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SECTICN 1 - INTRODUCTION

This report describes the physical and numerical formulation of a mode] for

the horizontal solidification of a binary alloy. |t can be applied, for
example, to the case of steady-state solidification from two opposing walls

in an Ingot. The majer purpcse of the model Is to calculate macrosegregation
in a casting ingot which resylts from flow of interdendritic liquid during
solidifTication. The flow, driven by solidification contractions and by gravity
acting on density gradients In the interdendritic liquid, s modeled as flow
through a porous medium. Section 2 defines the symbols used throughout this
report. Section 3 contains the physical formulation of the problem leading

to a set of equations which can be used to obtain: (1) the pressure field,

(2) the velocity field, (3) mass flow and (4) solute flow in the solid plus
liquid zone during solidification. With these established, the model calculates
macrosegregation after solidification Is complete. Section 4 presents the
numerical techniques used to obtain solution on a computational grid. Section
5 contains results, evaluation of the results, and recommendations for future
development of the model, Included are the macrosegregation and flow field
predictions for tin-lead, aluminum-copper, and tin=-bismuth alloys as well as
comparisons of some of the predictions with published predictions or with

empirical data.

The numerical model is the basis for algorithms used in a FORTRAN program which
has been run on a Prime 400 computer system at Marshall Space Flight Center
(MSFC) in Huntsville, Alabama. The program can be run in batch or interactive
mode; the latter mode allows the user to interact with the model by changing
process parameters or alloy, and by selecting graphical or tabular output for
display on the terminal screen. The documentation for the FORTRAN code is
Volume |l of this report, and the operating manual is Volume I1fl. Volumes |
and 1!l are self-contained in the sense that they describe the model and its
operation without reference to the FORTRAN code; accordingly no programming

or computer operation experience is needed to make use of the model.
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SECTION 2 - NOMENCLATURE

coefficient In the pressure equation, Eq. (3.4.3)
coefficient In the pressure equation, Eq. (3.4.3)
average composition defined by Eq. (3.2.4)
composition of interdendritic )liquid

local average composition of solid during solidification,
dﬁf‘ned by qu (3-2.5)

compos ition of the solid at the solid-liquid interface
final local average composition, Eq. (3.5.1)

composition of liquid at the liquidus isotherm, i.e.,
composition of the alloy

volume fraction of eutectic liquid at the end of solidification
volume fraction of liquid, solid during solidification
gravitational acceleraticn

gravitational acceleration in the -y direction
equilibrium partition ratio

permeability

ingot height

maximum number of steady state or pressure lterations
number of mesh points in the x or y direction

pressure

modi fied pressure defined in Eq. (4.5.1)

atmospheric pressure

time

time at passage of the eutectic front and liquidus isotherm,
respectively

temperature

eutectic temperature

liquidus temperature at composition Co

isotherm velocity

velocity of the interdendritic fluid

x- and y~- ¢ mponents of [1]

horizontal distapce from the chill face, see Figure 3.2

grid spacing in the x- direction

positions of the eutectic and liquidus isotherms, respectively
distance from the bottom of the ingot

grid spacing in y~- direction

2-1




y (cm?)

Essiv Esor
u (g/fem:s))
% (g/cm’)
Ds (g/Cm3)

‘ PLer Pse (g/crd)
f p o (a/cm)

- d

permeablility coefficient

convergence bounds; see Section 4.8

viscosity

average density defined by Eq. (3.2.2)

density of the interdendritic liquid

density of the primary solid phase

densitius of the eutectic liquid and solid, respectively
density of the liquid at the liquidus Isotherms
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SECTION 3 - PHYSICAL DESCRIPTION OF THE MODEL

3.1 PROBLEM DEFINITION

Figure 3.1 shows an ingot of a binary alloy undergoing horizontal solidificatlon
from chil) faces located at opposite sides of an insulated rectangular mold.

The mold Is orlented so that the gravity force is in the y-direction &s shown,
with no component normal to the x-y plane. Initially the contents are liquid
with uniform composition Co. As heat is extracted through the chill faces,

the alloy solidifies bidirectionally from the chills and toward the centerline.
It Is assumed that dendritic freezing takes place with a zone containing both
solid and liquid phases (i.e., the S/L zone) which moves through the Ingot

ahead of the eutectic isotherms. Shrinkage-and gravity-driven convection
within these S/L zones causes non-uniformities, known as macrosegregation, in
the final local average composition after solidification, E;. The relationship
between interdendritic fluid flow and macrosegregation was first described and
demonstrated in references 3-5 for flow due to solidification contraction only,
and later for flow driven by gravity, in addition to solidification shrinkages
in references 1, 2, and 6. The solidification model described below calculates
the final Tocal average composition after solidification by solving the hydro-
dynamic equations for the flow of interdendritic liquid within the limitations
of several assumptions.

The methods used here are similar to those of references 1 and 2 for macro-
segregation resulting from steady-state solidification. The mold shown in
Figure 3.1 is symmetric about the centerline, so it is sufficient to treat
only the left side of the ingot. Because there is no body force normal to the
x-y plane, the flow in the S/L zone is two-dimensional. Nevertheless, much

of the analytical development will be independent of the coordinate system and
cimensionality of the S/L zone. As defined in reference 3, "unidirectional"
solidification implies unidirectional heat flow with planar isotherms, so that
the S/L zone is rectangular and the temperature gradient has no y component.

In steady-state solidification the isotherms move through the ingot at a constant
velocity, thus the geometry of the mushy zone and the temperature distribution
within the S/L zone are constant in time. The macrosegregation resuiting from
steady-state solidification does not vary in the direction of heat flow; the
final local average composition is a function only of vertical distance through
the ingot. The interdendritic fluid flow is driven both by shrinkage due to

3-1
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solidification contraction and liquid contraction during solidification, and

by gravity acting on a fluid of variable density. The density grudient results
from thermal gradients and more so from solute concentration gradients which
must exist In the liquid within the S/L zone. Flow resulting from the latter
situation has been termed concentration~driven convection, and in references 1,
2, 6 and 7 It has been shown to be a major contributing factor in the formation
of channel-type segregates often called "freckles'. A fundamental assumption
of the solidification model is no movement of the solid phase, so that the
calculations cannot predict macrosegregation profiles for ingots In which
freckles occur, although the conditions for and the location of the onset of
freckle formation can be be predicted. The flow of interdendritic liquid is
modeled as flow through a porous medium where the volume fraction available

for flow is the local volume fraction of liquid during solidification. The
movement of the S/L zone, the temperature field within the mushy zone, the liquid
density as a function of composition and temperature, and the phase diagram
(solid-1liquid equilibria) for the binary alloy are assumed; the pressure field,

velocity field, and macrosegregation are calculated.

3.2 FLOW EQUATIONS

Because the rate of isotherm movement is used as input to the solidification
analysis and because no convection in the bulk liquid is assumed, the analysis
can be restricted to the processes within the S/L zone and the solute flow at
the boundaries of the 5/L zone. The coordinate system defined in the S/L zone
is shown in Figure 3.2. The coordinates of any point (x, y) in the S/L zone
are fixed relative to the ingot. The sides of the 3/L zone at xE(t) and xL(t),
the positions of the entectic isotherm and liquidus isotherms, respectively,
move through the ingot with a constant velocity U. The analysis leading to a
solidification model is based upon the concept of a volume element within the
S/L zone which is small enough to be treated as a differential element, yet
large enough so that the volume fraction solid within it is equal to the local
average. The volume element concept is developed in reference 3. There is

no solid phase movement into or out of the cell; there is no mass flux into

or out of the element by diffusion; temperature and liquid density vary only

di fferentially across the cell at any time. With these assumptions conversation

of mass within the volume element is written

3-2
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%‘E}-n - V'pLgLV, (3.2.1)
where L= p.9. * P9 (3.2,2)
(See Section 2 for definitions of the symbols,) If solute enters or leaves the
volume element only by liquid convecticon, If there 15 no solute diffusion within
the solid phase, and if the composition of liquid within the volume element is
uniform, then conservation of solute in the volume element §s written

2 (€5 =-vec,p00 (3.2.3)

at A g e

"""": 02-1‘
where Cp=Cpg. +CPIY » (3 ) )
and CS is the local average solld compesition at time t, defined by

(%,y,t) = =t t & Gy B) oS (Bt (3.2.5)
CS XYt E;’E; pS S XY Bt XY 3.2,
t)

for t prior to passage of the eutectic front: L, St<te.
Mass fluxes at the edges of the $/L zone provide boundary conditions for the
conservation equations. The top and bottom of the 5/L zone are in contact with
the mold walls so that there is no normal component of flow:

Vy =0 aty=0and y =L for KESXSX, | (3.2.6)
As described in reference 1, flow at the eutectic isotherm must compensate for
solidification shrinkage or expansion of the eutectic mixture:

Pep~P

V =~ SE LE U at x = x_ for Ogysl. (3.2.7)

X PLE E
Since it is assumed that there is no convection in the buik liquid, then

Vy =0 at x = XL for O<y<L. (3.2.8)
Additional conditions at the liquidus isotherm are

3..1‘ \.,"

EET VTR AN e T TR T gy T O gyt e i




R P

R <

CL - CO and gL = ] at X = ?‘L fOI‘ OSYSLQ (3;2;9)

Darcy's Law for flow through a porous medium Is used to describe the flrw of
the Interdendritic liquid in the S/L zone; thus

- -K >

where u Is the viscosity of the liquid and K Is the permeability glven here,
as In references 1 and 2, by

K = ygﬁ (3.2.11)

with ¥ a constant. This form of the permeability function Is isotropic; l.e.,
there Is no directional preference in the resistance to flow,

In addition to the assumptions of steady~-state, unidirectional solidification,
which lead to planar Isotherms moving with a constant velocity, a constant

.
horizontal temperature gradient ls asssume

mushy zone is given by

T =T

L E
T(x,y,t) = To + —
¥7 E X, " Xe

(x-x) (3.2.12)

for XESXSX, and 0<y<L, as shown in Flgure 3.4. The steady-state assumption
now gives the Isotharm velocity

T =T
9T , oT T L 'E p
U= '-8—{/'5; "?E/(;E;‘—é—). (3.2.13)

Equations (3.2.12) and (3.2.13) show that the temperature field and isotherm
movement are determined upon specification of the cooling rate, 98T/3t, and
the mushy zone width, (xL-xE). The liquid in the volume element is assumed
to be in equilibrium with the solid at the solid-liquid interface so that the
phase diagram relates liquid composition to temperature in the volume element.
As shown in Figure 3.3, the liquidus of the phase diagram is approximated by

a straight line, and the composition of the interface solid is given by

Cg = kC,, (3.2.14)

)
]
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where k Is the equilibrium partition ratlo. CL and acL/an can thus be calculated
as functlions of temperature by

dCL BCL dC

: L a7
CL(T) - CE + T (T TE) and Tl T 5t (3.2,15)

where CE’ TE and dCL/dT are taken from the alloy phase dlagram. The resultant
linear variation of CL through the S/L zone is shown in Figure 3.4, Liquid
density Is a function of temperature and composition, but the equilibrium
assumption allows density to be written as a function of composition only.
ReFe;ences | and 2 have shown that the density of the Interdendritic liquid
can be approximated by a linear function of composition and that the density
of the primary solid phase Is approximately constant In the solidification
temperature range. Thus liquid density and apL/at can be calculated by

dp op dp, aC
] Lo . L _ 9P 3C
plC) = o ¥ T, (¢ -Cg) and 5 ac, T (3.2.16)

pg can be considered ggnstant; and the densiti the soiid and iiquid phases
are completely specified by known values of Pgr P dpL/dCL, and PLe- The
variation of p, 3cross the S/L zone is shown In Figure 3.4 where PL increases
during solidification., Some alloys have a decrease of liquid density during
solidification and they can be treated, as well, providing the correct sign

for dpL/dCL is used.

An equation used to relate 9g and 9, is provided by the assumption of no pore
formation:

99 g,
9g + g =1, or T T (3.2.17)

Equations (3.2.1) through (3.2.17) and the associated assumptions completely
describe the solidification model. However, the solution for the veloclity
field and local fraction liquid can be simplified if the information above is
used to derive two more equations which replace the continuity equations In
the solution process. These equations are derived in Sections 3.3 and 3.hk.
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3.3 LOCAL SOLUTE REDISTRIBUTION EQUATION

The mass and solute conservation equations can be combined to get an equation,
derived originally in reference 3, that gives the local fraction liquid in
terms of the local velocity and the local liquid composition. By expanding
the right side of Equatlon (3.2.3) and substituting Equations (3.2.1) and
(3.2.2), we arrive at

ag
m\/ v - —a-—— »~ _...._l; - +'
V:Co 9V = Car (pygp) - € pgg - P9 VevC . (3.3.1)

When Equation (3.2.5) is differentiated, there results

89g L 89 1 99g

gg 3t S + gg 'S Bt g ot (C Cg)- (3.3.2)

Expanding the left side of Equation (3.2.3) and substituting Equations (3.2.14),
(3.2.17) and (3.3.2) leads to

BgL BCL 3
(Co)= -~ LpS 5;-'+ P Y 3{“’* CL gg(PLgL). (3.3.3)

nblo:

Finally, Equations (3.3.1) and (3.3.3) are substituted into Equation (3.2.3),
giving

| agL 1L PL ac ) i
51- at = = (, kl 'p_s— L (_—- + V V\-‘L) (3030 )
Since the liquid composition and temperature are directly related (see Equation .
3.2.15), then b
ac oC oC
— bt LT 3
Ve =57 VT and g = = =, (3.3.5)
and Equation (3.3.4) becomes
Bg - aC
| L V-VTy 1 L
ot
Equation (3.3.6) is called the local solute redistribution equation.
3-8
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3.4 PRESSURE EQUATION

Numerical solution of the solidification model equations can be facllitated by
replacing the mass conservation equation with an elliptlc equation for pressure,
Using Equations (3.2.2) and (3.2.17) and the assumption of constant solid density
to expand the left side of Equation (3,2.1) gives:

— 3g, p
¥ _ (. L L
ae = (PUes) 55 Yo g (3.4.1)

The pressure equation results from substituting Equations (32.2.10) and (3.4.1)
into Equacion (3.2.1):

kp g ap
v [ T (Vp+pL9)] (o =pg) 57~ 9. 50~ = 0 (3.4.2)

Equation (3.4.2) can be written in the form:

Vo + A-Vp + B =0 (3.4.3)

K
with A=ty (—-‘-)—L—) (3.4.4)

KpL
o By L]
KpL[v (e - (epeg) 5o~ 9 5t

ll

[=

and B (3.4.5)

L}

As discussed in Section 4.5, several numerical techniques are available for
solution of equations with the form of Equation (3.4.3).

Conditions (3.2.6) through (3.2.8) can be rewritten to provide boundary conditions
on pressure at all sides of the S/L zone. Substituting Equation (3.2.6) for Vy
in Darcy's Law, Equation (3.2.10), gives

op _ . =
Ty " P9 aty 0 and y = L for X SXSXpy (3.4.6)

and substituting Equation (3.2.7) for V. in Equation (3.2.10) gives

Ap

ap _ M9 PsePie
ox

PLE

at x = xg for 0gy<L. (3.4.7)

3-9
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If there Is no convection in the bulk liquid, then

P=pytP 9 (L-y) at x = x, for OsysL. (3.4.8)
o]

3.5 MACROSEGREGATION

After solidification is complete at & nauing (x,y) in a casting, the final local
average composition is glven by
t
E &
Ps ,/r C5(x,y,t)dgg (x,y,t) + pgeaCy
t

- L
CS(X»Y) pS(l—gE) T pSEgE (3-5~‘)

where the liquidus isotherm passes the point (x,y) at time t, and the eutectic
front passes at te The integral term accounts for microsegregation within the
dendritic sclid and the second term in the numerator accounts for the solute in

the solidified eutectic mixture.

For steady-state solidification fg is a function only of y, and the integral
in Equation 3.5.1 Is equal to the same integral taken between the limits X to

Xg at a fixed time t. Macrosegregation as a function of height in the ingot

is given by Cs(y)-Co.

3.6  SUMMARY

The equations which constitute a complete description of the solidification

model implemented in the computer program are as follows:

Local Solute Redistribution Ecuation

ag p kv
1% a1 R Vvt kL
TR B (3.6.1)
t
with g, = 1 at x = X, for 0gysL. (3.6.2)

3-10
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Pressure Equatlon

Vzp + K'Vp + B=20

Ke
for R = rl,%l-.- v (_Tl_-_) ,
and B = m‘}c[v- (%—L- p 3 = (o =p) ;-?-"- -9 -z%-
with %5—- “pgaty=0 and y = L for XpEXSX,
g§.= E%E»EESiSLE U at x = Xp for 0gysL,
and P=P,*+ P 9 (L-y) at x = x, for OgysL.
[o]

Porous Flow Model

V:z-—-.‘-\-. +
o, (Vp + p,9)
2
K= vg,
Temperature Field
T Te
T=T* = (x~xE) for xgsxsx
L E
aT ,oT
U= -5t/
Liquid Composi tion
C, =C +fii(T_T)...a_C_L_=.C_iE_I:.§l
L E dT E’? 9t dT 9t
Liquid Density
= +.d_..‘il_‘_(c -C)-apL-:dpLdCL_QI.
PL= PLe T ae YUY Be dt, dT 3t

]

(3.6.3)

(3.6.4)
(3.6.5)

(3.6.6)

(3.6.7)

(3.6.8)

(3.6.9)

(3.6.10)

(3.6.11)

(3.6.12)

(3.6.13)

(3.6.14)

N
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Final Composition

X
£ .
Ps xif kC dgg + Pgpaple

pelTa.) ¥ pogiy (3.6.15)

Cs(y) =

The following data are required as input to the solidification model.

dCL
Phase Diagram: TE’ CE, i k

Alloy: Co

Solidification Process: L, (xL-xE), 9T/3t, g

Density: PLE? dpL/ch’ Pg» PsE
Viscosity: 1w

Permeability Coefficient: Y

Upon specification of these values, the description of a steady-state casting
of a binary alloy Is complete, and Equations (3.6.1) through (3.6.15) can be
solved to yield the final local average composition as a function of vertical
diétance through the ingot. The following section describes the numerical
analysis which is the basis of a computer program which performs such a

calculation.
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SECTION 4 - NUMERICAL METHODS

The equations presented In Section 3 require reformatting in a discrete form

for solution on a digital computer. MNumerical techniques applied to the
continuous equations yield finite difference equations and procedures for
calculation of their solution. This process involves selection of finite
difference methods that are appropriate to the type of partial differential
equation to be solved as well as systematic verification of the convergence of

the discrete solution to the solution of the continuous equations. Although

the last fifteen years have seen tremendous advances in the discipline of
numerical analysis applied to fluid flow equations, there is as yet no standard
approcach to the process of solving a particular set of equations. Techniques

that provide a valid solution to one problem can produce an invalid but

physically plausible result when applied to a slightly different problem. For
this reason the verification phase of the process is crucial: a "solution'

should never be accepted merely because it has a qualitative physical explanation.
Procedures for sufficient validation of a solution to a flow problem are even

less routine than the selection of the solution technique; they require experience
in recognizing the behavior of an invalid result as well as an understanding of

the foundations of tly numerical approximation process.

Beyond the necessity of finding numerical methods which produce a sufficiently
accurate solution, the constraints of interactive computing on a time-shared
mini-computer require the use of memory-efficient, rapidly-convergent techniques.
Mumerical methods applied in the context of batch computing on a large high-speed
mainframe are frequently chosen for their ease of application and because of their
familiarity; in an interactive mini-computer application such methods can cause
excessively long response times. Thus the use of extremely small grid spacings

and double precision arithmetic, standard '"fixes' for inadequate numerical methods,
are to be avoided in mini-computer applications in favor of numerical techniques

that are more specifically tailored to the problem at hand.
The techniques described in this section have been implemented and validated in

an interactive program on the Prime 400 at MSFC. Under heavy job-load conditions

the response time for the primary calculation phase is less than five minutes.
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4.1 COMPUTATIONAL GRID

The numerical solution is calculated on a rectangular grid covering the S/L
zone as shown In Figure 4.1. The value of a function at a grid point is
considered representative of the behavior of the function in the surrounding
cell so that, for convergent numerical methods, the solution of the finite
di fference equations is close to the solution of the partial differential
equations when the mesh spacing Is sufficiently small. In the following
discussion subscript notation indicates location in the mesh: for any
function defined in the S/L zone,

fu = ‘F(X‘ :YJ)

where Xp = xg + (i-1)ax for i =1, ..., N
and Yj = (j=1)Ay for j =1, ..., Nj'
Ax and Ay are given by
L% L
Ax = N1 and Ay = ﬁ}:T"

L.z OVERVIEW OF SOLUTION PROCESS

The outiine of the solution process is the same as the one used in reference 2,
Details of each step may vary from those employed in reference 2 because of the
difference in coordinate systems as well as the use of alterpate numerical
techniques. The solution steps are explained in detail in later subsections

and the program modules containing the relevant code are indicated.

1. Read the program input as defined in subsection 3.6.
oC ap

2, Calculate 7, U, CL,-§E~, oL and 5?5 at each point in the S/L zone by
evaluating equations (3.6.11) through (3.6.14). 3

3. Calculate an initial estimated distribution of 9, and szk-using the analytic
solution for the zero gravity case, equations (4.3.1), (4.3.2), and (3.6.1);
evaluate K according to equation (3.6.10).

4. calculate an initial estimated pressure solution from equations (4.5.12)
and (4.3.2).

5. Evaluate the pressure equation coefficients, A and B as shown in subsection

L.,

N N
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Figure 4.1. Computational Mesh
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6. Solve the pressure equation using the relaxation technique discussed In
subsection 4.5.

7. Use Darcy's Law as shown in subsectien 4.6 to evaluate the velocity of the
interdendritic flow.

8. Use the velocity calculated at step 7 In the local solute redistribution
equation, as shown In subsection 4.7, to calculate new distributions of

ag
9. and §?L~; re-evaluate K by applying equation (3.6.10) at each point In
the mesh.

9. Check convargence of the nonlinear system by applying the criteria described
in subsection 4.8, |If it has not converged and if freckling has not been
detected, repeat steps 5 through 9,

10, Calculate the final local average composition.

4.3 INITIAL ESTIMATED SOLUTION

Starting the iterative calculation of the steady-state solution requires an
9g

estimate of g, and EEL'tO be used in geneiating the pressure equation coefficients

for the first pass through steps 5 through9. Although the injtial estimated
solution has no effect on the converged solution, convergence to the steady-
state g, , if one exists, can be speeded by starting the iteration with a good
estimate of 9. Hence the analytic solution for the case with no gravity force
is used to estimate 9. The only driving force in this case s shrinkage
contraction so that the y-component of velocity is zero. The expressions for

9;» derived in reference 1, is:

P
6"+ Gmne”
) c %+ (Bi»-l)c‘"
o Pse "E
- U
with o= R

og
EEL can be evaluated directly from equation (3.6.1) with Vy = 0 and

y g, (PP ) + 9plpgep,)

x XN u. (4.3.2)
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The Initial estimated solution Is calculated In subroutine EST,

h.4 EVALUATION OF THE PRESSURE EQUATION COEFFICIENTS

For general distributions of 9, there is no analytic form, so the gradient and
divergence terms in A and B must be evaluated numerically, Comparison of centered
finite difference formulas with evaluations of the analytic expressions avallable
In the ze:0 gravity case shown that differencing the logarithmic form of the
spatial derivative terms is an order of magnitude more accurate than differencing
the forms shown in equations (3.6.4) and (3.6.5). Using the logarithmic form
provides a more accurate solution for a glven mesh size, or it permits a coarser
mesh in achieving a given accuracy, thus reducing computation time. The

logarithmic forms of A and B subject to g = (0,g) are:
KP
A= V[‘"(TL')] , RS
2
Kp 3g
and B = gp -g-;[ln( uL )] - ll(‘p, [(DL"pS)*é-t-l-"
apL
+ QL §T * (l}-l"Z)

Centered finite differences applied to these forms give:

Kp ko
()5 [m (=5 g - I (—-J!‘-);_l,j]/(ZAx) (.4.3)

for 1<i<Ni and lSJSNj,

Kp Kp
o LT Y :
By = [‘“ TR PR )i,J-l]/(ZL\y) (b1 1)
for lsisN,l »nd l<j<Nj,
2 2 2
Kp, Ko Kp
9 L LY L - L
and ’a‘y'['"( m )]ij‘ ['”‘"‘u“‘"’i,w Int5; ")f‘,J'-l]/(ZAy) (h.4.5)

for lSiSNi and l<j<Nj.

At the edges of the mesh centered differences cannot be used; the x-derivative

terms are approximated by first order difference formulas of the form

4-5
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(ax)u- (fy# J fU)/Ax for I=1,N; and 1<jSN,, (4.4,6)

and the y-derivative terms are approximated by second order difference formulas
of the form

( ) 3 3 (3f -ufy ) )/ (28y) for J=1,N; and 1IN, . (b.4.7)

Subroutine PSETUP evaluates Iy and B,

4.5 SOLUTION OF THE PRESSURE EQUATION

Because atmospheric pressure, Po? Is very large compared to the pressure
variations In the S/L zone, the accuracy of a numerical solution for total

pressure would be considerably less than that of a solution for PPy Similarly,

the large hydrostatic pressure near the bottun of the S/L zone causes an
unacceptable loss of significance In the calculation of‘ (p Po ) during the
the evaluation of \lx. These inaccuracies, inherent in direct solution for p,
can be avoided by solving a modified pressure equation for

P =p-p p 9(L~y) (4.5.1)
where pLog(L-y) is the bulk fluid hydrostatic pressure. p is the solution of

Vzﬁ + B9p + B =0 (4.5.2)
where & is unchanged and

B = B-pLogAy. (4.5.3)

The boundary conditions for equation (4.5.2) are

’éé' (pLo pL)g at y=0 and y=L for xL..x xE, (4.5.4)
a HG, PP
3 _ 'O Pse PLe -
‘é‘;- K ‘—-5[‘-&——-—' U at x XE for OSYSL, (4-5.5)
L-6
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pm=o0atxm= X, for OSySL. (4.5.6)

Standard solution procedures exist for linear eiliptic equations such as
equation (4.5.2), Iterative techniques have been preferred for a number of
years, although fast direct {non-iterative) methods have been developed recently
for problems with a large number of mesh points (references 8 and 9), Direct
methods can be cumbersome to apply, especially if there are derivative boundary
conditions or first order terms in the elliptic equation., Iterative techniques
tend to converge slowly, but they are applicable to the most general form of the
elliptic problem. The solidification model requires only a relatively small
number of mesh points, It has derlvative conditions at three boundaries, and It
has a first order pressure term. Consequently, the iterative technique known

as successive overrelaxation (SOR), or the accelerated Gauss-Seidel scheme, was
applied to the pressure equation, and the strategy developed In reference 10

was used to speed convergence by dynamic estimation of the optimum acceleration

parameter,

The recursive formula for the (n+1)st Iterate of p according to the method of

successive overrelaxation (reference 8, p. 468) is

p‘;}" = (1-w)B;, (4.5.7)
+ w[ex@;i’q,j * ﬁiET:j) * ey(si?w + Esir,‘jll)

n _ o~ Nl n n+l
Py P,y i)+ )y F By ) 8%,

for ISiSNj and lSjSNj
2
where o, = Z?ZZEéiEZ;iy , (ax>ij = %'éi'(Ax)ij ,
0, = Z(AxZA:ZAyZ) : (@) = —;-ij- (A
8% = szAy2

2 (05> + ty2)

and w is the relaxation parameter described below. The restriction i<Ni is the

h-7
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boundary condition at x = ¢ ﬁNE; does not change from Its inftial value, O,

At tie other boundaries the offsei terms are evaluated according to the formulas:

By 2 By - 20x(3B) at 1 =1, (4.5.8)
AR T at j =1, (4.5.9)
= n
and Bijm E ﬁ;,NJ_l * 2““35"1»:] at J = N, (4.5.10)

where the partial derivatives are given by the boundary conditions, equations
(h.5.4) through (4.5.6). This method of applying the derivative boundary conditions
Is second-order accurate in AX and Ay as Is the centered differencing used at
Interior points. A more popular derivative boundary technique which calculates
the boundary values directly as, for example,

+ +

A 51

cannot be applied to the present problem because it would introduce an inconsistency
at the corners (xL, 0) and (xL, L) where a normal derivative condition meets o
pressure condition. Although the latter technique Is easier to apply and has a

heurlistically pleasing form, its use wpuld lead to signiflcant numerical error
in Vx near the corners.

The strategy developed by B. A, Carre’ in reference 10 is used to estimate the
optimum value of the relaxation parameter w. Use of the optimum w was observed
to reduce the number of iterations in the SOR technique by a factor of ten to
fifteen over use of w=1, the Gauss-Se'-el scheme. The optimal w is estimated
dynamically during solution for P as follows:

}. Choose an initial w in the range l<w<mo where Wy, is the (unknown) optimal
value of w,

2. Perform N iterations on equation (4.5.7).

After the Nth :terutnon set

2‘3 i - g,V

p=‘ i=]

for n = N-1 and n = N,
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and M) (N-1),

3. The optimum w is approximately

n : M-l 13l -]
NO*Z[Y'P[i”:-—"zW]} .
“ . Aw

4, Set w=w = x(2-w)
o o Aw

5, Repeat steps 2 through 4 untlil w, stops changing: 2_2 <.05,
o

6. Continue iterating on equation (k.5.7) with W=t until § converges,

The values of w and N in steps 1 and 2 are taken as w=},375 and N=12,

The convergence test on P checks the largest relative change in p over each

rin?}( [ }«aSOR (4.5.11)

is controlled by the progress of the steady-state solution as

iteration until

(n) 6(n l)l /i(lﬁ(n)

6;j_

where €S oR
described in section 4.8. If condition (4.5.11) is not obtained within Msor
terations, an error message is displaved and the calculation proceeds to step

7.

An ini%ial P distribution is needed to start the SOR iterations, Although the
initial p does not affect the final pressure solution, a substantial savings in
computing time can be achieved by starting with a good initial estimate. During
the first iteration on the steady-state solution the analytic zero-éravity solution
is used to start the pressure iterations; for subsequent steady-state iterations
the final! P distribution from the previous steady-state iteration is used. |In

the zero-gravity case Vy=0, so p can be calculated by solving Darcy's Law,

equation (4.6.1), for gx and integrating it across the S/L zone:

5 (x,y) o/x(ugLV)d (4.5.12)
p (x,y) = + "-'R-—x X 0.
XL

Vx for the zero gravity case is given by equation (4.3.2).
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A1l procedures described in this subsection are coded in subroutine PSOLVE except
the initial estimated p which is calculated Iwn subroutine EST,

k,6 VELOCITY CALCULATION

After the pressure distribution is known, the velocity can be evaluated directly
from Darcy‘'s Law, equation (3.6.9), written in terms of B:

-

- - K - |
At interior points the gradient term is replaced by centered finite differences:

(2 n Pra, i,
ax iJ TN for ]<I<Ni and ISJSNJ,

E 5 -,
l\) ’J+] iJ
and )IJ 20y - for 1<I<N, and l<j<NJ.

First order one-sided differences of the form (4.4.6) are used at X, while the

boundary conditions provide values for the remaining pressure gradient terms.

Velocity is calculated in subroutine VLCTY: K is evaluated in subroutine PERM.

4.7 SOLUTION OF THE LOCAL SOLUTE REDISTRIBUTION EQUATION

After the velocity field is known g, can be calculated by solving the local
solute redistribution equation. In the steady-state case this can be simplified
to an integration along lines of constant y. The steady-state hypothesis, equation

(3.5.2), applied to equation (3.6.1) gives

LICTR BT PR A 0y 8 7.1
g, 9 T-k p aT c. 3§ - e
L s L
ot
Then 9. is approximated by
(c,) ]
(gL)ij = @) i3 T €V n 3 (4.7.2)
with {g))y =1,9= %(qij + qi+l,j),

ihJ
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and a9 defined as the quantity in brackets in equation (4.7.1). After g Is

known, BgL/at !s calculated by a direct evaluation of equation (3.56.1).

9. and BgL/Qt are calculated In subroutine LFRAC,

4.8 ITERATION TO THE STEADY-STATE SOLUTION

At the end of each iteration on the steady-state solution, steps 5 through 9
in Section 4.2, 9 is tested for convergence. The convergence criterion is a
comparison of the maximum reiative change with an input threshpld:

i,]

where gém)is 9, at the end of the m"" jteration. If condition (4.8.1) {s not
obtained by the end of MSSI iterations an error message, ''steady-state solution
did not converge' is put on the screen and the iteration process is terminated.

Egsy and Mgg)

th

are user-specified inputs as described in Volume II}.

The convergence threshold for the pressure iteration, eSoR? is contrnlled by
the progress of the steady-state iteration. Initially the pressure convergence
threshold is 10 E R’ when the left side of inequality (4.8.1) drops below 100

SO
ESSI’ €5oR is reduced to 5 ESOR’ and when the left side of (4.8.1) is below 10
ESSl’ esor 'S equal to ESOR' This strategy speeds up the calculation by avoiding

unnecessarily tight convergence of the pressure equation while 9. is relatively

far from its steady-state value.

Iteration to the steady-state solution is controlled by subroutine SSICON.

4.9 CALCULATION OF MACROSEGREGAT!ON

The integral in equation (3.6.15) can be transformed to an integral with respect

to the logarithm of g

X X X

E L J/FL )
S wes, = f ke dg = ke g, d(ing).  (4.9.1)
XL XE XE
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Accurats numerical evaluation of the second Integral in (4.9.1) would require

an extremely fine mesh for alloy systems such as Sn-Bi whose large k causes 9,

to be steep near the liquidus isotherm. The last integral in (4.9.1) is amendable
, to accurate approximation on a relatively small mesh. It Is approximated as

X N
L i
n - '
i/‘ ke g a(ln g;) = 2 2kéf[(CLgL)i + (CLgL)i_l] [ln gL"'ln QLM]> (4.9,2)
E

A

RO o o

the remaining terms in (3.6.15) are evaluated directly, with 9g equal to 9.
at i=1l. By

E; s evaluated in subroutine MACSEG.

L,10 FRECKLE CONDITION

n a given case can be detected by the program.

RO NQRET T TV e T T W e TR e
h
-
)
¥

+ V-9T>0 ‘ (4.10.1)

When condition (4.10.1) is detected at any point in the mesh, the calculation

is stopped.

The freckle condition js tested in subroutine FRECKL.
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SECTION 5 - EVALUATION

This section presents and describes the results of calculations using the model
for flow of interdendritic liquid and macrosegregation described in Sections 3
and 4, Calculations are for three alloys (Al-4.5% Cu, Sn-15% Pb, and Sn-3% Bi)
which show the effects of varying (1) the height of the solid-liquid zone, (2)
the gravity force, and (3) the cooling rate during solidification. Added
discussion is given to the formation of ''freckles' and to the differences in

macrosegregation behavior among the three alloys.

Ingot Height

Figure 3.2 illustrates the solid-liquid (S/L) zone in a unidirectionaily
solidified horizontal ingot. The width of the S/L zone is XL - XE’ and the
height is L. Figure 5.1 shows the effect of ingot height on macrosegregation.
As ingot height increases, thz major effect is that segregation is reduced,
particularly in the central portion of the ingot. Thus the taller the ingot,
the greater is the portion of the ingot near C, (the average composition of
the ailoy). in this regard, Figure 5.1 compares weil with Figure 10 in
reference 1. However, there are differences at the top and bottom of the
ingot which are attributed to differences in the chkoice of finite difference
equations used to formulate the boundary conditions at the top and bottom of
the ingot and in the method of solving for the velocity of the interdendritic
liquid. In this work, since velocity is sensitive to the volume fraction of
liquid, then a scheme is used whereby an iteration calculation is done to solva
for velocity. Algorithms used herein give results with improved accuracy of

those given in Reference 1; details are given in Section 4 of this report.

Gravity Force

Figure 5.2 shows the effect of the gravity force on macrosegregation in Al-4.5%
CU alloy. With zero gravity, there is no macrosegregation because flow of
interdendritic liquid is solely due to solidification shrinkage. As such, all
flow is normal to isotherms as shown in Figure 5.3a. The effect of gravity

is to cause the flow to be downward within much of the S/L zone, and there is
some reversal of flow in the lower right areas of Figures 5.3b and c¢c. Notice,
also, that the magnitude of the vectors increases with increasing gravity force.

Figure 5.4 gives the solute flux corresponding to Figure 5.3 in terms of g of

5-1
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Figure 5.1, Effect of ingot height on macrosegregation.
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Figure 5.3.

(c)

Effect of gravity on the velociéy of interdendritic liquid in

Al - 4.58% Cu: (a) 0 g; (b) i g; (c) 2 g. Conditions are the
same as in Figure 5.2.

e ¥ entin




i

‘6z (2) ‘6 (9

*2°G a4nbj4 ul se awes syl a4e SUO{IIPUOT
) ‘60 (e) :Aolly N) %S°h - LY ul pinbyy

213 14pusplajuy 9yl Uy Xn{4 93n|os 9yl uo A3jAedb jo 198443 f°g a4nbiyg

(®)
CIvR) 790 w8 & 0= KA ¢ e JTVOTS
oy et

€ B Wt Py «
.{'l ."‘ ﬂ:" 071" .!'O vty
- e Gmes man Gwen e aw G e - e - . . & L] - gty
- K [ N L T DU L T T T SR Y . . [ . - . - -
€ 9 ¢ T L % % 4 A 8% 4§ 8 s v s v e s e e
PUEET I R 2 D T S B S R R e N N )
L P 0 S N R S S N R D D I DY SN S SRR L 2
ANV T N S B BN R N R R R R I I A
L A A A A A A B B I B Y I
AV Y AN AR N
Y222 20 ) 20 2 2ty oy
e A A N Y AN SN BN B A A A A A
I AR A A AN A0 v BN SN SN N B R R e A
I R I AV A R A B B B B B N N N R R R
(@) Ve r 22272722 7 0 2 0 0 000 00
VAl 22 2 2 72 1 20707 0 000 00 |
¢ trem3 A13F AR DI L o e 1T e AP S o AR AP AP A A Y N N R I N S .
Lo R el o _.../////////Iv'c‘ﬂ&oaa LI NP
memi - PSSP S AP P A s s s s e e e e
’.Ii‘__ -y oty 0‘;" “{‘. j‘. d v o N R P A e P I T R R S S T —
. . o L 2 - L] - - . . L] .« @ L] 1 2 . - LI ol . nsttiani et albali R K A . .
- @« & & 5 s 8 & 5 8 4 W & W ° 3 s e e e T R e e T T BN TR RSP S
“w #® 6 P 8 & 4 & & 4 8 8 &4 % e 8 ¢ » e ép ) + T v o+
- 2 P PP 0P s & e 4 2 s e 8 & s & & »
P B Y A e e N R N I I e Y S al i
o S A ST Y SR A Y S Y I T R R I R
P B A Y N AR SR AR A B Y T B R R A
..d/lllrlll'll‘oo»ooﬁo;
R R N B A A A Y I B R R I A A AT R R ta -
PR P I R A AT I A Y D B Y I I R I A
—m, AL PP LI PP E s e
U O O AT A AR T B R R Y R I I I R ]
._///////Iff&f::aron:"'"
.../r/////lflfll.«&oo;a_ (e)
P I i P A B . I I I B R S CAromE STHE A ) ST v e P
.-.r‘/'/t'f/ffa#‘oaaoooa._"‘. e
RS B ol i i T L R R S P L S PN bt oo
i S o B B Y B Yt Yo n s A m a om ow @) e o) - "':" ﬂ" e o't s horid
Aol il gt g g g G g od ek b e W w W @ B A @ B, w—) il Sad D N W Gwh WA e e @R WS e e ek s em e e pedud G
WA Gt} W) ot ol WD WwS Ww W W s W W W W G % 8w %y ]m————n——.——uunuuna——u—q—
1 | v L] 1) M L] C———, o, A GO G G i G ek 68 Wh e WE b b et we W TH
me"“.‘—-‘““-n-“'"‘--'”“‘
T et s v g G e o ad wt h B mE Y R et ed ek s wa[OE
JMMN“———“““ﬂﬁﬂﬂﬂﬂ—-”
& SSCHRNTEN GISEN S gu) e Gl el G THR We b wd b AR S8 s N e s
JM*”“——.*-‘“‘---“-““——
m“-—("“.‘““.‘—“‘ﬂ-—nﬁ—.‘n”
R N ﬂ(;“ Q’if‘ {m“ﬁ-’“.‘-‘“"“d‘n—”ﬂﬂ—.m—
« ‘wﬁq‘-:wu* ' . N BRI B WS St Gwd b and A WS WE we W e A s wm e we
li“’ . £ % A A MR A B R W R e D M W MBS w8 me e ek
lfi s 1 Wl W M AR Bali W e wh e wh el e w5 % es e ws we —.“.‘
BT I AV Gt} i gk Sul Gl WR B WS a8 el S o w0 e e
]mmﬁ-‘“m—“n—nam-—---—u“
. ® _'-——o-ﬂmt:u-n-a-u-—‘....nunn---——n—_"‘
‘wmmu—d-‘ﬂcnounﬁdnd-‘--——.
Imm“““““ﬂ.‘“-ﬂ—-ﬂﬁﬂ-~ “
WO S Sl Ml G W Wl G Wmn W mf e S8 wm ae WR e wh el os
Jmm-———u“a-——uqnaca——kml
i - 1




T

. e e S G T g T T~ g 4

.

Cu/S'sz. These flelds are similar to those of Figure 5.2 and are given here
to point out that this option for output Is avallable. Figures 5.3 and 5.4
also show why segregation Is negative at the top and positive at the bottom

in Figures 5.1 and 5.2 when a gravity force acts on the liquid. Since the
density of the liquid increases during solidification, the solute~rich liquid
flows away from the upper portion towards the lower portion of the Ingot
(Figures 5.3 and 5.4) resulting In negative segregation at the top and positive
segregation at the bottom. For alloys in which liquid density decreases during
solidification, flow would be from bottom to top (opposite to Figures 5.3 and
5.4), and segregation profiles would be reversed from those shown In Figure 5.2.

Cooling Rate

For a given gravity force, the most important process variable, which influences
macrosegregation, is cooling rate. This is shown in Figure 5.5 in which
macrosegregation curves for Ig at three different cooling rates have been

drawn. One of the curves |s that given in Figure 5.2 with a cooling rate of
-0.333°C/S. When the cooling rate is doubled (-0.667°C/S), the segregation is
substantially reduced. However, when the cooling rate is reduced to -0.]00°C/S,
segregation is increased significantly.

The effect of cooling rate on segregation can be explained by comparing the
magnitudes of the velocity of interdendritic liquid and the isotherm velocities.

With slow solidification, isotherms move slowly and there is more flow through

a unit volume, within the mushy zone, during the time for complete solidification;
thus macrosegregation is increased., Figure 5.6 shows this effect for thg two

extreme cooling rates of Figure 5.5. With the slower cooling rate (Figure 5.6a),

the magnitude of the velocipy of the interdendritic liquid is less than that at

the greater cooling rate {Figure 5.6b), but relative to the velocity of the

isotherms, there is substantially meore flow at the lesser cooling rate. Consequently,
macrosegregation increases with decreasing cooling rate as shown in Figure 5.5.

Formation of Freckles

When flow of interdendritic liquid is extensive and macrosegregation is severe,

there is a reversal of that flow. This can be seen in the lower right areas of
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Effect of cooling rate on the velocity of interdendritic
liquid in Al - 4.,5% Cu: (a) ~0.100°9C/s, isotherm velocity
is 5.05 x }O‘3 cm/s; (b) -0.667°C/s, isotherm velocity is
3.37 x 107% cm/s. Conditions are the same as in Figure 5.5.
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Figures 5.3c, 5.kc and 5.6a. Thers can be cases, which have been documented by
experiment, in which the flow of the interdendritic liquid In the direction of
the [sotherms, exceeds the Isotherm velocity. When this occurs, there is local
remelting of the dendritic solld. The remelted region is the source of an
unstable channel which persists within the solid-liquid zone and results in a
severe locallzed segregate (I.e,, 'freckle'') which is rich In cutectic constituent
after sciidification is complete., The criterion for this phenomenon Is

V.97/¢) 5 (5.1)

where V Is the velocity of the interdendritic liquid, VT Is the temperature

gradient and ¢ is the cooling rate. An alternative expression for equation
(5.1) is

(ne )/ (ne0) 21 (5.2)

in which n Is a unit vector normal to the isotherm and U is the velocity of

the Isotherm. Equation (5.2) essentially states that if the velocity of the
tiquid, in the direction of the moving isotherm, exceeds the velocity of the
isotherm, then local remelting occurs. Equation (5.1) or equation (5.2) as an
equality can be used to predict the onset of tn~ formation of a freckle. However,
if the inequality applies, then the model developed herein does not accurately
predict macrosegregation.

In Figure 5.6a, the maximum value of the L.H.S of equation (5.2) is approximately
0.3; therefore, no freckles are predicted. For this particular ingot, the onset
of freckling occurs at a cooling rate between -0.033°C/S and -0.100°C/S.

Pressure Field

As discusseti in Sections 3 and 4, calculation of the pressure in the solid-liquid
zone is an intermediate step to compute the velocity of the interdendritic liquid.
The major purpose of the analysis of macrosegregation is to calculate macrosegre-
gation, as in Figures 5.1, 5.2 and 5.5; complementary information sought is often
the velocity field of the interdendritic liquid as in Figures 5.3 and 5.6. There
are circumstances, however, in which the pressure field would be of interest; one
example would be to predict evolution of dissolved gas during solidification.
Figures 5.7 (a) and (b) shows the pressure field corresponding to the velocity
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Figure 5.7.

cooling rates:

The pressure field in Al ~ 4.5% alloy for two
(a) -0.100°/s; (b) -0.667°C/s.

Conditions are those described in Figure 5.5,

e




.

o g v R g e g

E s

fields of Figures 5.6 (a) and (b), respectively. In Figures 5.7 (a) and (b},

P, is, the ambiegt pressure at the top of the liqulid pool (approximately 1 atm
or 10° dynes/cm”) and P !s the pressure In the solld-liquid zone. Except at the
bottom of the ingot solidified with a cooling rate of ~0.100°C/s, there is a
decrease of pressure through the solid-liquid zone. This pressure drop, of
course, Is attributed to the friction associated with flow of liquid through
As cooling rate increases, or permeability decreases,
the pressure drop increases. For example, at y/L = 0.5, the pressure drop
across the mushy zone for a cooling rate of -0.100°C/s is about 600 dynes/cm2
(Figure 5.7a); at an increased cooling rate of -0.667°C/s, the pressure drop

across the solid-liquid zone at /L = 0.5 is about 2800 dynes/cmz.

the dendritic network.

Other Alloys

Figures 5.8 and 5.9 show results for flow of interdendritic liquid and macro-
segregation, respectively, in Sn-15% Pb alloy in an ingot of similar size as

described above for Ai-4.5% Cu alloy. in the Sn=Pb alloy, the volume fraction
of liquid at the eutectic isotherm is approximately 3-4 times that in the Al-

Cu alloy (0.35 vs. 0.09), so that the average volume fraction of liquid in the
solid-liquid zone is also significantly greater in the Sn-Pb alloy than in the
Al-Cu alloy. As a result, flow is very extensive in the Sn-Pb alloy (Figure
5.8) and much more so than s%own in Figure 5.6.

also extensive as demonstrated by Figure 5.9 where there is a spread of 9% Pb

Hence, macrose~»=gation is
from top to bi:vtom of the ingot. Since the dendritic network of this ingot is
so "open'', then the pressure drop through the solid-liquid is almost non-

existent; this is zeen in Figure 5.10.

Finally, Sn-3% Bi alloy is an example of an alloy with a relatively minor amount
of liquid (approximately 1-2%) at the eutectic isotherm. Also, it dif‘ers from
Al-4.5% Cu alloy and Sn~i15% Pb alloy in that there is an expansion on solidifi-
cation near the end of freezing. Thus in Figure 5.11, the magnitude of the
velocity vectors is about one wirder of magnitude less than in Figure 5.8, and
the effect of expansion (rather than contraction) is apparent in the left side
of the solid-liquid zone. Macrosegregation is only about 0.5% Bi from top to
bottom in this ingot (Figure 5.12).

in that the pressure ''drop'' is reversed corresponding to the direction of flow

The pressure field, Figure 5.13, is interesting

for much of the solid-liquid zone of Figure 5.11.
5-11
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EPSe -4.333 DEG/SEC
1.90 C

GRAVLTYe

1.209

id in Sn-15% Pb alloy.

i.699

(X=XE )/ {XL-XE}

1

§.408

0.200
The velocity of interdendritic liqu

(CH/s5EC)

* 5.860E-03

Figure 5.8.

VELOCITY FIELD
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DENS ITY (g/cm3)

APPENDIX A
ALLOY PROPERTIES AND SOLIDIFICATION PARAMETERS

Al-Cu System (References | and 3)

TEMPERATURE (°c)

| | { ! | | -
700 - PP ] { { I
TM“BSO c
dc
L. . %Cu
a—.—r-: .288 ¢
600 .. —t
k= ,172
5.65 o 33
TE=548 c
500 —- -
] ! -
hoo - —t { i j ]
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WEIGHT PERCENT COPPER
t ] ] ] 1 ] | '
3.50~ ] | | ] 1 i pgp = 3.40 g/cm’
PsE X PLp = 3.22 g/cm3
3.30 - -t
PLe ﬁ = ,0267 g/Cm3
3.10 - + ¢ 4Cu
pg = 2.62 g/cm3
2.30 + PL T = .03 g/(cm-s)
2,70 ps -
2.50 - -+
|
230 - ———— -
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T

e

|

e

TEMPERATURE (°c)

DENSITY (g/cm’)

240~

Sn~Pb System

(References 11 and 2)

180—~//2.5 T, = 183°C 38. 1)
} ) 1 | | ! | l -
T i | i | | u :
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WEIGHT PREGENT LEAD
N | | | | | | | -
] i i | i | |
Pse X
...r- o I
- -
PLe
g8 - A1
PL
Pg
7 g I .
L | | | | | i
i 1 l i a i i | .
10 20 30 40

LIQUID COMPOSITION (%Pb)
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Density of Solid

Peg (density of eutectic solld) = 8,60 g/cm3

Pg (Average density of solid) = 7.24 g/cm3, C, = 3% BI
= 7.36 g/cm3, C, = 15% BI
= 7.46 g/cm’, o ™ 30% Bi

The density of the solid (tin rich ~ B phase) is determined using lattice

spacing for pure Sp as a function of temperature, taken from Handbook of Lattice
Spacings and Structure of Materials (HLSSM). The variation of density with
temperature agrees exactly with that computed by using the thermal expansion
coefficient given in Smithells, p, 9h1, and there |5 excellent agreement with
the density (26°C) glven in Handbook of Chemistry and Physics, 57th ed., CRC
Press (HCP). The effect of Bi on the density of B - Sn is from HLSSM where the
lattice spacings of B - Sn Increase linearly with atom fraction BI. At temp-
eratures of the solidification range, the same variation is assumed.

For macrosegregation calculations, the average density of the 'cored" solld
phase [s used; as such, the deasity of t solid depends upon the average
composition of the solid. The average composition of the solid Is estimated

by the Scheil equation.

The density of eutectic solid is computed by using the density of B at 26°C
and correcting for temperature with the thermal expansion coefficient (these
data are in HCP). No data on the effect of Sn on density of Bi are available
so the density of Bi - rich eutectic solid (98.4% Bi) is computed assuming

Idea) solution; i.e., the molar volume is given by the 'law of mixtures'.

Density of Liquid

p_ = 0.0277 €, + 6.95 g/en’

Pre (density of eutectic liquid) = 8.65 g/cm3

Density of liquid pure Sn is taken to be the average of data ip Thresh and
Crawley, Smithells and HCP all extrapolated to the solidification temperature
range. In this range, the data from these sources agree well. For Bi four
sets of data are in HCP and another in Smithells. Three sets of data which

showed closer agreement were selected and averaged. However, whether 3 sets

A-4
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or all 5 sets of data are considered makes little difference,

The density of liquid alloys was computed by assuming that the solutions are
ideal; i.e.,, there are no volume changes due to solution and the "law of
mixtures' applie:. The procedure can be justified since the heat of mixing
for these alloys is small Indicating almost Ideal behavior,

Viscosity

h

o= 1,583 x 10~ C_+ 0.0163

with u In Poise {g/s~cm) and C, Is the composition along the
liquidus (%B1).

If constant values of U are selécted:
U= ,0215 g/s-cm, Co = 3% Bi
= 0.023 g/s-cm, C, = 15% Bi
= 0,024 g/s-cm, C° = 30% Bi

For pure Sn; Thresh and Crawley show that the viscosity oheys the Andiade
equation; thus this is used as a baslis to extrapolate the viscosity into the
solidification temperature range. Viscosity data (from HCP) for pure Bi are
reduced to the form of the Andrade equation and also extrapolated to the

solidification temperature range. Viscosity of alloys Is assumed to follow
the "aw of mixtures''.
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