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1. INTRODUCTION

1.1 FIELD DELINEATION AND LABELING

In the Large Area Crop Inventory Experiment (LACIE), Landsat imagery was

analyzed in an effort to monitor the world-wide production of wheat. To

estimate the wheat production in a given region, several 8- by 9-kilometer

(5- by 6-mile) segments located within the region were extracted from the

Landsat data. Individual acreage estimates were made for each segment. These

acreage estimates were then aggregated to obtain Crop Reporting District (CRD)

acreage estimates which, in turn, were multiplied by CRD yield estimates to

obtain production estimates. A large source of variance in this procedure

lies in the acreage estimation of the individual segments.

In LACIE Phases I and II (1975 and 1976 growing seasons), acreage estimates

were made by performing a maximum likelihood classification of the picture

elements (pixels) in each segment. This process assumes that the data follow

a mixture of Gaussian distributions. Samples are required in estimating the

particular mixture present in the scene. The individual pixels are then clas-

sified as belonging to the most likely distribution, based on the pixel's

spectral values and the mixture distribution estimated from the observed sam-

ples. Throughout Phases I and II of the experiment, analyst interpreters

(AI's) gathered and labeled the samples necessary for this procedure.

To obtain the necessary samples, the AI observed film products that were

generated from the Landsat data. The AI's job was to choose and label

representative samples from the scene which, it was assumed, constituted a

mixture of normal distributions. In choosing the samples, the Al observed the

imagery and selected and delineated fields within the image. The task

involved the sampling of all major underlying distributions in proportion to

their representation in the scene. Once the samples were chosen, the AI used

the imagery in conjunction with ancillary data to provide corresponding

labels.
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The training and classification described above was normally done using a

single 4-channel acquisition of a Landsat segment. Some segments were proc-

essed multitemporally, but it should be noted that the problem of sampling all

major distributions in the correct proportions greatly increased with added

acquisitions. Therefore, to benefit from the added acquisitions used for

identifying confusion crops, the AI had to accept the drawback of compounding

the training problem and increasing the time required for processing.

In addition to the At problems of choosing the acquisition or acquisitions to

process and choosing a representative training sample, the field delineation

approach had other drawbacks. For example, the sample of each underlying

distribution was generally inadequate in that the extremes of the distribution

were rarely sampled. Also, in areas where crops were grown in small fields,

there was often difficulty in obtaining a reliable sample of each signature.

Another problem noted with this approach was in its inefficient use of AI

resources. Of the total time spent by the analysts in processing, approx-

imately one-eighth of that amount was spent in performing the most important

task, the labeling of the samples. To overcome these difficulties, a pro-

cedure based on the sampling and labeling of individual pixels, known as

Procedure 1, was developed at the beginn i ng of Phase III (the 1977 growing

season).

1.2 PIXEL LABELING; ACQUISITION USAGE

As a replacement for field delineation, a clustering algorithm was employed in

Procedure 1 to produce training samples. In this procedure, the AI was

required to label a random sample of pixels from each segment. A subset of

this sample, called type 1 dots, was used to seed the clustering algorithm.

Only those type 1 pixels which sampled the same field on all acquisitions were

used. The associated labels were used to label the output clusters according

to a nearest neighbor rule. These labeled clusters were then used as training

samples for the maximum likelihood classifier. The remaining pixels of the

original random sample, called type 2 dots, were used to compute a stratified

random proportion estimate from the strata produced by the classifier. Type 2

7,-



dots were not required to sample the same fields on each acquisition; but they

were labeled on the basis of their location on a specified base acquisition.

The use of a random sample of the scene to produce clusters was intended to

remove any variance that could be caused by biases in the field delineation

method of sample selection. Furthermore, this method had the advantage of

allowing the use of multiple acquisitions without increasing the work required

to extract a representative training sample. The role of the analyst was thus

reduced to that of selecting a set of up to four acquisitions which best char-

acterized the separation between small grains (wheat, barley, oats, and flax)

and nonsmall grains and labeling the random sample of pixels represented in

those acquisitions.

At this stage in the procedure, a labeling to ,.hnology was needed to reduce the

variance associated with the Al labeling.

1.3 Al QUESTIONS DEVELOPED

In order to analyze the relative importance of the various factors comprising

an Al interpretation, a list of questions relating to these factors was com-

piled by a team of experienced AI's. The questions related to agricultural

practices, meteorological conditions, and spectral values that influence pixel

analysis, as well as subjective film product interpretation regarding the

field membership and vegetation canopy of certain pixels. The questionnaire

described the interpretation of pixel labels used in LACIE. The required

responses to some of the questions were qualitative: yes, no; bad, good;

better, best; etc. Other questions required quantitative answers: amount of

rainfall in inches, various transformations of the radiometric spectral

values, etc. The qualitative responses were coded with nonnegative integer

values, and a vector of all responses was composed for each pixel.

Four 3- by 11-kilometer (5- by 6-mile) segments were analyzed using a grid of

209 pixels. The grid consisted of every tenth pixel, both horizontally and

vertically. This 10-by-10-grid was the same grid introduced with Procedure 1

to eliminate pixel-to-pixel (interfield) dependencies in spectral values and

^^3r



interpretation. To develop a more objective procedure, the Al opinions

regarding any small-grain-versus-"other" labeling were ignored in the analysis

of the questions, and a discriminate analysis was applied to the vector of the

AI responses to differentiate pixels that were members of the ground-truth

small-grain category from the members of the "other" category. The intention

was to imitate the procedure the AI followed in weighting various sources of

information to determine pixel labels. It was also desired that the procedure

would provide an estimate or the accuracy of these labels. Due to a shortage

of data, the classifications produced by the discriminant analysis were tested

on the training data rather than on a separate test set. Using the results of

these tests, repeated discriminate analyses were generated step by step; and,

in conjunction with AI consultations concerning the logic of the interpreta-

tion process, a succinct set of key questions that would not significantly

sacrifice classification accuracy was generated. This set of key questions,

along with the procedure for its use, has been named Label Identification from

Statistical Tabulation (LIST). The LIST questions were partitioned into two

groups: spectral questions (for which responses were computed directly by the

computer) and Al questions (for which answers were obtained from analyst

interpretations). The automation of the spectral information was important in

producing an operationally feasible pixel-labeling procedure that is cost

effective in terms of interpretation time.

The LIST questions and analysis procedure used in the experiment are described

in the following section. Experimental results (both training and test) con-

cerning the accuracy of labeling are discussed in section 3.
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2. LIST

List data consist of two parts, the part acquired from the AT and the auto-

mated part derived from the spectral values. In accordance with the LIST pro.,

cedure, the AT is given a packet that contains all available film products,

agricultural-meteorological background data, and appropriate maps for a given

area. From the available film imagery, the Al selects four available acquisi-

tion dates for the interpretation. The chosen dates are selected because they

span the growing season of the crop of interest (spring wheat in North Dakota,

for example) and reflect key stages of growth, such as heading (peak vegeta-

tion canopy) and harvest (no vegetation). Each acquisition is assigned an

average biostage rating using the Robertson biostage scale (ref. 1), which is

adjusted for local weather conditions during the growing season. All crops of

interest in the scene are expected to be within one biostage of the average

biostage rating assigned for that particular acquisition.

The Al interprets the pixels on the film imagery to provide Al pixel-specific

responses to the questions in the questionnaire shown in figure 2-1. These

responses are recorded on an AI response sheet (see figure 2-2) in a format

suitable for keypunching. Notice that the segment identification number, the

acquisition dates, and the respective Robertson biostage numbers are recorded

on the top line of the AI response sheet. The sixth response in the question-

naire (figure 2-1), the AI interpretation, calls for an answer based on the

Al's training, experience, visual acuteness, and the amount of time and care

taken by the At in making a study of the vegetation patterns in the segment.

The variety of responses given by the analysts indicates that, in many cases,

the evaluations made are highly subjective. This response is not used in the

first part of the LIST procedure, but it is used to identify possible problem

pixels later in the procedure.

The responses indicated on figure 2-2 are key punched and represent one data

source for the LIST computer software. The other data source is a tape of the

L,andsat multispectral scanner (MSS) radiometric values for each pixel in the

X2



Al PIXEL-SPECIFIC RESPONSES

1-4 FOR EACH ACQUISITION.

PFC VEGETATION CANOPY INDICATION IS

(USE ALL AVAILABLE IMAGERY FILM TYPES.)

(0) NO VEGETATION CANOPY

(1) LOW DENSITY GREEN VEGET1`,TION CANOPY

(2) MEDIUM DENSITY GREEN VEGETATION CANOPY

(3) HIGH DENSITY VEGETATION CANOPY

(4) SENESCING (TURNING) VEGETATION CANOPY

(5) HARVESTED CANOPY (STUBBLE)

5	 'THE MULTITEMPORAL ORIENTATION OF THE PIXEL ACROSS THE FOUR ACQUISITIONS

is

(D) r' , !n, - IGNATED OTHER: OBVIOUSLY IN A NONAGRICULTURAL AREA, NOT

IN A FIELD

(R) REGISTRATION: PIXEL SWITCHES FIELDS

(M) MIXED: PIXEL IS NOT ENTIRELY IN ONE FIELD

(P) PURE: PIXEL IS IN THE SAME FIELD ON ALL FOUR ACQUISITIONS

6	 THE Al INTERPRETATION OF THE PIXEL CATEGORY IS

Figure 2-1.- Sample AI questionnaire form, used in
. the analysis procedure.
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scene. This latter data source ;s screened to admit only those pixels inter-

preted by the Al. The MSS data set for each pixel is a 16-dimensional vector

represe ►►ting light reflectance in the green, red, near infrared, and fat,

infrared bands, respectively, for each of the four acquisitions.

The LIST program first transforms the AI responses and MSS data into variables

that relate to the growth stages for the crop in question. The program then

transforms those responses and data to weight each variable according to its

contribution in the decision making process as determined by the training

data. The scalar sum of the weighted responses then ref'ects the degree of

confidence one can place on the classification. For this process of discrimi-

nant analysis, training samples are required in order to determine the weight-

ing and threshold for classifications using the weighted sum. In the data

analysis presented in the following section, the training of the discriminator

is discussed and illustrated. First, however, an explanation of the transfor-

mation of analyst responses and MSS data into the LIST keys is given.

The Al vegetation canopy responses shown in figure 2-2 are used in conjunction

with the data in figure 2-3 to determine a variable called the "canopy key."

As shown in figure 2-3, each acquisition's biostage is noted on the horizontal

axis, and the vegetation canopy code is noted on the vertical axis. This fig-

ure has been generated to accommodate the growing phase of wheat and other

small grains in the U.S. Great Plains. If a pixel is plotted into the blank

area (in the middle), it is considered a "first class" response for small

grains and its canopy key is 0. If it is plotted into the dotted region (next

to the blank area), it is considered a marginal response and its canopy key is

5. If it is plotted into one of the slashed regions (upper left or lower

right), it is considered an unacceptable response for small grains and its

canopy key is 10. Canopy keys are determined for each acquisition of each

pixel. An additional variable, called the "canopy trajectory," is generated

by summing the canopy keys and setting the canopy trajectory equal to 0 if the

sum is less than or equal to 5 and equal to 1 if the sum is greater than or

equal to 10. The canopy keys will be denoted CANKY(I,J), J = 1, 4, where I is
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an index over the interpreted pixels, J is an index to the acquisition number,

and the canopy trajectories are denoted CANTJ(I).

The recoding of the spectral values is a little more complex. All of the

spectral variables are transformations of greenness and brightness. Greenness

and brightness are, in turn, linear transformations of the 4-dimensional MSS

radiometric values. [See Kauth and Thomas (ref. 2) for a physical interpreta-

tion of greenness and brightness.] For the crop of interest, a prototype or

"expected trajectory" in each of the greenness (GREEN) and brightness (BRIET)

dimensions is generated along with an empirical standard deviation of the

estimator. Specific generation techniques used may vary according to local

conditions. In section 4, these techniques, as well as that used for the test

described in section 4, are explained.

The biostage means and standard deviations are used to form "z-scores"

(observed scores) for each pixel on each acquisition, as follows:

BRIET (i J) = [B(i,j) - MEANB]/SOB

where

i	 = pixel (1-209)

j	 = index to acquisition number

B(i,j) = brightness value extracted from 4-dimensional vector of acquisition j

MEANB = mean of brightness

SOB	 = standard deviation of brightness

and

GREEN (i,j) = [G(i,j) - MEANB]/SDG

where

i	 = pixel (1-209)

j	 = index to acquisition number

G O X = greenness value extracted from 4-dimensional vector of acquisition j



MEANB - mean of brightness

SDB	 - standard deviation of brightness

The variables denoted BRIET(i,j) and GREEN(i,j) are concatenated with

CANKY(i,j) and CANTJ(i) to form a larger vector. This vector is then aug-

mented with the absolute z-scores and four additional trajectory variables as

follows:

ABREIT (I,J) = IBRIET(I,J)
AGREEN (I ,J ) = (GREEN (I ,J )I

4

SQAIRB(i) _ E [BRIET(i,j)2I
j=1

4

SQUAIRG = F [GREEN(I,J)2]
j=1

4

PIEB(i) = 7T E1 + ABRIET(i,j)]
j=1

4

PIEG(i) = Ir [1 + AGREEN(i,j)]
j=1

where ABRIET is the absolute value of brightness, and AGREEN is the absolute

value of greenness. The vector of LIST keys is now a 25-dimensional vector.

This is the vector on which the discriminant analysis is based.

The weightings for each variable can be derived in various ways. In this

study, weights were derived by using a classical discriminant procedure in

which, for the segments of interest, known (ground-truth) labels were

observed. Let us assume that, for the particular area to be interpreted, an

appropriate set of weights has been determined, perhaps through the use

of discriminant coefficients trained on the previous year's data. The

25-dimensional supervector is then converted to a single , discriminant score by

applying the weights and summing. Zero is the natural threshold for classifi-

cation when discriminant coefficients are used. The result is a classifica-

tion for each pixel that the interpreter analyzed. These discriminator labels

u
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are then arrayed along with the Al opinion given in the last question in the

LIST analysis (see figure 2-4 for array). The interpreter examines those

pixels over which disagreements have occurred. The procedure used in this

analysis was to consider the discriminator labels as final, unless the inter-

preter could state a reason for preferring his label. Making a change in the

discriminator label is acceptable when, for example, additional acquisitions

show growth of a crop which was not evident in the four acquisitions used or

the previous year's data indicate agricultural practices which predict growth

of a particular crop for the current year.

Thus, the LIST labeling procedure is a technology that uses the interaction of

both the automated discrimination techniques and the photointerpretation

experience in deriving pixel labels. It enables the interpreter to work with-

out the continual use of confusing or difficult spectral aids. The numerical

results of the use of LIST on data collected from N. Dakota blind sites in

LACIE Phase III (1977) and the 19713 Transition Year (TY) growing season are

given in the following section.

2 _9



3. EXPERIMENTAL RESULTS: N. DAKOTA

3.1 TRAINING RESULTS IN THE 1975-77 DATA

To show that the LIST procedure can be made operational, an experiment was

devised. LIST was trained on Phase III ( 1975-77 growing season) spring small-

grain data from N. Dakota to obtain a discriminant function. This discrim-

inant was applied to the N. Dakota spring small-grain data collected in

Phase III to estimate the training accuracy of the procedure and to N. Dakota,

S. Dakota, and Minnesota data collected in the TY (1977-78 growing season) to

estimate the temporal and geographic extendability of the procedure.

The first step in training LIST for use in a specific geographic area is to

obtain the expected greenness and brightness trajectories of small grains used

to transform the MSS data to LIST spectral keys. In this experiment, the tra-

jectories were obtained from the available ground-truth small-grain pixels in

the N. Dakota Phase III data. The pixels were taken from the 14 blind sites

which had the necessary four acquisitions required by LIST, though, in gen-

eral, this is not a necessary restriction for generating the trajectories.

The pixels were treated as four independent observations, with one observation

on each acquisition. The acquisitions were first divided into groups, with

each group consisting of all the acquisitions obtained during one 18-day cycle

of Landsat coverage. The range of the Robertson biostage occurring within

each group was noted. The means and standard deviations of greenness and

brightness were computed for each group. The expected trajectories of green-

ness and brightness as a function of the Robertson biostage were then gener-

ated by applying the observed means to the appropriate biostages and linearly

interpolating to cover unobserved biostages. This procedure was repeated to

determine the standard deviation of greenness and brightness for each bio-

stage. The resulting trajectories are presented in figures 3-1 and 3-2.

With these trajectories computed, the AI responses and MSS data from the 14

Phase III N. Dakota blind sites were transformed to the 25-dimensional LIST

keys. A discriminant was trained to separate the ground-truth small grain

pixels from the ground-truth "other" pixels represented by these transformed

I^
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response vectors. Table 3-1 shows the labeling accuracy obtained by applying

this discriminant to the same data set, and it shows the accuracy of the ana-

lyst label (provided as a response to LIST by each analyst) for comparison.

In this table, PCC stands for probability of correct classification. It is

computed as the number of ground-truth small grain pixels classified as small-

grains plus the number of ground-truth "other" pixels, either classified as

"other" or labeled "obviously nonagriculture," divided by the total number of

pixels. The omission rate is the percentage of ground-truth small grains that

were not classified as small grains, and the commission rate is the percentage

of ground-truth "other" pixels that were classified as small drains. The

remainder of the table is self-explanatory.

3.2 TEST RESULTS

The next step in the test of the LIST procedure was to apply the Phase III

N. Dakota discriminant to the following year's data from N. Dakota, S. Dakota,

and Minnesota. This provided a twofold test of temporal and geographic

extendability of the procedure. The results of this test are shown in

tables 3-2 and 3-3. Table 3-2 shows the initial results. In both cases the

accuracy was low. The fact that the discriminant did not provide better

accuracy in N. Dakota than in the other states indicates that the chief

problem was the temporal rather than the geographic extension. Evidence to

support this conclusion is given in table 3-3, which shows the results

obtained by training on the N. Dakota TY data and geographically extending the

discriminant to six additional S. Dakota and Minnesota segments. A study of

the causes of this poor temporal extension was made, and an evaluation of the

results is included in the next section of this document.

3.3 EVALUATION OF RESULTS

The first attempt to improve the temporal extension of the LIST labeling tech-

nology involved temporally updating the spectral keys used in the procedure.

It was necessary to achieve this without the benefit of the ground truth in

order to maintain an operational procedure for labeling in a situation where

the ground-truth data were unavailable. This method used the AI labels that

X3'
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TABLE 3-1.- TRAINING RESULTS FOR PHASE III NORTH DAKOTA SEGMENTS

(a) Distribution of LIST labels

Ground-truth
label

LIST label

Small	 grains Nonsmall	 grains Obvious nonagriculture

Small	 grains 534 167 13

Nonsmall	 grains 143 669 496

Statistics:
PCC = 84.07%
Omission rate = 25.21%

Commission rate = 10.93%

Bias = -1.8%
Average PCC across segments = 84.31%

Standard deviation of PCC = 4.69%
PCC, given LIST and Al agree = 88.03%

PCC of LIST on disagreements = 40.97%

(b) Distribution of AI labels

Ground-truth

label

AI	 label

Small	 grains Nonsmall	 grains Obvious nonagriculture

Small	 grains 370 330 13

Nonsmall	 grains 63 751 496

Statistics:
PCC = 80.00%
Omission rate = 48.11%

Commission rate = 4.66%

Bias = -14.0%
Average PCC across segments = 80.46%

Standard deviation of PCC = 9.75%

r



TABLE 3-2,- INITIAL RESULTS FROM CLASSIFYING TY DATA

WITH THE PHASE III DISCRI'.I'!A'lT

(a) Distribution of LIST labels for 19 TY sites in
North Dakota, South Dakota, and Minnesota

Ground-truth

label

LIST	 label

Small	 grains Nonsmall	 grains Obvious nonagriculture

Small	 grains 339 612 12

Nonsmall	 grains 660 1005 246

Statistics:
PCC = 55.32%

Omission rate	 64.00,

Commission rate	 34.54°

Bias = M1.71a

Average -'CC across segments = 57.13

Standard deviation of PCC = 20.14%

PCC, given 'LIST and AI agree = 81.07°'

PCC of LIST on disagreements = 18.79

(b) Distribution of LIST labels for

14 North Dakota TY blind sites

Ground-truth

label

LIST	 label

Small	 grains Nonsmall	 grains Obvious	 nonagriculture

Small	 grains 286 512 9

Nonsmall	 grains 406 797 110

Statistics:
PCC = 52.26%

Omission rate = 63.44%

Commission rate = 30.97%

Bias = -5.0%

xo



TABLE 3-3.- TRAINING RESULTS FOR TY NORTH DAKOTA,

SOUTH DAKOTA, AND MINNESOTA DATA

(a) Distribution of LIST labels for
15 North Dakota blind sites

Ground-truth
label

LIST label

Small	 grains Nonsmall	 grains Obvious nonagriculture

Small	 grains 502 323 10

Nonsmall	 grains 128 1230 196

Statistics:

PCC - 80.70%
Omission rate = 39.80%

Commission rate - 8.20%

Bias - -8.5%
Average PCC across segments * 79.23%

Standard deviation of PCC =
PCC, given LIST and Al agree - 83.6%

PCC of LIST on Disagreements = 54.1%

(b) Distribution of LIST labels for 21 North Dakota,

South Dakota, and Minnesota blind sites

Ground-truth

label

LIST label

Small	 grains Nonsmall	 grains Obvious nonagriculture

Small	 grains 583 418 14

Nonsmall	 grains 127 1788 322

Statistics:

PCC = 82.81%
Omission rate = 42.56%

Commission rate = 5.68%

Bias = -9.49
Average PCC across segments = 84.279'0

Standard deviation of PCC = 11.5%

3
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were supplied to the LIST processor as a substitute for ground-truth labels in

the generation of the trajectories. The trajectories determined in this way

are shown in figures 3-3 and 3-4. They are not significantly different from

the corresponding trajectories generated from the ground-truth labels (figures

3-5 and 3-6) anus, therefore, this method of updating trajectories was

adopted. Table 3»4 shows the results obtained by substituting the updated

trajectories in the processor that generated the LIST keys. Since the

improvement obtained by this process was minimal, a further study was made

of the contribution of individual keys to the problem.

The two sets of keys which contributed the most to the lack of temporal

extendability were found to be the brightness keys and the analyst keys.

Table 3-5 shows the test results obtained by (1) removing the brightness

keys, (2) training in Phase III, and (3) classifying the TY data. The

increase in accuracy and the significant changes in the brightness trajectory

'(figures 3-2, 3-3, and 3-4) from Phase III to the TY indicate that the

brightness keys are unstable. Tables 3-6 and 3-7 show the mean PCC's and

standard deviations for training segments in Phase III with test segments in

the TY. Table 3-6 shows the results obtained by using only the greenness and

brightness k6ys. Table 3-7 indicates the results obtained by using only the

greenness keys. The improvement obtained by removing the AI keys was con-

sidered significant. Table 3-8 shows the results obtained using only the

analyst keys. The fact that the Phase III discriminant obtained from these

keys explained only 56 percent of the Phase III analyst labeling indicates

that a problem existed in the Al responses collected for the Phase III data.

It is believed that the problem occurred because only two AI's were available

at the time to support the collection of this data. By contrast, the broad

set of responses obtained from using 16 AI's to interpret the TY data produced

a discriminant which explained 87 percent of the Al labeling (table 3-8).

Finally, table 3-9 indicates the mean PCC and standard deviations for training

and test data from the TY, showing again the relatively good geographic

extension that can be obtained using the LIST procedure.
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TABLE 3-4.- ACCURACY OF EXTLNSION WITH UPDATED KEYS

(a) Distribution of LIST labels in classification of ?4 TY segments
with Phase III trained discriminant and updated keys

Ground-truth

label

LIST	 label

Small	 grains Nonsmall	 grains Obvious	 nonagriculture

Small	 grains 321 739 14

Nonsmall	 grains 912 1593 359

Statistics:
PCC = 57.7;?,,",

Omission rate = 70.11a

Commission rate = 31.84%

Bias = +7.451,S
Average PCC across segments = 63;

Standard deviation of PCC = 18.39

PCC, given LIST and Al agree = 84,55,
IVPCC of LIST on disagreements = 13.8

(b) Distribution of LIST labels in classification of 19 TY segments

with Phase III weights without updated keys

Ground-truth
label

LIST	 label

Small	 grains Nonsmall	 grains Obvious	 nonagriculture

Small	 grains 3:39 612 12

Nonsmall	 grains 660 1005 246

Statistics:
PCC = 55.320

Omission rate = 64%

Commission rate = 34.54°
Bias = +1.7%

Average PCC across segments = 57.13,0

Stan'. d deviation of PCC = 20.14100
PCC, C, ven LIST and Al agree = 81.07%

PCC oi' LIST on Disagreements = 18.79%

3A
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TABLE 3-5.- RESULTS OBTAINED BY REMOVING BRIGHTNESS KEYS

[Distribution of LIST labels for 24 TY blind sites,
classified from Phase III training]

Ground-truth

label

LIST	 label

Small	 grains Nonsmall	 grains Obvious nonagriculture

Small	 grains 465 595 14

Nonsmall	 grains 694 1511 359

Statistics:
PCC = 64.18Z

Omission rate = 55.4%

Commission rate = 27.07%

Bias = +2.7%

Average PCC across segments = 64.6711

Standard deviation of PCC = 16.97%

TABLE 3-6.- RESULTS USING ONLY GREENNESS/BRIGHTNESS KEYS

Data	 set classified

Phase	 III TYData used
in training

Mean PCC Standard Mean PCC Standard

deviation deviation

Phase	 III 83.78 5.19 63.58 17.6

TY 70.26 17.27 82.42 10.26

i

-^ -7



TABLE 3-7.- RESULTS USING ONLY GREENNESS KEYS

Data	 set classified

Data used Phase	 III TY
in	 training

Mean PCC Standard Mean PCC Standard
deviation deviation

Phase	 III 81.80 8.71 65.74 16.87

TY 72.62 20.18 77.24 12.8

TABLE 3-8.- E:XTFNDABILITY ACHIEVED USING, ANALYST KEYS ONLY

(a)	 Results

Data	 classified

Data used

to	 train
Phase	 III TY

discriminant
Overall Moan Standard Overall Mean Standard

PCC PCC deviation PCC PCC deviation

Phase	 III 73.7 73.86 15.69 59 59.15 23.76

TY	 68.5 68.55 18.20 74 73.64 21.06

(b) Probability of agreement of machine

classified label and analyst label

(classified using only Al keys)

Data used
to train

discriminant

Data classified

Phase	 III TY

Phase	 III 0.567 0.637

TY .672 .871

3 Ile



TABLE 3-9,- TRAINING AND TEST ACCURACY OF KEYS

APPLIED TO THE TY DATA

Data set Mean PCC Standard deviation

I	
of the PCC

Greenness and brightness keys

Training data

Test data

81.52

84.24

10.30

10.63

Greenness keys only

Training data

Test data

75.87

79.97

12.62

13.56

AI keys only

Training data

Test data

72.03

76.88

15.69

30.2

e e^ ,



4. SUMMARY

Sample labeling from satellite MSS data was once performed by means of field

delineation and labeling. In order to prevent bias due to subject field

selection, the photointerpreter was given a specified set of pixels to

label. It was observed then that the Al labeling techniques were highly

personalized and yielded results that varied considerably. A questionnaire-

discrimination approach to labeling was developed to transform labeling from a

personalized art to a transferable technology. Experimental results confirm

that accuracy obtained using of this technique can match Al accuracy while

yielding less variance; however, its lack of adaptability to crop conditions

other than those of the test period suggests that additional development is

required for year-to-year extendability.
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