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I . INTRODUCTION

A previous study by R. K. Lenniogton and J. K. Johnson (ref. 1) concluded by

recomr;rending a new procedure for crop proportion estimation. The procedure

consisted of two steps. First, the Landsat data were to be clustered using

the CLASSY clustering algorithm. Then, picture elements (pixels) were to be

allocated to each cluster strata and labeled using a sequential Sayesian allo-

cation scheme developed by M. D. Pore (ref. 2). The labeled pixels were used

to form a posterior distribution Bayes ostimate of the proportion of the class

of interest. In tests involving ground-truth data from 21 blind sites use(; in

Phase III of the Large Area Crop Inventory Experiment (LACIE), this procedure

was unbiased and had an estimated mean squared error (MSE) approximately equal

to that of a procedure called p rocedure 1 (which is based on the sampling of

individual pixels) and uses only one-third of the total number of labeled

pixels (ref. 1).

In order to explore the feasibility of the new procedure in an actual labeling

situation and to perform a preliminary evaluation of its characteristics usin(.l

analyst labels, a test involving 10 Phase III segments was undertaken.

Section 2 describes the procedure used for selecting pixels to be labeled and

the method for obtaining proportion estimates. The data set used in the

experiment is described in section 3, while the results pertaining to the

accuracy of the analyst labels end the bias and MSE of the proportion esti-

mates obtained using tr«ose labels are described in section 4. Section 4 also

preserts the conclusion and recommendations.

2. LABELING PROCEDURE

For the purposes of this test, the Bayesian sequential allocation procedure

was implemented on a Texas Instruments TI-59 programmable calculator. The

version of the allocation procedure implemented was slightly different from

the procedure used in the previous study (ref. 1) in that a beta distribution

was used for the prior distribution of cluster purities rather than a

quadratic or exponential distribution. The form of the distribution used was

as follows.



g(ei) = 
r r aafb (6i) a-1	 b-1	 (1)

where

b=1

a = --p;
1-p

p = the estimated proportion of the class of interest in the whole
segment

e i = the proportion of the class of interest in cluster i

g = the prior distribution of cluster purities

The choice of the parameters a and b ensures that the mean of the distri-

bution will be p. The parameter b was chosen to be fixed at a value of 1

because that value seemed to give the best fit to the previously obtained

empirical prior distributions (ref. 1). Initially, the parameter a was

chosen to be 0.515, corresponding to a p of 0.34.

The beta prior distribution, although not identical to the prior distributions

used in the previous study, is not greatly different and does offer some

advantages. It may be used over the entire range of segment proportions;

hence, the use of a prior distribution for large proportion segments and

another for small proportion segments is unnecessary. Also, the similarity of

the beta distribution to the binomial distribution allows the calculation of

the Bayes posterior distribution estimator for e i and the expressions for the

bias and variance of this estimator with comparative ease. In fact, the beta

distribution is called a "natural conjugate prior distribution" to the binom-

ial distribution for this reason. In addition, tests performed subsequent to

the work reported in reference 1 showed that use of the beta prior distribu-

tion with ground-truth labels produced results which were at least as good as

those produced using the combination of a quadratic and exponential prior

distribution.
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Using the beta prior distribution for e i , the Bayes posterior distribution

estimator for e i becomes

Xi+a
e i	 ni +a+b

where

n i = the total number of pixels sampled From cluster 1

X i = the number of sampled pixels which belong to the class of interest

The bias and MSE of this estimator are

a(l-ei ) + bei
Bias  = E(e i - e i )	n. + a + b	 (3)

n i e i (1 - e i ) + [a(1 - e i ) - beil2
MSE . _^-	 (4)

(ni + 
a + b)

where E = the expected value operator.

The allocation procedure begins with the allocation of two random pixels to

each cluster. At this point, p is calculated as

,	

t

 ( li )^
p=	 e

i=1 Nt

where

N i = the number of pixels in cluster i

Nt = the total number of pixels in the segment

c = the number of clusters

The parameter a is then reset using the equation

a 
1 - p

(Z)

(5)

3
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At this point, the sequential allocation of pixels begins. Succeeding pixels

are allocated to clusters which will minimize the expected value of an esti-

mator of the overall MSE for the segment proportion estimate P.

The MSE for p may be written as

N. 2
MSE _	 -^-
	

MST i
p	 i=	 t

By using a i in place of e i^ in equation (4), MSE i may be estimated. We will
denote this estimator as MSEi(xi,ni).

The expected reduction in the estimated MSE by labeling another pixel from

cluster i becomes

dMSE i =(
;NL2 ) j

MSE j (x i# n i ) - ^e i MSE i ( x i + 1,n i + 1)

+ (1 - A i )MSE i (x i ,n i + 1 )]^	 (7)
l

Thus, each successive pixel is chosen at random from the cluster having the

largest value of dMSE i .

In practice, the CLASSY clustering algorithm was first run on a given

segment. Then each of the 209 grid intersection pixels was associated with

the cluster in which it was placed, and the grid intersection pixels falling

in each cluster were listed in a randomized order. The randomized list also

contained the label of each pixel that had been previously labeled by an

analyst and indicated whether the labeled pixel was a type I or type II dot.

In selecting pixels from clusters, the first to be selected from the random-

ized list were the type II dots for which analyst labels were available. When

these pixels were exhausted, others were chosen according to the randomized

order within clusters. If a type I dot fell in this sequence, its label was

used. Dots other than type I were labeled by one of the authors (K. Abotteen)

using standard analyst procedures. A total of 45 pixels were allocated and

labeled for each segment.

(6)
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3. DATA SET AND EXPERIMENTAL DESIGN

The data set for this experiment consisted of 10 phase III blind sites chosen

as a subset of the 21 segments used in the previous study (ref. 1). These seg-

ments were chosen to be representative of the previously used, larger data set

with regard to geographical location and range of segment proportions of small

grains. These segments and acquisitio ► ts along with their location and the

ground-truth proportion of small grains in each segment are given in table 1.

The experimental design consisted of selecting and labeling 45 grid inter-

section dots from each segment. Repeated processings were not attempted due

to the limited number of analyst labels available.

4. RESULTS

This study provides the data for answering two important questions relative to

the use of analyst labels with the Bayesian sequential allocation procedure.

The first question concerns analyst accuracy in labeling pixels. Since in the

Bayesian sequential procedure more pixels are allocated to mixed clusters, it

was thought that the analyst labeling accuracy might decrease. The second

question concerns the bias and MSE of the proportion estimate resulting from

the procedure as compared to the bias and MSE of a simple random sample of the

same size. Analyst accuracy will be examined first, followed by results

concerning the proportion estimate itself.

Table 2 shows the error rate in labeling small grains (percentage of ground-

truth small grain pixels labeled "other") and the error rate in labeling

"other" (percentage of ground-truth "other" pixels labeled small grains) for

the 45 pixels that were sequentially allocated to each segment. The corres-

ponding error rates for the type II dots that are selected as a simple random

sample are also given. It should be noted that in every case the error rate

in labeling small grain pixels was lower for the sequentially allocated pixels

than for the type II dots. The error rate in labeling "other" pixels was

lower in two cases for the sequentially allocated pixels; however, the error

5



TABLE 1.- DESCRIPTION OF THE DATA SET

Segment Location Acquisitions used
Ground-truth
proportion of
small	 grains

1005(w) Cheyenne, Colorado 71779 7159, 6326, 6254 0.348

1033(w) Clark, Kansas 7156, 6288 .095

1060(w) Sherman, Texas 7158, 7068 .231

1231(w) Jackson, Oklahoma 7156, 7066, 6288 .744

1520(w) Big Stone, Minnesota 7174, 7156, 7120 .301

1604(s) Renville, North Dakota 7143, 7125 .524

1675(s) McPherson, South Dakota 7230, 7176, 7123, 6254 .291

180?(w) Shann:n, South Dakota 7178, 7159, 7123, 6255 .032

1805(m) Gregory, South Dakota 7211, 7158, 6307, 6290 .164

1853 w INess, Kansas 7193, 7067, 6253 .306

Symbol definition:

w = winter wheat
s = spring wheat
m = mixed wheat



TABLE 2.- ANALYST ERROR RATES FOR SEQUENTIALLY

ALLOCATED DOTS VERSUS THE TYPE II 0OT't•

Segment
Sequentially allocated dots Type H dc,^s

Error rate for Error rate Error rate for Error rate
spring grains for "other" spring grains for "other"

1005 0.4286 0.0417 0.5000 0.0270

1033 .7000 .0286 .8571 .0189

1060 .2778 .0370 .2857 .0000

1231 .0294 .0909 .0851 .1818

1520 .2353 .1429 .2500 .0909

1604 .4800 .2000 .4839 .3158

1675 .3571 .0323' .8333 .0208

1803 .2500 .0244 .5000 .0000

1805 .2000 .085". 3636 .0460

1853 .1429 .1613 .2000 .0889

Averages 0.31,01 0.0845 0.4359 0.0790



rate in labeling "other" pixels was generally fairly low for bath types of

allocations.

As another test, one may examine the total number of labeling errors using a

sequential Bayesian allocation and compare this to the expected total number

of errors based on the error rate for the type II dots. The expected number

of errors was calculated by multiplying the total error rate calculated from

the type II dots by 45. These data are given in table 3. A chi-square test

of these observed and expected number of errors yields a value of

X2 = 14.811

With 9 degrees of freedom, the 5 percent significance level of the X2 random

variable is 16.9. Hence, at this level of significance, we fail to reject the

hypothesis that the observed number of errors are not different than the

expected number of errors based on the simple random sample of type II dots.

It should be noted that the chi-square test may fail to hold since three of

the segments have an expected number of errors less than five. However, the

test may be taken as an indication of very little difference in the error

rates for the two labeling procedures.

Regarding the actual proportion estimates, table 4 shows the posterior distri-

bution Bayes proportion estimates produced following the sequential allocation

of 45 pixels, the proportion estimates based on the type II dots used as a

simple random sample, and the Phase III Procedure I estimates. The deviation

of each of these estimates from the ground-truth proportion of small grains

for each segment also appears in this table.

Several observations may be made from table 4. First, the average bias com-

puted over segments is smaller for the Bayesian sequential estimates than for

the simple random sample estimates or the Procedure I estimates. Thus, the

Bayesian sequential estimates appear to be somewhat less sensitive to the

effects of analyst bias. Also, the MSE computed over segments is smaller for

the Bayesian sequential procedure than for the other two procedures. In fact,

8



TABLE 3.- OBSERVED AND EXPECTED TOTAL
NUMBER OF ANALYST LABELING ERRORS

Segment
Total number of errors

Observeda Expectedb

1005 10 9.135

1033 8 5.265

1060 6 3.015

1231 2 4.635

1520 8 5.985

1604 16 15.750

1675 6 8.235

1803 3 0.765

1805 5 3.690

1853 7 5.265

aNumber of errors observed out of 45
sequentially allocated pixels.

bNumber of errors expected based on
the error rate on the type II dots.

9
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if we correct the MSE for the type II dot estimates and the Procedure I esti-

mates to reflect an average sample size of 45 pixels rather than the average

sample size of 63.5 or 105.5 pixels as given in table 4, we obtain

63.5	 0118325 - 0.0166970MSEType II adjusted	 4T_ t '	 )

	105.5	 0126021) - 0.0295449MSEPI adjusted	 ^'

These values, when compared to the MSE for the Bayesian sequential procedure,

yield the following reduction in MSE values.

	

MSE 
BayesSeq	 a 0.5137 = R1

Type II adjusted

MSEBa es Seq- = 0.2903 = R
;1	

2
PI adjusted

The reduction in the MSE for the type II dots, R 1 , is very close to the value

reported in reference 1 for the reduction in the MSE of the Bayesian sequen-

tial procedure as compared to a simple random sample of the same size using

ground-truth labels. Both R 1 and R2 represent very favorable reductions in

MSE values and tend to validate the results of the previous study obtained

using the ground truth.

5. CONCLUSIONS AND RECOMMENDATIONS

This study indicates that the Bayesian sequential dot allocation and propor-

tion estimation procedure does not significantly increase the analyst labeling

error rate. In addition, as compared to a simple random sample, the procedure

reduces the MSE by a factor of two. When compared to Procedure I, it reduces

the MSE by a factor of approximately three. These results validate the advan-

tages to be obtained in using this procedure with analyst labels.

M

The fact that the procedure was implemented on a small programmable calculator

indicates that it is operationally feasible. However-, it should be mentioned

that the dot selection part of the program was slower than the normal analyst



dot-labeling rate. Another yet-to-hr-resolved issue is the development of a

technique for sealectinit pixels from clusters witOut revealing to the analyst

they identity of the cluster in which the pixels tall.	 It is felt that the

knowledge that pixels fall in the same or different clusters may bias the

analyst decision. pine obvious solution to the computer-time irroblem and the

cluster identity  problem would he to implement the procedure on a main-framo

computer with interactive analyst access via a terminal. Using this approach,

the cluster identities of all the grid intersection pixels could he retained

in the comp"ter and therefore would not have to he revealed to the analyst.

A larger comp"ter should also he able to select pixels faster than an analyst

can label them.

In conclusion, it is reconnnended that stems he initiated for incorporating

this procodure in a largo-scale test usi net fully developed analyst procedures.
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