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I. INTRODUCTION

The initial program at U.C.L.A. was to assist J.P.L. during

the building and expansion of their laboratory and dcvicc

fabrication: facilities. This work consisted of device fabrication

which was composed of the following processing proceedures:

a) low temperature POC1 3 diffusions,

b) metalization of back and front ohmic contacts,

c) mask desi g n and fabrication, and

d) sintering in inert and H Z atmospheres.

These processing steams were varied in accordance with J.P.L.'s

instructions.

The device evaluation was performed at U.C.L.A. and J.P.L.

The results of these measurements were correlated, an,! they included

such tests as:

a) dark current vs. voltage and log I vs. voltage,

b) liqht current vs. voltage at A.Ml and AMO,

c) capacitance vs. voltage, and

d) spectral response.

The measurements were then interpolated and reduced to deter:r.inc tht

material properties such as minority carrier lifetimes (;
1') 

an:'

diffusioi: lengths (I n ) . The diffusion lengths determination w..:

accor:;.lishe:, by spectral response measurements at U.C. I 	 Sir:ilai

err-aEurcr: -.tF- e 	 va` ic`uF de` iccF k'crc dc-... 1	 Ft

%'C,lta7c' mctiiUL!) at J.1 L.
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II. MATERIAL CHARACTERIZATION

During the last year and a half, our work has been directed

towards the characterization of single and polycrystalline silicon

slbstrates. This work was initially performed by two methods:

device fabrication (characterization) and photoconductive lifetime

decay measurements. The device characterization of the processed

material was accomplished by spectral response measurements determina-

tion of I sat and absolute quantum efficiency at a single wavelength

(.6328 um). The results were then reduced to yield the diffusion

length of the various samples. The photo-conductive Lifetime decay

method was implemented in order to determine the minority carrier

lifetime in unprocessed wafers.

Previously, photo-conductive decay methods have been difficult

and produced indeterminant results due to the limitations in the

excitation sources. In our experiments, however, these problems were

substantially minimized by the use of a nitrogen pumped dye laser source.

The use of a dye laser provided a narrow wavelength band capable of

high power pulses at very high repetition rates for the photo-excita-

tion of carriers. Additionally, by selection of various dyes, the
0

wavelength could be varied from 4000 to 7300 A; this allowed the

relative importance of surface recombination effects to be separated

from the bulk lifetime.

The photoconductive lifetime decay system is shown ii: Figure 1.

Tte high powered laser (5 - 50 kw), a National Research Group

tur:"_:^` ] F dye laser Mo-.:el 1%'RG-DL-0.03, capable of delivering 60 pulses/sec

t:.t US-__ o f . Vcr y smu] l b iaslnC iitldS7 (1 - lip VIC!.) aC'i'OFt thE-

2	 i,';ICT11N ,L PA CIA", TO
OF :Of'iR QUALITY	 ^
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sample. The dye chosen for this experiment was Stilbene 3 which
o

produced a useable range of wavelengthsfrom 40001 to 55COA
e
. At

these wavelengths, the absorption coefficient for silicon at 23e

C is approximately 5.8 x 10 4 cm 1 to 1.2 x 10 4cm-1 . This corresponds

-to an extinction coefficient of approximately 0.16 microns to 0.5

microns. The signal was sampled and held by a P.A.R. eductor model

TDH9 and could then be displayed on a Tektronix oscilloscope or x-y

recorder. The load resistor was used to match the sample's impedance.

The biasing field used was ±8v. This small biasing field is very

important for lifetime determination in small grain boundary materials

because it eliminates the problem of carrier sweep out due to

recombination centers. 	 In other words, the biasing fields were

small enough so that the drift component of the velocity could

not move the carriers to a grain boundary in a time period less

than the effective minority carrier lifetime. Generally, the

photo conductive decay method has experimental problems when the

lifetimes are much less than lu sec. This is due to the current

limitations in the available signal averaging equipment. This is

particularly a problem when one considers that a number of polycrys-

talline materials have diffusion lengths approximately 1-20U m or

corresponding carrier lifetimes of 10 -10 - 10-7 sec.

Due to the problems of the short lifetimes materials, we devised

a new method for the measurement of short diffusion lengths. The

It should be noted that the time for a carrier to reach a grain
boundary is T b = 2
	

I where d is the grain dimension, E is the

electric field and -pis  the mobility. If the sample has a biasing_ fief':'
of approximately lOv/cm, then grain dimensions of approximately
250 microns would have minority carrier residence times of approximatel..
1^jsec. Therefore any recombination center at the grain, boundar y- trill
adversely affect lifetime measurements greater than L sec in thiG
case. Much of the poly-silicon measured had grain dimensions on
this scale and smaller.
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i

first scheme which was implemented consisted of the excitation by

two different wavelengths of an argon ion laser, i.e. the 4880 and
e

5145 A lines. In this scheme, the sample was alternatively illuminated

by each wavelength using a special chopper and filter system. The

relative intensity of the two beams were adjusted until equal by the

use of an attenuator. The samples, p-n junction devices, Schottky

barriers or completely fabricated solar cells with AR coatings, were

then illuminated and the short circuit photocurrent was measured. The

relative photocurrents generated by the two different wavelengths

were then used to calculate the minority carrier diffusion lengths

in the sample. The pertinent equations are similar to the MIA

equations developed in Appendix A. This method allowed the mapping

of the samples' diffusion length. This scheme can also be used for

an average diffusion length determination by simply by simply re-

focusing the beam to cover the entire surface of the sample.

A shortcoming, however, of the argon laser system was found be-
0

cause of the very short penetration depths of the 4880 and 5145 A

lines. At these wavelengths, the variation in junction depth causes

critical errors in the calculation of the diffusion length Ln.

This is shown in Figure 2. Additionally, the short penetration depths

make accurate determination of diffusion lengths which are longer than

2 microns very difficult. Therefore, the argon ion laser source scheme

was replaced by two li g ht emitting diodes (LED's) which were

driven 180° out of phase. The wavelengths of the LED's were slightly

different but close to 0.9 micron-c- Vic lenoer wavele:-,ct}.^ h:i,.•c

much deeper penetration depths and are quite useful for the iargcr

values of Ln . In addition, the uncertainities introduces by thc

5
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variation in junction depth are substantially reduced. This scheme,

known as the IR multi-wavelength analyzer (MWA), was presented at the

August 1979 PIM Meeting. A complete discussion of the pertinent

results follows in Appendix A.

III. DEVICE CHARACTERIZATION

During this contract, solar cells fabricated at J.P.L.,

U.C.L.A., and various other laboratories in the Low Cost Silicon

Solar Array Project were tested at U.C.L.A. The initial tests

included the more common techniques such as light and dark current

voltage characteristics, Log I vs. V and log I vs log V measurements.

The cells were also tested at both AMO and AMI conditions.

Although these tests were quite useful, they were insufficient

to characterize the problem associated with devices fabricated in

polycrystalline siliccn. That is,a poor IV and low efficiency,

can result from a large variety of causes in poly-silicon cells.

Therefore, it was considered desirable to specially evaluate these

devices. This was accomplished by a laser scannin g, technique. The de-

vices, solar cells,were placed on an x-y translation stage and illumin-

ated by a laser which was focused to a small, approximately 25

micron, spot size. The short circuit current was measured as a

funciton of position using the principal lines of an Argon ion laser,

.4880 and .5145 microns, and the helium or neon laser,	 microns.

Typical scans which were obtained for Wacker solar cell #W-4-4

are shown in Figures 3 and 4. The greatly enhanced structure in the

short wavelength scar, is typical for polycrystalline cells to ti;E

devleopment of the M.W.A. system. 	 r

7



IV. DISCJSSION

The IR MWA system as decribed in Appendix B is a viable diagnostic

method for the determination of the quality of the silicon substrate

and the effect of processing techniques on the substrate material.

However, in practice, data acquisition and reduction are both tedious

and overwhelming. For a single 2 cm x 2 cm solar cell, diffusion

length evaluations for a 0.1 mm diameter beam would require over

400 separate measurements. Although each individual measurement is

simple, the shear number of calculations and measurements are

prohibitive.

We are, therefore, automating this scheme with the addition of

an Apple II microprocessor. At this time the microprocessor is capable

of data acquisition and reduction; however, it does not "command"

motion or control the LED source drivers. In the future, we will

implement the processor to control all of these functions. The auto-

matic system will be used in the evaluation of various grain boundary

passivation studies and the effect of fabrication processing on poly-

crystalline solar cell material.

8
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APPENDIX A

MULTI-WAVELENGTH ANALYZER

FOR DETERMINATION OF DIFFUSION LENGTHS*

0. M. Stafaudd, G. E. Davis and M. Jansen

Electrical Sciences and Engineering Department

University of California

Los Angeles, California 90024

*Work Spon:orcO under JPL Contract.
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ABSTRACT

A new non-destructive method is presented for the determination

of the spatial variations in diffusion length due to grain boundary

or processing effects. The multi-wavelength analyzer (MI-OW requires

the measurement of the short circuit current generated by two or more

infrared LED's operating at different wavelengths. Using the ratio

of current differences generated at er.ch wavelength (A.C. component)

to the average current generated (D.C. component), the diffusion

length nay be dete-mineo within the limitations of the absorption

coefficient used. The short circuit current is generated over the

surface area related to the spot size of the focused LED's which is

typically 0.5 mm. By mounting the sample on a translation table, it

is pos3ible to scan across the sample and determine the point-to-point

variations in the diffusion length. This method can be used to cvaluat ­

pre-processes: materials as well as devices after p-n junction fabri-

cation. Therefore, it allows a quantitative evaluation of the in-

ilucnce o! _fa l :ication techniques.

Polycrys;.a'_ lines ilicon solar cells were treasured by the Ml-.A

method. This method showed spacial variation in polycrystalline

dif:usi:.n lcn g :`ss more than are order of magnitude from point - to-point

for RTi pcl;c. yrtalline silicon, solar cells. The average value of t`,C,

dif f-Uvion	 is, however, in good a g reement with the Fr

the sa::& 4 cr 2 de ice•.	 bccausc- the techi iqut- i! barf

on r..t:_: , ti.E• effect, of carrier generation in the surfn7• "at

lz; c-r" an ,.. changes ir, refluctivit y from point tLI F,:,int art zc.....	 t:'

a sc•co-. ,_^ ores. correction.

1.	 ^^
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I.	 INTRODUCTION

An important parameter which determines the solar cell

performance is the minority carrier diffusion length (Ln ) in the

base or substrate region. The diffusion length influences the short

circuit current and, therefore, the overall efficiency (n) of the

solar cell. Several methods (1-7) have been developed to measure

the diffusion length. Some of these methods are destructive and

do not generally allow for the point-by-point determination of the

diffusion length. The spatial resolution is particularly impor-

tant in the assessment of polycrystalline base solar cells. The

reduction of the overall efficiency in these cells is a result of

the grain boundaries which produce high recombination velocities

and shortened effective diffusion lengths.

The multi-wavelength analyzer was developed as a new method

for the testing of solar cells. It is simple and easily lends it-

self to on-line testing of terrestial solar cells and/or materials.

Th- method is based on the short circuit current generated by a

solar cell at two or more wavelengths. The generation of excess

carriers is due to 2 LED's operating at different wavelengths modu-

lated 180 0 out-of-phase as shown in Figure 1. The carriers are

cenp ra te4 wit'-i. the localized area illuminated by the LED beams

and are collected by the junction. The cell is scanned by moving

the sample on a translation table at a constant rate. This scanning

Z:11	 4 p::nt-:- -point determination of the diffusion jr.

sp,tia: resolution is limited by the focused beam size on the sa.,T;le

iL t ypically 0.5mm in diameter in the present s% • rtc.. Tail

spc)t size- car, be further reduced if desired by the use of additional

r-



I
optics; however, the resulting reduction of generated currents would

require additional processing.

Due to the nature of the MWA, the evaluation of L  is possible

before processing by fabricating a simple schottky barrier and

removing it before diffusion and device fabrication. The diffusion

lengths can then be determined as a function of position and compared

to the pre-processed values. Therefore, the effect of various pro-

cessing steps on the diffusion length can be determined quantita-

tively ( 8) .

II. Ml%A System Design

The multi-wavelength analyzer is schematically shown in Figure 2.

The LFD's which operate at 2 different IR wavelengths are driven

in a pulsed mode 180° out-of-phase. The LED's are independently

adjustable with respect to intensity and positioning and are

mourite:l vertically on an optical rail perpendicular to each other

with a (40-60) beam splitter in the optical path. The beams are

oPtically focused to approximately 0.5mm. The solar cell or schottRy

device is mounted on a translation table which is driven by a motor

it the x-direction with the position determined by a transducer. The

sjl^r cell i_, operated in a short circuit mode and the output

	

iE sent to u	 ±hle}• 480 picoammeter. The voltage output of the

picoarr^.,eter is fed to a PAR 124A Lock-in amplifier which is referenced

to the LFD d-i •:e:. The lock-in signal can be read directly or

	

. • ? ^^•^^ ' c -	 :.	 •.-•.• rc: order.
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III. Theoretical

The geometry of the solar cell is shown in Figure 3. The

devices analyzed in this work are assumed to have a shallow diffused

junction and furthermore, the surface layer, 0 to -x^ is assumed

to have a negligible minority carrier lifetime. Therefore, all

carriers generated in this region are neglected leaving only the

generated term g as an effective source of excess carriers. Under

these assumptions, the steady state minority carrier distribution for

a monochromatic generation can be expressed as

Dd2 2 -n 	 +Fo ae _ `̂ x =0	 (1)
	dx	 Tb

where	 D is the minority carrier diffusion constant,

n is the excess minority carrier concentration,

T  is the minority carrier lifetime,

Fo is the photon flux-density, and

a is the absorption coefficient.

Solving for the minority carrier concentration n and sub-

stituting into the expression for the short circuit current density

Jsc = qD dn^	 we obtain after some manipulation:
dx 

O

	

FoaLn	cosh W/Ln - e-aw - al, s inh W/1-, n

Jsc q 1-a 2'n	 sink 4/Lrl

(4)

15



1

For W,	 n,

qFo al,n .
J	 =sc	

1+ aLn
-Qt X

where FO = e d (1-r) F  and r is the surface reflect:

and F  is the. incident photon. flux. Thus, for small a

the short circuit generated at X  as

I sc l =
	

qe-.1xj 
F1i (1-r1)a1Ln	 (4)

14 a1Ln

Likewise, we may find the short circuit current due to the generation

at a 2 as

qe 
^xj F 

2 
(1-r 2)0(2 LrI

I	 =	 (5)
sc 2	1+a2Ln

Defining P. as the ration IAC we obtain

IDC'

I	 - I
P - 

1	 scl	 sc 2 	(E)

I	 + I
sc 1	sc2

]I



Thus, solving Equation (6) for the diffusion length yields

1	 al (2-R) - a 2 
8(2+R)	 (7)

L
n

	

a1a2	 R-2 +	 0(2 +R)

where $is a function of the photon fluxes, transmissivity and

absorption terms at a l and a 2 and is expressed as

-(
a2 - a l 1 

xJ1-r 2	l	 J
	6=B	 a	 (8)

1-r1

where

B = Fli

F 2

It should be noted that this method as exhibited in Equation

(7) is based on the difference in absorption coefficients, (a l -a 2),

times the thickness of the diffused layer, d. In the case of a single

wavelength method, the effective exponential factor is the product of

ad. Therefore, the single wavelength measurements are much more

sensitive to junction depth variations. An equivalent argument can

also be expressed for the reflectivity errors in the single wave-

length methods versus those obtained in the MWA method.

I
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IV. Calibration and Error Analysis

There are five factors which contribute errors in the

calculation of diffusion lengths as determined by the MWA. They

are the LED spectral distribution, the calibration of the photon

flux, the variation of the reflection coefficient, uncertainties

in the absorption coefficient, and the variation in the junction

depth. The effect of each of these contributing errors and their

effect on the diffusion length measurement is discussed below.

A. LED Spectral Distribution

The accuracy of this method depends upon the determination of

the absorption coefficient for the wavelengths used and, therefore,

the wavelengths of emission must be accurately known. The LED's

were supplied with nominal peak emission wavelengths of 880 and 930

manometers. Figure 4 shows the actual spectral distribution of the

LED's used. The peak wavelengths were 907 and 955 nanometers,

respectively.

B. Calibration of the Photon Flux

It is ne=esssry to know the relative photon fluxes at the two

different wavelengths. This can be accomplished by two methods. In

the first metho A-, a thermal detector (thermovole), which is wavelen^tr

independent ir. thiz spectral region, is positioned at the ss:^plt-

location. The relative driving current_ of the two LED are a'iustE'

to null the A.C. signal from the thermopole. Un-cr this• nullin?

1K



condition, the two LED's are supplying equal powers to the test cell,

And, therefore, B = a 2A 11

In the second method, the LED drive is adjusted to produce a

known relative photon flux and therefore a known B. This can be

Accomplished by using a PIN photo diode of known quantum efficiency

at the two wavelengths. The photo diode is substituted for the test

solar cell and the A.C. signal is nulled. Under these conditions,

B=n 2/n l , where r^ is the quantum efficiency at a l and 712 is the quan-

tum efficiency at a 2 . The drift in the null was found to be only 1:103

over a period of 20 minutes. The effect of this 0.1% drift or any

other inaccuracy in the determination of Bwith respect to the measure-

ment of L  is shown in Figure 5.

C. Determination of Reflection Coefficients.

The sample was mounted on the translation table with a 30°

tilt introduced. The reflection coefficient was established by

using the reflected signal from the solar cell surface as the input

to a PIN photodiode and measuring the ratio of reflected current

of the solar cell to the incident current.

It should be noted that variations in the ratio of reflective

coefficients at the two LED wavelengths produce the same error

effect as variations in B. If the cell is covered by an anti-

reflective coatin g , it is necessary to take this into account when

spacial variations in the relative reflectivities are encountered.

D. Absorntinn Copf±icrient.

As shown in Equation (C), the choice of aL^sorption Coefficient (fl)

is quite important to th•., determination of I, rl . V , c nest a:,rorption

19



coefficients as a function of wavelength have been established

experimentally by Runyan (9) and Dash (10) for stress relieved and

non-stress relieved Si. In the case of small grain polycrystalline

silicon, the non-stress relieved awas used. The ais established by

a -1 = (-1.06964 + 3.34982 a-1 -3.61649X -2 + 1.34831),-3) um..l (^)

In general, there is no exact determination of a, however, the error

introduced into L  due to errors in a are shown in Figure 6.

ORI{;I1\' '. PAC'!, IS
OF PC. , :-iUALITY

E. Junction Depth.

The junction depth is determined from the diffusivity of the ma-

terial and the time used to grow the epi-layer. Generally, the

thickness is kept to within .1 - .211 to minimize losses at short

wavelengths. The errors introduced in the determination of L  from

improper junction depth data are shown in Figure 7.

V. Experimental Results

The N..::► was used to study a series of RTR (Motorola Laser

Recrystalized Ribbon) polycrystalline solar cells. These cells

were supplied by the Jet Propulsion Laboratory, Pasadena. J.P.L.

ha ,3 previousl y determined the cell efficiencies and the average L 

by the Surface Photovoltage method (SPV). Figure• 8 to 10 show 1 ,	 ,,zc

1

I sc and I ac for sample S872 B3 as a function of position on the

su+-farP. F.cuations 6 and 7 are used to determine the diffusion:

length y as a function of position along the sam ple. These scads

s1.o,. tti4t tt,erc• is a substantial variation in 1, n acrosE- t_hc• p:,!-,,-

20



crystalline samples. In some cases, L  varies by a factor of 10 	 I

or more from point-to-point. However., the average effective diffusion 	 !^

length determiend for the three samples compares favorably with the

SPV measurements as shown in Table 1.

Figure 11 shows the structural characteristics of sample

S872B3 which were revealed by etching in a 25 HF: 18 HNO 3 : S CH3000!i:

10 H 2O by volume with a 1 g Cu(NO 3 ) 2 in 58 cc of the etching

solution. The sample exhibits a highly unordered crystalline structure
containing twins, dislocations and high angle grain boundaries.

The picture is a composite of photo micrographs. There are some

unavoidable changes in contrast from section to section. These are

not meaningful structurally but rather represent limitations in the

photographic equipment. The MWA measured diffusion lengths are

noted on the photograph. The dots indicate the center of the

measurement area in each case. The number is the effective

diffusion length measured in micro meters. It can be seen that

there is considerable correlation between gross features in the

photomicrograph and low diffusion lengths. But, the low L  near

or inside regions of poor crystallinity cannot be directly attributed

to grain boundary effects, precipitates or selective segregation

of unwanted impurities without further investigation. It is interesting

to note, hove •:er, that, in general, the diffusion length along

the direction of crystalization varies only by a factor of 2

while perpendicular to this 'direction, factors of 30 or sere

are encountered.

i



VI. Conclusions

It should be noted that in the MWA method the parameter that is

determined is Ln-a, that is the absorption coefficient-diffusion

length product. The usefullness of this method relies heavily

upon the independent determination of the absorption coefficient.

H wever, any material whose absorption coefficients are known can

be measured by this method if a photo-barrier device can be produced.

. The MWA is a useful non-destructive technique for the determina-

tion of the minority carrier diffusion length as a function of position.

It can be easily automated to do multiple linear scans across the

entire solar surface
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LIST OF CAPTIONS

Fig. 1 LED modulated outputs and solar cell short circuit
AC and DC current.

Fig. 2
I

Schematic of Multi wavelength Analyzer. 	 F`
Fig. 3 Geometry used for solar cell.

Fig. 4 Spectral distribution of LED showing peak at .907 vm
and	 .955 pm.

Fig. 5 Theoretical errors in diffusion length due to errors in B.

Fig. 6 Theoretical errors in diffusion length using stressed
to unstressed absorption coefficient.

Fig. 7 Theoretical errors in diffusion length due to 50.
error in junction depth for x 	 - .1 and	 .15 um.

Fig. 8 MWA scan a. position B across sample S872B3.

Fig. 9 MWA scan at position E across sample S872B3.

Fig. 10 MWA scan at position, N across sample S872B3.

Fig. 11 Defects revealed in etched silicon wafer with diffusion
lengths indicated.

Table 1	 Comparison between averaged MWA and SPV values of
diffusion length for various samples.
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•	 Defects revealed in etched silicon
Figure 11.	 Def	 ^
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TABLE 1

Comparison between averaged MWA and SPV values of diffusion length

for various samples.

Sample Cell Cell Scan N Position ME A MIA SPV
ID Material Efficiency Ln(v) Ln (,;) Ln(,P)

U69-1 CVD, Not 4.0% 7A a 2.18 3.02 2.6
Annealed b 1.42 

c 1.26
B a 1.4 2

b 3.42
c 2.36

C a 5.0
b 4.73
c 6.13

587233 Single 4.5% 8A a 10.02 4.12 2.8
Crystal Not b 9.07
Annealed c 4.84

8B a 8.27
b 7.6
c 3.35

8C a 6.86
b 8.95
c 2.9

8D a 6.96
b 4.17
c 12.7

BE a 3.0
b 2.13
c 6.03

8F a 0.05
b 1.06
c 1..22

8G a 0.9E
b 2.3
c 1.54

H a 1.80
b 0.35
c 2.56

I a 0.98
b 2.21
c 3.35

8,j a 1 . 71
r 3. C,-^
C

-

3. E1b":6L'3 CVL),
AfinE^1EC

0.9i 9A a 3.9
1	 •	 ^*

4 .0

c 3.72
9 ti. a

b 1.64
C 3.72 II

9C a 4.16
b 4.27
C 5.33
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