View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

https://core.ac.uk/display/42863819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2
alternatives are and thelr differences and similarities,

Thae tangible components of & development environ-
ment are tools, $oftware whirh ean be used in perform-
ing the development activities delineated above, Tools
may be general ones which support & variety of activ-
{ties, but more usually they have a purpose falling
within one of the activities distinguished in this dis-
cussion,

The intangible components are the development prow-
eodures, principlea and practicus which development
practitioners are encouraged or required to use. There
{s an obvious, close interrelationship between these
methodological components of the environment and the
too) components - the procedures, practices and prin-
ciples included in the development environment shape
the function and nature of the tools and the tools,
themselves, give concrete meaning to the methodologfcal
rules and guidelines, The tangible and intangible as-
pects of a development environment must, therefore, be
defined concurrently - proscribing either in fsolation
runs the risk of defining an fnfeasible or ineffective
environment,

The core of a development environment {s the aet of
tanjusges provided for describing the characteristies,
properties and functfoning of & system during its de-
velopment, These languages provide the media for com-
wunication, the basis for defining assessment tech-
niques, and the means by which the relationships among
alternatives may be explicitly or implicitly defined,
Further, the languages allow the precise definition of
the development environment's tool and methodological
cemponents in terms of how descriptions in the languaqes
are prepared, modified, related and analyzed.

A broad spectrum of development environments is
possible, depending upon the number and variety of lan-
guages and the extent to which a single development
methodology guides the definftion of the environment,
At one end of this spectrum are fwolbomes which provide
a relatively large number of languages, generally hav-
ing no well-defined fnterrelationships, and which sup-
port a variety of development methodologies, The tocls
included in a toolbox are either general ones, useable
upon descriptions in any of the languages and therefore
ignorant of the specific details of any particular lan-
guage, or specific ones stronyly linkes to one partic.
ular language and ysable only with descriptions in that
language, The tools are also genarally independent so
that they may be employed in a va:iety of combinations
in support of the variety of methodologies for which
the toolbox can be used,

At the other extrome in the spectrum are develop-
ment syscoms, These "union shops™ of the development
environment world provide a single, obviously very
general, language and provide support for only a single
methodology - practitioners who do nat know (or like?
the language or who 4o not subscribe to the enforced
methodology cannot obtain help from this type of
environment,

[t should be obvious that the ideal development
environment lies somewhere bebtween these two extromes,
These dovelopmens support systens should provide 2
coordinated set of languages having well-defined rela-
tionships and features which allow the ecasy and natural
expression of the properties, characteristics and func-
tions of interest, This implies that development sup-
port systems generally cannot be universa) and, rather,
are oriented toward the development of a specific class
of systems. Further, the tools provided by a develop-
ment support system should be interdependent, inteqrated
around 3 collection of methodologies which are similar

in nature but which aceomnodate 3 number of development
stylos, The “happy modium” to be struck fs one which
encourages {and rewards!) good rractices but does not
stifln infividuality, The characteristics of these
fdeal developnent ervironments will be ditscussed further
in the last two sections.

PROGRAM CONSTRUCTION TOOLBOXES

furrent-day software system development environ=

ments are, for the most part, of the toolbox variety and
tend to support implementation activities occurring dur-
ing the development of relatively simple systons, These
progrem construction envirenments provide tools to ajd
in the development of an executable description of the
program and in the determination of the program’s rune
time behavior. They tend not to embody any particular
development methodology.

In order to suggest quidelines for producing de~
velopment support systems, it {s instructive to louvk at
the components of current-day program construction ene
vironments and take note of several trends evidenced by
their history, The first of these topics is the subject
of t?is section and the second is discussed in the next
section,

Our assessment of the current state of advancement
{n the preparation of program construction environnpnts
is oriented toward the facilities which the average
development practitioner could expect (or could demanc!)
to find as part of their computing facility, They are,
therefore, those facilities which are well enough de-
veloped to have heen transferred out of "research"
status ~ gther facilities which are stil) under develop-
ment are not discussed, [t shouid also be emphasized
that it i3 not necessarily feasible to implement all of
the facilities indicated here on all computing systems
and that their implenentition on resource-impoverished
computing systems is currently a research topic,

The typical program construction environment makes
available a plethora of programming languages, generally
enough to satisfy any taste, style or proclivity, In
addition to general-purpose, procedural languages, lan-

uages are usually provided for specific problem domains
?e.u-. Snobol), specific solution spaces (e.g., Lisp),
or specific solution activities (e.q., RPG)., As {5 true
of toolboxes in general, the languages are independent
and no attempt has been made to define relationships
among different Yanguages.

The vast majority of tools present in a program con-
struction environment provide support for text prepara-
tion activities. The task of translating a human-orijent-
ed, problem-oriented deacription into executable code is
well-understood and trinslators of significant sophisti-
cation, in terms of tne language constructs they can
successfully handle and the optimizatjon they can per-
form, are conmonplace. Preprocessors, especially those
providing structured-programming dialects of (generally
older) languages lacking a reasonable set of execution
control constructs, are also comonplace. Finally, for
those wishing to prepare a translator for a lanquage of
their own design, there are a variety of parser and
lexical analyzer generator tools,

Other, language-independent, text preparation tools
are also avajlabla {n current-day program construction
environments, Chief among these are text editing sys-
tems of which there is an extensive variety, The best
appedr to be ones which are character-oriented and CRT-
based; but line-oriented aditors seem preferadble when
only hard-copy terminals are available. Subroutine
libraries also provide help in preparing the text of a

.
-
proyram,

Text retention tools are usually present ac part of
the general=purpose file system provided by the operate
ing systom, Protection and dccess control faci)ities
are supportive of program construction; the latter, In
particular, being valuable fn the enforcement of develop-
ment principles such as the principle of fnformation hid-
ing {2}, Retrieval facilities are typically file~orient~
ed and, therefore, not very sophisticated with respect to
composing a program out of units much smaller than a
procedure. This failing can, however, be circumvented
with facilities which allow the free composition of files
by placing directives in one file {ndfcating that all or
part of another file {s logically part of the file ¢on-
taining the directive,

A variety of tools are typically provided to a’” con-
sistency assessment, Simple tools of this type ars qen-
erally buflt into the language translators and checx for
syntax errors, Semantic error detection tools are aiso
frequently provided as part of translators. Scme of
these check for simple errors such as a mismatch between
arquirents fn 3 procedure invocation And the corresponding
parameters, Others perform more sophisticated checks but
require the users to give additional, semantic informa-
tion so that the check can be carried out, For example,
3 units checker tool {3]) has been developed for Pascal -
it requires the specification of units, e,g,, miles/hour,
for program variables and then analyzes arithmetic ex-
pressions to determine whethar or not units cancel
properly,

Tools for checking the consistency between the pro-
gram's overall dynamic (i.e., run-time) behavior and the
program developer's expectations are primarily of the
validation variety, This class of tools includes de-
bugging support systcms, path analyzers, testbeds, test
coverage analyzers, test data generators, etc. These
tools are typically language-specific., Also falling {n
this c¢lass are machine simulators which allow the cxecu-
tion-style checkout of & program even though the machine
on which {t will eventualiy exccute is not available,

Other tools for checking a program's dynamic Lehay-
for by static verification techniques are not yet prev-
alent, but are becoming more common, Most generally
available are those, typified by DAVE [4,5], which check
for properties which stem from semantic rules (such as
definition of a variable's value prior to iks first use),
from rules of good practice {Such as use of a variable
tesore redefinition of its value), or from general re-
quirements pertaining to an entire class of systoms
{such as absence of deadlock), More sophisticated tools,
typified by (6) and [7), use symbolic execution tech-
nigues and allow the checking of properties defined by
the program developer and specific to the program itself.

The remaining development activities of completeness
assessment, structure exploration and binding exploration
are generally not directly supported by any specific
teols, PRather, there is a hodgepodge of tools which have
been "collected" over the years that tend to allow de-
velopers to investigate a program's completeness and ex-
plore alternatives, Generally included in this collcc-
tion are cross-referance facilitius, linkage editors,
time-histogram facilities, etc. Specialized job control
languages also provide support in carrying out these
activities. Finally, additional support is sometimes
proviged by homogenizing programming language interfaces
<o that multi-lingual programs can be constructed.

TRENDS I M EVOLUTION OF
PRUGRAM CONSTRUCTION TCOLBOXES

The history of the Jdevelopment of program construc-
ticn toolhoxes exhibits some trends which, when extrap-
olated, indicate what can be expected in the future, We
do not profuse that nxtending development in the direc-
tions indicated by these trends will be sufficient to
achieve truly effective development support systems, But
the trends are indicative of an already established mo=~
memtum which provides a context for other evolutjonary
trends which we will propose, in 3 subsequent section,
as additionally necessary,

One trend that §s quite obvious is toward interactive
environments which provide the means for much quicker
information transfer between developers and the computer,
and vice versa, Once computer syston users make the
change frem thinking of programs as a deck of cards to
viewing their programs as text streams, interactive en-
vironments greatly speed up the activities of program
text preparation, entry and modification, In addition,
such environments offer a basis for speeding up the
other development activities of assessment or explora-
tion, The overall benefit is that developers are freed,
by the virtue of higher-quality "secrotarial services,”
to devote a larger proportion of their time to more
fmportant, more intellectually challenging development
tasks, Of course, this benefit comes at some cost, but
this is generally not prohibitive and recognized as wel)
worth it.

Another trend s <nc ration, With the development
of sophisticated operating systems to serve as vehicles
for the delivery of tools to development practitioners,
there has been a tendency to provide a common interface
to the various facilities provided within and under the
operating system, Another aspect of irtegration has been
provision of facilfties which allow the various tools to
be conveniently used in the cembinations required under
a number of development approaches and styles,

Closely related §s a trend toward verifieation. An
example is the development of debugging facilities which
are oriented toward high-level rather than assembly-level
languages; fpr example, the development of the debugging
subsystem for the Algol-W language [8]. It is important
to note that this trend toward unification generally im-
plies & narrowing of scope of attention to a smaller num-
ber of languages, found by use over a number of years to
be valuable, natural and sufficient for the representa-
tion of programs,

Closely related to these two trends is one which can
be characterized as censralization, The tendency has
been to provide new tools as part of a translator, per-
haps optionally invokable, The usual, overriding reason
for this is that the tool needs the facilities provided
by the parser component of the translator and the (wise)
decision is made to embed the tool {n the translator
rather than duplicate the parser, It should be noted,
however, that when new language constructs are {nvolved,
the ton)} is frequently provided as a stand-alone facil-
jty; for example, structured progranming preprocessors
are the norm. However, the desire to make the tool in-
dependent of existing transtators sometimes adversely
affects the new lanquage constructs,

Anather trend, critical to providing program con-
struction environments of any reasonable quality and
effectiveness, has benn toward progrum animation to pro-
vide help for the activities of assessment and explora-
tion, Because of the availability of the machine on
which the program will run (or a simulation of the
machine), there is a strong temptation to use execution
to gain an understanding of a program's dynamic behavior.

ORIGIN T, -
OF POy, o

Further, this "easy way" s encourdged bLecpuse of the
trend to centralize tools into a single programming 5ys=-
tem - {1t {5 frequently impossible, for example, o have
the syntax of a program cheeked without also execuling
the program or at least having an executable translation
of the source text prepared, There is increasing recoy-
nition, however, that the inference of 3 program's dy-
namic properties by executfon fs generally neither cost-
effective nor effective,

The fina) trend to be conmented on hiere concerns the
environment's languages rather than fts tools and can be
described as a trend toward higher-quality representation,
One aspact is a move toward increasing the understand-
atility of programs. Founded upon a recognition that
allowing an arbitrary relationship between the physical
structure of a program and its logical flow ({.e., the
paths of exccution through {t) unnecessarily increases
the complaxity of a program, and fostered by the desire
to automatically verify a program's correctness, there
has been both a general recognition that a programming
language must provide a rith set of simple, powerful and
easily understood execution control constructs and an
increasing tendency in the definftion of new languages
to provide such a set,

Another aspect of understandability enhancement has
been & move toward a separation of concerns. One simple
example, evidenced by the Gypsy language [9) among others,
has been the provisfon of constructs to explicitly con-
tro) the scope of varfables rather than have the bluck
structure of the program indicate fts resource require-
ments «d the scope of variables, A more sophisticated
example i5 provided by the constructs present in the Ada
language [10) which allow a subprogram's intent (i.e.,
{ts specification) to be stated separately and redun-
dantly of its implementation.

A closely related aspect is the tendency te fntro-
duce, into a Yanguage's definition, rules of wsage that
are relatively easily checked and which foster the pro-
duction of "correct” programs. The thought behind this
tengency is that a program's function {s more easily
understood, and more easily checked for validity, if
aspects of its operation {and sometimes {ts behavior)
are stated redundantly in al) of those places where they
are of interest, Constructs for explicit ¢ontrol of var-
ible scope are an example, as are those for ~pecifying
the types of variables. [t should be netzd that facil-
{ties for rodundant specificatfon are usually accompanied
by rules, enforced by the language's translator, requir-
ing that the redundant specification be made by the lan-
guage's users, This reflects the fact that these facil-
ities stem from a reatization that their use typically
leads to "more correct" programs and that their imposi-
tion can speed the development of programs which func-
tion correctly,

Another ¢losely related aspact s the trend in lan-
guage and translator design to provide facilities sup-
porting modularity, typified by incrementa) compilation
facilities, These facilities are usually coincident
with procedure definfition facilities which means they
are not always sufficient, But they do tend to facil-
jtate incremental program development,

1HADEQUACIES OF
PROGRAM CONSTRUCTION TOOLBOXES

The general trend in the evolution of program con-
struction tpolboxes has been to provide facilities for
nastening the development of appropriately functioning
programs, Part of this has been the preparation of cre-~
ation activity facilities which free development prac-
titioners from devoting an inordinate amount of their

efforts to tne preparation end maintenance of the text
of their program desceiptions, Another part has been

the Intraduction Into programaing lanquages of constructs
fostering the development of correct, vaderstandable pro-
qrams, The find] part of this trend has been the de-
velopment. of facilities for the cons{stency assessment
of programs,

An nbvious inadequacy is the lack of facil{ties pro~
viding direct, high-quality aid for completeness assess-
ment and 2xploration activities., The preblems associate
ed with these activities have been somewhat less {mpop-
tant and attentfon has been Justifiably directed toward
the more important probliems associated with creation and
consistency assessment activities., But {t is 3lso true
that these prchblems have been intellectually managable
for the vast majority of programs developed, and {t {s
only with respect to the development of large-scale,
complex pregrams (f.e., ooftwira systana) that these
problems become unmanagable and a{d is required.

When attention is turned to software systems as
opposed to programs, several other {nadequacies become
apparent, These {nadequacies primarily stem from a
failure to take into account the special nature of sy.-
tems that make them quite different from ordinary pre-
grams, Systems are a conglomeration of interacting
parts; sometimes this decomposition of a whole into
parts {s a natura) phenomenon and sometimes it §s artifi-
cially induced because of our inabil{ty to othervise
cope with the system's complexity, Thus, al)l activities
concerned with developing a system must consider the sys-
tem's parts and their interactions and {t is facflities
for direct consideration of interactions that are absent
from current-day program construction envirvnments,

More specifically, what is missing are facilities to
perform modelling, What {s needed {s the ability to
focus upun the interactions, either as & prejude to de-
veloping parts which support these interactions or in an
attempt to assess the {nteractions of already developed
parts, This requires the abiljty to abstract the func-
tional, operational characteristics of the parts, {.,e.,
the ability to prepare models of a part's interface and
functionality.

Some modeiling capabilities are inherent in a pro-
gram constryction environment, It {s possible, for ex-
ample, to develop a system prototype, 2 simplified ver-
sion which does not exhibit all of the properties of the
eventual systoem but can be used in order to gain an
understanding of systems of the type being developed,

Use of models of this type can be called evolutionary
prograrming (11] and can provide a very effective de-
velopment method as evidenced by the MTS operating sys-
tem (12] which was developed as a succession of progres-
sively more ejaborate "models,” But it is equally impor-
tant to be able to prepare horizontal models which rep-
resent the entire system but only to a lavel of detail
which is somewhat short of an executable version of the
system. These types of models are of particular impor-
tance during the early stages of development, by what-
ever development method is being employed, when the task
{s to infer or specify overall system properties without
the ability (or necessity) of executing the system to de-
termine its properties,

This leads to another inadequacy of current program
construction environments, being the strong orientation
toward functionality properties. Ouring software system
development, particularly when there are no previously
developed, similar systems to provide hints concerning
the system's eventual properties, practi%ioners need the
capability to obtain estimates of tho system's econumics
and performance. While this can be accomplishad by im-
plementing the system and gathering statistics during its

-

operation, this would be a regression to n ancient
practice, described by Graham (13] as bujlding systems
Tike the Wright brothers built airplanes - constructing
them, pushing them off a ¢)§ff, watching them crash and
starting al) over agian.

Another fnadequacy has been fmplicit {n the discus-
sion so far - the inadequate recognition of pre-imple-
mentatfon development stages. Ouring these stages, it
i5 critically important to be able to undmbiguously re-
cord and rigorously assess the policies and strategies
governing the system rather than the mechanfsms and al-
gorfthms used fn its implementation, The languayes pro-
vided are {nadequate for expressing these attributes of
a system and the tools provided do not support fnvestio
gatfon of the system's properties as derived from these
attributes, Further, the Yanguages and tools are not a3
helpful as necessary or desirable during the post-imple-
mentation stages of maintenance and medification, which
are more akin to pre-implementation stages than they are
to frplementation jtself.

The fina) fnadequacy to be noted here {s In essence
a secondary effect of the strong orjentation toward the
fiplementation stage of development, With respect to
software systems, the development of software
s no longer a persona) thing between one person and the
computer - there {5, instead, & development team {some-
tintes more appropriately misspelled "teem”), as well as
project managers, cusitomers, users, acceptance testers,
documentors, user~guise writers, etc, Each of these
persons has differing desc: éptional requirements and
this severely complicates the problems of communication
and highlights the fact that programming lunguages and
programming language oriented tools are not sufficient
for an effective development support system,

PRIKCIPLES GUIDING FUYURE EVOLUTION

We Jo not propose "starting all over again® in order
1o prepare effective development suppart systems, First,
evolution, as opposed to revolution, is too well recog-
nized as an efficient and successful paradigm., Second,
revelution is not warranted, at this point, since program
construction environments are basically on the right
track and their inadeguacies stem primarily from consid-
eration of too small a set of concerns. Third, we fegl
that the trends evident {n the evolution of program con-
struction environments are, with only two exceptions, en-
tirely appropriate and conducive to the eventual emer-
gence of developnient support systems,

Therefore, in this segtion, we present several prin-
¢iples which we feel have affected the evolution of de~
velopment environments only secondarily or not at all,
put which must be given strong emphasis in order that
the evolutionary process yields effective development
support systems and that the emergence of such systems,
and their delivery to working practitioners, is both
quick and timely,

frénerple §: Enhance the capressive power and rtoieas
of vhe languages wderlying the develop-

ment onuTrenent,

The nped to describe characteristics in addition to
functionality and operation and the need to communicate
essential information to & variety of audiences means
that languages are needed to directly support a tulti-
glicity of views of the system being developed, The
traditional dual views of data flow and control flow are
a simple {1lustration of what is needed - description
capabilites providing alternative views and having a

ORIGINAL PAGE IS
OF PUuR QUALLITY

fermal (although not necessarily algorithmically ana~
lyzable} ralationship. Ferhaps the {deal would be to
have & single representational technfque, not necessar-
ily directly used by developers, from which all other
systom doseriptions are analytically derivable, Whether
or not this fs an fdeal, and what the varicys descrip-
ticn techniques should be, will require a good deal of
investigation,

In addition to evolving a set of coordinated, formal-
ly relatable languages, it s importa.it that none of the
fanguagey exhibit a rococo nature, Far example, the lan-
quage which was developed as the bas‘s of the DREAY de-
sign support system (147 is somewhat of this nature, In
trying to put into one language, ir consistent forns,
all of the descriptional capabilities we felt necessary,
we possibly created the PL/! of design description lan-
guages, The Jesson learned {s that it {s much better to
define a multitude of languages, each having 3 well-de-
fined purpose, than it §s to define a single)anguage
having a multitude of purpaoses - this follows the ob~
vious extension of the trend toward separation of con-
cerns evidenced by recent developments in programming
language design,

Further, in the development of {ndividual languages
we should strive for a reasonable balance between suffi.
cfency and naturalness, Having a parsimonious set of
constructs {s desirable hecause of the attendant clarity
of the Janguage and the relative case with which one may
obtain a formal basis for the language, HNaturalness f{s
obviously fmportant but tends to incresse the language's
"size." !n order to realize the aim of having forma)
relationships among the languages, it is perhaps best to
err on the side of sufficiency,

One Jast word of caution {s that we must be careful
not tn create a Tower of Babe) sftuation as we cannot
afford to forestall and inhibit progress by a "profusion
of tongues." This analogy indicates that we should be
as coneerned with the meta-languages we use to define
the languages as we are with the languages themse)ves,

Pprinaiple £ Develop more extensive anitmition fasilites,
tn eleae coordination with the Jevelopment

of lunguages.

The most c¢hallenging of development activities fis
assessment, taxing our inference capabilities to their
utmost, particularly in the case of concurrent systems,
We must, therefore, increase the facilities, whether they
be simulation-based or andlytic in nature, available for
afding the inference of a system's properties while it
{s under development and the estimation of the properties
i% will eventually exhibit when its development is com-
plete,

So that we do not suffer dec{dability and computa-
tional complexity problems, the animation tools should
be of a feedback variety, By this, we mean that the
tools should derive information for the developers con-
cerning the system's dynamic properties, but should not
attempt to cnmpletely cert fy that a system exhibiting
these properties is approp-iate, leaving that task for
the developers to perform by {nterpreting the derived
information, Animation tools of this sort have been de-
veloped {[4,5,15) for example) and experience with their
use indicates that while quality {s a serious problem,
they provide imneasyrable assistance by uncovering po-
tentially erroncous situations which would have escaped
detection under a less-rigorous {nspection done without
the tool's aid.

That the development of ar ,ation tcols and of de-
scription lanquages must be gourdinated is obvious since
pach affects the form and content of the ather. An

additiona) reason is that, for effective system develop-
ment, the processes of wynthests and aniyuta must be
tightly Interleaved so that assessment §s 3 continuons
activity, integrated with the activities of creation and
exploration - otherwise, we are back with the Wright
brothers again.

Prinaiple 3¢ Oive concentrated atiention £o providing
teols whioh directly augport explopation

agrfvities,

On the surface, this principle means that support
must be developed for preparing and exercising systen
models, both prototypes and horizontal abstraction mod-
ols, Additionally, however, d{ffergntial elaboration
of these models must be facilitated since it s in this
way that alternatives for achieving some system part can
be assessed within the context of the rest of the system.
This assessment-in~-context is critically important to
any meaningful exploration of alternatives,

To facilitate and enhance the exploration of alter-
natives, it s also necessary to provide facilities for
the aygregation and structuring of information concern-
fng the system befng developad, Underlying Dijkstra's
deyelopment of the guarded command construct [16] was
the {mportant observation that the creation of a pro-
gram is not an orderly process but is more generally a
relatively random porcess in which computationa) details
emerge in ap order which does not correspond to the
order {n which they are performed during proqran execu-
(ion, This phenomenon is even mare true of the pre-
{msiementation development stages and thus it s im-
portant to provide an environment under which pieces of
fnformation can be recorded {n the order of their gen-~
eratinn and structured fnto a coherent base of fnforma-
tion from which developers ¢an gxtract "chunks” come
posed of interrelated pieces of information,

Even more sophisticated facilities are important for
the support of exploration activities, First, the in-
formation retention facilities must be able to distin
guish and keep track of versfons of a system, prefer-
ably with only straightforward, natural directives from
the developers as to the relationships among pieces of
information concerning the system, Second, the facil-
fties must a)low the modification of the system descrip-
tion within any relatively arbitrary “siice" through the
information base, Finally, the facilities should {deal-
ly moniter and gride the informatfon agglomerstion pro-
cess, checking for incensistencies and missing {nforma-
tion -~ this capability obviously demands a significantly
more extensfve upde-standing of the development process
than we currently possess,

Prinedple 40 The process of nazural selection should be

faetittated at every opportunity.,

This principle {s obvious and should not need to be
stated, but there is a frequent tendency to forget this
basic tenet of evolution. It is usetul, thercefore, to
point out some concerns relating to this principle which
should be kept in mind,

First, experimentation {s an absolute necassity.
This means, however, that much more {4 required than the
conduct of experiments intended to fnvestigate the effi-
cacy and efficiency of various practices, principles and
procedures - that is, various methodologies. [t means
that individual tools must be constructed with attention
to providing mechanisms for monitoring thefy individual
and collective use, It means that the operating system
environments through which the tools are delivered to

development practitioners must 317ow the nonitoring of
too) usage and the collection of statizti.s on tool
utilization, Finally, §t means that an understanding
must be Jeveloped of how to conduct the exp. iments,
what daty to collect, how to reduce the data to weaning-
ful derived measurements, and how to use the results to
guide future evolution and experimentation,

To fagilitate evolution, {t is also necessary to
have an organization underlying the development environ-
ment which is conducive to the reorganizatfon, extension
and modification of the tools present {n the environment,
Users should be abje to employ the tools {n whatever
sequence and cembination seem warranted and productive
given the intents of the tools, The tools themselves
should be robust enough to function, at least to the
Jeve) of reporting an error, in (perhaps bizarre) con-
texts not originally envisioned, Users should also be
able to modify the tools, particularizing them to spe-
cific tasks. (This, however, raises some serious sup-
port quections.) Finally, it should be possible to
easily add new tools to the environment,

To achieve this modifiability of the tools
and their use, we fee) that it {s not appropriate to
continue the trend toward centralization, In fact, it
would be best, at this point, to unbundle the tools
typically present in & prograsming system, The avail-
ability of 3 stand-alone parser, for example, would
facilitate the development of other stand-alone tools
while reducing the effort nceded to produce them. Inter-
face problems arise, but we feel they are solvable and
the benefit gained is well worth it.

The process of natural selection further requires a
management environment which facilitates and encourages
the use of tools, In addition to sometimes well-founded
suspicfons as to the efficacy and efficiency of indi-
vidual tools, practitioners also possess a "momentum” in
the use of well~-known practices and procedures which in-
hibits their adoption of new tools. Management should
foster the surmounting of this inertia by indicating
that the use of tools, cven those without clearly estab-
Yished "credentials,” {s both expected and respected,
This requires that management be willing to give the
necessary monetary support to using and learning to use
the tool. Management must also give monetary support to
the task of toolsmithing and ectablish thic as a respect~
able and desfrable activity.

Critical to establishing an enyironment in which
natural selection can easily run {ts course is th? de-
velopment of criteria b which toals may be judged.

These criteria are necessary in the design of experiments,
required so that practitioners can make intelligent
choices of which tools to use and when, and almost pre-
requisite to management willingness to provide the neces-
sary support and encouragement, However. waiting unti)
these criteria are fully developed would introduce a de-
bititating delay and it is necessary that some risks be
taken and there be a willingness to develop and refine

the e¢riteria concurrent with the experimental use of tools.

Eptneiple 5¢ Encourage, but do wot mmdate, the use of
development practices, procedurca and

principles,

At Lhis poiat in the evolution of devalopment method-
ologies, not encugh is known as to their value in partic-
ular development situations to warrant their strict im-
position, Rather, their value must be explored simylta-
neously with the exploration of criterfa for tool usage
and of tools themselves., In addition, we feel that it
will never be appropriate to mandate the usage of a
single set of principles, practices and procedures for

Y

kaclomnent because there will always be & wide variety
of viable styles and 8 wide variance in practitioner
sophistication and level of experience.

1t seems best, therefors, to head toward development
environments which embody a development philoacpl; rather
than & strict methodology, which provide tools supporting
a varfety of styles consonant with the development phi=-
losophy, and which (perkaps subtly, perhaps blatantly)
reward working within the guidelines of the philosuphy,

Human enginaering constderations should be
of primuy gencern,

Principle 6

An envivonment which fosters natural) selectfon, ene
courages experimentation and invites practiticaers to
use tools in support of their development activities
cannot exist without the tools being easy and convenient
to use, There should be relatively homogeneous {nter-
faces to the {ndividual tools, The tools should be
orfented toward users who are unsophisticated with re-
spect Lo computer seience in order to foster their in-
volvement in the development process, particularly dur-
ing the preimplementation stages, TYhe tools should pro-
vide users with extensfve control over its functions and
facilitics so that thefr usage may easily be tailored
to the tash being done and the users' need.

With respect to human engincering concerns, we feel
that the trend toward interactive environmenis is not
aeessardily a good one to pursue, The activities of
sssessment and exploration seem to be primar{ly off-line
sctivities and the development environment would, there~
fore, seem best supported by remote-job-entry facilities
coupled with highespeed, hard-copy output facilfties.
The exception would seem to be the use of interactive
graphics devices, such as in the Tell system (17]), to

provide quick display of different system characteristics,

CORCLUSION -

The transfer of Lechnological developments from re-
search status to use by "real-world” practitioners scems
to fairly consistently require a ten-year period of time
{18), In this paper, we have attempted to propose and
Justyfy some principles guiding the proparation of soft-
ware development environments which are critically nece
essary to achieving, and hopefully speeding, this ,
transfer rate, We first reviewed the state-of-the-art
of development environments, noting their strong orien-
tation toward the construction of relatively simple soft-
ware systems, We then indicated some of the trends
evidenced by the evolution of these program construction
enviromments and some of their inadequacies, These ob-
servations formed a basis for suggesting several prin-
ciples {some at s)ight varifance with previously estab-
Hshed trends) to guide future evelution and arguing
their eriticality to achieving truly effective and effi-
cient development support environments,

Our observations have been primarily with respect to
gevelopment practitiopers - specifiers, designers, im-
plementors, and maintainers, They have some validity
with respect to other agents - maragers, users, customers,
acceptance testers, etc, - participating in the develop-
ment process, but the special concerns of these agents
have not been given adequate attention here.

Because of the quasi-research, quasi-development
nature of the task of continuing the evolution of de-
velopment enviropments, it would appear that the most
success weuld result from university/industry or univer-
sity/qgovernment collaborative efforts, Preliminary fm-
piemantations and feasibility studies, tasks that

ORIGINAL PAGE IS
OE POOR QUALITY,

industry aml government software development divisions
frequently cannct devote time to carrying out, ¢ould be
perforred {n university environments quided by the prac-
tical cexperignee of industry personnel, Production-ver-
sfon implementation ¢nd effectiveness assessment, tasks
that university projects frequently lack the resources
to adequately attack, could be perfurmed in fndustry or
government with the guidance of university researchers,
particularly with regard to the conduct and {nterpreta-
tion of experiments, [t would scem that the differing
interests, experiences and capabjlities of the various
segments of the software engincering conmunity are not
extensive or rich enough for any onc segment alane to
meaningfully attack ths overall problem; and it would
secm that 3 collective cffors weuld be effective and .
beneficial,

ACTNOWLEGSMENTS

Many of the observations made here emerged during
the presentations and discussions at the Software
Development Tools Workshop held in May, 1979, at Pingree
Park, Colorado, 3nd the author {s indebted to the work-
shop participants for allowing him to "pick” their
brains, The author would like to also thank Suy Bristow,
Bryan Edwards, and Jack Wileden for helpful
discussions.

REFERENCES

Y. 6. M, Weinberg, The Ps cholog_{. of Computer Pro-
grapming, Van Nostrand Reinhold Co,, tiew York,1971,

2. D, L. Parnas, Information distribution aspects of
design methodology. Proc, IFIP Congress 71,
Liubljana, August 1971, pp. TA3/26 - TA3/30,

3, 5, H, Saib, SQLAB: Tools for program verification.
Prog, HASA Morkshop on Tools for Embedded Computin
Systews Software, Hampton, Virqinia, Hovember 1978,
m’- 117'120.

4, L. D, Fosdick and L, J., Osterweil,
sis in software relfability.
3 (1976}, 305-330.

5. 6. Bristow, C, Drey, B8, Edwards and W, Riddle,
Anomaly detection in concurrent programs, Proc.
4th International Conf, on Software Engineering,

MunTch, September 1979.

6. L. A, Clarke, A system to generate test data and
symbolically execute programs. IEEE Trans. on
Software Engineering. SE-2, 3 (September 1978),

21o-dde,

7. W. E, Howden, ODISSECT: A symbolic evaluation and
program testing system. IEEE Trans. on Software
Engineering, SE-4, 1 (Jantary 19787, 70-73.

8, €, Satterthwaite. DOebugging tools for high level
languages, Software - Practice and Experience,

2, 3 (July 19727, 197-217,

9, A, L, Anbler, 0, 1. Good, J. C, Browne, Y. F,
Burger, R. M. Cohen, C. G, Hoch and R, £, Yells.
Gypsy: A language for specification and implemen-
tation of verifiable programs., Software Engineer-
ing Notes, 2, 2 (March 1977), 1-T00

10, Preliminary Ada Reference Manual,
14, 6 (June 1979).

11, €. Hewftt, Remarks at Sofsware Development Tools
Yorkshop, In Riddle an? Fairiey (ed.), Software
Development Tools, Springer-Verlag, Heidelberg, to
appear February 1980,

Data flow analy-
Computing Surveys, 8,

SIGPLAN Notices,

12,

13,

‘4'

15,

16.

17,

18,

An (ntroduction to M.T.5. Computing Center, Uni-
versity nf Michigan, Ann Arbow,

P. Haur and B, Randel} (ed,) Software Engineering,
Scientific Affairs Div,, NATO, Brussels, Delgium,
January 1969,

W. £, Riddle, J. C, Wileden, J, H, Sayler, A, R,
Segal and A, M, Stavely. Behavior modelling during
software desi?n. 1EEE Trans. on Software Engineer-

ing, SE-4, 4 {July 1970), 283-292,

p. Henderson, Finite state modelling {n program
gg\{e;g;’xnunt. SIGPLAN Notfces, 10, 6 (June 1975),
% S .

£, W, Dijkstra, Genera) cemmands, nondetemninacy .
and the formal derivation of programs, Conm. ACM,
18, & (August 1975), 453-457, o

P, G, Hebalkar and 5. N, 241les, TELL: A system
for graphically representing software design, Proc,
Compcon Conf., San Francisco, 1979,

C. A, R, Hoare, Xeynote Address, Proc, Jrd Inter-
national Conf, on Software EngineerTng, Atlapta,
Seorgla, May 1978, '

