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ABSTRACT
Comparison of two-phase choked flows in normalized coordinates were
made between pure components and available data using a reference fluid
to compute the thermophysical properties. The results are favorable. So-
lution of the governing equations for two LNG mixtures show some possible

similarities between the normalized choked flows of the two mixtures, but
the departures from the pure component locii are significant.
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NOMENCLATURE

;.5 constants, eq. (11)

by_q constants, eq. (12)

6 mass flux (6 = oU)

6*  mass flux normalizing parameter (YP o iZ.)

(|/?7h)65 for corresponding states with refer-
ence fluid (0) and working fluid (a)

(2]

(- 2

configurational free energy
scaling function - volume
scaling function - temperature
molecular weight

pressure

gas constant

entropy

temperature

fluid velocity

specific volume

mole fraction
compressibility

N X €« € -4 0 2V 0 3 - yu

Greek:

] density

n¢ binary interaction parameter
e,¢ configuration function

. Pitzer's eccentric factor
t property parameter
Subscripts:

c critical

e exit

o fluid-a

1§  fluid 1 - fluid §
® reference fluid

L] mi xture

t throat

R reduced
Superscript:

c critical
INTRODUCT ION

Using conventional corresponding states tech-
niques, we have found normalizing parameters which
can be applied in two-phase choked flow computations
(refs. 1 to 4). The pure component properties of
the working fluid, along with the flow equations,
are used to define the critical mass flux ang pres-
sure ratio profiles. When compared to available
expeg;mental data the agreement was good (refs. 4
and .

Although the normalized charts are applicable
to a wide variety of simple fluids, it has not been
demonstrated, via direct calculation, that a refer-
ence fluid (0) can be used to predict the proper-
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ties of another fluid (a) in conjunction with calcu-
lations of two-phased choked flow parameters for
fluid (a) using fluid (0); the pure-pure problem.

Further, the application of these parameters to
fluid mixtures and the problems associated with the
computation of two-phase choked flows of mixtures
has not been treatec using the one fluid van der
Waals approximation (refs. 6 to il) for preaicting
thermophysical properties; the pure-mix problem,

In this paper, we wish to address both the
pure-pure and the pure-mix problems in two-phase
choked flows using the thermophysical properties
cooes of references 1Z and 10, respectively. It is
important to stud{ the fluio mechanics of mixtures
'13 ?o:t working fiuids are mixtures of varying com-
position, .

GUVERNING EQUATIONS
The equations governing homogeneous equilibrium

two-phase choked flows are oetailed in references ¢
and 4, The mass flux is given as equation (1):

’, l/ P

Y 0

6 - f vV dp (1)
79

Constraints:

2fdv

o—) .1 (2)
a?/ o

5(90.70) = constant (3)

The solution of equation (1) is easy enough if
V is known. The whole problem lies in computing
V subject to constraints ¢ ani 3. For the simpli-
fied pure-pure problem, this is rather straight-
forward using a thermophysical properties package
such as GASP (ref. 12), but can become complex for
the pure-mix problem, depending on mixture composi-
tion.

In this paper, a reference fluid (0) will be
usea to determine the thermophysicsl properties
necessary to satisfy equations (1), (2), and (3) for
both the pure-pure and the pure~-mix problems. The
mixture equations, detailed by Mollerup (refs. 7 to
10), are given here in abride2d form where 2 is
the compressiblity funciiun, 8 the configurational
Gibbs free energy, and x; the mole fraction of
component J.

Zm(vvroxj) = ZO(V/h.Tlf) (4)

gm(v'T.XJ) = fgo(V/h.Tlf)

+ RT(Z‘, x; 1n x5 = In t> (5)

J J

where the scaling functions, f and h are defined
as:
o

h = 2}3,‘ Xixshis (6)

fh = !:ﬂz: x.x.h..f.. (7)
75 %339

and the interaction parameters hi; and fyj are

defined in terms of assumed mixing rules and crity-
::liza{agtters relating component-k to the reference
u :

Ve
fw - "ij(fij'fjj, (8)
STEREIE Y
hyy = ;5\ (%)

¢ ve

fooafl=tloin, of[~]e (10)
i c 17 iy C
W \%

with binary interaction parameters nij and #ij.
Configuration functions e and & are slowly eary
ing functions of VR and TR and can be defined in

a variety of ways. The most successful are the Leach~
Leyland forms (ref. 6), or their modifications such as

given by Mollerup (ref. 10) and McCarty (ref. 11}

0el* (v - “0)['1(VR - 02) - ag(¥p - 04)])n Tr
(11)

0
-'c’.-l’ ‘ﬂi "Uo)[bl‘be ’n Tk

b
‘ (n3 - T:) (Vg - bSEI (12)

The coefficients a;, and b; are estimated from
experimental data (refs. 10 ancg 11).

For the pure-pure problem, equations (4) to
(10) are simplified since the crossterms do not en-
ter; for example, with only one component, equations
(5) to (7) become:

8(V,T,1) = fa,(V/k,T/f) = RT In b (13)
he (T:/TS) ° (14)
fe (v?./vg)w (15)

for the derivatives necessary to solve the gov-
erning equations, see Mollerup (ref. 10).

RESULTS

The pure-pure problem results are presentes
first since they are direct and readily explainec in
terms of data. By contrast, the pure-mix problem
:h:ch is compliex, is further complicated by lack of

ata.

Pure-Pure

Using the thermophysical property codes of ref-
erence 1z, the governing equations were solved for
pure components nitrogen ana oxygen on three selec-
ted isotherms for which accurate experimental data
are available. Subsequent verificatijon checks were
made using the Mollerup code, (ref. 10), with simi-




lar results; the exception veing near the saturation
locus where some discrepancies noteo,

In figures 1{a) ano (b) the calculated critical
mass flux and pressure ratio profiles in normalized
coordinates are compared to experimenta) data, The
curve labeled CHy - Nz was calculated using the
properties of methane, that is, fluid (0) s methane
and fluid (s) is nitrogen; similarly, for the curve
marked (Hg - Oz, The use of nitrogen or oxygen
as the reference fluic cio not alter the results of
figures 1 to 3. The agreement with cata s quite
gooa, and similar gepartures from a single curve
were found when using fluid nitrogen or fluid oxygen
properties directly,

Approaching the critical isotherm, while the
mass flux agreement is good, figure Z(a), a rather
large and as yet unexplainea departire in the pres-
sure profiles between data ang theory can be noted,
figure 2(b).

Close to the critical isotherm, the agreement
with data is again good, as noted in figures 3(a)
and (b).

jt must be pointed out that the fluic nitrogen
and fluid oxygen data are in very good agreement,
The ciscrepancies lie in the governing equations,
and their solutions.

Pure=Mix

Some initial computations using the governing
equations and the more conventional corresponcing
states approach to oefining the normalizing paran~
eters appeared successful, But a closer examination
revealed several problems anc the approach was aban-
doned. Calculations for two mixtures are presented
as a method of comparison.

Conventiona) corresponding states techniques,
some of which are given in reference 13, cannot be
appliec to mixtures with any degree of confidence.
The linear molar fraction method:

t¢ . z:tgxi (16)
i

P - ZORTENVE (17)

where tC represents a property, is simple to
apply but not reliable and the complex technigues
recommended by reference 14 are better.

With the molar fractions of mixtures Mix) and
Mixy given in tables | and l1, some estimates of
the ¢ritical parameters can be made which then can
be compared to those estimated using Mollerup's pro-
gram (ref. 10). The results are given in tables |
and 11 to illustrate the point. Further, the cir-
condenbar (maximum pressure) and circondentherm
{maximum temperature) are given for each mixture.
for all calculations <he reference fluid is methane.

The nature of the vapor pressure locus at a
fixed composition is given as figure 4 for mixtures
Mix] and Mixz, raspectively. While alike in
general appearance, the critical point of Mixy is
close to the circondenbar. Further note that at
temperatures greater than critical, following an
isotherm from the high-pressure gas side with ge-
creasing pressure, condensation first occurs on the
dew line and attains a maximum density Yollowed by
an evaporation at the dew lipe again, ang returns to
the low pressure gas state. The composition of the
fluid changes, as illustrated in figure § for the
major components of Mix;. At lower pressures, the

1iguid is dominated by the least volatile components
n-heptane and hexane. Finally, a temperature en-
tropy diagram, figure 6, for Mix; can be useo to
*spot* anc foliow the expansion process. Note that
expansions occurring between 190 ano 400 K, depend~
ing on pressure, terminate at about the saturation
locus near the critical point to the circongentherm;
that is, the region most gifficult to handle and
which is the one of most interest.

With this behavior, it should not be too
surprising that we have significant difficulties in
computing the critiza) mass €lux for Mix) ang Mixy.

The critical mass flux for Mix; in normalized
coordinates is presenteo in figure 9 with the con-
ventiona) pure-pure normalized locii, as back-

rouna. There are rather significant differences:

1) the saturation locus, (2] the slopes of the 1so~
therms, and (3) regions where computations are in-
complete; the exception being the gaseous phase
where similar behavior is noted. In many computa-
tional attempts, no reasonable solution was found as
iliustrated by the 1.] reduced isotherm and the re-
gions previously cited from the near-critical to the
cirrongentherm, These difficulties will require a
reassessment of the governing equations.

As a further comparison, the solution of the
governing equations for a second similar mixture
(both LNG), Mix; was carried out. The results are
given in normalized coordinates in figure &. Com-
paring the results for Mix) and Mixy ingicates two
possible similarities; (1; the slopes of the iso-
therms and (&) the saturation loci’ are in better
agreement than with the pure-pure bhackground
curves, Figure 9 gives a more direct comparison
between Mix% and Mixy and corresponoing states. The
G* values for Mix) ana Mix; were calculateo using
reference 13, At this time it does not appear rea-
sonable to expect these curves to “collapse" to rep-
resentative isotherms as composition dependence sig-
nificantly alters the behavior near the saturation
locus. Experimental two-phase choked flow data for
fluid mixtures are indispensable.

SUMMARY

For the pure-pure problem involving fluids of
simple (non~-quantum) molecular structure, the con-
ventional corresponding states approach to computa-
tions of two-phase choked flows appears valid. The
use of the van der Waals one fluid model ano a com~
puter program such as Mollerup (ref. 10}, with the
appropriate reference fluig also appears to be a
valid approach.

The odepartures of two-phase chokea flows in
normalized coordinates for the pure-pure and the
pure-mix proulenms are significant and composition
dependent.

For the mixture, the critical parameters, cir-
condenbar and circondentherm nees to be determinec
from the gcveriing equations or experimental data.
Once found, some normalization may be effective ir
g-auping data as it becomes available.
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TABLE 1. - MIXTURE COMPOSITION, NORMALIZING AND CRITICAL PARAMETERS FOR MIXy

Composition-Mole Fraction

5. n-Butane 0.0048
6. 1-Pentane 0.0013
7. n-Pentane 0.001
8. Hexane 0.001

1. Methane 0.9718
2. Ethane 0.0477
3. Propane 0.017
4, 1-Butane 0.0028

9. Heptane 0.0036
10. Nitrogen 0.026
11, Carbon dfoxide 0,01

Method Pc' Tc' Ver Zc m, G* Cfrcondenbar, |Circondentherm,
MPa K |ee/9 9/9-mole glcmz-sec MPa K
Eq. (16) 4.6 |202.7(5.7910.285) 18,02 5280 nene semwn
Ref. 13 6.211213,015.3 {0.335] 18.02 5915 cnee N
Mollerup code | 6.46 | 212.0 | 4.26 [ 0.281 | 18.02 7340 8.45 267.4
(ref. 10)

TABLE II. - MIXTURE COMPOSITION, NORMALIZING AND CRITICAL PARAMETERS FOR MIX,

Composition-Mole Fraction

1. Methane 0.6975

3, Propane 0.092
2. Ethane 0.156

5. n-Butane 0.029
4. 1-Butane 0.014

6. Nitrogen 0.0115

Method Pc. Tc. Vc. Zc m, G*, Circondenbar, |Circondentherm,
MPa K cc/g g/g-mole g/cmz-sec MPa K
£q. (16) 4.53]234.0|5.36 | 0.284 | 22.75 5455 nee N
Ref. 13 8,95 |261.0|4.39(0.411 | 22.75 7040 - emoae
Mollerup code| 8.9 |243.0) 3.09 | 0.309 | 22.75 9650 9.2 299.0
(ref. 10)

G* » ‘/Pcoclzc and G; = ‘/i7ﬁ 65 for corresponding states applications with reference
fluid (0) and working fluid (a) nearly equivalent for these fluids.
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CRITICAL PRESSURE
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Figure 5. - Primary mole fractions ~ pressure locii at saturation conditions for mixture

Mix). See Table I for complete composition array.
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Figure 6. - Temperature - entropy chart for mixture Mix). See Table I for composition,
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Figure 7. - Reduced critical mass flux as a function of reduced inlet stagnation temperature
for selected isotherms for mixture Mix) with conventional corresponding states locii as
background. 1
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Figure 8. - Reduced critical mass flux as a function of reduced
inlet stagnation pressure for selected isotherms for mixture Mix,.
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Figure 9. - A comparison of reduced critical mass flux as
a function of reduced inle® stagnation pressure for se-
lected isotherms for Mix}, Mix,, and corresponding
states using G” Tables I, II, ref. 13,
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