0.0 to station 52.07.

An external high-pressure air system provided a continuous flow of clean, dry air which was kept at a controlled temperature of 300 K and pressurized up to 1013 kPa. The airflow entered a high-pressure plenum chamber through six supply lines in the nozzle support system (see fig. 1). The airflow direction was perpendicular to the model axis. The flow then discharged into a lowpressure plenum through eight multiholed sonic nozzles, spaced equally around the high-pressure plenum. The low-pressure plenum, which had a circular cross section, was mounted to a force balance. This procedure minimizes forces which result from the transfer of axial momentum as the air passes from a highpressure region to a low-pressure region. Two flexible metal bellows seal the system and compensate for axial forces due to the pressurization.

The air flowed from the low-pressure plenum through a transition section, a choke plate, and an instrumentation section to simulate exhaust-jet flow from the nozzle exit. The same transition and instrumentation sections were used for all five nozzle configurations tested in this investigation. The transition section provided a regular flow path from the circular low-pressure plenum to the rectangular choke plate and instrumentation section, illustrated in figure 1. The instrumentation section had a constant cross-sectional area of 35.75 cm^2 with a width-to-height ratio of 1.437. The geometry of the instrumentation region was identical to the nozzle airflow entrance. All five nozzle configurations were attached to the instrumentation section at model station 104.47.

Nozzle Design

Five two-dimensional converging-diverging (2-D C-D) nozzles were investigated in this experiment. Each nozzle consisted of four basic parts designed to define the internal flow-field geometry. A typical 2-D C-D nozzle is shown as part of the experimental apparatus in figure 1. The two upper and lower components are designated as flaps in this report, since these components are used to vary the nozzle geometry in realistic nozzle configurations. Two sidewalls, which are also shown in figure 1, complete the nozzle internal geometry. For all configurations in this experiment, fixed flaps and sidewalls were used. The sidewall length was always equal to the total nozzle length.

Two converging-diverging nozzles, Al and Bl, were used as the baseline nozzle geometries in this experiment. Three nozzles, A2, B2, and B3, which were modified from the baseline designs, were also tested. Sketches of the baseline nozzles, photographs of all five configurations, and tables defining internal and external geometries are given in figure 2. Both baseline configurations had the same throat area, circular-arc throat radius, convergence angle θ , and total nozzle length.

The baseline configurations were modified by increasing the circular-arc throat radius while keeping all geometric parameters constant except for θ and ε . Increasing the circular-arc radius from 0.68 cm to 2.74 cm contours the nozzle throat region and increases both θ and ε . For both modified configurations A2 and B2, the circular-arc radius was increased to 2.74. B3, the fifth nozzle for this investigation, was generated from B1 by increasing the circular-arc radius to 2.74 while keeping ε fixed. In this case, rounding the throat decreases θ and increases the total nozzle length. The design parameters which varied in this experiment are presented in the following table for the five configurations:

Parameter	Al	A2	Bl	B2	В3
A _e /A _t	1.09	1.09	1.80	1.80	1.80
l, cm	11.56	11.56	11.56	11.56	12.25
M _d	1.35	1.35	2.08	2.08	2.08
NPR _d	2.97	2.97	8.81	8.81	8.81
r _c , cm	.68	2.74	.68	2.74	2.74
θ, deg	20.84	22.33	20.84	22.33	20.42
ε, deg	1.21	1.21	10.85	11.24	10.85

Instrumentation

A sketch of the nozzle instrumentation section is included in figure 1. A three-component strain-gage balance was used to measure the forces and moments on the nacelle model and nozzle downstream of station 52.07 cm. Three rakes of total-pressure probes were used to measure the jet total pressure at a fixed station in the instrumentation section. A four-probe rake through the upper surface of the instrumentation section recorded the jet total pressure; a three-probe rake was used on the side; and a three-probe rake was used in the corner. The jet total temperature was measured by a thermocouple which was also located in the instrumentation section.

Internal static-pressure orifices were located on both the upper and lower flaps and on the sidewalls for all five nozzle configurations. Three rows of orifices were placed longitudinally along the upper and lower flaps. On both the right and left sidewalls, a single row of orifices ran along the horizontal center line. Sketches of the nozzle components with the pressure orifice rows are presented in figure 3. Tables defining the locations of the orifices for each configuration are included in the figure.

Data Reduction

Data were recorded at intervals of increasing jet total pressure. Several repeat points were taken as the jet total pressure was decreased from the maximum level. At each data point, all data values were recorded simultaneously on magnetic tape. Approximately 11 frames of data, taken at a rate of 2 frames per second, were recorded for each data point. The averaged value of these 11 frames of data was used in subsequent computations.

The internal thrust ratio F/F_i , defined as the ratio of the actual nozzle thrust to the computed ideal nozzle thrust, and the discharge coefficient w_p/w_i , the ratio of the measured mass-flow rate to ideal mass-flow rate, are the basic nozzle performance parameters. The nozzle thrust parameter F represents the measured balance axial force corrected for weight tares and balance interactions. However, small bellows tares on axial, normal, and pitch balance components result from a small pressure gradient between the ends of the bellows when internal velocities are high. Bellows tares on the three balance components also result from minor differences in the forward and aft bellows spring constants when the bellows are pressurized. The magnitudes of these bellows tares were calculated by testing calibration nozzles with known performance over a range of normal forces and pitching moments. This procedure is described in detail in reference 14. The balance data were then corrected using an algorithm similar to the balance correction procedure discussed in reference 14.

Several measurements were used in calculating the nozzle mass flow w_p . The pressure and temperature in the high-pressure plenum of the propulsion simulation system were measured before the airflow was discharged through the eight sonic nozzles into the low-pressure plenum (see fig. 1). The discharge coefficients of the sonic nozzles were determined by testing circular calibration nozzles with known flow characteristics. The sonic-nozzle discharge coefficients

were combined with the temperatures and pressures measured in the high-pressure plenum to determine the mass flow.

RESULTS AND DISCUSSION

Basic Data

Basic data for each of the five nozzle configurations are presented as nozzle internal thrust ratio F/F_i and discharge coefficient w_p/w_i . The data for nozzles Al and A2, which have small divergence angles and low expansion ratios, are given in figure 4. The data for nozzles Bl, B2, and B3, which have large divergence angles and large expansion ratios, are given in figure 5. The internal-thrust-ratio data and discharge-coefficient data are presented as functions of nozzle pressure ratio.

The discharge-coefficient data in figures 4 and 5 show some variation with nozzle geometry. However, as should be expected, w_p/w_i is independent of nozzle divergence angle and nozzle pressure ratio since the nozzles were choked for all experimental data. Contouring at the nozzle throat by increasing the circular-arc radius has a positive effect on the discharge coefficient. This positive effect is apparent in the comparison of A2 discharge coefficients with Al values in figure 4 and in the comparison of B2 w_p/w_i values with Bl values in figure 5. Comparing B3 w_p/w_i values with Bl values shows a less significant increase in discharge coefficient. Although B3 and B2 have the same value of throat radius, the w_p/w_i levels for B3 are lower than for B2. This inconsistency in the effect of throat radius on discharge coefficient is not fully understood.

The internal-thrust-ratio data show more variation with nozzle pressure ratio than the discharge-coefficient data. Therefore, thrust ratio as a function of nozzle pressure ratio is used to evaluate the isolated static performance of each nozzle. In figure 4, the profiles of F/F_i as a function of nozzle pressure ratio show little difference in internal performance between nozzles Al and A2. Both configurations have thrust-ratio data profiles which peak near the design nozzle pressure ratio of 2.97 and gradually decrease as nozzle pressure ratio increases. The similarity of the F/F_i profiles indicates that contouring the nozzle throat by increasing the throat radius has little effect on the nozzle internal thrust ratio for the 2-D C-D nozzle with low divergence angle.

In figure 5, the F/F_i plots for the nozzles with high divergence angle show definite variation with throat contouring below the design nozzle pressure ratio. The thrust-ratio data have basically the same behavior for all three nozzles Bl, B2, and B3. For each configuration, the value of F/F_i increases from a minimum at the lowest nozzle pressure ratios to a peak level near the design nozzle pressure ratio of 8.81. Each of the three configurations has the same maximum thrust ratio. However, the level of the minimum thrust ratio at the lower nozzle-pressure-ratio settings depends on the nozzle geometry. A comparison of nozzles B2 and Bl shows that the minimum F/F_i for nozzle B2 is greater than the minimum value for nozzle B1. This increase in minimum thrust ratio from Bl to B2 is a major effect of throat contouring. A comparison of B3

with B2 shows an increase in minimum F/F_i from B2 to B3. For nozzle B3, increasing the total nozzle length in addition to increasing the nozzle throat radius results in the optimal minimum F/F_i for all three high-divergence-angle nozzles. In general, throat contouring has a favorable effect on F/F_i for the nozzles with high divergence angles at the lower nozzle pressure ratios. At higher nozzle pressure ratios near design, throat contouring has no significant effect on thrust ratio.

Internal Static-Pressure Distributions

The effects of throat contouring are also evident in plots of internal local static pressure. Detailed listings of internal static-pressure data for all five configurations are presented in tables I to V. Data are given at each of the pressure orifice locations shown in figure 3 and span the full range of experimental nozzle-pressure-ratio settings.

Comparisons of internal static-pressure distributions along the upperflap axial center line are presented in figure 6 for nozzles Al and A2, in figure 7 for Bl and B2, and in figure 8 for Bl and B3. The data are presented as local static pressure normalized by jet total pressure, $p/p_{t,i}$, and are plotted as a function of x normalized by l_e , the distance from the nozzle throat to nozzle exit. Only the static pressures on the upper-flap center line are considered in this comparison, since the center-line pressures generally reflect the basic flow trends for the five configurations. For Al and A2, the p/pt.j profiles vary little with nozzle pressure ratio. As a result, only the comparison of Al and A2 at a nozzle pressure ratio of approximately 6.0 is presented in figure 6. However, for Bl, B2, and B3, the nozzles with high divergence angles, the internal flow separates at the lower nozzle pressure ratios. The separation from the nozzle wall is indicated by a sharp rise in p/pt,j just downstream of the nozzle throat. As a result, two cases of pressure distributions are presented in figure 7, comparing Bl and B2, and in figure 8, comparing B1 and B3. The lower nozzle pressure ratio case, near 2.0, illustrates $p/p_{t,i}$ behavior when internal flow separation occurs. The higher nozzle pressure ratio case, near 6.0, illustrates the pressure distribution profile without separation.

When the nozzle internal flow is separated, contouring at the nozzle throat increases the magnitude of the pressures on the divergent flap. Contouring also affects the separation location. The flow for the contoured nozzle separates upstream of the separation point for the sharper nozzle with a small throat radius. The integrated effect of the differences in the magnitude of the separation pressure gradient and in the separation location results in a slight improvement in the nozzle internal performance for the contoured nozzles B2 and B3 at low nozzle pressure ratios. This improvement for the nozzles with separated flow was evident in the F/F_i data plots in figure 5.

When the internal flow does not separate, illustrated by the $p/p_{t,j}$ plots at a nozzle pressure ratio of approximately 6.0 in figures 6, 7, and 8, there are no large differences in the compared pressure profiles. At higher nozzle pressure ratios, the effects of contouring occur upstream of the nozzle throat and in the vicinity of the throat. Static pressures near the throat

are generally higher for the contoured nozzles than for the baseline nozzles. However, when there is no internal flow separation, the average effect of throat contouring on the internal static pressures is negligible. This lack of significant effect of throat contouring for the unseparated internal flow cases at higher nozzle pressure ratios was also evident in the F/F_i profiles in figures 4 and 5.

Static-pressure data were recorded on the flaps at three different spanwise locations and on both the right and left sidewalls, as shown in figure 3. On the flaps, each row of static pressures corresponded to a different value of $y/w_t/2.0$. On the sidewalls, the row of static pressures ran along the horizontal center line. Comparing the three rows of static-pressure data for each flap and the right and left center-line data for the sidewalls may indicate dominant three-dimensional effects in the internal flow. Selected plots of pressure distributions along the upper and lower flaps and on the right and left sidewalls are presented in figures 9 to 13. In each figure, $p/p_{t,j}$ along each row is plotted as a function of x/l_e . Results for the low-divergence-angle nozzles are given in figure 9 for Al and in figure 10 for A2. Plots for the highdivergence-angle nozzles are presented in two cases to show static-pressure behavior with and without the occurrence of internal flow separation. Data for Bl are given in figure 11; B2 data are given in figure 12; and B3 data are given in figure 13.

At a nozzle pressure ratio near 6.0, nozzles Al and A2 show almost no variation in p/pt, j across the flaps or along the sidewalls. The staticpressure distributions are independent of spanwise location, which indicates that the flow is essentially two-dimensional for the low-divergence-angle nozzles. The most pronounced three-dimensional effect in the static-pressure profiles is evident in figure 11 for the high-divergence-angle nozzle B1. When the internal flow is separated at a nozzle pressure ratio near 2.0, the combination of the sharp nozzle throat and the high divergence angle results in considerable variation in $p/p_{t,j}$ across the flaps. This variation in static pressure with spanwise location is not apparent in the high nozzle-pressureratio unseparated case in figure 11. Nozzles B2 and B3 show a similar threedimensional effect for the separated cases, although the magnitude of the spanwise variation in p/pt,j are smaller than for configuration B1. As discussed for Bl, the three-dimensional effect in B2 and B3 is no longer evident when the internal flow remains attached. Thus, the internal flow for all five 2-D C-D nozzles is predominantly two-dimensional, with three-dimensional effects apparent in the static-pressure data only in the case of internal flow separation at low nozzle pressure ratios.

Comparison of Experimental Data With Two-Dimensional

Inviscid Theory

A two-dimensional inviscid computational model was applied to each of the five 2-D C-D nozzle configurations. The theoretical results, in the form of internal thrust ratios and static-pressure distributions, were then compared with the experimental data. The comparisons of theory and experimental data give insight into the internal flow-field behavior and illustrate both the

application of the experimental data to theory evaluation and the application of computational models in assessing the internal performance of nozzle designs.

Since the experimental data exhibit essentially two-dimensional behavior, the two-dimensional, inviscid, time-dependent theory of Cline (ref. 16) was used for nozzle performance predictions. The theory applies the two-dimensional, inviscid Euler equations to the calculation of internal nozzle flow and exhaust jet for converging, converging-diverging, and wedge-plug nozzle geometries. Shock effects are modeled using a "shock-smearing" technique which incorporates an explicit artificial viscosity. Earlier application of the inviscid theory to a nonaxisymmetric wedge nozzle showed good agreement of data and theory in internal flow regions (ref. 18).

Comparisons of theoretical internal thrust ratio with the experimental F/F_i results are given in figure 14 for nozzles Al and A2 and in figure 15 for Bl, B2, and B3. The theoretical thrust ratio was calculated from the two-dimensional inviscid gross thrust normalized by a theoretical ideal gross thrust. The theoretical ideal thrust was computed from the geometric ideal mass flow necessary for complete expansion to ambient pressure. No experimental data were used in the computation of the theoretical ideal thrust ratio. (Note that the experimental values of F/F_i can be referred to the theoretical ideal thrust coefficient.)

The theoretical results were calculated for nozzle pressure ratios of 2.97 to 9.0. The theory was not applied to lower nozzle pressure ratios with known internal flow separation since the inviscid theory is inadequate for modeling the viscous effects of separated flow regions. The comparison of theoretical internal thrust ratio with the F/F_i data is optimal near design conditions. The theory matches the F/F_i data peaks except for nozzles A2 and B2; in these cases, the theoretical results are higher than the data values.

To assess the general effect of throat contouring on internal thrust ratio, the theoretical analysis was expanded to include two additional values of throat radius, 1.37 cm and 2.05 cm. The inviscid theory was applied to four additional nozzle geometries which incorporated the new throat radii. Two of the modified geometries were based on the low-divergence-angle baseline nozzle A1; the other two were based on the high-divergence-angle baseline nozzle B1.

The effect of throat contouring on internal thrust ratio is presented in figure 16. Experimental and theoretical internal thrust ratios are presented as a function of the nozzle throat radius. Results are presented in separate cases for the low-divergence-angle nozzles and for the high-divergence-angle nozzles. In each case, theoretical results are presented for throat radii of 0.68, 1.37, 2.05, and 2.74. The theory was applied only at the design nozzle pressure ratio of 2.97 for the low-divergence-angle nozzles and 8.81 for the high-divergence-angle nozzles. These F/F_i data are presented only for the experimental throat radii of 0.68 and 2.74. Results are presented for both nozzles B2 and B3 in the high-divergence-angle case.

The experimental data show almost no variation in F/F_1 with throat radius. The theoretical results, however, show some changes in thrust ratio

as throat radius increases. As discussed previously and shown in figures 14 and 15, thrust ratios for the contoured nozzles A2 and B2 were generally higher than the data over the full nozzle-pressure-ratio range. Thus, variations observed at design conditions in figure 16 are probably due to inviscid limitations of the theory. Small changes in the theoretical internal thrust ratio with throat radius may be attributed to the theory rather than to the effect of throat radius. In general, both the experimental and theoretical results indicate that throat radius, and therefore throat contouring, has no significant effect on internal thrust ratio.

Figures 17 and 18 present comparisons of experimental and theoretical P/Pt,j along the upper-flap center line for Al and A2. Figures 19, 20, and 21 present the same data-theory comparisons for Bl, B2, and B3. The theory was applied only at design conditions, when the internal flow was not separated, while the data represented four cases of nozzle-pressure-ratio settings. The theoretical static-pressure distributions follow the basic flow trends in the data, matching the static-pressure highs and lows. Poor data-theory agreement generally occurs in the vicinity of the nozzle throat and is due to the inviscid limitations of the theory.

In figures 22 to 26, for each of the five configurations, the theoretical static pressures along the center line of the nozzle interior are compared with the data on the left sidewall center line. The theory was again applied at design conditions; the experimental data are shown at four values of nozzle pressure ratio. The data-theory agreement is generally good, with poorest comparisons downstream of the nozzle throat, as discussed previously. The good agreement of theoretical p/Pt,j profiles along the interior center line with sidewall data emphasizes the predominantly two-dimensional nature of the nozzle internal flow for all five configurations. The overall good agreement between theory and experimental data in regions without separated flow indicates that the two-dimensional, inviscid, time-dependent theory may be successfully applied to the 2-D C-D nozzle geometry for internal flow prediction.

CONCLUDING REMARKS

An experiment has been conducted to determine the internal-performance effect of throat contouring by increasing the circular-arc throat radius of nonaxisymmetric converging-diverging nozzles. Five two-dimensional convergingdiverging nozzles were tested at static conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel. Internal-performance data were recorded for a range of nozzle pressure ratios up to 9.0. Data are presented as internal thrust ratios, discharge coefficients, and static-pressure distributions. Comparing internal-performance data for the five nozzles shows that throat contouring results in improved values of discharge coefficient but has no significant advantage in internal thrust ratio except at nozzle operating conditions where internal flow separation occurs.

The internal flow for each of the nozzle geometries is predominantly two-dimensional, except in regions of separated flow. As a result, a twodimensional, inviscid, time-dependent computational model was applied to each configuration. The favorable comparison of the theoretical results with the static-test data illustrates the successful application of two-dimensional inviscid theory to the prediction of internal flow characteristics of two-dimensional converging-diverging nozzles.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 July 2, 1980

REFERENCES

- 1. Schmeer, James W.; Lauer, Rodney F., Jr.; and Berrier, Bobby L.: Performance of Blow-in-Door Ejector Nozzles Installed on a Twin-Jet Variable-Wing-Sweep Fighter Airplane Model. NASA TM X-1383, 1967.
- Reubush, David E.; and Mercer, Charles E.: Effects of Nozzle Interfairing Modifications on Longitudinal Aerodynamic Characteristics of a Twin-Jet, Variable-Wing-Sweep Fighter Model. NASA TN D-7817, 1975.
- 3. Maiden, Donald L.; and Berrier, Bobby L.: Effect of Airframe Modifications on Longitudinal Aerodynamic Characteristics of a Fixed-Wing, Twin-Jet Fighter Airplane Model. NASA TM X-2523, 1972.
- 4. Maiden, Donald L.; and Petit, John E.: Investigation of Two-Dimensional Wedge Exhaust Nozzles for Advanced Aircraft. J. Aircr., vol. 13, no. 10, Oct. 1976, pp. 809-816.
- 5. Martens, Richard E.: F-15 Nozzle/Afterbody Integration. J. Aircr., vol. 13, no. 5, May 1976, pp. 327-333.
- 6. Capone, Francis J.: Summary of Propulsive-Lift Research in the Langley 16-Ft Transonic Tunnel. J. Aircr., vol. 13, no. 10, Oct. 1976, pp. 803-808.
- 7. Hiley, P. E.; Wallace, H. W.; and Booz, D. E.: Nonaxisymmetric Nozzles Installed in Advanced Fighter Aircraft. J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1000-1006.
- Sedgwick, T. E.: Investigation Nonaxisymmetric Two-Dimensional Nozzles Installed in Twin-Engine Tactical Aircraft. AIAA Paper No. 75-1319, Sept.-Oct. 1975.
- Berrier, Bobby L.; Palcza, J. Lawrence; and Richey, G. Keith: Nonaxisymmetric Nozzle Technology Program - An Overview. AIAA Paper 77-1225, Aug. 1977.
- 10. F-15 2-D Nozzle System Integration Study. Volume I Technical Report. NASA CR-145295, 1978.
- 11. Stevens, H. L.: F-15/Nonaxisymmetric Nozzle System Integration Study Support Program. NASA CR-135252, 1978.
- 12. Bergman, D.; Mace, J. L.; and Thayer, E. B.: Non-Axisymmetric Nozzle Concepts for an F-111 Test Bed. AIAA Paper No. 77-841, July 1977.
- 13. Wasson, H. R.; Hall, G. R.; and Palcza, J. L.: Results of a Feasibility Study to Add Canards and ADEN Nozzle to the YF-17. AIAA Paper 77-1227, Aug. 1977.

- 14. Capone, Francis J.: Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles With Vectoring and Reversing Capability. NASA TP-1224, 1978.
- 15. Berrier, Bobby L.; and Re, Richard J.: Effect of Several Geometric Parameters on the Static Internal Performance of Three Nonaxisymmetric Nozzle Concepts. NASA TP-1468, 1979.
- 16. Cline, Michael C.: NAP: A Computer Program for the Computation of Two-Dimensional, Time-Dependent, Inviscid Nozzle Flow. LA-5984 (Contract W-7405-ENG. 36), Los Alamos Sci. Lab., Univ. of California, Jan. 1977.
- 17. Corson, Blake W., Jr.; Runckel, Jack F.; and Igoe, William, B.: Calibration of the Langley 16-Foot Transonic Tunnel With Test Section Air Removal. NASA TR R-423, 1974.
- 18. Carson, George T., Jr.; and Mason, Mary L.: Experimental and Analytical Investigation of a Nonaxisymmetric Wedge Nozzle at Static Conditions. NASA TP-1188, 1978.

TABLE I.- RATIO OF INTERNAL STATIC PRESSURE TO JET TOTAL PRESSURE FOR NOZZLE AI

						x/1 _e	ູຍ			i	
Point [p	Pt,j ^{/p}	209	••04•	.011	.077	.145	.286	.429	.540	.736	.890
+	00	272	156	745	107	485	.418	.407	301	342	.374
	· · ·					198	418	417	193	542	.374
				142	418	487	417	. 417	1392	.341	373
			154	674	119	. 485	.416	. 416	101	076	.372
• •		1116		674	4 2 2	.484	.416	415	191	. 340	.372
		1778			1	.483	.416	414	390	340	.371
		778	150	111	422	1482	.416	717	001	.340	371
		944		145	127	1482	.416	.413	949	.340	175.
				100	420	482	416	.413	. 3.49	.340	371
				107	4 7 0	482	417	413	945	076.	.371
				147	419	182	417	.414	9.4.9	.340	371
				972	419	.482	.417	.414	049	. 340	371
			154		0.1	.482	417	.415	945	.340	171
			1.1.1		5	.482	417	.413	941.	142.	.371
			1.1.1	111	418	441	. 417	. 413	190	141.	.371

(a) Upper-flap static pressure P/Pt, j

 $y/w_t/2,0 = 0.450$

						x/1 _e	e				
Point	^p t,j/p∞		••0	.011	.077	. 143	.286	. 429	:560	.736	068.
1.	-	TLA	155	154	. 427	. 490	.420	.414	. 303	.340	.366
- 1					0.1	487	.421	429		.342	.367
•				1 U 1 U 1 U 1 M	0.17	186	420	.430	202	.341	.367
n :						197	419	027	105	.339	.367
1 t						185	419	429	195.	.337	.367
n .		178				185	419	.428	390	.334	.366
••	1					185	.420	. 428	390	.332	366
- •	- F 				101	2.9.2	010	427	100	.330	36
ю (123	185	017	.426	943	.329	195
					101		420	426	941	.328	36
	n 1 7 0						119	.425	985	.327	36.
=							120	424		327	36
	1 L 1 C - L						0 < 7	227		. 327	.36
						484	0 4 7	121	0 V L	.326	.36
	2.0		124			17 8 17	420	422		.326	.36

0.875
11
0
5.
y/wl

						x/l _e	υ				
Point	Pt,j/p∞	.209	• 0 6 6	.011	.077	.143	.286	.429	. 560	.736	.890
	0	272	751	101	944	506	. 417	.418	3.46	.374	•359
- 1					017	504	418	617		373	.359
~ •					011	501	117	. 417	. 3.8.7	.371	358
•			1 0 1 1 1 1		452	001	416	.416	3.8.7	.370	357
:) (C						007	.416	.416	346	.365	.356
r •						198	. 16	414	336	.367	.355
0. 1	10	942	54	95	456	497	. 416	414	386	.366	. 355
•		94.2	.751	155	456	496	.416	.413	. 386	. 365	121
c 0	10	942	121		457	496	.416	. 217	. 3.46	. 364	154
-		542	121	1555	457	. 496	. 417	. 412	3.56	.364	122
•	10.0	842	151	355	457	. 495	. 417	114.	396	.362	1951
	7 . 44	.841	751	.355	457	.495	.416	.410	, 3A6	562	
	7.95	841	. 752	355	.457	767 .	.416	.410	, 386	192	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 - 1	8.42	.841	.752	1555	. 457	767.	. 417	607 -	.387	361	1 1 1 1
5	9,24	.841	.752	, 155 ,	.456	767.	. 417	.408	. 3 д.7	.360	
_	,										

TABLE I.- Continued

(b) Lower-flap static pressure p/pt, j

5

Point	- -					/x/	x/1 _e				
. 1	^r t,j' ^{r∞}	- 209	- 099	. 011	.077	.143	.286	.429	.560	.736	. 890
-	1,99	144	.755	392	.433	.472	408	.417	. 389	.360	.37
n	2.49	8 4 2	. 155	.391	.430	.476	.410	414	0 4 4	157	1
•	3,03	. 345	. 754	101	.430	478	408	412			
IJ	3.48	.845	. 754	391	.433	. 476	.408	410	187	360	9
er.	99.08	944	.754	101	. 434	. 476	. 407	.409		360	-
•	4.47	. 844	.753	394	767"	.475	407	408		0.0	
	4.97	*844	.752	395	101	.475	407	407		151	
a 0	5.47	. 843	.751	. 396	.433	. 475	407	.406		356	-0
o	5.97	5 1 G -	.751	396	.433	474	. 407	406	100	155	9
•	6 . L 5		.751	396	432	474	407	105		154	0
	6 . 93	278	.750	, 396	432	.474	407	405		.354	9
~	7.44	- 842	.750	395	.432	474	. 407	.404	TAT.	. 353	91
# 1	7.95	842	. 750	395	.431	.473	408	101.	385	.353	9
7	54.5	- 842	. 750	16F	431	.473	.408	404	5 A P	121	91
5	9.≥4	- 842	.750	362°	.51	.473	907"	207		352	.367

 $y/w_{t}/2.0 = 0.450$

Point	u/ u/					x/l _e	ູຟ				
	^r t,j' ^r ∞	- 204	- 099	.011	.077	.143	.286	627.	. 560	.736	.890
•	1.99	.847	. 755	388	414	.470	204-	474	107	144	1 4 1
n:	2.49	945	.754	387	429	470	403	9 H 9			
٣	N. 03	.845	.753	.387	428	470	402	11			
٦	3.48	. 845	.753	.387	.428	469	.402	435	105	346	92
¥n	5 ° S	. 845	. 752	. 388	429	467	402	434	105	346	292
÷	4.47	972	. 752	388	.428	466	402	434	101	344	192
•	4.97	945	. 751	387	. 428	.465	.401	.433	105	111	361
aC	5.47		.751	387	.427	.464	.401	633	106	342	360
σ	5.97	344	.751	.387	, 427	.464	.401	433	101	341	359
с ~	6.45	. 844	.750	. 387	. 427	. 464	.401	432	106	340	150
-	6.95	944	.750	.387	.427	.464	.401	.432	106	.339	.361
~ -	7.44	778°	.750	. 387	.426	797	401	.431	104	340	9
•	7.95	.843	. 750	.386	.426	.464	401	431	105		
14	51.8	.843	.750	.386	.426	. 464	.401	. 4 3 1	401		092
	9,76	243	150	186							

0.875
1
y/w/2.0

 Совется и совется и со				e	e				
886 886 886 886 886 886 886 886	-	.011	.077	.143	.286	. 429	. 540	.736	.890
00000000000000000000000000000000000000	-	.379	.426	.485	107	410	1.0	150	745
888 888 888 888 888 888 888 888	_	376	472	185	007				
888 888 888 888 888 888 888 888 888 88	_	375	421	191	408	417			
8744 9844 9944 9944 9944 1987 1977		.374	424	181	407				
8844 8946 8946 8946 8946 8944 8944 8944	-	375	425	480	107	5			
8846 8346 8346 8346 8346 8346 8347 8346 8347 8347 8347 8347 8347 8347 8347 8347	•	. 377	.425	478	.407	414		154	
8846 750 8346 750 8347 750 8347 7469 8347 7469 8374 7469 8374 7469 8374 7469 8374 7469 8374 7469 8374 7469 8374 7469	•	.378	.425	.477	406		60 1		
8346 750 8347 750 8346 7460 3479 8371 7449 3379 8371 7449 3379	•	.378	.426	476	406	.413		5	
837 .750 .379 836 .749 .379 837 .749 .379 .837 .749 .379	•	.379	.426	477	406	413	787	071	
8346 7449 5379 837 749 5379 837 749 5379	•	.379	.426	. 476	.406	412	A A F	348	
.837 .749 .370 .837 .749 .379	•	.379	.426	. 475	.406	412	1 4 7	144	051
837 749 379	•	379	.426	.475	.406	412		272	
	•	379	.426	475	406	117			
. 857 .749 .379	•	379	927	.475	406				
.837 .749 .379	•	379	.426	475	.406	117	187		671

TABLE I.- Concluded

(c) Sidewall static pressure P/Pt, j

00000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.0
11
N
sidewall,
Left

					e			
Point	pt,j/p ^w	209	- 044	.011	.077	.143	.286	•20
			0111	117	517	434	.440	
-	O.			- C			. 441	
~			1 4 4	. 614			077	100
2	C		.741	0				
n :	1 7		- 74 -	5	n	5 T T T	0,0	
t				4	510	.433	23	
R.	D				. 8	4 1 2	. 437	
•			. 7 4 1	ō		1 <		0
r T		20	144	ŝ	016	* • •	, . , .	
•	•		140	4	s.	.434	.136	
æ	4					010	. 435	
o	o		140	õ				
• •		a	740		5	c ? 1		
	t '			4	u	1435	.435	1 07.
•	•					111	÷	101
	-	a	141	.610	114	n 7		
	7 (174	4	512	435	191	107°
	<u>۳</u>					114	413	. 401
-	7		141	610		י א ד ד		
		828	. 7 4 1	÷	513	.436	e i e e e	

A2 PRESSURE FOR NOZZLE TOTAL JET 2 PRESSURE STATIC INTERNAL Ы RATIO I ٠. H TABLE

Point P _{6,j} /P ₀₀ 1 1.97 2 2.45 2 790 5 72 2 790 5 72 2 790 5 772 5 72 5		. 077	x/l _e .145					
С С С С С С С С С С С С С С		. 077	.143					
		174.		.286	.429	.540	.736	.890
00000000000000000000000000000000000000			-474	.435	.426	. 391	.371	.369
00000000000000000000000000000000000000		.473	473	1 4 4 1	424	595	. 372	.368
000000000000000000000000000000000000000		1 1 1	472	439	.423	13.17	.370	368
00000000000000000000000000000000000000	-	472	471	.439	.423	346	.369	.366
0000000 000000000000000000000000000000		471	471	.437	.422	545	.369	.364
0 0	-	471	471	. 437	.422		.368	.363
0-0-00-00 00-00-00 		470	.471	.436	227.		.367	.362
6 8 8 6 6 8 6 6 6 4 4 4 7 4 4 7 4 7 7 4		.470	472	436	.421	565.	.367	.362
788		470	471	.435	.421	341	.367	.361
400		469	.472	7 E 7 .	.421	1.3.4.1	.367	.360
		497	.472	.434	.421	340	.367	359
788		469	472	.433	.421	.340	.367	. 358
788		468	.472	.433	.420	379	.366	158
788		.468	.472	.433	.420	. 179	.366	357
. 788		.468	.472	.432	.420	. 379	.366	.357

P/Pt, sure ñ й Q, υ ť. ta Ω. ap Ц 1 Upper (a)

·**D**

 $y/w_{+}/2.0 = 0.450$

+	-7					x/1e	Ð				
במדוור	[^ν t,j ^{/ ν} ∞]	209	099	.011	.077	.143	.286	429	. 540	.736	.890
-	1.07	107.	.578	. 453	. 480	.482	. 444	.418	. 3A7	.383	367
- •	2.45	202	578	453	483	483	. 443	.418	348	.383	.367
. . .	20.2	193	7 7	154	483	482	. 442	.416	.389	382	.366
n a		101	577	454	482	.481	. 440	416		.381	.366
: 4/	60 m	194	577	454	482	481	440	415	386	. 380	, 366
1 4	1	201	577	453	181	481	419	.414	.346	.380	365
•	4.87	793	577	.453	480	.481	613	.414	5	.379	365
		. 793	577	453	480	.480	.438	414		.379	.365
. 0		793	. 5 7 6	151	479	180	.438	414		.378	366
		793	576	253	479	480	.437	414		.378	.366
> • • •		101	577	257	478	479	.437	.413	272	.377	.364
		101	877	2.5.2	478	479	.436	413		.377	361
		201	111		477	479	414	413		.377	.363
n =		101	577	157	. 477	479	.436	.413		. 377	.361
		10	577		177	470	212	111	Car	.377	36.

890 .736 560 429 286 x/1_e .143 $y/w_t/2.0$ 077 011 -.099 -.209 "j′p∞ Р^т, Point - NHI SONGNE CONNING

*

875

<u>.</u>

Ш

TABLE II.- Continued

(b) Lower-flap static pressure p/Pt,j

 $y/w_{\star}/2.0 = 0.0$

						x/l _e	, e			1	
Point	pt, j/p.	000	000	.011	. 077	.145	.286	027.	.560	.736	.890
						9.5.4	215	.421	395	195.	.356
-	1.97	264 "	578	007				122	101	.389	5
•	2.45	764	685.	1007	101	0 H 8 8 8			100	.388	5.5
1 94	2.92	. 793	.579	, 468	587°				101	.387	512
1	1.1	164	582	690	1934	649				386	15
r M	00.7	104	.582	168	- 187	- 474				100	10
n 4		194	582	. 468	.481	- 474	01.0				
D: I		104		. 469	087.	. 74	c17.	c17.			
~		-			JAO	. 474	717.	-414	545.4		-
æ	5.35	5 /				474	. 414	.413		.385	
o	5,84	. 194	105					412	, 787	385	
-	6.31	. 793	582.	100	5-1-				A B F	. 385	35
	0.9	. 793	581	467	.478	11					ñ
		101	583	.467	.478	.473					
				467	477	.473	.410	017.	5 C C		, .
-	1.10				1 7 7	171	.410	410			-
7.	80 a	297	202	100	477	243	410	.410	5.65	191	ř

٠

0.450
I
2.0
5
y/w

						e	e				
Point	Pt,j/P.	- 209	• • • • •	.011	. 077	.143	.286	.429	. 560	.736	.890
T						00	201	415	207	382	359
-	1.97	- 789	584	987.	191		1 C			382	.359
	2 4 5	. 789	586	181	1.05	478				191	150
<u> </u>		7 8 0	1 8 1	119	183	.477	744	177.			
m	2.42			1741	191	. 477	.439	.435	007	001.	
7	3.41					478	. 436	.438	399	.379	
¥	3,92	. 789						111	108	975.	
•	4.39	. 789	203	503				77	101	.378	350
•	4.87	- 789	0 6 6	997 .			• 0 • •	144	107	.378	5.1
•	2	788	590	. 467	187	0.4				1 1 7	151
C (100	0.0	.466	.480	.478	127	 			1
o					440	.478	.423	. 446	395		
-	6.31			1 = 2 - 5 -		4.1.1	422	. 447	305	.377	
-	6.80	789	165.	. 404						.376	5) 7)
		789	591	. 464	.480	.470					
N I	-			141	400	. 478	.414	0 7 7			•
-	7.76	10/8					418	077	101	375	. .
171	8.23	789	292	n 0 7 .	500	- 1 - 1		0111	101	. 375	.35
		789	592	. 463	. 480	. 474	.410	r # # #	220.4		

					x/1 _e	.0				
	002.0		.011	.077	.143	.286	.429	.560	.736	.890
				101	14.0	010	. 422	101	.383	398
-	774	580	10		1 0 V 7 0 V		123	401	.381	.363
-	51	195.		; ; ; ;			C C C C	1000	.380	.356
•	172	581	.514	n ()			1012	001	380	354
~	11	583.	, 513	267					170	352
	170	582	.513	207.	.461				140	1.5.1
	145	583	.513	267.	.460	- T 3 2	127	0.65		
	44	199 1		.492	.460	さんさ。	127.	065		
-				692	. 460	727	.420	101	0/9.	
-				201	.460	.433	.420	165	015	
	00/				040	_ 412	. 419	396	378	0 1 2 .
	768	505					0	104	.377	347
	767	.586	513	267	, to C	400				147
			C 10	192	. 459	. 432	617	965 7		
-	10/					C 1 1	419	105	376	0 7 10
~	766	586	512	U					175	.346
	766	. 586	512	207	458	250.	017	n 5 5		144
-				607	459	.432	.418	. 395	c / c	
	0	000	• • •	r		•	•			

Т

TABLE II.- Concluded

₽/₽t,j (c) Sidewall static pressure

	1	
	¢	
1		
	01.1	
	٥	
	٠	
	+	
	٥	

oint	- -					x/l _e	le Le				
	^r t,j' ^r ∞	-,209	••0.99	.011	.077	.143	.286	.429	.540	.736	068.
· جب ا	1.97	.781	.680	.558	498	464.	.437	413	397	.386	.366
•	2.45	.781	.680	558	500	. 466	.437	.415	001	387	364
-	2.92	.782	.680	, 55.8 5	500	.466	.435	413		185	363
7	3.41	. 783	.681	558	500	.466	434	.412	107	385	361
F	3,92	.782	.681	557	.500	. 465	.433	411	196	.384	.360
4	4.39	. 782	.681	.557	500	.465	432	410	306	.383	360
•	4.87	.782	.680	.558	500	.464	. 432	100	395	.382	359
¢	5.35	. 782	.681	558	500	464	.431	109	100	382	358
o	5.84	.762	.681	558	667.	464	431	.408	101	382	358
10	6.31	.782	.680	557	499	.463	430	407	101	380	.357
11	6.80	.781	.680	. 557	404	463	430	.407	101	378	356
4	7.27	.781	.680	557	499	462	430	406	101	377	.355
13	7.76	. 778	.680	. 557	667.	.461	430	406	205	.376	.354
14	8.23	. 774	.681	. 557	067.	.461	450	405	392	.376	135.
ų	0 7 0		181	1 2 2	000	1 4 4	0				1

			Right	Right sidewall,	z = 0.0			
Point	4/ 4/				x/1 _e			
	^r t,j ^{,r} [∞]	209	- 004	.011	.077	.143	,286	.429
+	•	-	ø	-564	0	60	া	-
• •	2.45	. 778	.683	5	505	183	244.	3
. 1 41	۰.	æ	99	5.6	ŝ	8	17	
7	3	17	89		30	8	5	3
*	۰.	Ð	89	5.6	50	47	43	7
•6	"	18	ø	ŧ۵	c	47	5	1
•	•	78	۹D	5	50	47	53	11
•	5	78	Ø	55	50	5	13	41
•	•	2	æ	5	ŝ	47	53	41
-	~	60	æ	÷	0	47	5	41
11	•	ø	œ	56	o	47	m	41
~	r,	۰	Ð	56	5	5	5	11
1	۲.	78	89	5	5	47	63	5
14	, V	۰.	œ	56	5	47	4	41
5	٦.	•	æ	5	t 9	41	43	11
					,	,	•	

TABLE III.- RATIO OF INTERNAL STATIC PRESSURE TO JET TOTAL PRESSURE FOR NOZZLE BI

ļ				x/l _e	ð				
660 ° -	6	.011	.077	.143	• 586	.429	.560	. 736	.890
10	4	295	. 258	.287	.276	.239	. 388	.412	.475
1		203	259	288	.276	.234	371	375	
746		260	258	288	.276	.234	.188	125	775
746		162	25.8	288	.276	234	. 188	1 7 7 7	12
745		162	. 257	287	.276	. 235		0 7 1 .	100
745		295	.256	.287	.276	. 235	198		
74		062	.256	.288	.276	.234	187		
177		0.6 0	256	288	.275	.234	7 H J 4		
740		00	.256	288	275	234	.187	.141	
112	_	262	.256	288	.274	.234	781 -	.141	110
74		294	.256	288	.274	.234	- 187		
7.0	5	294	256	288	.274	.234	.187	. 141	
		100	25.6	288	274	.234	. 187	.141	.110
		100	410	288	274	.234	187	141.	.116
	•				273	234	187	141.	.112
	<u>`</u>	5 5 7 7					•	•	

(a) Upper-flap static pressure P/Pt,j

 $y/w_t/2.0 = 0.450$

1										_	-	-	_				_	-			
	068	.520	.373	127		0 1 0 - V -	555	.117	< 1 1 S			.112		•	.116	-112		11C	. 113	~	
	.736	.524	.355	101		. 224	142	.142	0 7 7		.142	-142		. 14	.142	- 142		v + r •	142		
	.560	163	000			188	. 188	198			. 1 8 8	9 8 9		181	. 1 8 8	a a a		. 38	901		
	.429	. 233	210		, v 1 1	235	- 235	510			.234	010		.234	.234	110		. 233	222		552 .
	• 286	274	176		5.74	. 275	215	540		• 5 7 4	. 273			.275	. 273			. 272	010	1.10	-272.
x/1 _e	.143	285			• 5 8 6	.286	285			.286	287		107	.287	784		202	287		100	287
	.077	01/0		. 44.	546	245			***	. 243	2110	1	245	. 243	120		2 U U	2112		202	.242
	110.	a 0 r		° 249	599.	000			2 2 2 C	66C	000		300	200			301	101		301	301
	••0-•	r u r		952.	. 754	75.2			147.	. 75.0		0.01	. 749	749			- 7 4 9			. 747	.747
	-,209	5 - 0		848	.848				572.	A 4 A			. 849	919		6 t t 0	- A 4 9			. R49	849
	Pt,j'P∞ [1,97	2.46	10.0			5.92	4.39			5.54	14.5			6.8	7 20			8.53	8.91
	JUTOA		-	2	. ••	n :	7	ۍ. ا	Ŷ	. 1	~	æ	0	•	10	=	:		*	14	ľ

0.875
II
2.0
y/w+/

	.560 .736 .890	481 .481 .487		.317	101			,139	.140				141	.142	0.01			271	01/1	1 . .	
	. 429		513		-,											_					
0	•280	. 510	980				0.62.	289	0.9.0		582 .	.289	288	2 H R		- 290 -	, 28H	588		C82.	
	.143	287	740			.287	286	286		000	.286	287	287	101		. 237	.286	386		.286	
	.077	261			· 155	. 257	. 256	255		152.	253	254	25.7		(C) •	253	252	C U C	102	555.	
	110.	170	- U - C - C		274	272	271	040		194	269	269	040		. coo	.267	267		00 ∀ *	.266	
	••066	76.4	- 2	00.	. 150	- 749	749	110		749	2149	749	740		5 n L .	249	. 750			.750	
	••204	0 * 0		1 7 8 •	.840	838	878			838	. B 37	R 17	42 0		,826	.830	47.4		07¥	835 835	
	Pt,j ^{/P} ~		16.1	2,46	5.94	1.43			L. 34	4.88	5. 20		1 f C 7	5, 6	6.81	7.20			њ.53	8.91	
	Point		-	n	2			n	¢	~	. a	c (>	-	-	;		-	10	. r.	

TABLE III.- Continued

Point	u/					x/1 _e	e e				
	rt,j'r∞	-,209	- 044	.011	.077	.143	.286	424	.560	.736	.890
-	1.97	.849	757	. 295	.243	575.	.272	-412	416	624.	451
A.	2.46	.848	.757	295	244	273	273	229	375	382	385
m	2.94	978.	.757	295	244	.273	276	.229	145	323	32
4	3.43	. 848	. 758	295	244	272	.277	.229	. 45	232	.27
ĸ	3,92	.847	. 757	294	.244	272	277	.229	186	141.	53
•	4.39	.847	.757	762*	.244	. 273	.277	.229	186	141.	
2	4.88	.847	.757	.295	.244	.274	.276	229	. 186	141	
ac,	5.39	.846	. 757	2 95	244	273	.276	.229	.186	141	
0	5,84	B46	,757	, 296	244	273	276	.228	.186	141	
10	6.32	979	. 757	\$62.	.244	.273	.276	.228	.185	.145	.11
=	6.81	.846	. 157	.296	244	273	276	.228	186	141.	11.
21	7.30	.846	•758	. 297	.243	.273	276	.228	.186	141.	.11
<u>۲</u>	7.79	.846	, 758	162.	.243	.273	.276	.228	.186	.141	.11
7	8,53	.845	. 757	.296	.243	.273	.276	.228	185	.141	
ŝ	8.91	. 845	. 757	,296	.243	.272	. 276	.228	186	.140	.11

(b) Lower-flap static pressure p/pt,j

 $y/w_{\star}/2.0 = 0.450$

Point	r,					x/l _e	ູ່ຍ				
	^r t,j′r∞	-,209	66U · -	.011	.077	.143	.286	,429	.540	.736	068.
-	1,97	.847	. 751	305	672.	. 271	. 274	202.	. 193	.484	517
n;	2.46	.847	. 751	299	249	.272	275	213	363	.366	.375
P 73	2,94	.847	. 752	295	248	. 273	.276	.221	187	. 322	.326
7	3,43	• B46	.752	-292	247	.273	277	.226	.185	.228	.276
ur	3,92	.846	.753	195.	246	273	.276	229	.186	141	.235
4	. 4.39	.846	.753	062°	246	. 273	.277	. 232	187	141	119
1	4.88	846	.753	.289	.246	. 273	. 276	234	.186	141	.112
æ	5,39	.846	. 753	.289	246	272	276	. 236	.186	141	.112
o	5,84	- 84P	.754	.288	245	.272	.276	.237	.186	141	.113
c T	6.32	846	.754	885.	245	.272	.276	238	186	141	.113
-	6.81	.846	,754	264	245	.272	. 276	239	.186	141	.113
5	7.30	• 846	, 155	.287	245	271	.276	241	.186	141	.113
13	7.79	- 846	. 755	. 287	244	. 271	. 276	.241	186	141.	.113
14	8,53	845	.755	. 286	.244	. 271	276	.243	186	141.	.113
ų	-0 a	202	756	286		0.00	100				

0.875
II.
y/wt/2.0

_

 Point	a/ a					1/x	, O					
	t,j ^{.t} ~	-209	66 0 • •	.011		.143	-280	429	. 360	.736	.890	
 -	1.97	.842	.760	.304	. 251	.284	.317	. 453	. 470	479	468	
 N	2,46	278	.758	300	250	283	.279	228	340	388	386	
~	2,94	198.	759	×62°	.250	283	281	.22B	184	.317	,319	
1	3.43	1 B 4 1	,759	296	. 250	283	282	822	184	221	273	
ų	3.92	. 840	.75R	. 295	250	. 283	281	.228	194	138	.234	
¢	1.19	.840	75 8	295	672	.284	281	. 22R	184	138	128	
2	4.8.4	.838	. 757	162°	249	284	280	.228	1 8 4	138	.117	
œ	5.39	.839	757	562.	249	284	. 279	228	184	138	.117	
o	5.84	. H 39	. 757	594	549	284	. 279	.228	, 1 А 5	.138	.118	
-	6.32	, 839	.754	762.	549	284	.278	228	194	.138	.118	
 :	6.81	.840	,756	762	549	284	278	228	184	138	.118	
 21	7.30	078*	.756	762.	549	283	278	. 228	184	138	.118	
-	7.79	.839	.754	762.	249	283	. 277	228	184	138	118	
14	8.53	.840	.156	202°	672.	-282	. 277	825.	185	138	.118	
ŝ	8.91	.839	.756	362.	, 249	-282	. 277	.228	. 1 A 5	138	.118	

TABLE III.- Concluded

(c) Sidewall static pressure P/Pt, j

Left sidewall, z = 0.0

	5.6
	. 429
8	.286
x/1 _e	.143
	.077
	.011
	66 0 • •
	603

	Pt, j ^{/P.}	- 209	••0	.011	.077	.143	.286	.429	. 560	.736	.890
1						2.1	176	. 463	. 465	.471	475
-	1.97	828	7.58	010				191	441	. 367	.372
• •	2.46	.823	.739	609	514	. 1 4					106
	00	. 824	740	609	.514	.416	202				1 2 2 0
n :			110	608	514	.416	.260	.171	F 1 6 7		
					5 1	. 416	. 259	.171	168	104	1.1.
ŝ	3,92	100					25.7	171	149	.162	• 1 4 4
-	4.39	.823	.740	- 608						.162	.143
• •	4,48	. 823	. 740	. 607	.514	117.		•			143
		A C A	740	. 607	.514	.417	.247				
0				407	514	417	247	172	170	101.	1 : 1 :
o	2°0					11	247	171	170	.161	
c	6,32	529 .	• 1 4 0	100.					04.1	.161	.143
-	6.81	822	. 740	.607	.515	- 1					143
- e		820	240	.608	515	• 17	240				2.17
u 1			740	. 407	.515	- 417	24B	.171	164		
•					U U	7	. 248	.171	.169	101.	
J	8,53	100						170	149	.160	143
¥	8.91	.803	.740	6 0H	010			•		•	

0	
٠	
õ	
11	
N	
-	
vall	
13	
ewa]	
÷,	
щ	
sid	
4	
. c	
60	
ਜ	

	_				x/1 _e			
Foint	Pt,j'P∞	-,209	••0 • •	110.	.077	.143	, 286	.429
			140	411	510	415	.401	.468
					805	415	.250	.368
N	5 ° C			10.	201	415	.251	.166
нų.						1	251	.166
7		614					1.50	100
5		.819	• 7 4 1		000.	, .		
		.820	141	609	505	c17.		
		a	741	. 607	.505	.413	. 251	101
-				A08	205	413	. 251	.167
aC			1 - 1			11	. 251	.167
•		920	1 H / B		n 1 n 1	- -		147
-		.820	141	609	505.	- t - t - t		
2 •		028	741	608	505	413	152	
			C 17 E	608	505	.413	. 251	.167
~	-					117	251	.167
-		129	1 + 1			•		
		.821	2772	608	505	.413	1 42	
± 1			742	407	.505	.413	251	.167

Point						x/1	e				
· o í ne	^p t,j ^{/p} ∞	209	• 099	.011	.077	.143	.286	.429	.560	.736	.890
1	1,96	.784	,578	.430	,319	,289	,317	.452	,463	.471	,482
Ż	2.47	,781	.574	424	319	289	266	.225	3A1	, 386	, 388
3	2,95	,783	.577	424	320	290	266	225	189	.319	, 323
4	3,42	,783	.577	424	319	290	.267	225	188	.149	,275
5	3.94	.783	.578	424	318	290	266	223	188	.147	,214
6	4.40	783	577	424	318	290	265	,223	188	147	,126
7	4.88	783	578	424	318	288	265	223	<u>, 188</u>	.147	,126
8	5,38	.783	.578	423	318	288	265	,223	188	.147	,126
9	5,88	783	577	423	317	288	265	\$255	187	.147	.126
10	6.35	783	.577	423	318	288	265	223	187	148	,126
11	6.83	784	577	42 4	318	288	265	223	,187	148	,126
12	7.31	782	578	424	318	288	265	555	,187	148	127
13	7.79	783	578	424	318	288	265	,225	.187	147	127
14	8.54	783	578	424	317	288	265	555	186	147	,126
15	8.73	.783	.578	423	317	288	265	222	.186	147	126

(a) Upper-flap static pressure p/pt,j

 $y/w_{\star}/2.0 = 0.0$

	4.88	.783	.578	.424	,318	.288	.265	,223	, 188	.147	,126
8	5,38	,783	.578	.423	.318	,288	,265	,223	,188	.147	,126
9	5,88	,783	,577	.423	.317	.288	.265	\$555	,187	.147	,126
10	6,35	,783	,577	,423	.318	,288	,265	.223	187	.148	,126
11	6,83	.784	.577	424	.318	.288	265	223	187	.148	,126
12	7.31	,782	.578	.424	318	,288	,265	555	187	.148	127
13	7,79	.783	.578	424	318	288	265	555	187	.147	,127
14	8.54	,783	.578	424	317	.288	265	. 555	186	.147	,126
15	8.73	.783	.578	.423	317	.288	.265	.255	.186	.147	.126
					v/w /2.0	0 = 0.450					
	1	1			t/	x/	 l				
		4									
Point	^p t,j ^{/p} ∞	209	+,099	.011	.077	.143	e .286	.429	.560	,736	.890
						.143	.286		·····		-
1	1.96	.787	.568	.420	,326	.143	,286	.448	.460	.469	.482
1 2	1,96	.787	568 568	420	, 326 , 327	.143 .290 .291	.286 .286 .258	.448	,460 ,380	.469 .385	482
1 2 3	1.96 2.47 2.95	.787 .784 .786	- 	.420 .422 .422	,326 ,327 ,327	.143 .290 .291 .292	.286 .286 .258 .258	.448 .226 .226	,460 ,380 ,188	.469 .385 .318	482 388 322
1 2 3 4	1.96 2.47 2.95 3.42	.787 .784 .786 .787	- - 568 - 568 - 569 - 568	.420 .422 .422 .420	.326 .327 .327 .327	.143 .290 .291 .292 .292	,286 ,286 ,258 ,258 ,258	.448 .226 .226 .225	,460 ,380 ,188 ,188	469 385 318 147	482 388 322 275
1 2 3 4 5	1.96 2.47 2.95 3.42 3.94	.787 .784 .786	+568 +568 +569	. 420 . 422 . 422 . 420 . 420 . 420	, 326 , 327 , 327 , 327 , 325	.143 .290 .291 .292 .292 .292 .291	286 286 258 258 258 258 258	.448 ,226 .226 .225 .225	460 380 188 188 188 187	469 385 318 147 146	482 388 322
1 2 3 4	1.96 2.47 2.95 3.42 3.94 4.40	.787 .784 .786 .787 .786	568 568 569 568 568 568	420 422 422 420 420 420 420	.326 .327 .327 .327 .325 .325 .326	.143 .290 .291 .292 .292 .292 .291 .291	.286 .286 .258 .258 .258 .258 .258 .258 .258	448 226 226 225 225 225 225	,460 ,380 ,188 ,188 ,187 ,187	.469 .385 .318 .147 .146 .146	482 388 322 275 211 123
1 2 3 4 5 6 7	1.96 2.47 2.95 3.42 3.94 4.40 4.88	• 787 • 784 • 786 • 787 • 786 • 787	568 568 569 568 568 568 568 568	. 420 . 422 . 422 . 420 . 420 . 420 . 420 . 420	, 326 , 327 , 327 , 327 , 325 , 326 , 326	.143 .290 .291 .292 .292 .292 .291 .291 .291	.286 .286 .258 .258 .258 .258 .258 .258 .257 .257	.448 .226 .226 .225 .225 .225 .225 .225	,460 ,380 ,188 ,188 ,187 ,187 ,187	.469 .385 .318 .147 .146 .146 .146	482 388 322 275 211 123 123
1 2 3 4 5 6 7 8	1.96 2.47 2.95 3.42 3.94 4.40 4.88 5.38	•787 •784 •786 •787 •786 •787 •785 •785 •786	- 568 569 568 568 568 568 568 568	. 420 . 422 . 422 . 420 . 420 . 420 . 420 . 420 . 420	, 326 , 327 , 327 , 327 , 325 , 326 , 326 , 326	.143 .290 .291 .292 .292 .292 .291 .291 .291 .291	.286 .258 .258 .258 .258 .258 .258 .257 .257 .257	.448 .226 .226 .225 .225 .225 .225 .225 .225	,460 ,380 ,188 ,188 ,187 ,187 ,187 ,187	.469 .385 .318 .147 .146 .146 .146 .146	482 388 322 275 211 123 123 123
1 2 3 4 5 6 7 8 9	1.96 2.47 2.95 3.42 3.94 4.40 4.88 5.38 5.88	• 787 • 784 • 786 • 787 • 786 • 787 • 785 • 785 • 786 • 786	568 568 569 568 568 568 568 568 568 568	420 422 422 420 420 420 420 420 420 420	. 326 . 327 . 327 . 327 . 325 . 326 . 326 . 326 . 326	.143 .290 .291 .292 .292 .291 .291 .291 .291 .291	,286 ,286 ,258 ,258 ,258 ,258 ,257 ,257 ,256 ,255	448 226 225 225 225 225 225 225 225 224 224	,460 ,580 ,188 ,188 ,187 ,187 ,187 ,187 ,187	. 469 . 385 . 318 . 147 . 146 . 146 . 146 . 146 . 146	482 388 322 275 211 123 123 123 123
1 2 3 4 5 6 7 8 9	1.96 2.47 2.95 3.42 3.94 4.40 4.88 5.88 5.88 6.35	*787 *784 *786 *787 *786 *787 *785 *786 *786 *786	- 568 - 568 - 569 - 568 - 568 - 568 - 568 - 568 - 568 - 566 - 566	420 422 422 420 420 420 420 420 420 420	326 327 327 327 325 326 326 326 326 326 326	.143 .290 .291 .292 .291 .291 .291 .291 .291 .291	286 286 258 258 258 258 257 257 257 256 255 255	448 226 225 225 225 225 225 225 225 224 224	. 460 , 380 , 188 , 188 , 187 , 187 , 187 , 187 , 187 , 187	.469 .385 .318 .147 .146 .146 .146 .146 .146 .146	482 388 322 275 211 123 123 123 124 124
1 2 3 4 5 6 7 8 9 10 11	1.96 2.47 2.95 3.42 3.94 4.40 4.88 5.38 5.88 5.88 5.88 5.88 5.88	* 787 * 784 * 786 * 787 * 786 * 787 * 785 * 786 * 786 * 786 * 786	568 568 569 568 568 568 568 568 568 568 568 566 566	420 422 422 420 420 420 420 420 420 420	326 327 327 325 326 326 326 326 326 326 326	.143 .290 .291 .292 .291 .291 .291 .291 .291 .291	.286 .286 .258 .258 .258 .258 .257 .257 .257 .255 .255 .255	448 226 225 225 225 225 225 225 225 224 224	,460 ,380 ,188 ,187 ,187 ,187 ,187 ,187 ,187 ,187	.469 .385 .318 .147 .146 .146 .146 .146 .146 .146 .146	.482 .388 .322 .275 .211 .123 .123 .123 .124 .124
1 2 3 4 5 6 7 7 8 9 10 11	1.96 2.47 2.95 3.94 4.40 4.88 5.38 5.88 6.35 6.83 7.31	- 787 - 784 - 786 - 787 - 786 - 787 - 785 - 786 - 786 - 786 - 786 - 786 - 786 - 786	568 568 568 568 568 568 568 568 568 568	420 422 422 420 420 420 420 420 420 420	326 327 327 325 326 326 326 326 326 326 326 326	.143 .290 .291 .292 .292 .291 .291 .291 .291 .291	.286 .258 .258 .258 .258 .257 .256 .255 .255 .255 .255	448 226 225 225 225 225 225 225 224 224 224 224	.460 ,388 ,188 ,187 ,187 ,187 ,187 ,187 ,187 ,1	.469 .385 .318 .147 .146 .146 .146 .146 .146 .146 .146	.482 .388 .322 .275 .211 .123 .123 .123 .124 .124 .124
1 2 3 4 5 6 7 8 9 10 11	1.96 2.47 2.95 3.42 3.94 4.40 4.88 5.38 5.88 5.88 5.88 5.88 5.88	* 787 * 784 * 786 * 787 * 786 * 787 * 785 * 786 * 786 * 786 * 786	568 568 569 568 568 568 568 568 568 568 568 566 566	420 422 422 420 420 420 420 420 420 420	326 327 327 325 326 326 326 326 326 326 326	.143 .290 .291 .292 .291 .291 .291 .291 .291 .291	.286 .286 .258 .258 .258 .258 .257 .257 .257 .255 .255 .255	448 226 225 225 225 225 225 225 225 224 224	,460 ,380 ,188 ,187 ,187 ,187 ,187 ,187 ,187 ,187	.469 .385 .318 .147 .146 .146 .146 .146 .146 .146 .146	.482 .388 .322 .275 .211 .123 .123 .124 .124

 $y/w_t/2.0 = 0.875$

Point	n /n					x/ l	e				
	^P t,j ^{/p} ∞	209	-,099	.011	.077	.143	,286	.429	.560	,736	.890
. 1	1,96	.788	.583	407	. 333	. 302	,269	.439	453	.468	,482
2	2.47	,788	,583	.406	.331	.302	.269	.224	.370	.374	, 381
2 3	2,95	.790	583	403	. 331	301	569	225	189	,306	, 314
4	3.42	,790	.583	.403	329	301	.269	.225	189	.145	,270
5	3.94	,787	,582	403	328	301	269	225	. 190	.146	,187
6	4.40	,787	582	.403	328	.300	270	.225	190	.147	.124
7	4,88	.787	.582	403	329	299	568	225	.190	.147	,124
8	5.3A	,788	.582	403	.329	299	569	.224	190	148	,125
9	5,88	787	.582	402	.329	298	.568	.224	189	.148	.125
10	6,35	,788	.583	.402	329	.299	268	.224	189	.149	,125
11	6.83	,787	.583	.402	329	,299	268	.224	189	.149	,125
12	7.31	.787	,584	402	.329	299	.268	.224	.189	,149	,125
13	7.79	.787	.582	.405	.329	.298	.268	.224	189	. 149	,126
14	8,54	,758	.583	.402	,329	.298	.269	.224	188	.149	,125
15	8,73	,788	.583	.403	329	298	268	224	188	,149	.125

Continued ł P. TABLE

.736 .560 ·m .429 286 x/1_e 0.0 143 H y/wt/2.0 .077 .011 ••044 -,209 Pt,j^{/p∞} Point .

.890

P/Pt, ወ йn ົທ ΰ ö лd static ap Lower-fl q

0.450	
18	
2.0	
/*m/	
5	

					x/1 ^e	ູ່ຍ				
- 0 N 3 N 6 F 6 - 0 N M M 3 3 N - 0 N M M 3 3 N - 0 2 6 3 6 8 - 0 3 6 3 6 8 - 0 3 6 3 6 8 - 0 0 0 3 6 8 - 0 0 0 3 6 8 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • 509	660°=	110.	.077	.143	.286	.429	.560	.736	.890
ималерес ималерсс 1919 2929280 2929280 2929280 2929280	.785	571	.416	.333	.296	.269	419	433	2000	.465
N3N0FC 0403CC	.784	.571	.413	333	299	. 270	207	.376	.383	.386
20000000000000000000000000000000000000	.784	570	.411	333	300	.271	214	190	.316	, 322
N-0-P-C N-3-3-N 0-3-C 0-3-C 2-C C 0-3-C C 0-3-C C 0-3-C C 0-3-C C 0-3-C C 0-2-C C 0-2-C C 0-2-C C 0-2-C C 0-2-C C 0-2-C C 0-2-C C 0-2-C 0-	.784	.571	409	330	301	271	.219	.190	.149	, 274
2 2 4 0	, 783	.571	407	.329	300	.270	223	.190	.149	.216
4 4 88 5 38	.784	571	404	329	298	270	226	101.	.149	121
A 5,38	.784	572	405	. 329	298	270	228	101.	149	121
•	.782	571	404	329	298	.270	.230	161.	.149	.122
9 5.88	. 782	.571	403	128	298	.270	.231	190	.149	, 122
10 6.35	. 782	572	204	528	298	270	.232	190	.149	.122
11 6.83	783	572	402	328	298	.270	233	190	.149	.122
12 7.31	784	571	207	328	298	270	234	100	.149	.122
13 7.79	784	.572	402	328	298	270	.235	. 190	.149	.122
14 8 54	784	.573	402	328	298	271	.236	.190	.149	.122
15 B.73	. 783	.573	402	328	298	. 271	.236	190	.149	.122

0.875
Ħ
•
2
y/wt

10 10 10	د/ د					1/x	Ð					
	^r t,j ^r	• • 503	• • 0 0 •	.011	• 077	.143	.286	,429	.560	.736	. 890	
-	1.96	. 783	592	404	328	300	.274	406	. 425	. 447	.471	
•	2.47	781	593	408	.328	301	. 275	.226	.368	. 372	.378	
. P	2,95	. 781	595	405	328	302	.277	.226	101	305	.313	
7	3,42	.781	595	.405	328	300	276	.227	194	.154	,268	
Ľ	3.94	.780	.595	. 404	329	595.	276	227	.195	.154	.203	
•	4.40	. 779	.595	404	326	300	275	.227	195	.154	.166	
~	4.8.8	. 779	. 597	404	326	300	275	227	1 95	.154	.127	
۵	5,38	. 777	597	403	327	300	274	. 227	. 105	.155	.127	
0	5.88	. 777	. 595	103	326	299	.274	.226	195	,154	.128	
0	6.35	. 777	596	5 4 U 2	326	299	274	.227	. 195	154	.128	<i>.</i>
-	6.83	778	596	402	327	299	274	.226	195	154	.127	
21	7.31	.779	. 597	403	. 327	299	.273	227	. 195	.154	.128	
-	7.79	.779	597	402	. 327	599.	.273	.227	. 195	.154	.128	
14	8,54	.179	5 9д	2012	.327	, 299	.273	.227	. 105	154	.128	
5	8.73	. 780	, 59A	204.	752.	662.	. 273	. 227	. 1 a S	.154	.128	
												_

TABLE IV.- Concluded

(c) Sidewall static pressure p/pt,j

				[Left sidewall, z = 0.0	all, z = (0.0		ļ		
+	, , ,					x/l _e	е				
LOTIC	^P t,j' ^{P∞}	-,209	• • 0 4 9	.011	.077	.143	.286	.429	.540	.736	.890
-	40	.783	. 676	559	.483	107	.281	207	. 318	.493	.510
^	2.47	782	678	556	483	407	, 281	205	, 153	.323	390
	50.0	783	. 679	557	.483	.406	.281	206	. 145	297	• 309
-	1	784	680	557	483	407	.281	206	.156	153	262
, u	10.1	783	.680	556	483	407	.280	.206	. 165	.154	.136
· ·	4.40	782	.680	556	482	401	.278	205	163	.154	.136
	50.1	782	.681	556	181	101	277	206	178	.154	.136
- α		782	.681	555	483	407	276	.206	171	154	.136
. 0	5	782	681	555	.483	.407	.276	.205	1.91	.154	.136
	59	782	.680	556	483	407	.276	205	174	.154	.136.
• •		.783	.681	556	.483	407	270	205	.179	, 154	.136
	11.4	781	.681	.556	482	407	.276	205	175	.154	.136
4 U	7.79	780	681	.556	.483	407	.276	205	182	,154	136
14	8.54	. 775	. 682	.556	483	407	.276	.204	187	.154	. 136
	8.73	772	682	556	483	. 407	.276	.204	.182	.154	.136
1			•	•	•						

10:00					x/l _e			
O THE	Pt,j'r∞	• • 209	66U ·-	.011	.077	.143	•286	• 4 2 9
-	1 1	1~	.681	1 0	.479	.411	ത	- M
- 0		. ~	68	10	.478	412	αr)	0
J 74		17	iπ.	10	478	411	αC)	0
- ו =		17	en)		. 477	409	n	0
ru	•	-	ഹ	10	.476	409	Ð	0
n - 4		774	680	(n	.475	408	283	
•		~	ΩÛ)	:0	.475	408	ar.	0
- 0(~	.681	:0	475	408	αÔ	50
0	. (-	680	_ iO	.474	407	œ	2
+ c +		•	30	i in	475	408	¢	202
	•	1	5.8	10	474	408	c	2
	• •	1	681	ះព	474	408	Ð	20
. .	•	•	681	ഹ	470	408	co	202
n =		•	84	· in	475	408	a۵	0
	6	. 777	681	555	475	408	œ	208

TABLE V.- RATIO OF INTERNAL STATIC PRESSURE TO JET TOTAL PRESSURE FOR NOZZLE B3

						x/l _e	نە د				
Point	Pt,j′P∞	199		.013	.077	.141	.279	.417	.545	.715	.864
1.		105	703	. 175	141	405	084	977	. 453	.457	• 4 6 9
		104				108	0.82	238	372	.383	383
						308	280	.239	199	.313	.321
n :		104	004	091		308	.201	240	200	.156	269
3 8		101				108	280	240	. 200	.157	.132
					144	101	280	240	200	.157	.133
D· 8	1 F 1 G 1 S	105		191	5 T F	101	.280	240	104	.157	
~ •		404		100	222	306	280	240	104,	.157	1
				292	144	307	260	. 240	, 201	.157	
•		404			144	.306	280	. 240	102.	.157	
		101			275	.306	.280	.240	102	.158	1
(101				306	.280	240	102.	.157	13
		101				306	280	. 240	201	.158	E .
n :		101	0,0		372	306	280	240	002	.158	5
3- W		707	601		345	306	. 280	.240	201	158	131

(a) Upper-flap static pressure p/Pt,j

 $y/w_{t}/2.0 = 0.450$

						x/Le	e				
Point	Pt,j/P~	199	093	.013	.077	141	.279	417	. 545	.715	.864
-	a 0	107	0	007	967	310	.284	.431	444	124.	466.
- 6		106		007		512	285	242	110	.381	382
V 8		404		101	127	111	287	244	203	.310	.319
n =		100		101	121	313	287	244	308.	.173	.268
3 W		196	663	196	126	313	287	245	502	.174	.139
r 4	7777	196	205	561	125	313	.288	.245	202	.174	140
•		. 796	202	394	. 325	.313	.288	. 245	205	.175	140
	2 7	796	592	394	324	313	.288	.245	100	.175	140
• •	0.0	202	592	194	. 324	. 313	.288	.245	, 206	.175	141.
-		796	592	392	323	. 313	. 288	. 245	206	.176	
		196	592	392	123	.313	.258	.244	, 206	.176	1 - 1
		795	105	192	.322	.313	288	. 245	206	.176	. 1 4 1
v #		202	105	292	322	.313	.288	245	, 206	.176	141
n =		101	5 I	101	322	.313	. 268	.245	902	.176	
. .		795	593	391	322	.313	. 288	.245	.206	.176	.141

0.875
n
0
5.
Anly

boint						×/1	e			
	rt,j' ^r	. 199	.013	.077	.141	.279	. 417	.545	.715	.864
	80.1	.801	.379	.330	.320	.275	.397	.438	455	.472
	6.1		377	329	.321	.276	.231	.352	110	377
	90.0	.801	375	328	320	.276	.232	.187	100	.311
n =		800	374	327	.320	.276	.232	.187	146	- 262
		800	173	1255	319	.276	.231	.187	146	.128
-	7777	900	.372	324		275	.231	158	146	.128
	10.17	908	171	.324	317	. 275	. 231	.188	146	.128
- •		900	370	323	316	.274	.230	.188	9114	.128
	205	. 800	370	322	316	.274	.229	.187	146	128
-		199	370	.322	316	.274	, 229	.187	146	.127
	0.8.9	199	369	322	315	.274	.229	.186	144	.127
	7.78	299	369	.321	315	.273	,229	.186	.146	.127
	7.87	799	368	.321	315	273	.228	.186	146	.127
	9	799	368	1251	315	.273	.228	.185	, 146	.127
	5.61	199	.365	.320	.315	. 273	.228	.185	146	.127
; •										

TABLE V.- Continued

Point	u/					x/l _e	ູບ				
	ŕt,j'r∞	199	- 603	.013	.077	.141	.279	.417	. 545	.715	.864
·		. 792	.615	. 199	. 333	.301	. 275	. 443	. 448	.452	.466
•	2.48	- 192	.615	. 400	.336	.303	. 275	. 231	N - N	.381	.382
1		161.	.615	400	.337	.303	. 276	.231	194	.313	320
4		164.	.614	.401	.338	.304	.276	.232	- - -	.151	.269
r.		. 791	.614	401	.338	.303	.276	232	195	.152	.127
4	-	162.	.614	.401	.338	101	. 275	. 233	.196	.152	127
•	-	.791	.613	.400	338	.303	. 275	. 233	107	.152	.127
¢	-	164.	.613	401	.338	303	. 275	232	197	.152	.128
o	-	. 790	.613	.401	. 338	303	. 275	.232	197	153	.126
10	-	.790	.613	.400	.338	.303	. 275	.232	197	.153	.128
11	-	. 790	.613	. 400	.338	. 303	.274	. 232	197	.153	.128
2		.790	.613	.400	.338	303	.274	.232	101	153	128
13	-	.790	.613	. 400	.338	.303	.274	. 232	197	.153	.128
14		. 790	.612	400	.338	. 303	.274	. 232	197	.152	.128
¥0		. 790	.612	399	338	.302	.274	. 232	101	.152	.128

(b) Lower-flap static pressure p/pt,j

 $y/w_{t}/2.0 = 0.450$

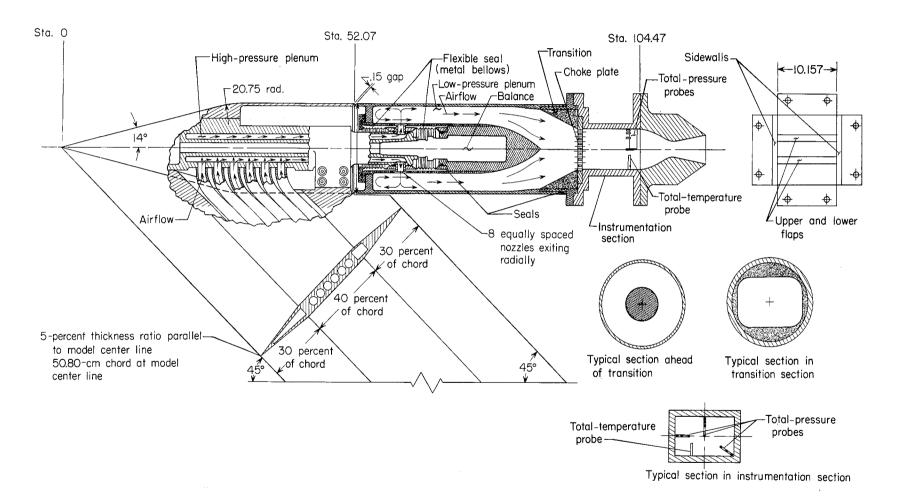
Point	a/d					x/l _e	e				
	,t,j.*∝	199	.093	.013	.077	.141	.279	.417	. 5 <i>4</i> 5	.715	.864
-	1,98	. 788	.616	107	.336	. 307	.278	.423	. 418	677.	497.
N	2.48	.787	.619	.401	335	.309	. 280	232	141	380	.381
*	2.96	.755	.621	.402	334	.310	. 281	. 232		.311	.318
7	3.46	. 789	.621	.402	333	.310	.281	. 233	105	.151.	.267
ا	3,95	. 788	.621	.402	332	308	.281	233	196	.151	127
4	444	.789	.622	.401	532	.307	. 281	233	107	.151	.127
•	4.93	- 789	.621	.401	. 332	.306	.281	. 233	107	.152	127
•0	5.42	.768	.621	. 401	.331	.306	.281	. 233	101	.152	.128
0	5,92	.788	.621	.401	.331	.305	282	232	197	.152	.128
10	6.41	. 788	.621	.401	. 330	305	282	.232	101	.152	.129
11	6.89	.788	.621	.401	.330	305	282	232	197	.152	.129
12	7.38	. 788	.621	.401	330	305	282	232	197	152	.129
	7.87	. 785	.622	107.	.330	305	282	. 232	. 197	.152	.129
14	8,35	. 788	.621	.401	.329	305	- 282	. 232	107	.152	.129
	5.61	- 788	.623	107.	.329	305	282	232	101	.152	.129

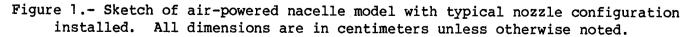
0.875
lf
0
2
y/w _t /

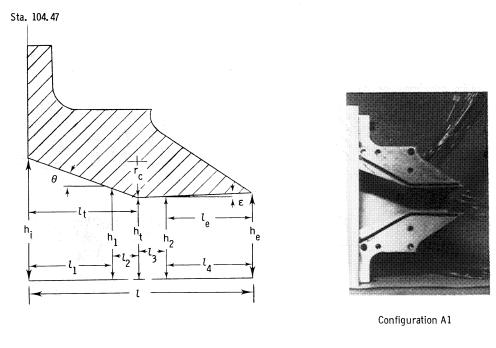
Point	a/. a					x/l _e	, e				
		-199	£60°-	.013	.077	.141	.279	.417	545	.715	.864
	1.98	. 790	.592	. 400	.348	.316	. 278	.394	. 452	.450	.470
	5.4.8	. 789	.593	.400	.344	.319	.280	.238	354	.369	.376
	5 2.96	.789	.593	107	.339	.320	. 282	. 239	195	- 299	.310
	3.46	- 789	593	.401	.335	.320	.283	240	105	.160	.260
	299°	. 788	.593	.401	. 335	.319	.282	.240	195	.160	.137
	5 4.44	.788	593	401	.334	.319	.282	241	195	.161	137
	1 4.93	. 788	.594	.401	.334	.319	. 281	.241		.161	.137
-	5,42	.788	593.	.401	.334	.318	. 281	. 241	501.	.161	.138
	5.92	.788	£63°	401	.334	.318	.281	142.	195	.161	.138
-	6.41	.788	.594	401	334	.318	.260	.241	195	.161	,138
-	6.89	• 789	.594	.401	.334	.318	.280	.241	201	.161	.138
-	4.38	. 789	593	,401	.334	.318	.280	142.	. 195	.162	.138
-	5 7.87	.789	.594	101	.334	, 31ê	. 28.0	192.	105	.161	.138
-	1 8.35	.789	.593	.400	, 334	.318	.260	. 241	101	.161	.138
	5.81	. 790	1992.	.400	.334	.318	.280	172.	. 1 0 5	.161	.138

TABLE V.- Concluded

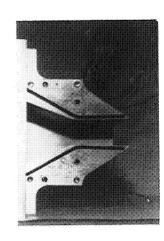
(c) Sidewall static pressure $p/P_{t,j}$


= 0.0
N
sidewall,
Left

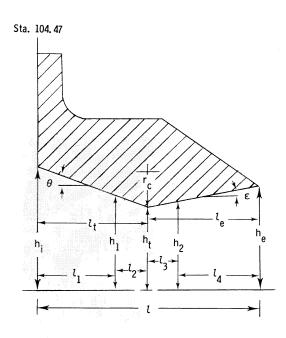

1.100 .093 .013 .077 .141 .279 1.00 .778 .678 .551 .469 .294 2.466 .778 .678 .551 .469 .294 2.466 .778 .678 .5551 .469 .294 2.466 .778 .678 .5551 .469 .294 2.466 .778 .678 .5551 .469 .294 2.469 .779 .678 .5551 .469 .297 2.479 .678 .5551 .469 .400 .299 2.479 .678 .5551 .469 .400 .299 2.410 .779 .678 .5551 .469 .400 .299 2.410 .779 .678 .5551 .469 .400 .299 2.410 .779 .678 .5521 .469 .400 .299 2.410 .779 .678 .5522 .469 .400 .299 2.410 .779 .678 .5522 .469 .400	+	-					x/1 _e	۵ ن				
1 1 1	EOTHE	^ν t,j ^ν ∞	••199		.013	.077	.141	.279	.417	.5ú5	.715	. 964
0 0			. 7.8	440	551	440	198	- 294	.234		.457	.504
0 0					5	0.97	001	295	236	001	.324	. 379
0 0			110			169	199	297	237	200	.174	101
1 1	n =		780	619		469	199	. 297	. 237	1021	.160	150
1 1 <td>7· 14</td> <td></td> <td>778</td> <td>678</td> <td>122</td> <td>.469</td> <td>. 400</td> <td>.297</td> <td>.238</td> <td>105,</td> <td>.160</td> <td></td>	7· 14		778	678	122	.469	. 400	.297	.238	105,	.160	
4 6 1 <td></td> <td>777</td> <td>779</td> <td>676</td> <td>122</td> <td>. 469</td> <td>400</td> <td>.296</td> <td>. 238</td> <td>202</td> <td>.161.</td> <td>111</td>		777	779	676	122	. 469	400	.296	. 238	202	.161.	111
5:42 .179 .678 .551 .469 .295 5:42 .179 .678 .552 .469 .295 6:41 .179 .678 .552 .469 .295 6:41 .779 .678 .552 .469 .295 7:49 .678 .552 .469 .400 .295 7:49 .678 .552 .469 .400 .295 7:49 .678 .555 .469 .400 .295 7:49 .678 .555 .469 .400 .295 7:49 .678 .555 .469 .400 .295 7:49 .678 .555 .469 .400 .295 7:49 .678 .555 .469 .400 .295 7:49 .678 .555 .469 .400 .295 7:49 .678 .555 .469 .400 .295 8 .779 .555 .469 .400 .295 8 .779 .555 .469 .400 9 .719 .555 .469 .400 9 .719 .555 .469 .400 9 <td></td> <td>10.1</td> <td>779</td> <td>.678</td> <td>551</td> <td>.469</td> <td>.400</td> <td>.296</td> <td>, 237</td> <td>2021</td> <td>.161</td> <td>1 : ·</td>		10.1	779	.678	551	.469	.400	.296	, 237	2021	.161	1 : ·
5.92	•	6.0.2	779	678	551	.469	.400	295	, 237	202	101	- -
6.41 779 678 552 469 400 295 6.89 779 678 552 469 400 295 7.36 779 678 552 469 400 295 7.87 779 678 552 469 400 295 7.87 779 678 552 469 400 295 7.87 779 678 552 469 400 295 8.55 4459 400 295 295 295 8.55 4459 400 295 295			. 779	. 676	555	469	400	. 295	. 237	202	191	1 T T T
6.89 779 678 552 469 400 295 7.38 779 678 552 469 400 295 7.87 779 678 552 469 400 295 8.35 778 552 469 400 295 8.35 778 552 469 400 295 9.35 778 552 469 400 295		6.41	. 779	678	532	. 469	.400	295	. 237	2021	191	
7.36 779 678 552 469 400 295 7.67 779 678 552 469 400 295 8.35 1778 678 552 469 400 295 8.35 1778 578 552 469 400 294	25 -		779	.678	552	469	400	295	. 237	2021	191	
7.87 779 678 555 4469 400 295 295 1778 678 555 4469 400 295 205 1778 678 552 4469 400 294			. 779	.678	552	469	.400	295.	.236	202,	.161	
8.35 778 678 552 469 400 295	•	7.87	. 779	.678	552	469	400	295	, 236	202	.161	0 T T T
			778	678	552	. 469	.400	. 295	.236	202	.160	1 1 1 1 1
		6.61	. 779	.678	.552	.468	. 400	.294	.236	202.	.160	C H 1 .


į

Right sidewall, z = 0.0


+					x/1 _e			
בסדוור	^ν t,j ^{, γ} ∞	.199	093	.015	.077	.141	.279	.417
	0	1 .	1	5	3	-	-	22
6		1	- 10	5		-	m	~
	r a				47	50	28	22
n =	1 4 4 4	780			474	401	289	20
3 - M	10	10		ŝ		50	5	. 226
r 4			. a D	ŝ		- 7	0	23
G P	0				4.7	40	28	22
•		•	84	5	17	-	28	24
C 0	:0) eD		. 🖚	0	28	~
-			99		17	-	5	2
	. 4	8	- 60		•	9	28	a
- :	9 P •	- 8-	94		5	40	2	20
	n a •	78.) ac	1	5	10	- 60	22
n :	•) ag			07	2	2
7	2) C		
4		-0	ю		-	-	D	U

Parameter	A1	A2	Parameter	A1	A2
A _e , cm ²	30.29	30.29	۲ ^t	5.78	5.78
A _t ,cm ²	27.81	27.81	ι_1	5.54	4.74
A _e /A _t	1.09	1.09	l ₂	.24	1.04
h _e	1.49	1.49	l ₃	.01	.06
h _i	3.52	3.52	l ₄	5.76	5.72
ht	1.37	1.37	M _d	1.35	1.35
h	1.41	1.57	NPRd	2.97	2.97
h ₂	1.37	1.37	r _c	.68	2.74
L	11.56	11.56	heta , deg	20.84	22.33
ι _e	5.78	5.78	ε, deg	1.21	1.21



Configuration A2

L-80-174

(a) Configurations A1 and A2.

Figure 2.- Sketches of nonaxisymmetric converging-diverging nozzle configurations showing important parameters. All dimensions are in centimeters unless otherwise noted.

B1

50.06

27.81

1.80

2.46

3.52

1.37

1.41

1.38

11.56

5.78

 A_{e}, cm^{2}

 A_{t}, cm^2

A_e/A_t

he

hi

ht

h_l

h₂

ι

ι_e

B2

50.06

27.81

1.80

2.46

3.52

1.37

1.57

1.42

11.56

5.78

B3

50.06

27.81

1.80 l₂

2.46

3.52

1.37

1.54

1.42

12.25

5.97

ł

 ι_1

l₃

l4

Md

r_c

NPR_d

θ, deg 20.84

B1

5.78

5.54

.24

.13

5.65

2.08

8.81

.68

ε, deg 10.85 11.24

B2

5.78

4.74

1.04

.53

5.25

2.08

8.81

2.74

22.33

B3

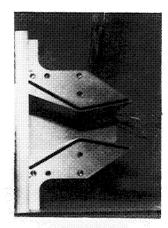
6.27

5.32

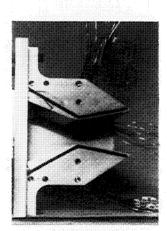
.96

.52

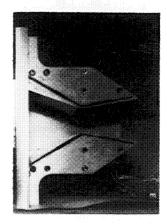
5.46


2.08

8.81


2.74

20.42


10.85

Configuration B1

Configuration B2

Configuration B3 L-80-175

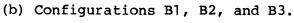
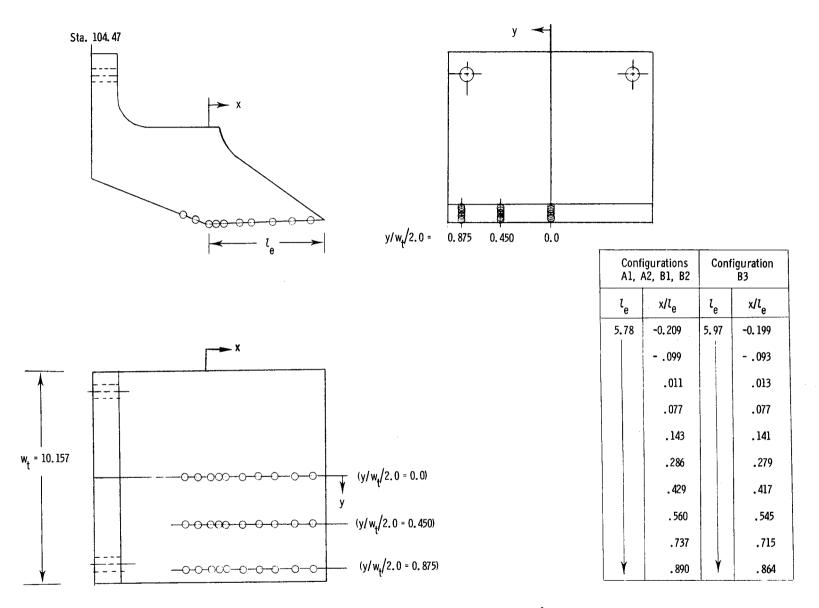
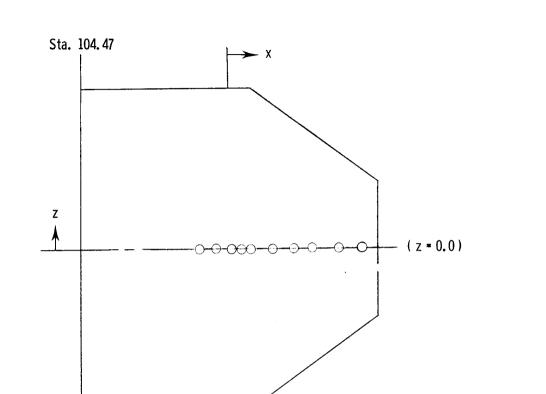
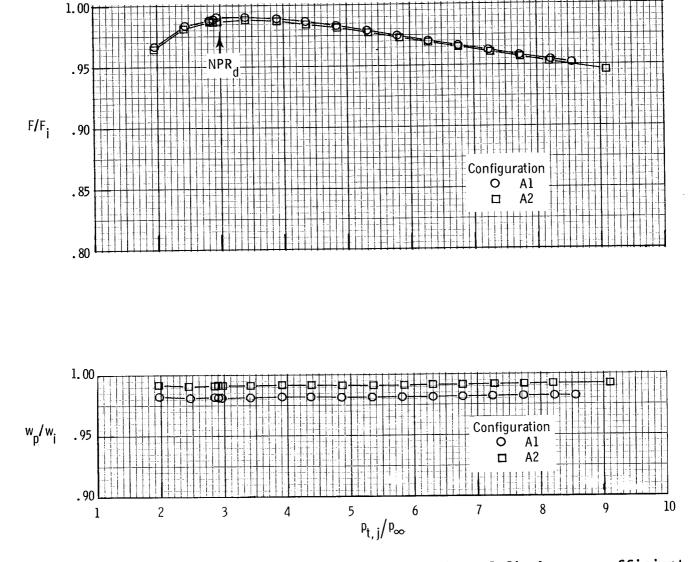
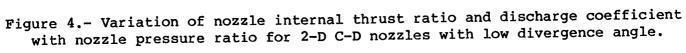




Figure 2.- Concluded.

(a) Flap static-pressure instrumentation.


Figure 3.- Sketches of 2-D C-D nozzle components showing internal static-pressure orifice locations. All dimensions are in centimeters unless otherwise noted.



	urations , B1, B2	Configu B	
Left	Right	Left	Right
x/l _e	x/l _e	x/l _e	x/l _e
-0,209	-0.209	-0.199	-0.199
099	099	093	093
.011	.011	.013	.013
.077	.077	.077	.077
. 143	. 143	.141	.141
.286	.286	.279	.279
. 429	. 429	.417	.417
.560		.545	
.736		.715	
. 890		. 864	

(b) Sidewall static-pressure instrumentation.

Figure 3.- Concluded.

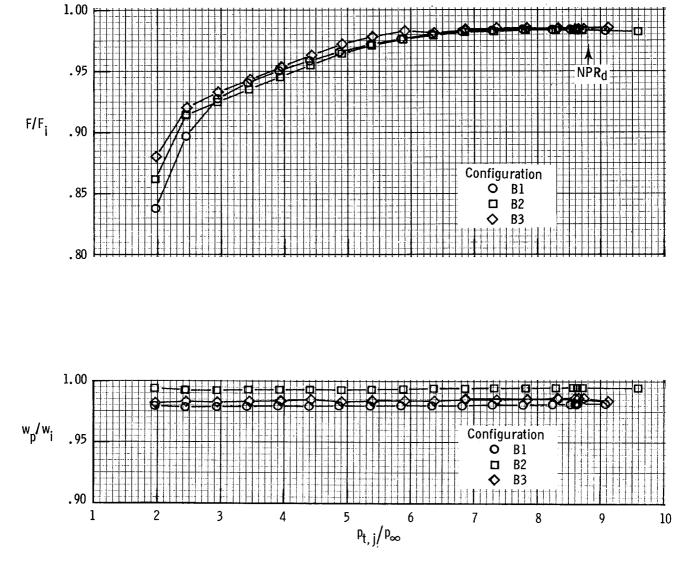


Figure 5.- Variation of internal thrust ratio and discharge coefficient with nozzle pressure ratio for 2-D C-D nozzles with high divergence angle.

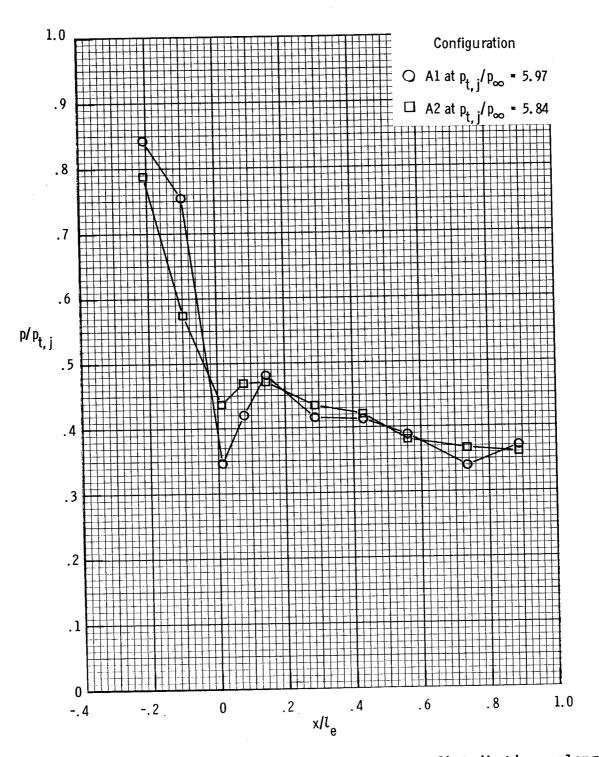
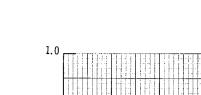



Figure 6.- Comparison of internal static-pressure distributions along upper-flap center line for nozzles A1 and A2.

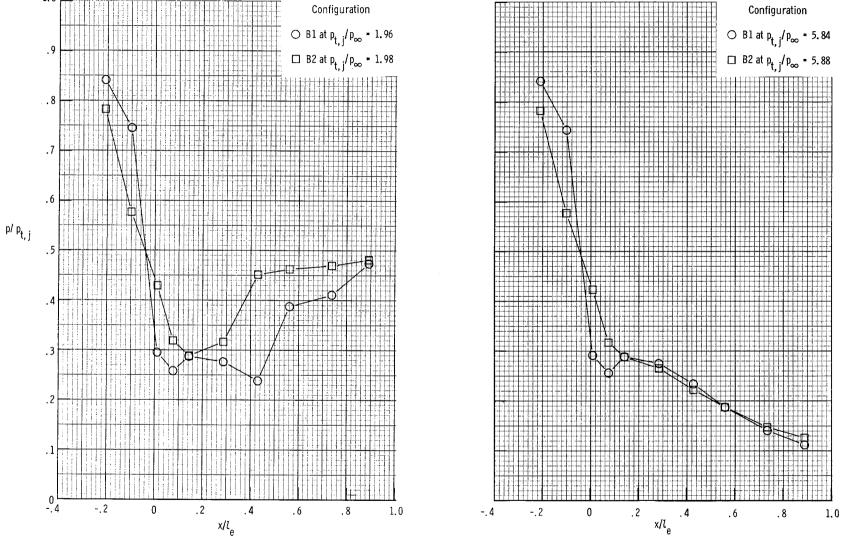


Figure 7.- Comparison of internal static-pressure distributions along upper-flap center line for nozzles B1 and B2.

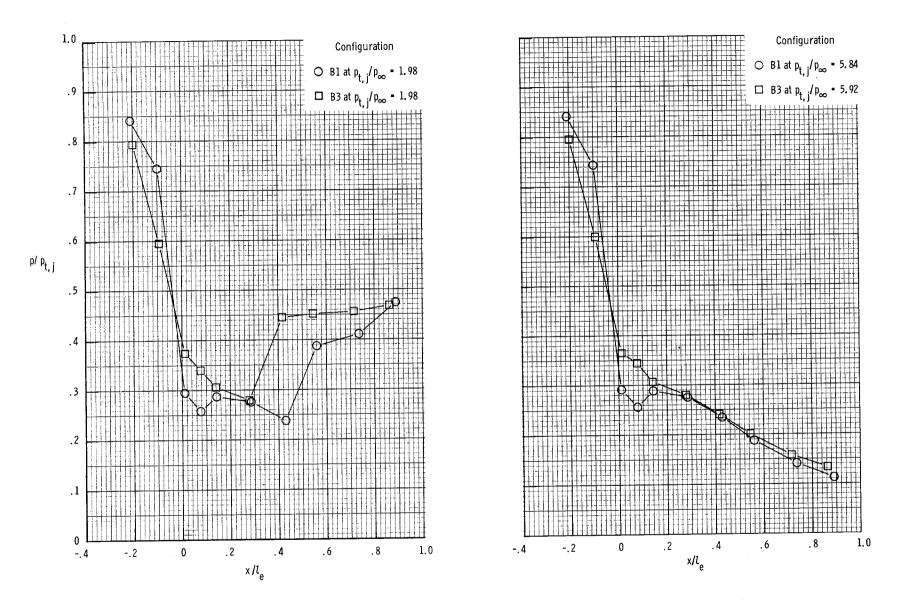
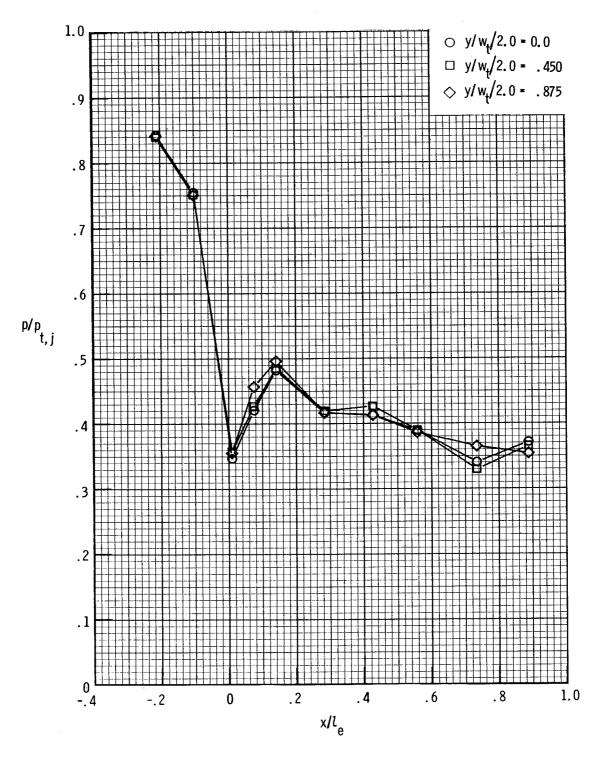
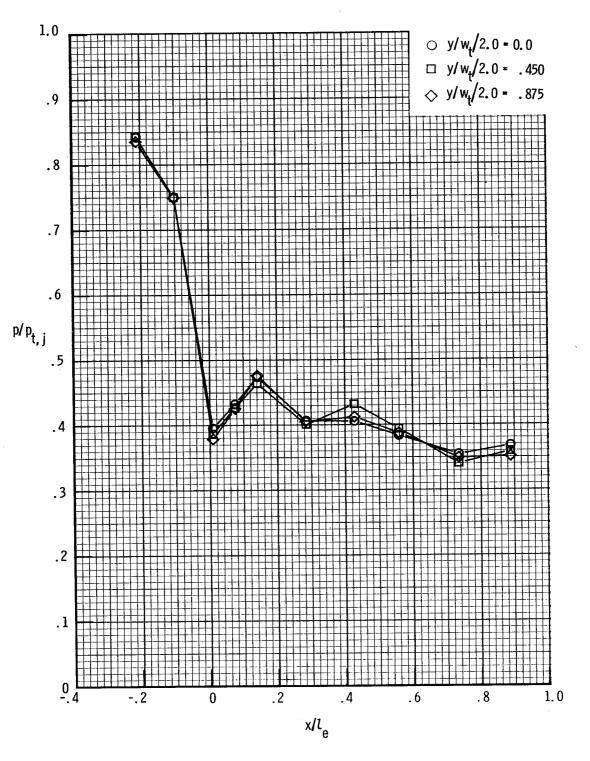




Figure 8.- Comparison of internal static-pressure distributions along the upper-flap center line for nozzles B1 and B3.

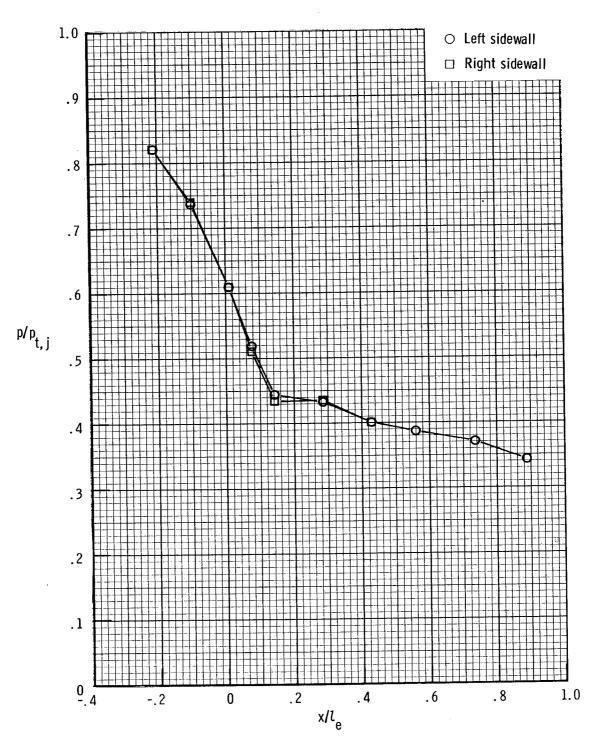

(a) Upper flap.

Figure 9.- Internal static-pressure distributions for nozzle A1 at $p_{t,j}/p_{\infty} = 5.97$.

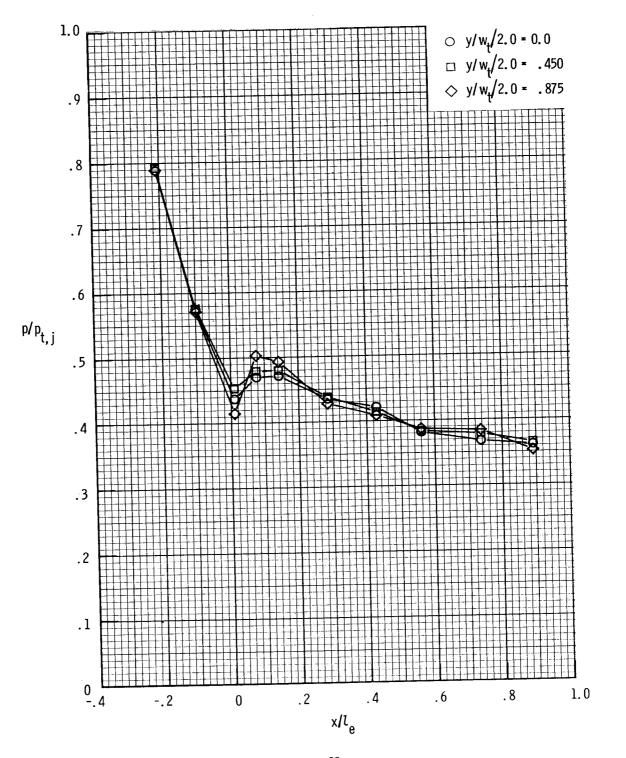
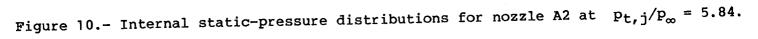

(b) Lower flap.

Figure 9.- Continued.



(c) Sidewalls.

Figure 9.- Concluded.

(a) Upper flap.

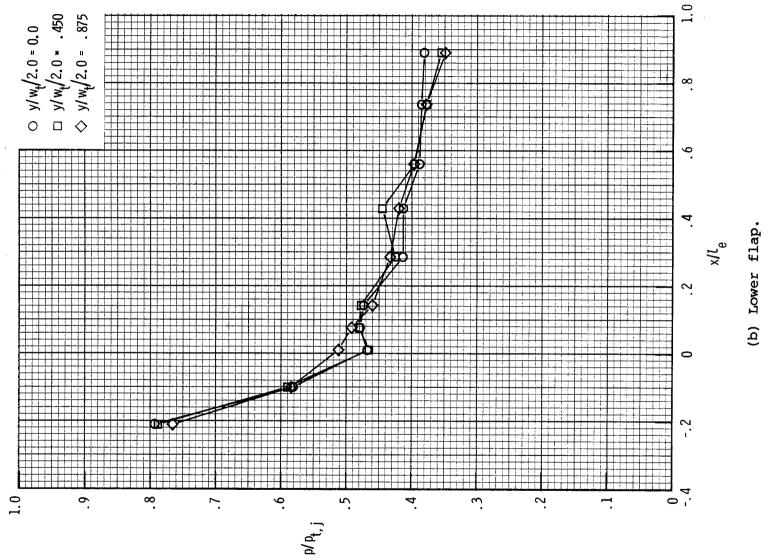
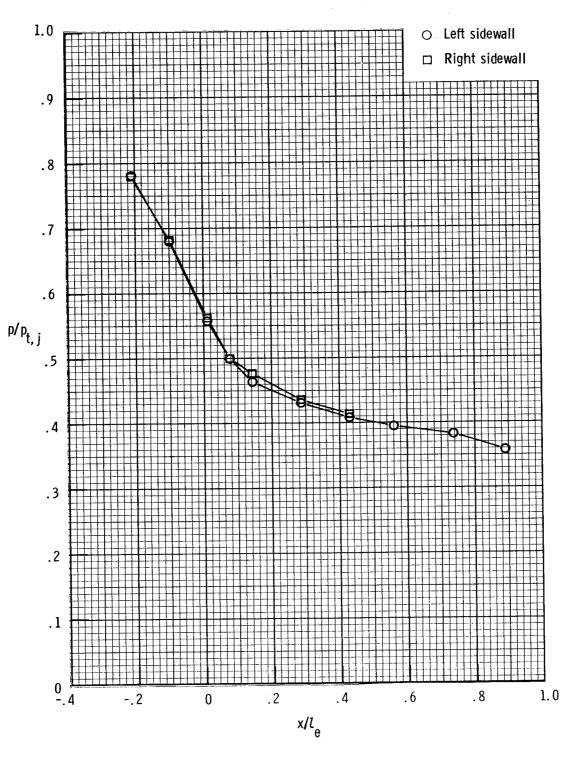
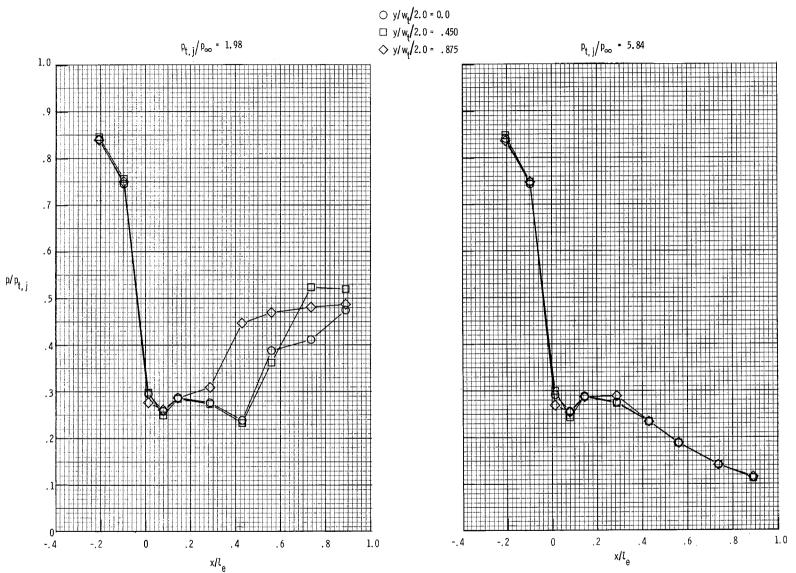
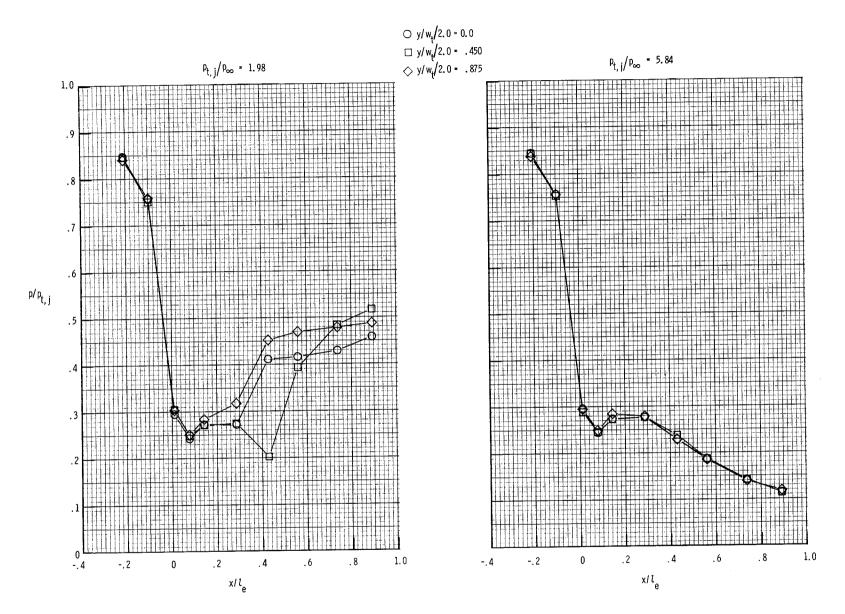



Figure 10.- Continued


...

(c) Sidewalls.


Figure 10.- Concluded.

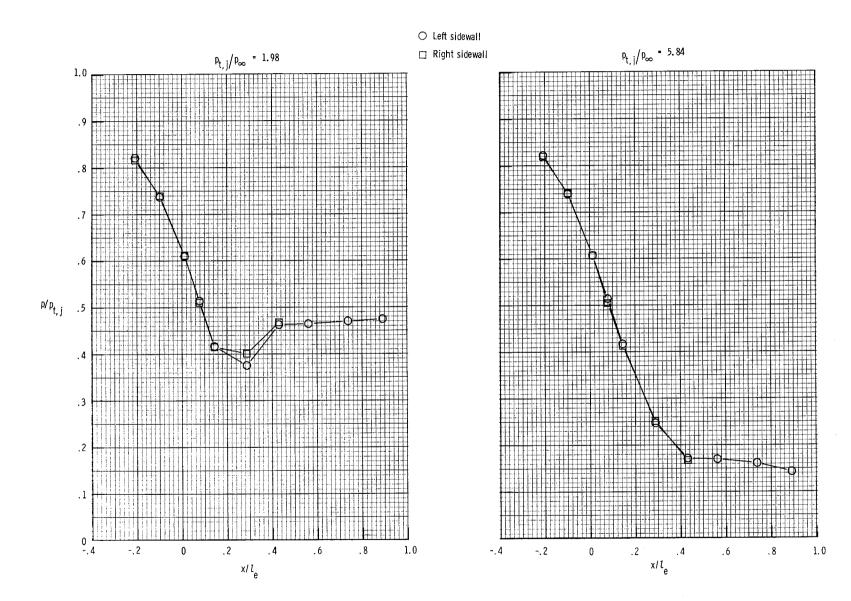

(a) Upper flap.

Figure 11.- Internal static-pressure distributions for nozzle B1 at $p_{t,j}/p_{\infty} = 1.98$ and $p_{t,j}/p_{\infty} = 5.84$.

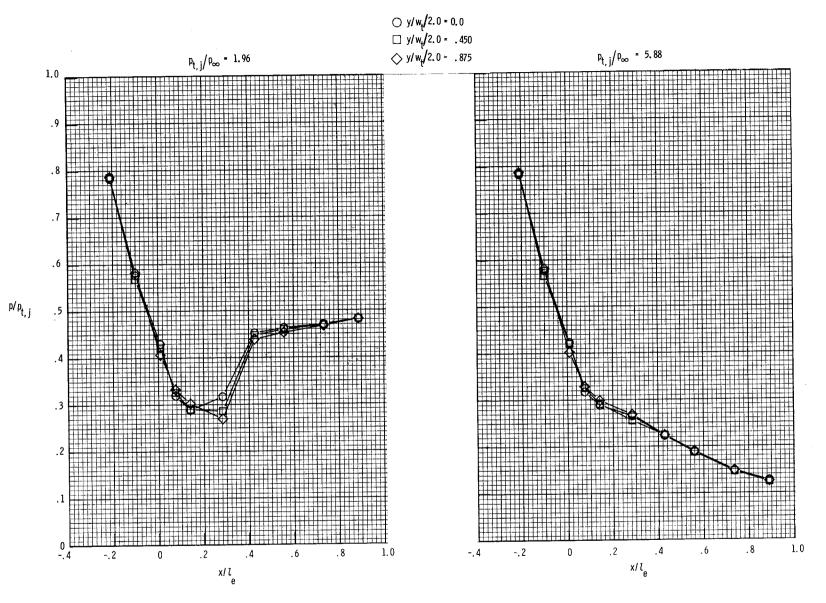
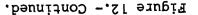
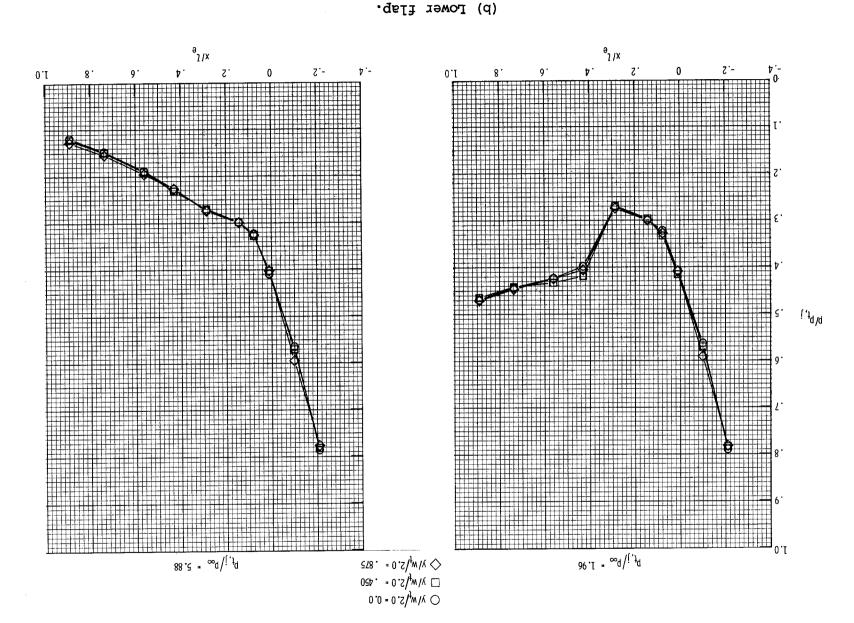
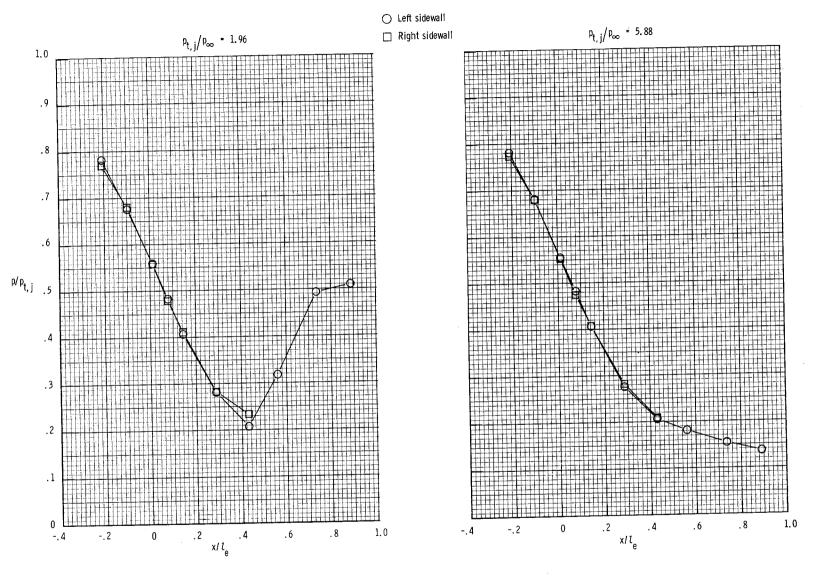

(b) Lower flap.

Figure 11.- Continued.


(c) Sidewalls.


Figure 11.- Concluded.



(a) Upper flap.

Figure 12.- Internal static-pressure distributions for nozzle B2 at $p_{t,j}/p_{\infty} = 1.96$ and $p_{t,j}/p_{\infty} = 5.88$.

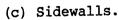
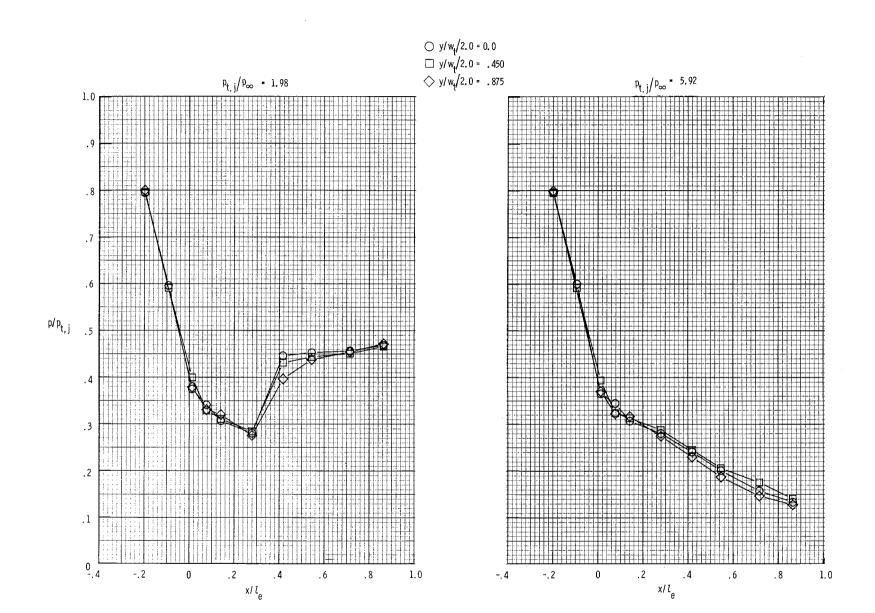
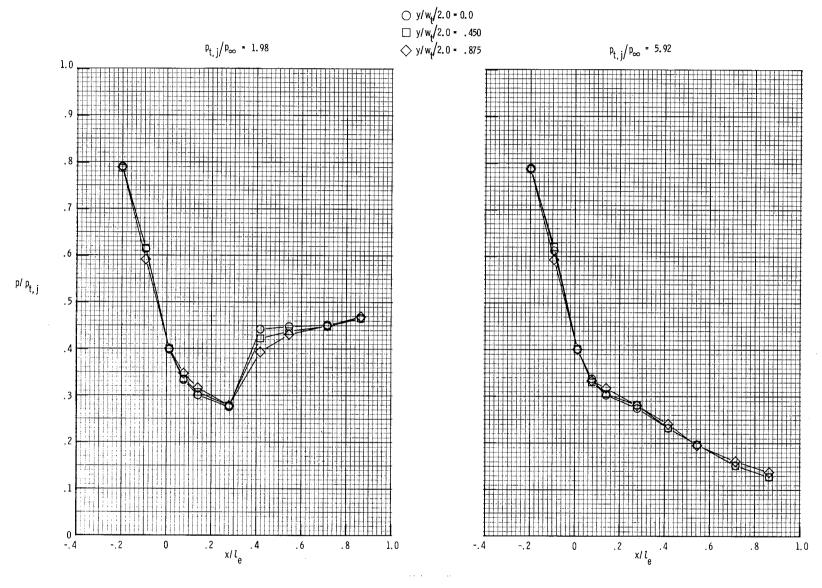




Figure 12.- Concluded.

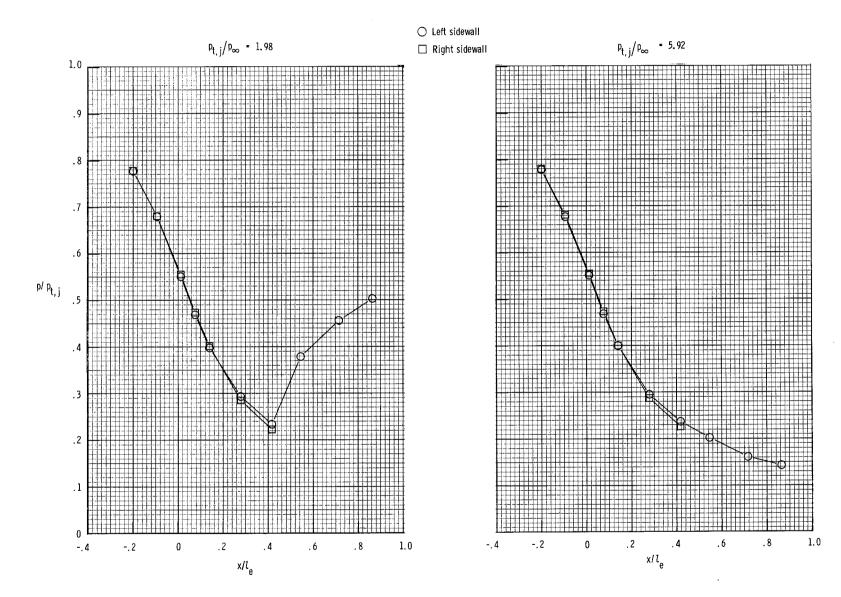

(a) Upper flap.

Figure 13.- Internal static-pressure distributions for nozzle B3 at $p_{t,j}/p_{\infty} = 1.98$ and $p_{t,j}/p_{\infty} = 5.92$.

(b) Lower flap.

Figure 13.- Continued.

 $(\mathbb{C}^{n_{1}}, \mathbb{R})$

(c) Sidewalls.

Figure 13.- Concluded.

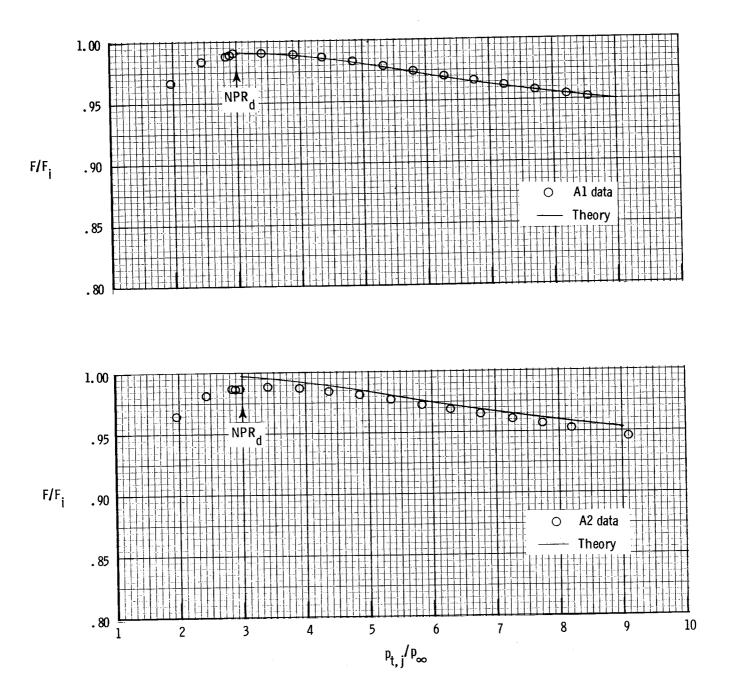


Figure 14.- Comparison of theoretical and experimental internal thrust ratios for nozzles with low divergence angles.

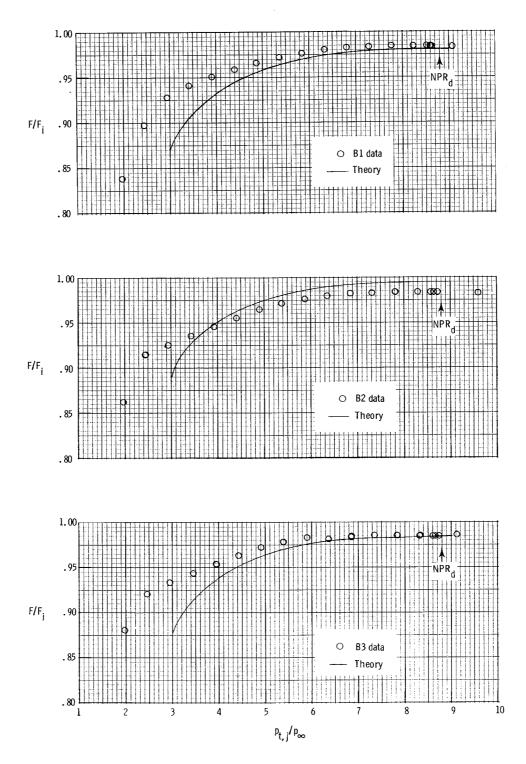


Figure 15.- Comparison of theoretical and experimental internal thrust ratios for nozzles with high divergence angles.

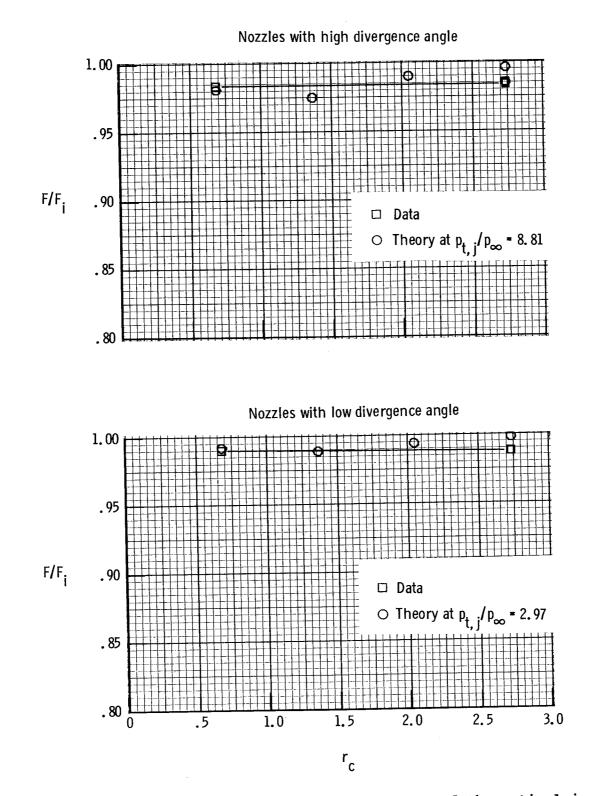


Figure 16.- Effect of throat radius on experimental and theoretical internal thrust ratio.

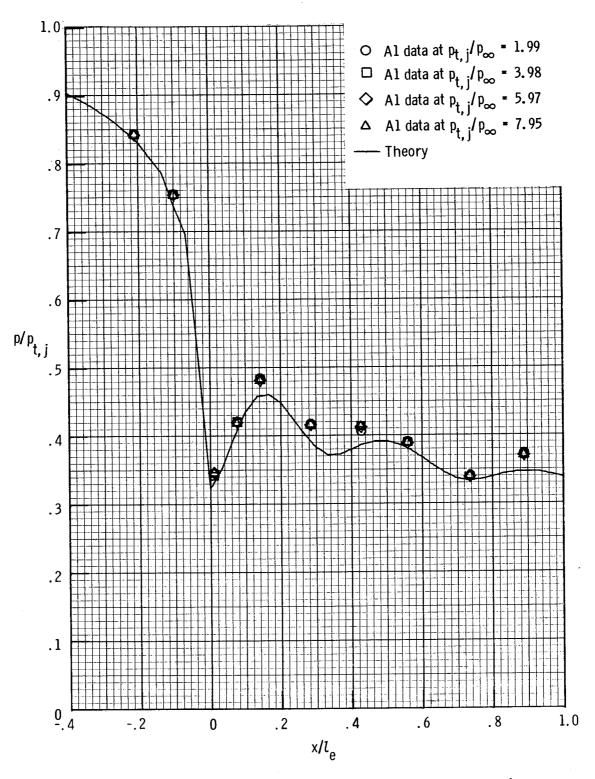


Figure 17.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle Al.

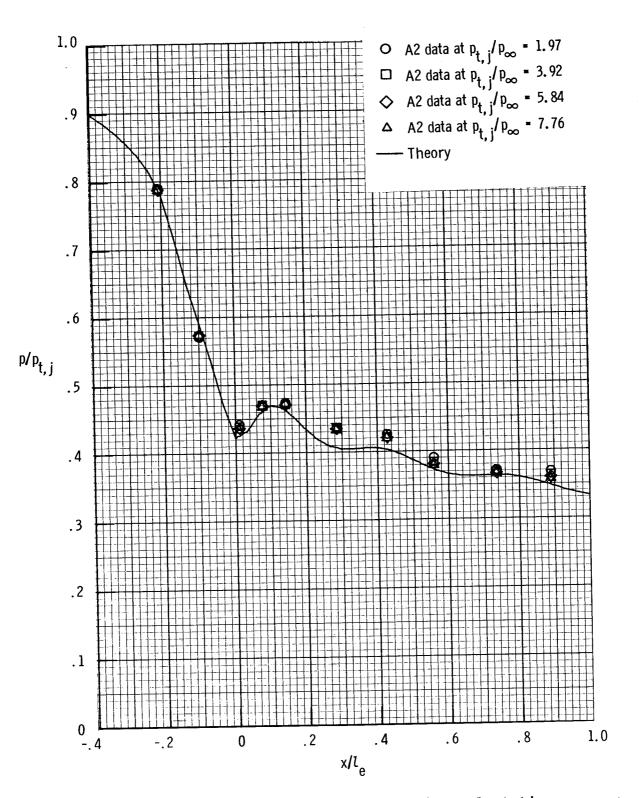


Figure 18.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle A2.

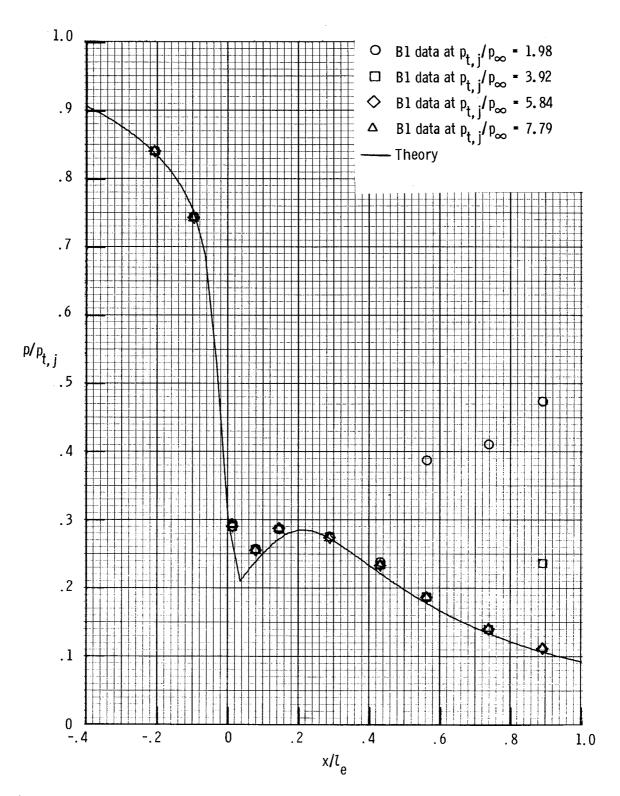


Figure 19.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle B1.

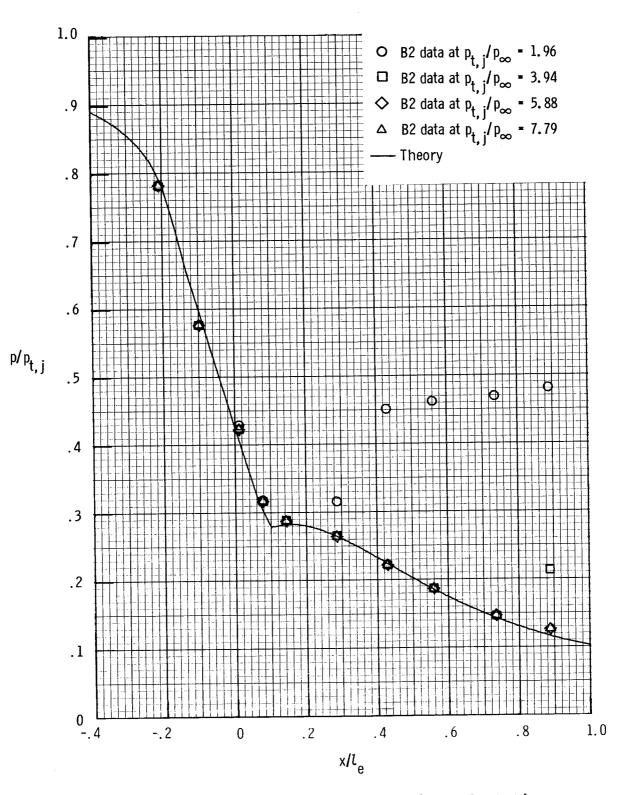


Figure 20.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle B2.

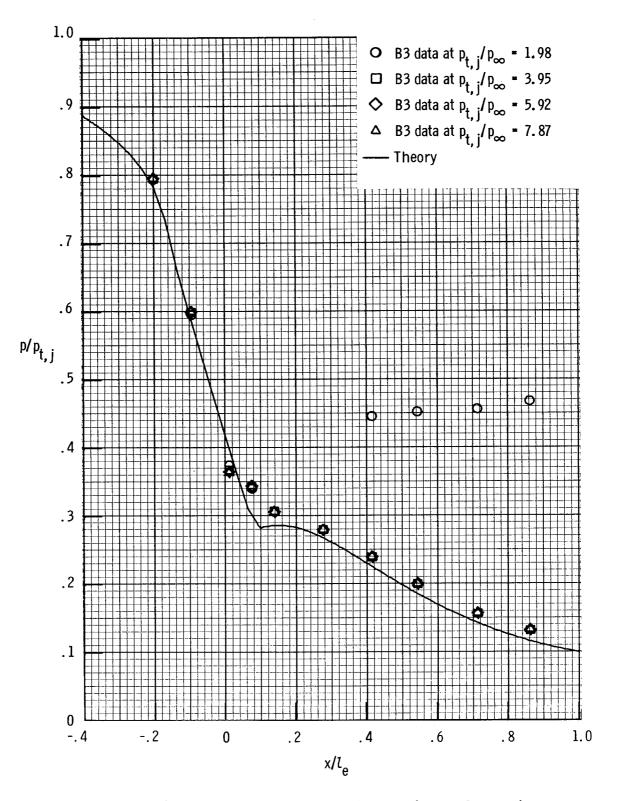


Figure 21.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle B3.

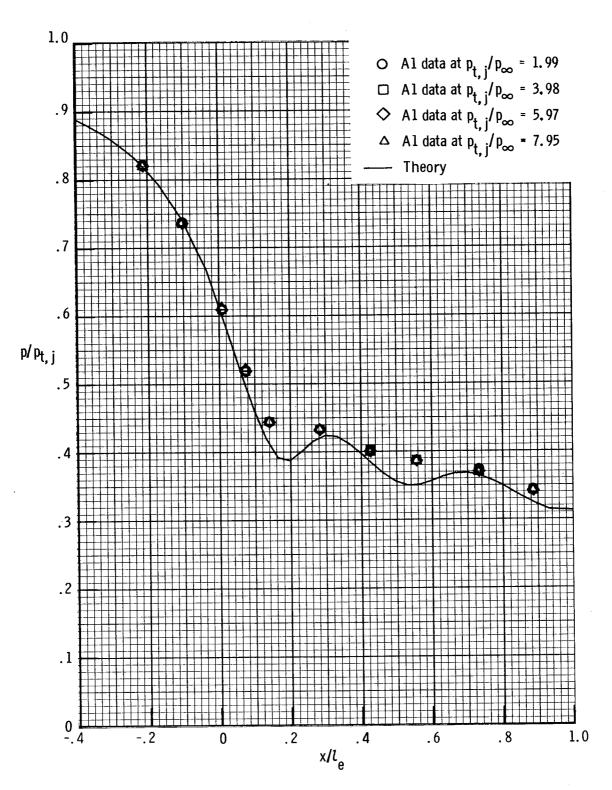


Figure 22.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle Al.

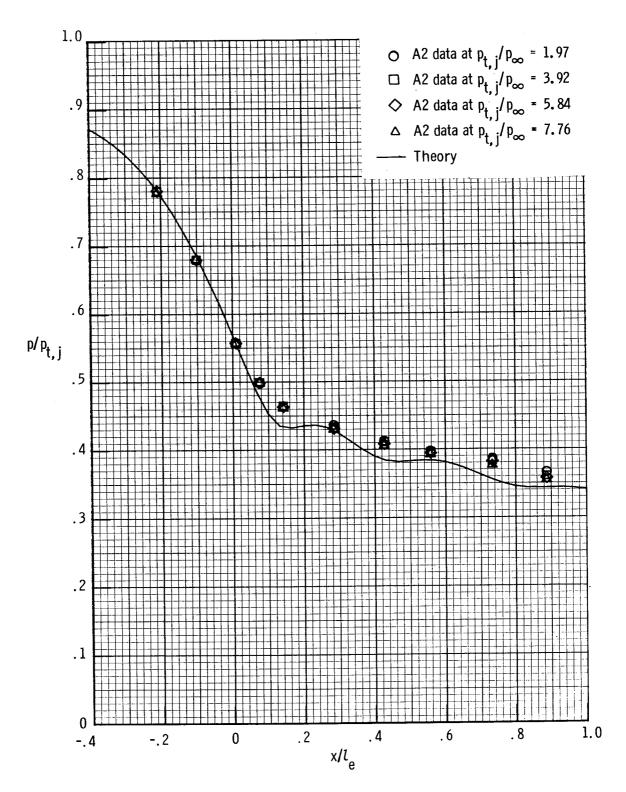


Figure 23.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle A2.

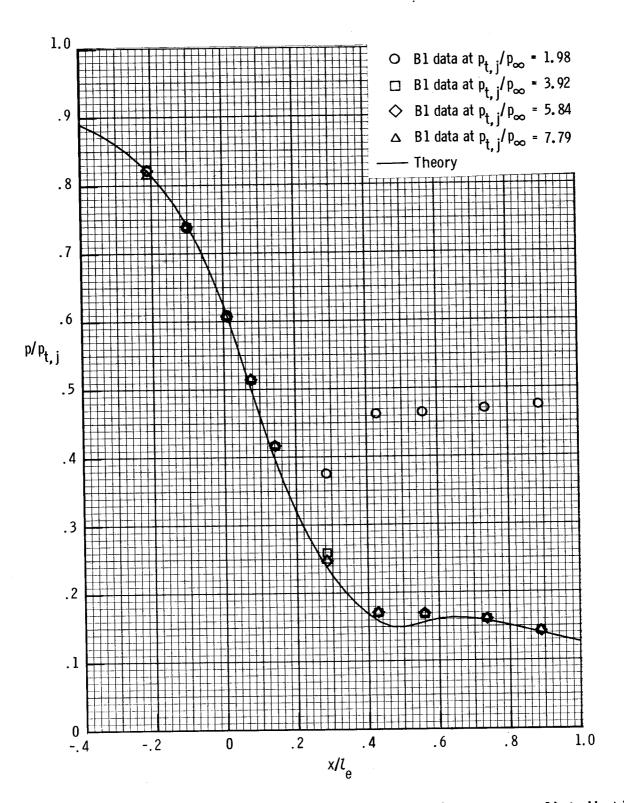


Figure 24.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle Bl.

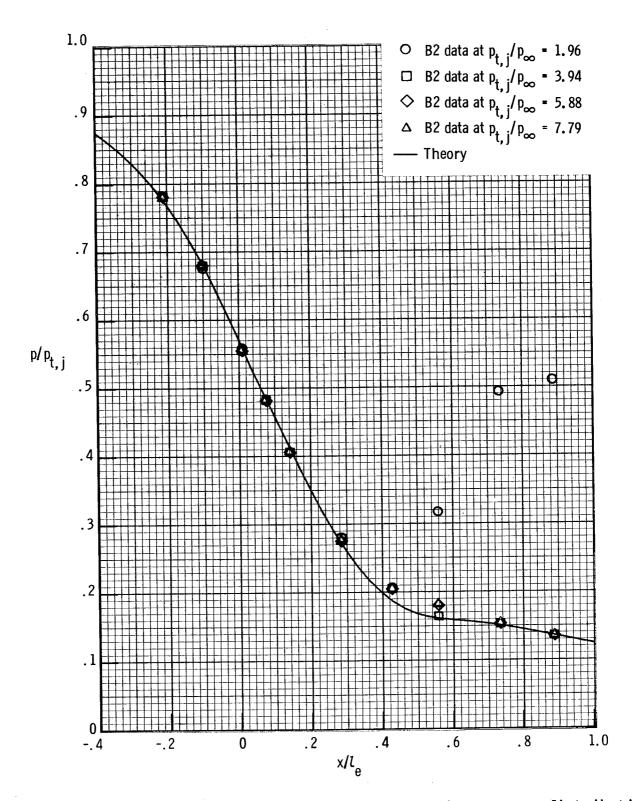


Figure 25.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle B2.

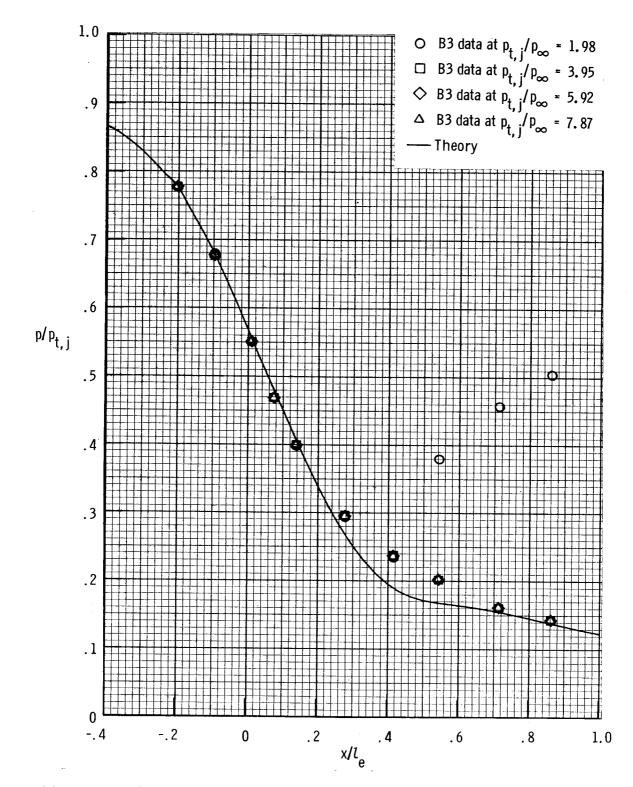


Figure 26.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle B3.

1. Report No.	2. Government Accession No.	3. Re	cipient's Catalog No.				
NASA TP-1704							
4. Title and Subtitle		1	port Date				
THE EFFECT OF THROAT CONTOURING ON TWO-DIMENSIONAL			August 1980				
CONVERGING-DIVERGING NOZZLES AT STATIC CONDITIONS			forming Organization Code				
7. Author(s)		8. Per	forming Organization Report No.				
Mary L. Mason, Lawrence E. Putnam, and Ri			-13591				
9. Performing Organization Name and Address			10. Work Unit No. 505-32-13-01				
NASA Langley Research Center							
Hampton, VA 23665			ntract or Grant No.				
		13. Typ	be of Report and Period Covered				
12. Sponsoring Agency Name and Address			Technical Paper				
National Aeronautics and Space Administration Washington, DC 20546		14. Spc	nsoring Agency Code				
15. Supplementary Notes		······					
16. Abstract							
An experiment has been conducted at static conditions to determine the internal							
performance effects of nozzle throat contouring, the result of increasing the							
circular-arc throat ra	dius. Five nonaxisymme	tric converging-o	liverging nozzles				
were tested at nozzle pressure ratios up to 9.0. Data are presented as internal thrust ratios, discharge coefficients, and static-pressure distributions. Com- parisons of internal performance data for the five nozzles show that throat con- touring increases the value of discharge coefficient but has no significant effect on internal thrust ratio except in cases of internal flow separation. To illus- trate the use of the two-dimensional converging-diverging (2-D C-D) nozzle data							
				base, a two-dimensional inviscid theory was applied to the five configurations. The generally good agreement of data with theoretical results indicates that two-			
				dimensional inviscid theory can be successfully applied to the prediction of 2-D			
				C-D nozzle internal flow.			
17. Key Words (Suggested by Author(s)) 18. Distribution Statement							
Nonaxisymmetric nozzles		Unclassified - Unlimited					
Internal performance Static performance							
NAP							
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21 No. of D	Subject Category 02				
		21. No. of Pages	22. Price				
Unclassified	Unclassified	67	A04				

For sale by the National Technical Information Service, Springfield, Virginia 22161