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A PRELIMINARY ASSESSMENT OF THE ACCURACY OF SELECTED METEOROLOGICAL 

PARAMETERS DETERMINED FROM NIMBUS 6 SATELLITE PROFILE DATA 

James R. Scoggins' and Gary Petti 2 

Department of Meteorology, Texas A&M University 
College Station, Texas 77843 

1. INTRODUCTION 

Satellites provide meteorologists with an overall view of the atmosphere 

and may observe several synoptic-scale weather systems at one time, The 

potential for the use of satellites is great since one instrument system may 

take atmospheric soundings over the entire earth at almost any spatial 

resolution. Another advantage is that satellites could provide soundings 

in data-sparse regions, such as over oceans. 

Rawinsonde and satellite measurements are not totally equivalent, Rawin- 

sonde data represent essentially point measurements, while satellite data 

represent mean values for an area around the sounding point. Satellites have 

contributed little quantitative data of value in atmospheric analysis in 

areas where rawinsonde data are adequate; but in areas where rawinsonde data 

are sparse,satellites have made a significant contribution. The accuracy 

and representativeness of satellite data remain poorly understood. A 

study of the capabilities of satellites as compared to rawinsonde capabilities 

should improve this understanding. 

The objective of this research is to examine the capabilities of 

satellites relative to rawinsondes to measure various meteorological variables. 

The variables can be classified into "basic:' such as temperature and moisture 

which are the quantities computed from radiance measurements, and "derived", 

which are computed from the basic quantities, such as geopotential height, 

gradients, advection, and others. 

There have been many studies to determine the accuracy of rawinsonde 

data. Lenhard (1970) stated that Leviton and Johannessen reported an rms 

error for temperature of l°C in 1953. Case (1962) adopted an rms error of 

0.7OC based on laboratory results. Hodge and Harmantas (1965) found the 

rms error to be 0.5 C. More recently, Wheeler (1968) reported 0,36OC 

and Lenhard (1970) 0.30°C. The rms error for misture measurements has been 
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less varying with time and was estimated at 10% for relative humidity by 

Case (1962). Fuelberg (1974) used the same estimate for the Atmospheric 

Variability Experiment (AVE) data. 

As the quality of satellite data improves , satellites are playing greater 

roles in providing data for atmospheric analysis. Initially, meteorological 

satellites were used only for cloud photography, but more recently weather 

satellites have advanced to the point of providing vertical profiles of 

temperature and moisture (Smith et al., 1972). Smith (1969) found that 

patterns of geopotential height determined from satellite data are similar to 

those determined from rawinsonde data, Temperature and humidity profiles have 

been shown to have essentially the same characteristics in the Nimbus III 

satellite data as in rawinsonde data (Rosenkranz et al., 1972). Other studies 

also indicate that satellite fields of temperature, geopotential height, and 

the lapse rate of temperature correspond quite closely to those determined 

from rawinsonde data (Scoggins et al., 1977). Moisture flux computed from 

satellite data also compares favorably (Negri et al., 1977) with that computed 

from rawinsonde data. 

For most areas of the world, mesoscale systems are important in.local 

forecasts. Numerous studies have led to the conclusion that mesoscale 

systems embedded within the general synoptic-scale weather patterns are often 

responsible for the development and maintenance of convective activity 

(Fankhauser, 1969; Lewis et al., 1974). Since both satellite and rawinsonde 

soundings are being utilized in synoptic analysis, a comparison is needed 

of capabilities of the two systems for determining various mesoscale features. 

The Atmospheric Variability Experiments (AVE) have provided an excel- 

lent source of rawinsonde data. These experiments consist of soundings taken 

every three hours over the Eastern and Central United States. Several 

studies have been conducted which relate synoptic-scale conditions to convective 

activity. By use of the AVE II and AVE IV data, McCown and Scoggins (1977) 

examined gradients of temperature, wind speed, geopotential height, and mixing 

ratio. They found large variability in patterns of gradients over three hours 

compared to those computed over longer time intervals. They also found that 

the largest mixing ratio gradients occurred near convective activity. Wilson 

and Scoggins (1976) related conditions during AVE II to areas of convective 

activity and found that large changes in stability, vertical motion, and 
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moisture were associated with convection. Head and Scoggins (1977) studied 

the vorticity budget of the AVE IV data, and found that the observed local 

tendency of vorticity was usually positive in convective areas with an order 
-10 -2 of magnitude of 10 set . They also found that the production of 

vorticity through divergence was highly correlated with convective activity. 

The previously mentioned studies, along with many others, have shown 

relationships between synoptic-scale conditions and convective activity. 

Similar determinations for satellite data have been very limited. Hillger 

and Von der Haar (1977) used satellite-derived data-to detect mesoscale 

features. Their results showed that present satellite capabilities permit 

partial resolution of moisture and temperature variations on this scale. 

They also found that significant synoptic features can be detected, such as 

cold troughs and large horizontal moisture gradients, 

In a study using data over the Central United States, Moyer et al. -- 
(1978) have computed averages and standard deviations of the differences 

between satellite and rawinsonde data as a function of pressure for tempera- 

ture, geopotential height, geostrophic wind speed, dew point, and lapse 

rate of temperature. Their study forms the foundation for the specification 

of satellite errors used in this research. The differences between rawinsonde 

and satellite sounding data calculated in their study are used to evaluate 

the rms errors of the "basic" variables for the Nimbus 6 satellite data. The 

other source is previously documented rms errors for rawinsonde data. The 

rms errors of "derived" parameters will be calculated through a propagation 

of error analysis. The result will be two sets of rms errors of meteoror 

logical variables: one set for satellite data and the other for rawinsonde 

data, Comparisons will be made between the rawinsonde and satellite rms 

errors of measured and derived quantities as well as between the rms errors 

and average and near-extreme values of the parameters determined from the 

AVE data. 



2. INFORMATION USED IN ERROR PROPAGATION ANALYSIS 

a. Rawinsonde 

The rms errors of basic meteorological variables are important in 

determining errors in derived quantities. The rms errors in temperature, 

mixing ratio, geopotential height, and wind speed for rawinsonde data have 

been considered from several sources (Case, 1962; Lenhard, 1970; and Fuelberg, 

1974). The assumed rms errors for these parameters are presented in Table 1. 

It should be noted that the computation of the nns errors in geopotential 

height was based on an nns error for temperature of 0.3 C. The nns errors in 

mixing ratio were calculated by taking 10% of the saturation mixing ratio 

at each specified pressure level for a standard atmosphere; the dryness pre- 

sent at 200 mb has no associated rms error for moisture. The nns errors in 

wind speed were taken from Fuelberg's study which utilized a more sophisticated 

filtering of the angle data than is normally used. The rms errors for 

rawinsonde data in Table 1 will be used in this study to determine the rms 

errors for derived variables. 

Table 1. Assumed nns errors for rawinsonde data. 

Pressure Temperature Geopotential Wind Speed Mixing Ratio 
(mb) ("(3 Height (m sec'l) (g kg-') 

(%pm) 

850 0.3 2.0 1.0 0069 

700 0.3 6.0 1.7 0.40 

500 0.3 10.0 3.0 0.15 
200 0;3 30.0 5.7 w--s 

b. Satellite 

Errors in satellite data were taken from a study by Scoggins et al. -- 
(1977) who determined discrepancies between rawinsonde and satellite variables 

as a function of pressure. A more recent study by Moyer et al. .(1978) -- 
presents slightly different values than used in this study. A major problem 

encountered in comparing the two types of data by Scoggins et al. and Moyer -- 
et al. -- was that rawinsonde stations and satellite sounding points do not 
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coincide geographically or in time. The satellite soundings were taken at 

1700 GMT, whereas the rawinsonde soundings were taken at 1200 and 0000 GMT. 

To facilitate comparison, the rawinsonde soundings were interpolated linearly 

in time to obtain approximate atmospheric conditions at 1700 GMT. 

Fields of various parameters were prepared using a gridding pro- 

cedure for both the satellite and interpolated rawinsonde for 1700 GMT. 

The fields were then compared on constant pressure surfaces by computing 

means and standard deviations of the differences using gridded data. This 

procedure was repeated at several pressure levels. This analysis technique 

was applied to several geographic areas to determine the effects of topography, 

air mass, and cloud cover on the differences between the two types of data. 

The geographic locations examined were the Central United States, the 

Western United States, Canada, and the Caribbean. Their results show 

variations in the means and standard deviations of the differences, which can 

partially be explained by the differences in the atmospheric structure and 

radiative characteristics of the ground at these various geographic locations. 

For example, the tropopause height is lower in Canada than in the Caribbean, 

which causes a variation in altitude where the temperature differences 

associated with the tropopause were greatest. 

The average and standard deviation of the differences between rawinsonde 

and satellite temperatures (SAT-RW) as a function of pressure for the Central 

United States are presented in Fig. 1. Discrepancies in both the mean and 

standard deviation are less than 2OC throughout the entire sounding, The 

smallest average discrepancies occur in the middle troposphere, and the largest 

near the tropopause. The standard deviation of the differences is between lo 

and 2OC between 850 and 100 mb. Staelin et al. (1973) and Hillger and Von der -- 
Haar (1977) found similar differences in comparisons of temperature profiles 

of satellites to those of rawinsondes. 

Scoggins et al. (1977) computed discrepancies similar to those in -- 
Fig. 1 for several variables. Table 2 contains the standard deviations of 

the discrepancies between satellite and rawinsonde data for several variables 

for the Central United States. The discrepancies found in the temperature 

are smaller than those of moisture (dewpoint). These discrepancies contain 

both rawinsonde and satellite rms errors. In order to obtain rms errors 

in satellite data, a propagation of error technique was applied. This 

procedure will be specified in Section 4. 
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Fig. 1. Average and standard deviations of differences between temperature 
measured by rawinsonde (RW) and satellite (SAT) for the Central 
United States (from Scoggins et al,, 1977). 

Table 2, Standard deviations of the differences between rawinsonde and 
satellite data over the Central United States (from Moyer, 
et al., 1978). -- 

Pressure level Temperature 
(&I (OC) 

850 1.51 

700 1.57 

500 0.93 
200 1.94 

Dew-point Mixing Ratio 
(OC) (g/kg) 

4.45 5.9 

4.91 2.7 

6.87 009 
-- -- 

Scoggins et al. (1977) also found a wide range of rms discrepancies 

between satellite and rawinsonde data for the four areas examined. They 

found the discrepancies to depend on geographic location and to vary with 

pressure (altitude). The discrepancies for the Central United States 
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were used in this research in determining satellite rms errors in 
the basic meteorological variables. This geographic location was chosen 

because of its proximity to the AVE data to which many subsequent comparisons 

are made, and because the magnitudes of the discrepancies between satellite 

and rawinsonde data for this area are intermediate to the other areas and, 

therefore, may be considered representative. 

C. Specification of means, standard deviations , and near extreme values -7 
of gradients of meteorological parameters 

The magnitudes of rms errors in the measured (basic) or derived quantities 

relative to observed magnitudes of these quantities, determine the relative 

accuracy at which these quantities can be measured. Therefore, reasonable 

estimates of average and near-extreme values of variables or terms evaluated 

from rawinsonde data are needed for comparisons with corresponding satellite 

data. Results from AVE studies are used to establish these values for 

vorticity, advection, etc. 

By using data from AVE II and AVE IV, McCown and Scoggins (1977) 

calculated gradients over a 315-km interval for several variables. They 

determined average and near-extreme gradients at four pressure levels for 

both experiments. The average gradientswere determined from the entire 

gridded field at each pressure level, and the near-extreme gradients were 

the largest found over any 315-km interval at each pressure level. Data 

taken from this study are presented in Table 3. The magnitudes of the gradients 

in AVE II are larger than in AVE IV because of differences in the synoptic 

situations. The near-extreme values are approximately three standard 

deviations from the means, which suggest that the variables are normally 

distributed. 

In another study of gradients near convective regions, Ninomiya (1971) 

found results similar to those listed in Table 3. Sanders and Paines (1975) 

found mean and near-extreme values of gradients similar to, but slightly 

larger than, those found in the AVE data when they examined a convective 

storm region. Miller (1967) found moisture gradients similar to those of 

McCown and Scoggins (1977). With other studies reporting atmospheric 

gradients similar to those of the AVE data, the values in Table 3 appear 

reasonable and were used in this research to represent typical atmospheric 

conditions. 
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Table 3. Averages, standard deviations, and near extremes of gradients in AVE II and AVE IV (from 
McCown and Scoggins, 1977). 

Parameter Pressure Level AVE II AVE IV 

Mean Max Std Dev Mean Std Dev 

Height (m/315 km) 850 mb 41.2 119.4 21.8 28.1 70.7 16.9 
700 mb 54.2 137.3 26.8 37.5 89.3 15.5 
500 n-lb 77.3 225.8 42.2 56.5 130.7 17.1 
200 ltlb 104.6 315.9 54.1 95.9 212.3 29.0 

Temperature 
(OC/315 km) 

850 nib 3.4 10.5 1.9 3.3 11.9 1.9 
700 mb 3.4 9.6 2.0 2.7 7.0 1.2 
500 mb 3.4 12.6 2.6 2.2 5.2 1.1 
200 mb 3.8 16.6 2.3 2.0 6.5 1.2 

Windspeed 
(m/s/315 km) 

850 mb 6.6 21.5 3.7 6.3 21.7 3.8 
700 mb 6.9 18.9 3.6 6.7 19.8 3.8 
500 mb 9.6 29.7 5.2 6.8 21.2 3.8 
200 Inb 12.7 65.7 7.6 8.4 31.5 5.2 

Mixing ratio 850 rnb 3.1 10.8 2.2 2.6 9.4 1.6 
(cm/kg/315 km) 700 mb 2.3 7.8 1.4 2.0 6.0 1.1 

500 n-lb 1.0 3.8 0.7 0.8 2.7 0.6 



y 
3. PROPAGATION OF ERROR 

The method of analysis used in this study is presented by Deming 

(1943) and is as follows. If Q is a function of x, the linear term in a 

Taylor's series can be used to express the effect on Q of a small error in x. 

If Ax is the error in x, the resulting error in Q is 

(1) 

which shows that the error in Q is linearly proportional to the error in 

x. The relationship of the errors is not necessarily linear except when Q 

is a linear function of x, but the linear relationship is closely approximated 

when Ax is small, or when the higher derivatives of Q are small. The higher 

derivatives will be neglected in this study; Eq. 1 will be used to represent 

the relationship between AQ and Ax. 

Meteorological parameters usually are a function of several variables. 

The error in a parameter that is a function of several variables can be 

expressed through a Taylor series. If Q is a function of xi(i=1,2,3,,.n), 

and if x i is in error by Axi, the error in Q can be expressed as 

AQ=~ 
x1 

Axl+g Ax 
2 2 

+$$ Ax + .o.$$ Ax 
3 3 n" (2) 

n 

Squaring and averaging Eq. 2 gives 

2 (iQ 2 + (isi 2 + 
OQ = axlaxl) ax Ox ) (2 2+... 

2 2 ax Ox ) 3 3 

0 (5 r + 
x1 x2-‘x1x2 

i?sLQ 
ax1 aX3~X1~X3rXlX3*--) (3) 

where ~7 
Q 

is the standard deviation of the error in Q, (5 is the standard 
xi 

deviation of the error in xi, and rx.x. 
1 I 

are the correlations between Axi 

and Ax.. 
3 

If the errors in x1, x2, x3.."xn are independent, the correlations 

become zero. If Axi are small compared to 32 ax 
i 

, and if the terms involving 

squares, higher powers, cross products of Axi, and higher derivatives are 

negligible, Eq. 3 becomes 

)2 -I- 
n n 

(4) 

which expresses the standard deviation of the error in Q in terms of the 

standard deviation of the errors in x.. 1 This equation can be used to 
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determine the standard deviation of the error in any meteorological quantity 

if the standard deviations of the errors in the independent variables are 

kn0wn, The magnitude of the derived errors relative to the mean and near- 

extreme values of the quantities themselves can be interpreted in terms of 

how accurate a given quantity can be computed on a probability basis when a 

normal or Gaussian distribution is assumed. 

The propagation of error technique presented here will. be used to 

derive rms errors for computed quantities using errors specified in basic 

parameters for both rawinsonde and satellite. These errors will be compared 

to determine how accurately the parameters can be determined from satellite 

data relative to rawinsonde data. Means and near-extreme values of some 

quantities are presented for comparison with the derived rms errors. 
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4. SPECIFICATION OF ERRORS IN SATELLITE PARAMETERS 

Standard deviations of the differences between satellite and rawinsonde 

soundings have been considered, but errors per se in satellite data have not. 

The standard deviations contain both rawinsonde and satellite rms errors and, 

therefore, represent a measure of the difference between the two data-gathering 

systems, rather than the rms error for the satellite observations alone. 

Deming (1943) shows that the standard deviation of the sum or difference 

between variables A and B (Us or D ) that have rms errors of cA and (sB, is 

given by: 
CT; or D = UA2 + UB2. (7) 

This equation was used to compute satellite rms errors for the basic variables. 

The equation becomes 

oSAT = [aDIF - ORW215 (8) 

where 0 DIF is the standard deviation of the differences between rawinsonde 

and satellite data, 0 is the rms error in rawinsonde data, and cS ' Rw SAT is 
the rms error in satellite data. Equation 8 was applied using the rawinsonde 

rms errors and the standard deviations of the differences between rawinsonde 

and satellite data presented previously. 

With the rms errors in the basic meteorological variables for both 

rawinsonde and satellite, the propagation of error technique presented in 

Section 3 was used to determine the rms error for selected derived meteorological 

parameters computed from both rawinsonde and satellite measurements, Satellite 

rms errors were then compared to corresponding rawinsonde nns errors for 

both basic and derived meteorological variables , and to mean and near-extreme 

values of these variables determined from AVE data. 
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5. RESULTS 

a, RMS Errors in Basic Variables 

A comparison of the rms errors in basic variables for rawinsondes with 

those of satellites is presented in Fig. 2, Satellite rms errors are larger 

than those for rawinsondes at all pressure levels for all variables. Both 

satellite and rawinsonde rms errors in geopotential height and wind speed 

increase with height. Satellite rms errors for temperature are between 

lo and 2OC with a minimum near 500 mb, while the assumed rms error in rawinsonde 

temperature is constant with pressure. The rms errors for geopotential height 

for both systems are similar in magnitude and variation with height. RMS 

200- 

850- 

0.3 1.2 10 30 
Temperature Geo. Ht. 

("Cl (gpm) 

III I I 

2 6 10 

-RW 
-SAT 

I 1 

12 
Wind Speed Mixing Ratio 

h/s) (g/kg) 

Fig. 2 RMS errors in rawinsonde (RW) and satellite (SAT) profile data. 

12 



errors in rawinsonde wind speed are much less than those for satellite data. 

The satellite errors range from 8 m/set at 850 mb to 11 m/set at 200 mb, 

These errors indicate that most winds encountered in the atmosphere would 

be subject to large relative errors with only high wind speeds like those 

near jet streams being detected relatively accurately by the-satellite. 

The decrease in rms errors in mixing ratio with height are associated with the 

usual decrease in the mixing ratio with height. The large satellite rms 

errors in mixing ratio would lead to large rms errors in computed quantities, 

Yet, Negri et al., (1977) was able to determine reasonable values of moisture -- 
convergence, and also that satellite moisture distributions correlated well 

with the AVE data. 

The fact that nns errors for rawinsonde data are smaller than those 

for satellite data does not necessarily indicate that satellite data are 

poor. In fact, in some cases the errors tend to be relatively small. 

For example, a 700-mb temperature of O.O°C + 2.0°C, and a 500~mb height of 

5700 gpm f 20 gpm are relatively accurate, while a 700-mb mixing ratio of 

5 g/kg f 1.75 g/kg is of fair accuracy, and an 850-mb wind speed of 10 m/set 

f 7 m/set is not of acceptable accuracy. In many (perhaps most) cases, errors 

in satellite data are not too large to be useful especially in regions of 

near extreme values. The poorest satellite measurements are those of wind 

speed and mixing ratio. 

b. RMS Errors in Derived Parameters and a Comparison with Mean and Near- __-- --..- ~-~ 
Extreme Values 

Many meteorological parameters can be derived from the basic variables 

discussed in the previous section. Several derived variables have been chosen 

for this study, and the rms errors in these variables determined for rawinsonde 

and satellite data. The rms errors for the derived variables were compared to 

average and near extreme magnitudes determined from AVE II and AVE IV data. 

Results of these comparisons are presented below. 

1) Gradient of temperature. The nns errors calculated for the gradient 

of temperature are presented in Fig. 3. The rms error for rawinsondes is 

constant with height and has a value of 0.42C/315 km. Satellites have 

larger rms errors than rawinsondes at all pressure levels, with values 

ranging from 1.3C/315 km at 500 mb to 2.74C/315 km at 200 mb. As indicated 

in the figure, rms errors for rawinsondes are smaller than the mean AVE 
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Fig. 3. BMS errors in the gradient of temperature determined from rawinsonde 
and satellite data compared to mean and near extreme temperature 
gradients determined from AVE II and AVE IV data as a function of 
pressure. 

values. This means that typical values found in the AVE data are well 

within the measuring capability of the rawinsonde. The satellite rms errors 

are less than the mean gradient values of AVE II at all pressures, but 

above 500 mb the rms errors are larger than the mean AVE IV values. This 

indicates that above about 500 mb satellite rms errors are too large to 

permit an accurate determination of the AVE IV mean temperature gradient. 

Also present in this figure are the near-extreme temperature gradients found 

in the two AVE data sets, The calculated rms errors for both rawinsondes and 

satellites are small when compared to these near-extreme gradient values. 

Consequently, it appears that the near-extreme atmospheric temperature 

gradients can be determined with relatively good accuracy from both rawinsonde 

and satellite data. Analyzed fields (not shown) support this conclusion. 

2) Gradient of geopotential height. The rms errors in the gradient 

of geopotential height for rawinsondes and satellites along with the mean 

and near-extreme geopotential height gradients calculated from the AVE II 

and AVE IV data are presented in Fig- 4. The rms errors for rawinsondes 

are smaller than those for satellites at all pressure levels. The rms errors 

for both rawinsondes and satellites reach a maximum at 200 mb. Both the 

satellite and rawinsonde rms errors are smaller than mean AVE gradients at 

all levels, while the magnitudes of near-extreme AVE gradients are much 

larger than the nns errors for either type of data. Therefore, both rawinsonde 
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and satellite data have rms errors small enough to distinguish gradients of 

geopotential height normally encountered in the atmosphere, but again 

rawinsondes have the greater accuracy. It should be noted that the larger 

gradients can be determined with a greater relative accuracy than the smaller 

gradients. This means that regions of strong wind can be determined with 

greater relative accuracy than regions with light wind. 

II”“““““““““‘1 
200 

850 

t RW / /SAT 
0. /- AVE IV 1 

I I I II I I I I I I II 1 I I 

20 40 60 80 100 110 120 140 160 180 200 
Gradient of Geopotential Height (m/315 km) 

Fig. 4. RMS errors in the gradient of geopotential height determined from 
rawinsonde and satellite data compared to the mean and near-extreme 
geopotential height gradients determined from AVE II and AVE IV data 
as a function of pressure. 

3) Gradient of mixing ratio, The rms errors in the gradients of 

mixing ratio for rawinsondes and satellites are presented in Fig. 5. The 

rms error in rawinsonde gradients is from approximately 1.0 g/kg/315 km at 

850 mb to 0.27 g/kg/315 km at 500 mb. Satellite rms errors range from 

2.83 g/kg/315 km at 850 mb to 1.27 g/kg/315 km at 500 mb. Rawinsonde rms 

errors are smaller than satellite rms errors as well as the average values 
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found in AVE II and AVE IV, while the satellite rms errors are about equal 

to the average AVE values at all pressures. This means that the satellite 

measurements of mean moisture gradients would be subject to large relative 

errors. However, the near-extreme gradients determined from AVE II and AVE IV 

data are considerably larger than the rms errors for both satellite and 

rawinsonde, indicating that data from either system could be used to determine 

these gradients with relatively good accuracy. Data in Fig. 5 show that 

both mean and near extreme gradients of mixing ratio can be measured quite 

accurately by the rawinsonde system, 

I I I I I I I I - rms 4W Error 
I 

-- rms SAT Error 

I I I I I I 1 I 

12 3 4 5 6 7: d ;O 
I 

Gradients of Mixing Ratio (gm/kg/315 km) 

Fig. 5. RMS errors in the gradient of mixing ratio for rawinsonde (RW) and 
satellite (SAT) compared with average and near-extreme gradients 
determined from AVE II and AVE IV data. 

4) Gradient of wind speed. The RMS errors calculated for the gradient of 

wind speed for both rawinsonde and satellite are presented in Fig. 6. The 

profile of errors in rawinsonde data shows a gradual increase in magnitude 
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Fig. 6. .RMS errors in the gradient of wind speed for rawinsonde (RW) and 
satellite (SAT) compared with average and near-extreme gradients 
determined from AVF II and AVE IV data. 

with altitude from approximately 2 m/set/315 km at 850 mb to 6 m/set/315 km 

at 200 mb. The corresponding range for satellite errors is 11 to 14 m/set/315 

km. The rms errors for rawinsonde are less at all altitudes than the average 

gradients in both AVE II and AVE IV, while the satellite rms errors are 

larger than the average gradients in both AVE experiments at all altitudes. 

These results suggest that average gradients of wind speed (wind shear) can 

be determined from rawinsonde data but not from satellite data. The 

relative accuracy of gradients in wind speed determined from rawinsonde data 

decreases with altitude in both AVE II and AVE IV with the magnitude of 

the rms errors approaching the average AVE IV gradients at 200 mb. The 

relative accuracy in either case (rawinsonde or satellite) is a function of 

the magnitude of the average gradients existing at the time. 

Profiles of the near extreme gradients in both AVE II and AVE IV shown 

in Fig, 6 are considerably greater than the rms errors in either the satellite 

or rawinsonde gradients. There is no question about the capability of 

rawinsondes to measure the near-extreme gradients in wind speed with reasonable 
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accuracy# but because of the re&atively large rms errors in gradients determined 

from satellite data relatively large errors would result in the extreme 

gradients determined from satellite data. The relative accuracy of the 

near-extreme gradients determined from either rawinsonde or satellite data 

is a function of the magnitude of the near-extreme gradients. In AVE II, a 

near-extreme gradient above 500 mb would be determined with reasonable 

accuracy in either case, but below 500 mb the relative accuracy in the gradients 

determined from satellite data would be rather poor for either AVE II or AVE IV. 

5) Advection of temperature. RMS errors in the advection of temperature 

for rawinsonde and satellite compared with average and near-extreme values 

in AVE II and AVE IV are shown in Fig0 7. The results show that the rms errors 

in the advection of temperature due to errors in wind and temperature in 

rawinsonde data approach the average in the AVE data, and that rms errors in 

advection determined from satellite data exceed the average for both AVE II 

and AVE IV. These results show that even for the rawinsonde data, average 

850 
I 1 ’ ’ ’ 1 ’ ’ ’ ’ ’ ‘- !mr!..L_l I I I I 

l-2 2.4 3.6 4.8 6.0 7.2 8.4 9.6.10.8 

Advection of Temperature (OC/hr) 

Fig. 7. RMS errors in the advection of temperature for rawinsonde (RW) and 
satellite (SAT) compared with average and near-extreme values 
determined from AVE II and AVE IV data. 
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values for the advection of temperature can not be determined with great 

accuracy. This result is due to the relatively small average values. 

However, for both rawinsonde and satellite data, the near-extreme values for 

temperature advection are larger than the rms errors, although AVE IV 

near-extreme values are not much larger than rms satellite errors in the 

mid troposphere. For rawinsonde data, the near-extreme values of temperature 

advection can be determined with relatively good accuracy for both AVE II 

and AVE IV, but in the case of satellite data relatively large errors 

would result in the determination of near extreme gradients in AVE IV. 

The near-extreme gradients could be determined with relatively good accuracy 

from satellite data for AVE II, These results are similar to the results 

discussed above for the gradient of wind speed, and again show that the 

relative errors in the determination of gradients is a function of the 

existing meteorological conditions. 

6) Vorticity. Profiles of satellite and rawinsonde rms errors in 

relative vorticity are presented in Fig. 8. The profiles show an increase in 
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Fig. 8. FUG errors in relative vorticity determined from rms errors in 
rawinsonde (RW) and satellite (SAT) data. 



magnitude with altitude with the satellite errors being considerably greater 

than rawinsonde errors at all altitudes. The rms errors in relative vorticity 

determined from rawinsonde data vary from approximately 6 x 10 -6 -1 set at 850 mb 

to 3.2 x 10B5sec -1 at 200 mb, while the corresponding values determined from 

satellite values are 5.3 x 10m5sec -1 and 6.5 x 10 -5 -1 set , respectively. It is 

clear from Fig. 8 that the rms error in relative vorticity determined from 

rawinsonde data is considerably smaller than that determined from.satellite 

data, and that rms errors in satellite data would, in most cases, be larger 

than the expected average magnitude of vorticity and even greater than some 

maximumandminimumvalues. The results presented in Fig. 8 indicate that, 

in most cases, rawinsonde data may be used to determine relative vorticity 

with acceptable accuracy, while satellite data can be used to determine 

relative vorticity with acceptable accuracy only when values are quite large, 

Near-extreme values of relative vorticity are not available for comparison 

with the rms values presented in Fig. 8. To gain an appreciation of the 

relative accuracy of rawinsonde and satellite values of vorticity in a typical 

situation, vorticity fields determined from AVE IV data at 850, 700, and 500 mb 

are presented in Fig. 9. Over large portions of these charts, and especially 

in the centers of both positive and negative values , rawinsonde errors are 

considerably smaller than the magnitudes of the vorticity. This indicates 

that rawinsonde data are adequate for determining patterns of vorticity 

relatively accurately. In contrast, even the maximumandminimumvalues of 

vorticity from the charts are barely larger than the satellite rms errors. 

This suggests that errors from vorticity computed from satellite wind are 

unacceptably large even in centers of modestly high values. 

7) Divergence. The equation for the rms error in divergence is identical 

to that for vorticity. Therefore, the profiles for vorticity in Fig. 8 

represent errors in divergence as well, Since the magnitude of divergence 

is about equal to that of vorticity in synoptic systems, the above discussion 

on vorticity also applies to divergence. 

8) Lapse rate of temperature. Profiles of rms errors in the lapse rate 

of temperature for rawinsonde and satellite data are presented in Fig. 10. 
-1 RMS errors determined for rawinsonde data are less than l°C km between 

-1 850 and 200 mb, while values for satellite are about 2'C km below 500 mb 
-1 and approach 3'C km at 200 mb. Computations were performed over lOO-mb 

layers and plotted at the mid-point of the layer. Typical lapse rates in the 
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(a) 850 mb, 1200 GMT 24 April 1975, (b) 700 mb, 0000 GMT 24 April 1979. 

(c) 500 mb, 1200 GMT 25 April 1975. 

Fig. 9. AVE IV fields of.relative vorticity (10 -5 -1 set ). 
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Fig. 10. RMS errors in lapse rate of temperature determined from rms errors 
in rawinsonde (FW) and satellite (SAT) data. 

-1 troposphere are 6-7'C km which are considerably larger than the rms errors 

in Fig. 10 for either rawinsonde or satellite. It should be remembered that 

satellite temperatures represent volume averages while rawinsonde temperatures 

represent essentially point values. Thus, only a rather gross estimate of 

the lapse rate of temperature can be obtained from satellite data and only 

within a rather deep layer. 
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6. SYNOPTIC CHARTS PREPARED FROM SATELLJTF, DATA 

a. Temperature and dew-point temperature 

Synoptic charts of temperature and dew-point temperature prepared from 

rawinsonde and Nimbus 6 satellite data are presented for the purpose of 

gaining some appreciation for the results presented in Section 5. As shown 

in Section 5, the rms error for satellite temperature is about 1.5OC, while 

that for dew-point temperature is about 5OC. Therefore, fields of temperature 

prepared from satellite and rawinsonde data should show a greater degree of 

resemblence than those of dew-point temperature. As noted in Section 5, the 

relative accuracy of a given measurement depends upon the magnitude of the 

variable being measured. This means that even with relatively large rms 

errors in a given variable the major characteristics of the field can be 

detected in the data. 

Synoptic charts of temperature prepared from Nimbus 6 satellite and 

rawinsonde data are presented in Fig. 11. It is evident that the major 

features shown in the rawinsonde data also appear in the satellite data. 

The fields differ in areas where the rms error in the gradient of temperature 

is small compared with the rms error in the gradient (see Fig. 3). Where 

the gradient is large the fields have a close resemblence. Also, as would 

be inferred from the rms errors in temperatures for both rawinsonde and 

satellite (see Fig. 2), the magnitude and position of the contours show 

close agreement. 

Synoptic charts of dew-point temperature prepared from rawinsonde and 

satellite data are shown in Fig, 12. Because of the larger rms errors in 

dew-point temperature compared with those in temperature, charts prepared 

from satellite and rawinsonde data would not be expected to show the same 

degree of closeness as for temperature. This is evident in Fig. 12 which 

shows that only the major features of the dew-point temperature field are 

reflected in the satellite data. Patterns in the satellite fields are poorly 

defined because of the large rms error in gradients which result from the 

large rms errors in dew point. Also, the large rms errors in dew point 

cause variations in the position of contours as is clear from Fig. 12. 

While only fields of two variables are shown as examples, the character- 

istics of these fields in relation to the rms errors in the variables and 

their gradients illustrate the relationships between the rms errors and the 
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(a) Rawinsonde 

(b) Satellite 

Fig. 11. Rawinsonde and satellite 500~mb fields of temperature 
for 1700 GMT 25 August 1975. 
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(a) Rawinsonde 

(b) Satkllite 

Fig. 12. Rawinsonde and satellite 500-a fields of dew-point 
temperature for 1700 GMT 25 August 1975. 



representation of the variables on synoptic charts. Satellite data may be 

used quite effectively in synoptic analysis, but only in some regions of 

the charts, and when rms errors are known and properly taken into account. 

The analysis presented in this report should be helpful in this regard. 

b. Winds from cloud motions. 

Cloud motions, determined from SMS satellite data, were calculated 

by personnel at the Universtiy of Wisconsin for February 6, 1975 at 

1800 GMT (fifth time period of AVE III). The ability of these cloud motion 

vectors to determine the ambient vector wind distribution was evaluated by 

comparing these data with the rawinsonde-measured winds in AVE III. Cloud 

motion vectors were calculated at nine levels from 900 mb to 100 mb with a 

given value representing a mean vector wind 50 mb above and below the assigned 

level. Approximately 70% of the 190 cloud motion vectors calculated over -the 

AVE III network were located at 500 and 300 mb due to the cloud cover 

distribution. This limited the effective data comparison to these two levels. 

Two methods of comparison were used in evaluating the accuracy of 

the cloud motion vectors. First, both rawinsonde and satellite-derived 

winds were plotted on constant pressure charts (500 and 300 mb only) and 

isotach analyses performed to determine the ability of the satellite winds 

to measure the spatial distribution of the wind vectors as seen by the 

AVE III rawinsonde network (Figs. 13-16). Next, relative frequency 

distributions of wind speed differences (absolute value) between the rawinsonde 

and satellite-derived winds were calculated as a function of horizontal 

distance between individual data points at 500 and 300 mb (Figs. 17 and 18). 

Individual data point comparisons were determined for three distance ranges 

(51-100 km, 101-150 km, and 151-200 km) on the constant pressure charts for 

both levels. 

The vector wind and isotach analyses at both levels, derived from 

satellite data, reveal the dominate flow patterns as measured by the AVE III 

rawinsonde data. The polar jet stream is clearly seen in both the Gulf 

Coast States and turning northeastward along the Atlantic Coast States. 

However, exact locations and magnitudes of individual wind velocity centers 

compare poorly, especially at 300 mb. This difference is at least partly 

erroneous since the variable density of the satellite data and the spatial 

resolution of the rawinsonde data makes the determination of the exact 
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Fig. 13. Rawinsonde Wind and Isotach Analysis (kts.) at 500 mb on 
February 6, 1975 at 1800 GMT in AVE III. 

27 

I 



Fig. 14, Satellite Derived Wind and Isotach Analysis (kts.) at 500 mb on 
February 6, 1975 at 1800 GMT in AVE III. 

28 



Fig. 15. Rawinsonde Wind and Isotach Analysis (kts.) at 300 mb on 
February 6, 1975 at 1800 GMT in AVE III. 
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Fig. 16. Satellite Derived Wind and Isotach Analysis (kts.1 at 300 mb on 
February 6, 1975 at 1800 GMT. 
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vector wind distribution over the entire network impossible. 

The relative frequency distributions of the wind speed differences 

(absolute value) for various distance ranges show that individual speed 

differences range from 0 to 15 m set -1 , and 0 to 20 m set -1 at the 500 mb 

and 300 mb levels, respectively. However, most differences fall between 

0 and 10 m set -1 at both levels, independent of the distance range used in 

the comparison. The two arrows along the speed difference axis in both 

figures denotes the range in RMS errors in the AVE III wind data for 

elevations of loo and 40' as shown. The relative frequency distributions 

at both levels show that more than 50% of the speed differences were 

within this range, indicating that satellite-derived winds usually repre- 

sent the wind speed at a given point with about the same accuracy as the 

rawinsonde system. 
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7. SUMMARY 

Root-mean-square errors in satellite data were determined from published 

values of discrepancies between satellite and rawinsonde data and RMS errors 

in rawinsonde data. A propagation of error method was used to solve for 

RMS errors in the satellite data for temperature, dewpoint temperature, 

mixing ratio, and wind speed as a function of pressure. RMS errors in the 

satellite data for each of these variables were larger than the corresponding 

rawinsonde values. 

Gradients of each of the above variables were compared with average 

and near extreme gradients computed from the AVE II and AVR IV experiments. 

In all instances, it was found that the RMS errors in satellite gradients 

were approximately the same magnitude as the average measured gradients, 

but much smaller than the near-extreme gradients. Therefore, it was concluded 

that satellite data may be used to determine with relatively good accuracy 

the near extreme gradients. However, when the magnitude of the gradients 

was smaller than the mean value they could not be determined with acceptable 

accuracy. RMS errors in relative vorticity and the lapse rate of temperature 

also were larger for satellite than for rawinsonde. Average and near-extreme 

values were not available for comparison with these parameters, but it 

appears that the F?MS errors in the parameters computed from satellite data 

are unacceptably large. 

Synoptic charts were prepared to show the extent that patterns of 

temperature and dewpoint temperature could be represented with satellite 

data. The charts show that large-scale features of the temperature field 

can be represented with reasonable accuracy, while only gross features of 

the dewpoint field can be represented. 

Cloud motion vectors provided by the University of Wisconsin and 

assumed to represent horizontal wind speed were plotted on charts and 

analyzed. Large gaps in the fields existed and a comparison between 

measured winds and cloud motion vectors at different levels indicated RMS 

errors in the satellite winds considerably in excess of those for rawinsonde 

winds. Inadequate wind and cloud motion data were available to permit 

definitive conclusions to be drawn. 
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