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PREFACE

This book presents a brief description of the Helios mission, its

experiments, and a summary of the results of each investigation up through the

summer of 1979. A bibliography of the major papers published by each

investigation team is included. This bibliography is most important, since

the investigator results have been published in a diverse collection of

Journals and bcoks.

At this point, the Helios solar probe missions are clearly a large

success. The spacecraft and all the experiments have performed well for years

beyond their design lifetimes. Both spacecraft were launched during a very

quiet solar minimum. For the first 18 months, the investigators received data

which allowed an excellent characteri_ation of space in tile inner solar system

during quiet times. We are now well into the solar maximum phase, and the

conditions in our inner solar system have markedly changed. Active phemonena

are often obse_¢ed at the rate of several per day, versus one a month in 1974.

One cannot stress enough the importance of the fact that these missions

allowed the observation of solar and galactic phenomena with the same

experiments from solar minimum through solar maximum at a large variety of

solar azimuths and elevations with respect to the Earth. Of particular
interest are the data at and behind the west limb ot the Eun.

It's obvious that the managers, engineers, scientists and contractors did

an excellent job on the spacecraft and experimeuts. It is also very obvious

to the experimenters that the mission controllers and data processing

personnel at the German Space Operation Center, the Jet Propulsion Laboratory

and the Goddard Space Flight Center have performed in an outstanding fashi_

for more than 5 years. We gratefully acknowledge their contributions and
share in their success.

James H. Trainor

Project Scientist, NASA
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A Short Review of the

Overall Scientific Tasks and of

Some General Principles of

HELLOS

Herbert Porsche

Project Scientist, DFVLR

The two }lellos probes (Fig. I), launched December I0, 1974, and January

15, 1976, by Titan lllE/Centaur DIT/Te-364/4 rockets, were built as a Joint

venture of the United States of America and the Federal Republi_ of Germany.

The overall scientific task was the investigation of the innermost regions of

interplanetary space. Thus, the two probes were the first, and hitherto only,

space vehicles approaching the Sun as close as 0.31 AU and 0.29 AU,

respectively.

The payload of each of the two probes consists of the experiments

decribed in the following chapters by the investigators themselves.

The payload can be divided into three groups of experiments representing

three main research fields:

(I) plasma experiments (Experiments i through 5) for the observation and

Investlga_ion of the particles and fields of the solar-lnterplanetary plasma

(protons, alpha particles, electrons, magnetic and electric fields and their

fluctuations;

(2) cosmic ray experiments (Experiments 6 through 8) for the study of

characteristics of solar and galactic cosmic rays, including an X-ray monitor

and (on Helios-2 only) a gamma-ray burst experiment; and

(3) mlcrometeorite experiments (Experiments 9 and i0), to remotely

investigate the interplanetary dust by an optical system, as well as in situ

by a particle detector and analyzer.

To supplement the on-board experiments, Helios is involved in some

passive investigations, as well: ._.

(i) a celestial mechanics experiment for the study of relativistic

effects (Experiment ii), and
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(2) coronal sounding (Experiment 12) by investigating the Faraday

rotation of the S-band signals of the two probes wherever one of them is in an

orhltal constellation near superior conjunction, and by analyzing time delay

effects, including Doppler and DRVID.

The two probes have highly eccentric heliocentric orbits (Fig. 2). The

orbital period is 190d for HE-I and 186d for HE-2. Due to the distance

variation of a factor of 3, the orbital velocity varies also by a factor of

3. This results in a very high a :gular velocity of the probes in the

perihelion regions. However, _,ereas the relative angular velocity between

the Sun's rotation and the E_rth's revolution is about 2.4 × 10-6 sec -I, it is

only half as large between the _un and Helios in its perihelion regions. In

other words, in the perihelion regions Helios is not only closer to the Sun by

a factor of 3 compared to the Earth, but is also relatively slower, as seen

from the Sun by a factor of 2. This improves the ability to discriminate

between temporal and spatial solar structures. However, this is only valid

for the azimuthal motion of the two spacecraft; the axis of the Sun is

inclined by about 7.5 degrees to the normal of the ecliptic. This causes a

latitudinal motion of the spacecraft with respect to the Sun. The respective

velocity of the Earth is nearly constant. By chance, the angle between solar-

ecllptical mode and the line of apsldes of HE-I is only about 4o; therefore,

the latitudinal velocity of HE-I is very high in the perihelion phase (Fig.

2). The maximum value is 0.9 ° per day. Within 17 days during the perihelion

phase, the latitudinal change is 12°; therefore, Helios is a sensitive tool

for latltude-dependent solar phenomena, in spite of its ecliptic orbit.

Both Helios spacecraft were launched in the outgoing phases of Solar

Cycle 20. The ruling state during the primary mission was that of sunspot

minimum condition. From the end of 1976 on, the sun_pot number has

continuously increased. This increase is considerably steeper than the

preceding Cycle 20; therefore, an extremely high molar maximum has been

predicted for late 1979 through early 1981.

Since both Helios spaecraft are alive and in good condition, they offer

the unique opportunity of investigating the state and the dynamics of solar

interplanetary space over almost one full solar cycle. The cycle has turned

out to be one of the most interesting observed since the end of the 18 th

century.
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Fig. 2. Projections on the ecliptic plane for the first orbits of

Hellos-I and -2. The orbits of Earth, Venus and Mercury are shown,
as well as the solar latitude of the Spacecraft as a function of
subsolar azimuth.

Because of the very good ground station coverage, combined with the use

of on-board memory (at very low bit rates), an almost continuous data stream

can be achieved. This data set should be completed with similar comprehensive

data of interplanetary phenomena during solar maximum in order to contrlbute

to a better understanding of solar-terrestrial relationships.

Many cooperative programs are planned involving Hellos for as long as at

least one spacecraft performs. The Hellos experimenters are cooperating with

the SCOSTEP (Scientific Committee on Solar Terrestrial Physics), especially

during the so-called STIP intervals (Study of Traveling Interplanetary

Phenomena). For the Solar Maximum Year, cooperative programs have already "_

been negotiated with SMM (Solar Maximum Mission) providing the spacecraft

remain in good shape and data recovery continues.

i
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In addition to the research work done by the Helios Investigators

themselves, the data obtained by Helios are used wor14-wide as reference da_a

in interplanetary research of missloLls such as ISEE and SMM.

Bibl_o_raphy:

H. Porsche, '_le Hellos-Sonde als E×perimententr_ger ," Raumfahrtforschung

223, 1975.

H. Porsche, "Overview of the Helios-i and Helios-2 Missions and their

Participation in STIP Intervals Iard II," in M.A. Shea et al. (eds)

Study of Travelin_ Interplanetary Phenomena, 421, 1977.

H. Porsche and J. Kehr, "Hellos-Voyager Cooperation for the Investlgatlon of

Interplanetary Space," Paper IAF-78-31, 29th Congress, International
Federation, Dubrovnlk, 1978.
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THE PLASMA EXPERIMENT ON HELLOS (E I)

P.I.: Dr. Helmut Rosenbauer, Max-Planck-lnstktut fur _ropomle (MPAE),

Katlenburg-Lindau, West Germany

Co-l's: Dr. Ralner Schwenn, MPAE

Dr. Bernhard l_yLr, Max-Planck-lnst[tut fur Physik und _trophysik,

Instltut fur Extraterrestri_che Physlk (MPE), Garching, W. Germany

Dr. Hans Miggenrieder, now at Landesamt fur Umweltschutz, Munich,

West Germany

Dr. John Wolfe, Ames Research _nter, Moffett Field, California,
U.S.A.

A. Short Description of the Instruments and their Primary Purpose

The Plasma Experiment aboard the llelios solar probes consists of four

independent instruments designed to investigate the interplanetary plasma, the

so-called solar wind; primarily, the velocity distribution functions of the

different kinds of particles are measured. All important hydrodynamic

• parameters of the solar wind plasma can then be derived. These measurements

at varying distances from the Sun are suppying new data which will support and

improve our understanding of solar wind expansion.

Three instruments analyze the positive components of the solar wind

(protons and heavier ions with energy-per-charge values from 0.155 to 15.32

kV). Two of them allow for an angular resolution in both directions of :

incidence. One £nstrument _asures electrons in the energy range from 0.5 to

1660 eV with a one-dlmenslonal angular resolution.

Since the launches in December 1974 and January 1976, respectively, all

the instruments, which are partially novel developments, perform very well on

both probes. There £s no degradation of any detector yet; a partial

malfunction in the electron instrument on Hellos-2, starting a_ter 18 months

of operation, is of minor importance. We see an excellent chance for the

instruments to work well through the upcoming solar activity maximum. ,_
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B. HiKhlIKhts of the Results

(i) Structures ILl the Solar Wind

. During the declining part of the past solar cycle, the solar wind

stream structure was governed by two big high-speed stream systems which

remained remarkably stable for many solar rotations in 1974 and 1975. They

emerged from equatorial extensions of both polar coronal holes which were

detected during the Skylab mission in 1973/74. During the first approach of

Hellos-i to 0.3 AU in early 1975, we found from direct comparison with data

simultaneously measured from the IMP-7 and -8 Earth satellites that the

leading edges of fast streams appear much steeper at 0.3 AU than at i AU.

This is in contrast to current theoretical mgdels. In addition, we could

prove that there are also very sharp latitudinal stream boundaries.

Obviously, fast streams are separated from slow plasma on all sides by thin

boundary layers at 0.3 AU. This suggests that there exist different

acceleration processes for slow and fast stream plasma with no intermediate

stages close to the Sun.

Nearly continuous data from the Helios-i and -2 double mission,

combined with similar data from Earth satellites and other space probes

(Pioneers, Voyager 1 and 2), give us a unique opportunity for studying stream

evolutions in interplanetary space. Thus, we could quantitatively show how

stream fronts are deformed and deflected. We found significant deviations

from purely radial flow. Based on a quantitative analysis, we could even

predict in a few cases the arrival of stream fronts at the Earth and their

associated geomagnetic disturbances with an accuracy of a few hours. _,

A special collaboration between Helios and Voyager experimenters on

some events in November 1977 revealed some new aspects which otherwise might

have been overlooked. A small corotattng fast stream originating in a coronal

hole was observed as it moved from 0.7 to 1.6 AU. The stream interface and

the extraordinary shockwave in front of it corotated from 0.7 to 1.6 AU,

persisting even though the stream itself had dissipated at 1.6 AU.

(2) Radial Gradients of the Plasma Parameters

Eight radial llne-up constellations between Hellos-i and -2 occurred

in the years 1976 and 1977. From the short periods of "plasma line-ups," when

the plasma seen from the inner probe also encounters the outer probe, radial

t
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gradients of the plasma parameters could be obtained directly. We found

significant differences in the average gradients between the slow and the fast

solar wind: In the slow plas_ (up to 400 kms-[), the flow speed Vp Increase_

by (52±11) kms -I per AU and the proton temperature Tp decreases as r-1"2'

i.e. nearly adiabatically• In the fast plasma Vp remains nearly consl _t, an_

T decreases as r-0"6910"08. Further differences are found in the general
P

shape of the dfstributlon functions and their changes with radial distances,

as well as in the properties of the L-particle component.

This analysis is now generally being confirmed by 8tat[stlcal

methods using all the available data. The whole set of observations supports

the hypothesis mentioned above that the solar wind might be a two-state

phenomenon, with possibly two different acceleration mechanisms.

(3) Three-dlmenslonal Velocity Distribution Measurements of Solar
Wind Protons

The main instrument for positive ions, with its resolution of energy

and both angles of incidence, allows the analysis of the full proton

distribution function in an unprecedented way. We found that in hlgh-speed

streams there is s pronounced temperature anisotropy characterized by a higher

temperature perpendicular to the local magnetic field rather than parallel to

it. This effect, which has been interpreted as a signature of waves affecting

the protons, is even more distinct close to the Sun.

Often a bulge, or even a second hump, in the distribution can be

detected. Its velocity relative to the main peak is always directed along the

ma_netlc field and seems to be closely related to the local Alfven speed. The

oc:urrence of this bulge seems to be well-correlated with the excitation of

ion-acoust1= noise which is d tected by the Helios wave experiments. A plasma

physical stability analysis was carried out showing that the observed type of

distribution functions is, indeed, marginally unstable versus the ion acoustic

wave mode.

(4) Solar Wind a-partlcles

The Helios instruments combine high resolution and sensitivity with

low backgrnund noise. This makes it possible for the first time to measure

the velocity distributions in three dimensions even for a-particles, although

their content in the solar wind is only 4%. There was a tendency found for
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the _-particles to be faster than the protons in blgh-speed plasma. The speed

difference is always aligned with the magnetic Eield and has the value of the

local Alfven speed which can reach values up to 300 km/s close to the Sun. It

seems that the _-particles move through the proton "fluid" with the phase

speed of the Alfven waves, similar to a surfer in front of ocean waves.

(5) Interplaneta_f Shock Waves and Discontinuities

Along with solar activity, the number of solar flares producing

interplanetary shocks increased significantly after the broad activity minimum

in the summer of 1976. Some of them are of particular interest for the study

of shock propagations and interactions, as well as the acceleration of

particles along shocks, since they were observed from several spacecraft

spread between 0.3 and 3 AU. We are participating in several international

study groups concentrating on some spectacular events in late 1977 and early

1978.

The new solar cycle is apparently starting off quite lively,

providing us a series of flare and shock events for which a unique data

coverage from several spacecraft is avallable. This might bring us towards a

better understanding of flare phenomena and their interactions with the

interplanetary medium.

C. Outlook on Possible Results during Eolar Maximum

Since the delayed end of the old solar cycle in late 1916, the solar wind

stream structure did change significantly. No longer are stable, broad, high-

speed streams observed corotating in a stationary manner for more than one or

two solar rotations, as they were in 1975/76. Now the structure is apparently

broken up and scattered in many minor irregular streams. It has always been

an unsolved problem what the influence of solar acti¢ity on solar wind

expansion might be. Up to now no corre]atton of average solar wind parameters

with solar acti¢ity could be proven, although there is the well-known

modulation of cosmic ray intensities during the solar cycle which somehow hace

to be coupled to the solar wlnd. It may well be that it is not the average

solar wind, but the difference In stream structure and interplanetary

interaction processes that connects solar activity with cosmic ray

modulation. The Helios mission could provide us a set of data covering the

declining part of a solar cycle, the minimum, the onset of the new solar

cycle, and possibly even its maximum. This data set is unique not only
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because of the Helios orbits: One should note there are nearly _Io gaps in ti_e

data (in term_ of one-hour averages) because of e×cellent ground station

support which can be malnta[ned mainly through the DSN 26 m stations and the

Wei[heim 30 m station. In addition, due to the thorough use of the on-board

memories, any station gap ca,1 be covered at lower bit rates. For the first

time, continuous data during solar mintmum and maximum can be obtained ,L9ilg

tdentical instruments. Thus, the persistent problem of [ntercal[bratIilg

different instruments of different e×perlmenters can be avoided in this case.

The upcoming solar maximum will be t topic of a big [I1ternational

cooperat[¢e effort which unites scientists of a broad ¢ar[ety of disciplines

during the "Solar Maximum Year" (SMY) from August 1979 to February 198]. One

out of three subprograms of SMY is the Study of Traveling Interplanetary

Phenomella (STIP), which was established in 1973. Several special periods for

STIP were selected based upon unique opportunities ge,lerated by fortunate

interplanetary constellations of the Helios probes and other spacecraft. The

results look premising. This will [ntensify the actictt[e_ of STiP during

SMY, and the sc[entiftc community is looking forward to both lleligs probeq

participating as long as possible.
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CALCULATION OF TLtE DISTURBANCES

OF THE IA)W ENERGY ELECTRON MEASUREMENTS (EI-Z)

P.!.: C.-H Voigt

Co-l's: U. lsensee and M. Maassberg

Angewandte Geophys[k, Angewandte Physik, Technische Ilochschule

Darmstadt, Darmstadt, West Germany.

Introduction

The measured spectra (El) of the low-energy solar wind electrons are

disturbed _y potentials in the vicinity of the Helios spacecraft and partially

superposed by photoelectrons. The measured energies of the solar wind

electrons are shifted by the spacecraft potential which can be estimated from

the spectra only in some special cases; therefore, theoretical models have

been developed to describe the interaction between the plasma and tile Helios

spacecraft.

The measurements of the solar wind electrons with low energies are

disturbed by the spacecraft. There are e'ectrlc fields in the vicinity of the

spacecraft and a potential difference between the instrument (Us) and the

distant undisturbed solar wind plasma (Up _ 0). Consequently, all solar wind

electr6ns counted by the electron instrument have been accelerated by these

fields aL_d are observed with a shifted energy Es - Ep + e(Us).

Figure I gives an example of these observed spectra. In this case, the

spacecraft potential Us is positive, so that no solar wind electrons have been

counted _rlth energies below e(Us).

Another problem arises from the emission of photoelectrons from the

surface of the spacecraft. Some of these photoelecrons are directed Into the

' instrument and result in great count rates in the corresponding low-energy

channels. In Figure I, photoelectrons are observed when the instrument is on

the illuminated part of the l_Iios probe. "_

The most important conditions for the interpretation of the measured

spectra a_¢:

l.....' .,,.....__
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F__. i. Orthogonal profiles of the electron distribution F(v).

The measured values of F(v) are plotted together with a fitted

Maxwellian, which is zero for energies below the spacecraft
potential.

(i) the knowledge of the spacecraft potential, Us, and

(2) the capability to separate the energy region where photoelectrons

are measured from the domain of the solar wind electrons.

In some special cases, these items may be deduced from the data. In

general, however, they are not known. Therefore, theoret al models had to be

developed to describe the interactions between the plasma and the Helios

spacecraft.

Calculations of these effects must be based on the nonlinear Vlasov-

Polsson-system of partial differential equations for colllslonless plasmas.

Steady-state solutions require the conditlo- that the electric currents on the

surface elements produced by the various plasma components are compensated.

This compensation results in the floating potential for each surface element.

Although it is not possible to obtain a self-conslstent solution for the

complex geometry and surface properties of the Helios spacecraft, the dominant

features can be estimated by means of simplified models.

Such a model can be treated with the numerical plasma simulation (Fig. 2) _

in order to obtain the potential in the vicinity of the probe (Fig. 3),
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Fi=. 2. A "snapshot" from a computer simulation run. Each dot
gives the position of a simulation particle representing

approximately one million photoelectrons emitted from the fro-t

(left side) of the probe. The photoelectron density exceeds the
solar wlnd density in the near surroundings of the spacecraft.

F_, 3. Potential In the vicinity of the probe (perspectivic .C
representation). The dense photoelectron cloud (c.f. Flg. 2) and

the wake behind the spacecraft produce potential barriers around

the probe, where the potential is lower than the spacecraft

potential. Thls effect is important for the disturbance of the
measurements.

_)t_I(;]NAL I'AGIC [$

O_ POOR QUALIT_
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This illustration demonstrates potential barriers around the probe which are

produced mainly by the photoelectron cloud. Near the perlhelLon of the Helios

orbit, the effects of the potential barrier and the photoelectron cloud become

dominant:

(i) The energy range of the measured photoelectrons is limited by the

potential barrier instead of the spacecraft potential Us (Fig. i).

(2) P' _toelectrons are observed even at the shadow side of the

spacecraft.

(3) The photoelectron current leaving the probe is determined by the

barrier, even Lf the spacecraft potential is negative.

The electric fields in the vicinity of the spacecraft lead to

disturbances of the electron distribution to be measured. By means of the

potential resulting from the model calculations, the disturLances of a given

distribution can be compdted and compared with the measured spectra. The

example in Fig. / shows that Lt is possible to reproduce the essential effects

using theoretical models. Together with the interpretation of the data these

models lead to the understanding cf the modifications of the plasma by the

Helios spacecraft.

Iog(F/Fmox)

3

• = _ x R --0.3/,AU Iog(FIFmox) _:

2 = V_-"390 kin/see t = x i%x R = 0.34 AU ,

0 _==_ _ _Jr-_
"_. -1 _ _-,_

_2 x \

, _ - toglE/E.) .... T.... , _-- _ IoglEIEo)
0_0 10 E.--1 eV OO 1.0 Et=l eV

theoretical and me(]sured electron
spectrum _P solor d_rectmn theoretical and measured electron

spectrum m ontisolor d_rection

_. Comparison of measured (*) and calculated (sol_d lines)

spectra.

1980023809-018



16

BiblioEraphy

Schroder, H., "Spherically Symmetric Model of the Photoelectron Sheath

for Moderately Large Debye Lengths," in Photon and Particle Interaction

with Surfaces tn Space, D. Reidel Publishing Co., Dordrecht-Holland, 51-
58 1973.

Konemann, B., G.-H. Voigt, H. Schroder and U. Isensee, "Solar Wind

Interaction with the Helios Space Probe and Related Perturbations of Low-

energy Particle Spectra," in NMFT-FB W, 74-08, 1974.

K'onemann, B., and H. Schroder, "The Influence of Capacitor Effects on

the Surface Poter_ ial of Satellites with Partially Insulating Surfaces in

the Solar Wind," Planet. Space Sci. 2__ 321, 1974.

Schroder, H., Ein spharisch symmetrisches Modell der Photoelektronen-

schicht einer Raumsonde, Thesis, Lehrstuhl B fur Theoretische Physik, TU

Braunschweig, 1974.

Isensee, U., "Anwendung numerischer Plasm_simuatton bel der Berechnung

von Plasmastorungen dutch ein Raumfahrzeug im solaren Wind," BMFT-FB W,

75-20, 1975.

Isensee, U., "Plasma Disturbances caused by the Helios Spacecraft in the

Solar Wind," J. Geophys. _ 581, 1977.

Isensee, U., W. Lehr and H. Maassberg, "Wechselwirkungen zwischen

Sattel[ten und Plasma," Kleinheubacher Berichte _ 305, 1979.

q

1980023809-019



17

SCIENTIFIC RESULTS OBTAINED BY THE

HELIOS TECHNICAL UNIVERSITY OF BRAUNSCHWEIG FLUX-GATE (E 2)

AND SEARCH-COIL (E 4) MAGNETOMETER EXPERIMENTS

P.I.: Dr. F.B. Neubauer

Co-l's: Dr. G. Dehmel
Dr. G. Mu_mann

Dr. A. Meier

Dr. E. Lammers

Institute for Geophysics and Meteorology, Technical University at

. Braunschweig, West Germany

A. Brief Description of TU Braunschwei_ FluxFKate Magnetometer Experiments

(E2) on board Helios-I and -2_ and their Scientlfic Objectives

The flux-gate magnetometer experiments use trlaxial, orthogonal flux-gate

sensors of the Forster type mounted on a boom of about 2 m from the

spacecraft. The bandwidth is 4 Hz. Two measuring ranges are used with

automatic range switching. The sensitivity range extends from -100nT to

+lO0nT, with a digitization uncertainty of lq3.2nT for each individual

component. The less sensitive ranges extend from -400nT to -100nT and +100nT

to +400nT, with a digitization uncertainty of _0.8nT. The sampling rates

extend from 8 vectors per second to I vector per minute. For sampling rates

not greater than the spin frequency of i Hz, The transmitted values have been

averaged by an averaging computer which is part of the experiment. The TU-

Braunchwelg flux-gate magnetometers on board Helios-I and -2 are still working

flawlessly at the present time.

A _pecial feature of the TU-Braunschweig flux-gate magnetometer

experiments is the memory mode (also referred to as shock-mode), which allows

the rapid read-ln of data into a spacecraft memory with sampling rates of 4 or

8 vectors per second. The time intervals are selected by an event detector

which is part of this experiment (an alternate event detector is part of

Experiment 5b), which has been designed to detect rapid changes in magnetic

field magnitude and has been optimized for the detection of interplanetary -,_

shocks (by using real interplanetary data in the design phase). The Helios

memory mode has produced very interesting results.
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The scientific objectives of these instruments can be listed as follows:

(I) study of macroscopic interplanetary magnetic field structure between

0.3 and 1.0 AU also in connection with solar features;

(2) investigation of M}ID-waves in the solar wind, particularly of the

role of Alfv_n waves as the Sun is approached;

(3) study of discontinuities in the solar wind, their relation to

macrostructure, generation and decay; more _pectf[cally, fast and slow shocks,

tangential and rotational discontinuities;

(4) study of the fine structure of shocks and other discontinuities at

kinetic time and length scales in conJunct[,_n with the hlgher-frequency

search-coil magnetometer and electronic field measurements; and

(5) provision of comparative data, particularly to the solar wind,

particle and wave experiments.

B. Brief Description of TU-Braunschweig Search-coil Magnetometer Experiments

on board Helios-i and -2 and their Scientific Ob|ectives

Both experiments use a system of triaxial, orthogonal search-coil sensors

of special design aimed at very low background noise levels. The basic output

of each sensor is proportional to the time derivative of the magnetic field

and they are, therefore, particularly suited for high-frequency

observations. The bandwidth of the instrument extends from about 4 Hz to 2.2

kHz to also include R-mode, or whistler mode, signals close to the Sun (0.3

AU). For the reduction of the high basic data rate, the data are generally

first processed in a spectrum analyzer. The outputs from the Z-axis (p_rallel

to the spin-axis) and one of the spin plane components X or Y pass thr, Igh

eight logarlthmlcally-spaced analog filters (3 per decade). In a subsequent

digltal mean-value computer, mean square signals, are computed m_d peak values

are detected for time intervals ranging from 1.125 see to 20 minutes,

depending on telemetry bit rate. In addition, waveform data can be stored in

the "shock-memory" at rates of 75, 150 and 300 vectors per second--a

particularly scientifically useful capability.

The scientific objectives of the instrument are investigation of: "_

(i) the role of whistler-mode waves in the solar wind in relation to

stream strucure. Also, investigation of ion cyclotron waves near 0.3 AU;
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(2) the role of above electromagnetic wave modes In shaping sol;_r wind

particle distribution functions, which is a fundamental problem of solar wind

plasma physics;

(3) use as a diagnostic tool for particle distribution functions; and

' (4) instabilities in thin structures such aq shocks and other

discontlnuities.

C. Highlights of Scientific Results Obtained at the Tech, ical Unicersity

of Braunschweig usin_ the Helios-i and -2 Flux-gate and Search-coil

Magnetometer Experiments (E2 and_ E4)

(i) First investigation of radial csriatlon of the interplanetary

magnetic field between 0.3 and 1.0 AU (E2; 4).

(2) Macroscopic geometry and fine structure of magnetic sector

boundaries using triangulation analysis and local normal determ!nations.

Analysis of associated wave fields (E2, E4; 7,10).

(3) High-frequency electromagnetic waves generated by instabilities in

the transition layers of tangential and rotational discontinuities. It has,

for example, been shown that most of these discontinuities are associated with

peaks in whistler mode wave activity, probably driven by the curr_nts in t_e

discontinuity. Since for a number of cases high time resolution waveform data

have been available using the shock-mode, some wave events could be analyzed

in detail; i.e., the polarization could be determined leading to the

identification as whistler mode waves, the waves could be transfomed into the

plasma rest frame, etc. An example of a wa_e train observed in a tangential

discontinuity is shown in Figure I (E2, E4; 3,8).

(4) Whlstler-mode wave spectra as a function of distance from the Sun

(0.3 to 1.0 AU), and in relation to stream structure (E2, E4; 5).

(5) Occurrence properties in rel_tlon to streams and energy fluxes of

Alf_en waves in the solar wind between 0.3 and 1.0 AU. Alfve*n waves,

particularly in the inner solar system, are of potential interest becluse they

possibly drive the solar wind. Interesting results on the relative importance

of Alf¢_ wa_e energy flux relative to the bulk solar wind energy flux are
"G

shown in Figure 2 for the primary missions of Neltos-i and -2 (El, E2, E4; 9).
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' (6) Studies of the fine structure of shocks and associated whistler-mode

wave fields. Here the solar wind is used as a plasma laboratory to study the ',_

klnetic structure of colllslonless shocks. The possibility of studying shocks

inside 0.5 AU adds two advantages (compared to studies near 1 AU): The wave
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spectral density levels are much higher and shock propagation conditions which

are uncommn are sometimes found near I AU (El, E2, E4; 3,5,11).

(7) Multipoint studies of shock propagation in the solar wind between

0.3 and I AU (up to 1.6 AU in a joint Helios-Voyager workshop).

(8) Comparison of magnetic field and plasma observatl,ms between 0.3 and

i AU, and Faraday rotattou observations at several solar radii with model

predictions of three-dimensional MHD models of the solar wind (El, E2, Faraday

rot. ; 6).

(9) Study of MHD properties of tangential and rotational discontinuities

in the solar wind (E2, E4; 8).

Only those research results culminating in published or submitted papers

have been included. A paper on the Hellos-Voyager workshop (Item 7),

containing major contributions by Helios experiments El, E2, E3, E5 nd E8 will

HELLOS- I HELLOS- 2

<%,wov
I<ffKo>4

_ HIGH SPEED STREAMS "_I ....... f
1 I I I I I I I I I ! I I l

.3 .4 ,5 .6 .7 8 9 0 3 .4 5 6 7 6 e 10

--- [Au] - [Au]
Fi_. 2. Alfven wave energy flux relative to solar wind bulk energy

flux as a function of distance from the sun. Note the appreciable

Alfven _ave energy flux at perihelion of Helios-2 in April 1976.

be submitted for publication in June 1979 by L.F. Burlaga, Goddard Space

Flight Center. The numbers in brackets refer to the list of references,

including papers published or in press. In addition to these papers, a .,_

considerable number of progress reports and invited talks have been given at

national and international conferences (IAGA, COSPAR, _U, EGS).

Further research on new aspects of solar wind physics, as well as the

items listed above, is in progress.
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ROME-GSFC MAGNETIC FIELD EXPERIMENT (E 3)

P.I.: N.F. Ness, Laboratory for Extraterrestrial Physics,

NASA/Goddard Space Flight Center, Greenbelt, MD U.S.A.

CO-l's: F. Marlani, Istituto Fisica, Uni¢, Rome, Rome, Italy

B. Bavassano, Laboratorlo Plasma Spazio, Conslgllo Nazionale delle

Ricerche, Frascati, Italy

L.F. Burlaga, Laboratory for Extraterrestrial Physics,

NASA/G_d_=,J Space Flight Center, Greenbelt, MD U.S.A.

U. Villa, re, Istituto Astroflslca, Universlta L'Aquila

L'Aquila, Italy

A. Experiment Description

The Rome-GSFC magnetic field sensor is a tri-axial, fluxgate (saturable

inductor) magnetometer. Vector magnetic field measurements are made at equal

time intervals at rates ranging from 16 per second to I per second, depending

on the telemetry bit rates. At low bit rates __ 128 bps) the magnetic field

is sampled once per spacecraft revolution (i/second), and a number of samples

(N) are processed by an on-board computer that calculates the averages of each

of the three components of B and the sum of the variances of the three

components. The instrument has four ranges to obtain maximum resolution.

The sensor is mounted on the end of a boom 4 meters from the spin axls,

to avoid contamination of the measurements by magnetic fields generated in the

spacecraft. The sensor package is pro¢Ided wtth a "flipper" which rotates the

sensor by 90° so that the zero-levels on the three sensors can be

determined. The package is designed wlth an active thermal control to

compensate for the change of solar energy from 1 to 0.3 AU.

The purpose of the e_periment ts to determine (I) the structure and

temporal _ariattons of the interplanetary magnetic field between 1 and 0.3 AU,

(2) the nature of the configurations and fluctuations, by relating magnetic

field measurements to plasma observations, (3) the sources of the magnetic .;

fields, by relating them to solar observations and (4) the magnetic field

configurations and waves that Influence energetic particles.
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B. Highlights of Reqults

Tile analysis of observations is still at an early stage and much remains

to he discovered. Nevertheleqs, a n,lmber of _[g_Fl,'ant ecru!is ha.,e born

obtained; qome of these are li_ted and di_n,:ssed below.

(I) The radi_l variation of the Interplanetary_ maNnetic field between 1

AU and 0.3 AU is in Kood aKreement with Parker's _eory. (2'3) The theory
-?

predicts that the radial component of B shmlld vary as r _, while the

*'zlmuthal component shoald vary as r-I. Hel[os-I observ_tlons showed that

Br r-(I'9_O'I), and 3¢ r-(1"2_0"I) in slow flows w_ile

B_ r-(I'I_;0"I) in fast flows. Observations from other deep spaoe probes had

suggested t.at B_ falls off signlttcantly more rapidly than r-I, but recent

Pioneer i0 and ii results are more consistent wlth }{_'ios results

(2) The 'variance of fluctuations In the components of B v_a,'[es wit_ r as

B2 ~ r-3 consistent with undamped Alfven waves. (2'3) This implies

that Alfv4n waves do not appreciably contribute to heating or accelerating the

solar wind between 1 and 0.3 AU. However, much remains to be leerned about

these waves from the Helios data, a_:d further develop_'nts in the theory are

needed •

(3) Magnetic fields in recurrent streams obserced by Heltos-I were shown

to originate in coronal holes in which the intenslty.of open magnetic field

lines was I0 to 20 _auss. (4) this confirms results found earlier using data

from I AU, but the Helios results are significant F_,cause they are less

subject to uncertainties in projecting data back to the sun. _alios-I passed

directly over a coronal hole at its first perihelion.

(4) Using Hellos-I __ertc field (E3) and plasma observations of a

sream near perihelion as inner boundary conditions for an MHD model, it was

shown that maKne_Ic fields can play an important role in stream

dynamics. (4'7) Prior to Helios, the magnetic field was neglected in most

stream models. The Hellos results show that this is not Justified. A

consequence ot magnetlc fields is that the interaction regions of steep

streams get broader with increasing distance from the sun, rather than

narrower, as previously believed.
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(5) The shape of a sector boundary surface was measured for the first

time by Hellos-I end -2, and was found to be approximately a plane inclined =

I0° to the solar equatorial plane with small ripples on it. (8). This new

method of studying sector boundaries in stationary flows is possible because

Helios rapidly samples 15° in latitude at each perihelion, and because there

are times when Helios I and Helios 2 differ in latitude by = 15°. The Helios

results are consistent with the reported disappearance of sector structure in

Pioneer II data at latitudes greater than 16° at the time the Helios

observations were made.

(6) , new kind of magnetic field configuration I called a cold magnetic

enhancement ((_E)I was identlfled. (4) This is characterized by relatively

intense magnetic fields in anomalously cold, slow flow regions ahead of fast

streams. They have subsequently been identified in data obtained at I AU.

The origin of CME's is unknown.

(7) Magnetic fields in slow flows were shown to be non-uniform in

intensity and direction, and variable from one rotation to the next. (6) These

results provide clues to the nature of the source of slow flows, suggesting

possibly many small sources.

(8) Magnetic "neutral" sheets have been identified and the structure of

some (but not all) of them is consistent with the occurrence of the non-

llnear m tearing mode instabillty. (5) These observations suggest, but do not

prove the occurrence of the tearing mode. They are significant because the

tearing mode can change the topology of the magnetic fields.
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A SUMMARY OF PROGRESS IN SPACE PHYSICS

MADE WITH HELLOS PLASMA WAVE INSTRUMENT DATA (E 5a)

P.I.: D.A. Gurnett

Co.l.: R.R. Anderson

Department of Physics and Astronomy, University of Iowa
lowa City, Iowa U.S.A.

Many significant advances in the study of plasma waves in the solar wind

hsve been made with data from the University of Iowa Plasma Wave Instruments

on Helios-i and -2. The first observations of intense electron plasm_

oscillations associated with Type Ill solar radio bursts were made with data

from these instruments. These observations confirmed the basic electron

plasma oscillation mechanism proposed by Ginzburg and Zheleznyak_J in 1958 for

the generation of the Type III solar radio omissions. A study of electron

plasma oscillation events associated with Type III solar radio bursts, using

data from Helios-i and -2, IMP-6 and -8 and Voyager i and 2, found that these

events showed a pronounced increase in both intensity and frequency of

occurrence with decreasing heliocentric radial distance. Only the Helios

spacecraft, with their close approaches to the Sun, have been able to provide

in situ measurements of these events in the region of their highest

occurrence.

The Type llI solar radio burst itself has been studied extensively using

data from the Helios spacecraft. Stereoscopic radio dlrection-finding

measurements from the Hellos-i and -2, IMP-8 and Hawkeye I spacecraft we-e

used to track a Type III solar radio burst in three dimensions, independent of

modeling assumptions concerning the emission frequency as a function of radial

distance from the Sun. By combining these radio direction-finding

measurements with direct in situ measurements of the solar wind plasma density

near the Sun, it was found that the dominant emission occurs at the second

harmonic, 2 fp', of the electron plasma frequency. The results of this stuay

confirmed earlier results by other investigations which had to rely on assumed

models for the radial dependence of the emission frequency or on average

statistical properties of the solar wind.

B ....
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Further woL_ has also been done on the association of Type III solar

radio bursts and electron plasma oscillations in order to provide important

new information on nonlinear plasma processes of considerable current

interest. A study of the volume emissivity of Type III solar radio bursts

showed that although the emissivities varied over a large range, all the

emissivities decreased rapidly with increasing heliocentric radial distance.

The best fit power law for the events analyzed found the emissivity J

proportional to R-6"0i_'3. When the observed electron plasma oscillation

intensities and variation with radia_ distance (E was proportional to

R-1"4i_'5) were used in two current models for the conversion of electrostatic

plasma osc_llations to electromagnetic radiation, the observed emissivities

were shown to be in good agreement with the predicted emissivities.

The most commonly occurring plasma wave detected by Helios is a sporadic

emission between the electron and ion plasma frequencies. These waves are

thought to be ion acoustic waves which are Doppler-shlfted upwards in

frequency from below the ion plasma frequency by the motion of the solar

wind. Wavelength measurements from IHP-6 support this conclusion. Comparison

of Helios results with measurements from this Earth-orblting spacecraft show

that the ion acou3tic wave turbulence detected in interplanetary space has

characteristics essentially identical to those of bursts of electrostatic

turbulence generated by protons streaming into the solar wind from the Earth's

bow shock. In a few cases, ion acoustic wave enhancements have been observed

in direct association with abrupt increases in the anlsotropy of the solar

wind electron distribution. Comparisons with the overall solar wind

corotatlonal structure show that the most intense _on acoustic waves usually

occur in the low-veloclty regions ahead of h_gh-speed solar wind streams, Of

the detailed plasma param_:ters Investlgatea, the ion acoustic wave _ntenslties

are found to be most closely correlated with the electron-to-proton

_emperature ratio, Te/Tp, and with the electron heat flux. Investigations of

the detailed electron and proton distribution functions also show that the ion

acoustic waves usually occur in regions with highly non-Maxwellln

distributions characteristic of double-proton streams• Two main mechanisms, an ,_

electron heat flux instability and a double-lon beam instability have been

studied as possible generation mechanisms for the Ion-acoustlc-llke waves

observed in ti_ solar wind.
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Plasma wave turbulence assoclate= with interplanetary shocks has also

been studied using the Helios plasma wave data. Three types of plasma waves

are usually detected in association with a strong interplanetary shock:

(i) electron plasma oscillations, (2) electrostatic ion-acoustlc or Bune_n

mode turbulence from about I to 30 kHz and (3) whlstler-mode magnetic noise.

The primary burst of electric and magnetic field noise at the shock occurs a

few seconds after the Jump in the magnetic field, with a broad maximum in the

electric field intensities at a few kHz and a monotonically decreasing

magnetic field spectrum below about i kHz. Many of the characteristics of

strong Interplaneta;y shocks are found to be closely similar to previous

ob,ercations of plasma wave turbulence associated with the Earth's bow shock.

The Helios-i and -2 Plasma Wave Instruments continue to operate

satisfactorily and are returning valuable scientific data. As solar maximum

approaches, the number of solar radio bursts and interplanetary shock waves

detected has increased dramatically. This increase in actiqlty provides many

valuable opportunities for correlative studies with ISEE-I, -2 and -3 to

provide triangulation measurements of Type III solar radio bursts and other

plasma wave events. Current research efforts are concentrating on the study

of plasma waves associated with interplanetary shocks using a lerge number of

events to investigate the dependence of the plasma wave intensities on the

Mach number, magnetic field direction and shock normal angle. Other studi=s

of electron plasma oscillations associated with Type III solar radio bursts

and electron plasma oscillations and ion acoustic waves in the solar wind are

continuing.

Q
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ELECTRIC FIELD EXPERIMENT (E 5b)

P.I.: Paul J. Kellogg

School of Physics and Astronomy, Unlverslty of Minnesota,

Minneapolis, MN U.S.A.

Experiment 5b for Helios consists of two parts: (I) a high-freluency

resolution (therefore, low temporal resolution) sweeping receiver which

measures plasma waves in the frequency range I0 Hz to 200 klZz in 168 channels

and (2) a waveform sampler which samples the waveform on the electric antennae

and whose purpose is to measure the potential of shocks and of other transient

phenomena, as well as to attempt to measure the DC electric field in the solar

wind.

The principal result from the sweeping receiver which has been obtained

so far is what we consider to be a definitive answer to the problem of whether

Type III bursts are primarily generated at the fundamental or at the second

harmonic of the local plasma frequency. We found four Type III bursts with

Hellos-2 which were sufficiently strong enough that we could obtain good

spectra. Three of these bursts (the first three found) form the subject of a

paper published in the March 1980 Astrophysical Journal. By tracing the onset

time of the Type III bursts at each frequency and its intersection with
t

electrostatic plasma waves generated locally at the spacecraft, one _an

determine that for two of these bursts the initial radiation was at the

fundamental of the plasma frequency, while for the third, the onset was in

radiation at the second harmonic when the Type III burst was close to tF Sun

but switched over to the first harmonic as it approached the spacecraft.

Similar effects have been suspected by other workers (Alvarez and Haddock),

but the swltchover was in the opposite direction and at higher frequencies.

In any case, the evidence obtained with Helios is quite conclusive.

Most of the phenomena which we see in the solar wind are not highly

structured in frequency, so a more modest frequency resolution would have been -_,

adequate• One other phenomenon, however, which does show very sharp frequency

structure is the ion acoustic noise which Experiment 5a has found to be such a

prevalent feature of the solar wind. We have found that the frequency
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spectrum of this ion acoustic noise has a very sharp hlgh-frequency cutoff.

These cutoffs can be understood on the basis of Gurnett and Scarf's high time

resolution spectra (from Voyager) as being the highest frequency of a burst

which is shaped llke an upslde-down U on a frequency-time plot. Because of
t

our low time resolution, we do not have as good statistics on ion acoustic

noise as Experiment 5a; however, we have found about I_ events with Hellos-2

which are suitable for analysis. These have been analyzed and will be

published with other not-yet completed work on ion acoustic noise.

The wa_eform sampling portion of our experiment suffered greatly from

photoelectric effects on the antenna potential which greatly limited our

sensitivity. We had not understood exactly what would be the "ature of the

voltage induced on the antenna by the competlt_on between photc_lectrlc

emission and plasma electron pickup before the flight of Helios, and a paper

entitled "The Potential of an Antenna on a Rotating Spacecraft," discussing

our findings, has been submitted to the Journal of Geoph_slcal Research. In

this respect, we find that the interference of the solar array is less tl_an

the inescapable interference of the photoelectric effect as the spacecraft

turns, at least for frequencies below about I00 Hz.

/
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RADIO ASTRONOMY EXPERIMENT (E 5c)

P.l.: Robert Stone

Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight
Center, Greenbelt, MD U.S.A.

The Helios Radio Astronomy experiment is designed to track traveling

solar radio bursts over the frequency range 2 MHz to 30 kHz corresponding to

heliocentric radial distances of 0.i to 1.0 AU from the Sun. Since the

energetic solar electrons responsible for Type III or "fast drift" solar radio

bursts travel outward along open magnetic field lines from the source region

at the Sun and through the interplanetary medium, tracking these radio bursts

provides a unique means of studying the large-scale magnetic field topology

and electron density distrlbuti_n in three dimensions for the interplanetary

medium out to at least i AU. Helios-2, with a single spinning dipole, can

provide only the radio source azimuth angle. Previously, we reported only one

case of simultaneous observations between Helios-I and -2. With these

observations we were able to investigate the electron density distribution, as

well as the dlrectlvlty of the radio emission. However, the motion of the

source out of the ecliptic, and, thus, the magnetic field configuration out of

the ecliptic, could not be uniquely determined with the two Helios

spacecraft. Combined with the "tilted dipole" observations with 1SEE-3, the

radio source position is now being uniquely fixed through trlangulational

observations with the two spacecraft. Additionally, despite some EMI problems

with Helios, the number and intensity of Type III events has dramatically

increased as solar maximum is approached.

Thus, for the first time, we are obtaining truly unique "snapshots" of

the large-scale magnetic field topology and electron density distribution in

three dimensions. Figure 1 shows an example reported as part of invited talks

at the IAU symposium "Radio Physics of the Su_' at the fall AGU (1979). The

triangles show the trJectory projected into the ecliptic and is seen to be a

spiral. The numbers alongside the triangles are the observed source latitude.

The associated flare occurred at Sl9°, w82O. Therefore, the radio source and

field lines started at S19 °, were at S5 ° at about 1/4 AU, crossed the ecliptic at

1/2 AU and remained at northern latitudes.
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Figure 2 shows the electron

density derived for this same MEASURED ELEVATIONS WITH RESPECT TO SUN

event. Large deviations in the
E SUN W

electron density distribution from a
.^S 7.2

simple power law are often observed, _s6.3

as in this case. Approximately 50 A ss.s

Type III bursts suitable for -his
$2.8

type of analysis have been
A N5.6

simultaneously observed by Helios-2 A NT, S
ANS.3

and ISEE-3. A preliminary analysis HELIOS-B_
(0.74 AU)

of some of these events has clearly

shown large meridional variations in EARTH• ISEE-C
(I.0 AU)

the magnetic field configuration, as

well as large deviations of the

electron density gradient from a simple F_. 1

power law distribution.

Until the sucessful launch of
DENSITY OF RADIO EMISS_N REGIONS

the ISPH mission (1983-85) and the ISEE-C/HELIOS-B

subsequent two spacecraft's wide _2ooc • DECii, 19782000 UT
E \,u

separation (1985-87), the current -iooc \O

zHelios-ISEE-3 observations provide .\

the only method of remotely _ 4oc f\ ;W_T._

observing the large-scale field o 2oo n.

topology OUt of the ecliptic. _° ioo i ,,_,'=_=i_:i7" \.,. 1

-' >.

k- • ,

We are also investigating, _ 40

again through Joint Heltos-ISEE-3 zo

observations, the occurrence of Type iO ' ' ' ' .......
.I .2 .4 I.O AU

II or slow drift traveling solar DISTANCE FROM SUN OF RA[_O EMISSION REGIONS

radio bursts excited by solar eJecL_

induced shock waves.

"r
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COSMIC RAY EXPERIMENT (E 6)

P.I.: H. Kunow

Co-l.°s: G. Wibberenz
G. Green

R. Muller-Mel[in

M. Witte

H. Hempe

Instltut fur Reine umd Angewandte Kernphysik, Onrist£an-Albrechts-
Universltat, Kiel, West Germany

The cosmic ray particle instrument consists of a detector telescope

containing five semiconductor detectors of increasing thickness, a sapphire

Cerenkov detector surrounded by an anticoincidence scintillation detector, and

an on-board data handling system.

The instrument is capable of measuring protons and heavier nuclei from

1.7 to _ 400 MeV/n and MeV electrons. It is designed to provide good energy

and charge resolution from measurements of individual particles which are

selected by a priority scheme. In addition, isotopes of Hydrogen and Helium

can be separated. For higher time resolution and for the determination of the

angular distribution using eight sectors, the total number of valid particles

is accumulated in 96 counting channels which represent in most cases protons,

heavier nuclei or electrons of larger energy ranges.

The primary objectives of the instrument are the investigation of the

cosmic ray propagation in the inner solar system (solar cosmic rays and

modulation), investigation of the coronal propagation of solar flare-generated

particles, and studies of the effects of interplanetary shock fronts on the

particles. This is performe_ by measuring energy spectra, chemical and

isotopic composition and pltch angle dlstrLbution, and their spatial and

temporal variation during solar events, corotatlng events, Jovian electron

observations, energetic storm particle events and for galactic cosmic rays

during quiet times.

|
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A. General

The advantages of the Hellos-i and -2 missions for cosmic ray studies can

be characterized by the following features:

(I) The inner solar system between 0.3 and 1.0 AU can be probed

repeatedly d,ring varying conditions of solar activity. The long active

measuring period of the two spacecraft covers the declining phase of the

preceding solar cycle, solar minimum conditions, the rising phase of the new

cycle, and, hopefully, the period t_ to the next solar maximum.

(2) The closer approach to the Sum allows studies during solar flare

events related to the acceleration and release processes which are not

detectable from 1 AU and beyond, because here effects of interplanetary

scattering smear out details of processes occurring close to the Sun. In

addition, small solar events--which are interesting in many respects--can be

resolved with better statistics.

{3) The existence of two spacecraft which are, in general, at different

heliocentric radial distance, longitude and sometimes latitude allows

separation of coronal and interplanetary propagation effects, Ideal

situations exist during periods of magnetic lineup with spacecraft near the

Earth and in outer space.

(4) The c"cellent coverage of Helios-1 and -2 from the DSN and other

antennae, combined with the data storage capabilities, has provided unique

data coverage during most of the lifetime of the two space probes.

(5) The combination of "particles and fields" experiments on Helios, in

particular the relation between cosmic rays, magnetic fields and

interplanetary plasma, and the existing and contlnuslly-growlng cooperation

between the various experimenters are prerequisites for the new results which

were obtained.

(6) The angular resolution of the Kiel experiment and the range of

particle types and energies measured allows .s to study the full set of

problems related with energetic particles in the solar system. These

problems, and the results obtained so far, are briefly summarized in the ._

following sections.
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B. Solar Cosmic Rays I: Interplanetary Propagation

The full spectrum of various Interplanetary propagation models (nearly

scatter-free, coherent, _ocused transport dLffuslon) has been found in the

Hellos data. Several cases with an extremely small amount of interplanetary

scatterlng could be identified. Flgure I shows the result of cooperation with

the Caltech group for the March 3, 1975, event when Hell( J-l, at 0.4 AU, and

LMP-8, at 1.0 AU, were located on nearly the same interplanetary magnetic

field lines. The change in absolute Lntensittes, the temporal shift and

the long-lastlng an[sotropies are a

clear Indication of the coherent

mode of propagation. The observed t,. 4-13M,,PROTONS

to the solar Injection process '0_ _ , _ / _'' _ ]

f
During another event, a finite, _ / -.,

but large, mean free path of _ = 0.7

AU Is found for both " 0.5 MaY

electrons and " 5 HeY protons, o

Figure 2 shows a fit of Earl's model -[I0'
).

of focused transport to the March _ IIOAU) HELIOS!
ua CALTECH l0 & AU )

28, 1976 event (Helios 2 at 0.5 _ X,EC
10-s tf

AU). The solar 1.nJectlon is I

indicated by the dashed llne. The _R|Is 24[ I F IS
corresponding onset of the CH3 MARCH&

relatlvlsttc electrons coincides

almost exactly with the 7 GHz radio noise Fil, 1: Intensity time profiles

burst. Analysis of angular dlstribu- of the. March 3, 1975 event, an
example of coherent propsgatlon.

tions (Fig. 2, top right) allows us for

the first ti_ to determine the foam of the pitch angle scattering

coefficient, which goes through • minimum near 90 ° pit:h angles, but is

inconsistent with models of Isotropic or Alfvenlc wave scattering (k.13, k. 17,

B. 27). The same event is studied by applying the collimated convection models "£

(A.19, B. 22). In any case, the great importance of the large-scale

interplanetary sagnett.e field itructure is stressed.

• .............. ... , .............. . .......
.._ '.....- ...............
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1 B Flare 29 March 1976

Ft___z__: Fits of the focussed transport model to intensities,
anisotroptes and angular distributions.

The systematic study of proton-to-alpha variations during solar events

has confirmed the surprising finding that occaelonally _/_P < 0 for

rigidities F < 150 MV, _hlch no existing scattering theory Is presently able

to explain (8.17, B. 28, C.6). The p/a-variation for a number of events is F .
shown in Figure 3 (B.28, C.6).

' Apart from the short-llved, highly-anlsotropic events mentioned above, we

find iong-lastlng events wlth nearly Isotroplc angular distributions. A

systematic study is under way to relate the different types of events to the

large-scale structure of interplanetary space and to different phases tn solar

wind streams. Full advantage vi11 be taken of Points (3) co (6) mentioned

above. Related theoretical work (b.ll, A.14, k.15, A.20, A.21) will aid us in

: interpreting the variety of experimental results.!

i C. Solar Cosmic _ys II" Coronal ProvaAation and, Solar In.tection.
_t The different appearances of events when Helios-1 and -2 are at different

heliocentric lonsitudes is imediately obvious In a larse number of cases

(A.8). The variations cannot be explained by coronal diffusion alone (A.6),

but confirm the role of solar sector boundaries as tnhtbitore for coronal

1
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absence of the Harch 28, 1976, event

- in the protons on Helios-l,

connected vLth a different solar [_..-_-I+ "' 2

_ sector than Helios-2. The ['_&'13.lN

_ appearance of a small remaining
i electron population presents a

puzzle; it indicates that tn _ _

contrast to the slmile_ propagation _ + 2 _--'_m_

of electrons and protons along the _ 13-2"/MWIN[_2_l_J__L_____ll_° .

: , interplanetary field, their _-..---.. ,, ,._.,., , r w,_

mo[ I $ 1_12Sll , ! wlis
transverse transport, either in the i I_ J-_1-_-_ _--_, w_--

corona or in space, must be • !'"_"_-_M_N __

- _ different. For the long-lasting I I _-*_--_ _-_U-_- E-_--

event of Harch 23, 1976 (Fig. 3) ve [ i _---"--s _

find a decay time for coronal _ o_" ,3_'_eMWm,_ , s --,
tx DAYS AFTER FLARE

_ release of (30_3)h, m e-foldlng

angle for the longitudinal dependence Fig. 3: p/_ variation for various

of (40_8) ° (A.6, A,16). energy ranges during several events.

HELLOS1'2 DOY 1976 UNIVERSITATKIEL

- - _" ] _ 1_ I _ I _7I" i' -, 1,,,901911_ ] 9_i 94] 9_I _ i 97
105" HELLOS2-- _,, ~0.5 MeV ELECTRONS -_105

: _ 104 -C'_'._..,,,..._-,...,,'__.j=. f *"_, _ _ . ! 10/"

_-- 103 "_ "HELLOS 1 _ 103

Z I I I *' i _ I I I l , _ , _ -

_' U.I .--_ HELLOS2_ \,,./_ESP !
: I.- 103 r_, / _- = I _',,-'FD 4-13 MeV PROTONS _i 103
. z r_-,' _,. _ _

;- i t' "_"v""/- _J"'HELIOS 1 " -_%F_. • _ 102

! 1°_I_ '_ _"_=" -i "1°_

MARCH 1976 APRIL 1976 .

Fig. 4: Intensity time profiles duri_ Hsrch 1976.

_t

!
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Clues to the solar _,_ ....--_"..... "_

injection process for events "'[ _ j_ _

with small interplanetary _i!!__'__ _scattering have been discussed

in Section B (see Figs. i and

'-"-'L""%I ' J , T
D. Solar Cosmic Rays III; =_.[" _'_.--_,..V _I

He 3_r ic h Even t s '" ;6 "_-_"-_"_--_.'--_ "_' _ _ &_-_

Until December 1977 we .=..........._= ........................................_.-...............

had found 9 He3-rfch events "[_ : '"

with ratios r(He3/He 4) , :..o

>0.2 (B. 29, C. 7) Earlier ' _'"'"-"""-""""'""_"...._'_ "°0'_';_................C _-0'?_" _o_"_

findings on this unusual class

confirmed (small events, no d _,°. _ _,0o

and t, large He4/p-ratlo) • It _'"_'_,oL__'<"L' % ._..j_ _'°°0

is interesting that apart from

the nucleonic compositions _........ --._.'-- ,_, e....... -='_-...... ,,_,
"0( " l "°[ "

these events do not seem to _.0._ !

differ from "normal" events. _",_"--'_'-v4"¢_/ I :'00 "%_'_
They show similar temporal ................. _ ........

structures and the same ratio

of relativistic electrons to ~i0 Fig. 5. Relation of _e-rich events

MeY protons. This confirms the to the solar wind velocity (cour-
tesy H. Rosenbauer and R. Schwenn).

idea of preferential pre-heatfng

of He 3 under suitable source

conditions followed by the normal flare acceleration process (Ffsk, 1978).

One unusual feature, which needs confirmation by other events found so far, is

the appearance in the slow solar wind (based on plasma data from El, courtesy

H. Rosenbauer and R. Schwenn) (Fig. 5). The event with the largest He 3

content shows a rather peculiar difference between the time profiles of

electrons, protons and Helium nuclei, depicted schematically in Figure 6 (A. 7, "_

A.10). This is an example of a sltuatton occurring rather frequently, namely

.r
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that repeated small injections of

Helium nuclei are accompanied by
HELIOS 1 (rHEL=0.32AU) UNIVERSIT_TKIEL

much smaller, or even no, increases r ]
10

in protons or electrons (J..10). i

~ 0.5MeV

8 ELECTRONS

E. Interplanetary Acceleration -- 6
Ill

(Recurrent Events)

The first direct gradient >- j
n_ ___J
<[ 2 : ' '

measurement during the same

m i
recurrent event was obtained by a 0= 0 I

I I

comparison of Helios-I and -2 and _ 6 ! A _-13MeV

uJ /__ _ = I_ON S

IMP-7 and -8 measurements in z _ .

cooperation with the Caltech group >- /\p-

(A.9). Figure 7 shows the radial _ 2UJ
p-

intensity variation between 0.4 and z 0 _ ! T r J

1.0 AU for the corotatlng event in _ InA^,,_.2-3MeV/N

March 1976. Numbers I through 7 j_ /_ /_ NcLIUM NUCLEI

indicate various phases of the 2 _j _ / _ i

event. In the main phase (3 to 7) 0 I _J i__
,ooo o6p ,20o ,o,oo

we find (330±20)%/AU for the radial MARCH 19 MARCH 20, 1975

gradient. The positive value

clearly indicates an outer source;

interpretation In terms of a

stationary dlffuslve/convective solution FI_. 6. Intensity time

(Marshall and Stone, 1977) leads profiles of the 3He-rich
events of March 19 and

to a radial mean free path of 20, 1978.

0.04±0.01 AU, in good agreement

with results from solar particle

events (A.i0).

The Jump to a large positive gradient coincides with a marked increase in

the absolute intensity and with the onset of a fast solar wind stream. A more

detailed analysis for additional events is presently under way with the aim of
"r

revealing the conditions for the occurrence of interplanetary acceleration

relateJ to corotatin 8 shocks.

• ......
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F. ESP-events aLid

Forbush-

decreases _ r

103 _...J_

The study of __ ____:

Energetic Storm Particle _ _ , __

(ESP) events gives in >_ _ _ _ ,5_

situ information on m ,lco102

acceleration of charged __ __/
particles by _z /-'--; /!

interplanetary shocks o _--
Q_

and on the large-scale _ 10_ "'"_-_
structure of shock- _z _*i

related magnetic _z .-

fields. A number of
HELLOS1 HELLOS2 IMPT/8

ESP-events detected on

Helios show the 0,_ o.5 o.6 0.7 o.e 0.'9 1.0RADIAL DISTANCE(AU)

following signatures :

(i) the intensity of MeV

protons in the decay FiK. 7. Radial dependence of the intensity

of the March 1976 recurrent event for
phase of a solar event

different phases during the event.
starts well before the

shock arrival, (2)

the anisotropy increases gradually and changes sign with the shock front and

(3) the alpha-to-proton ratio shows different behavior from one event to the

other, ranging from no change at all to a factor of 2 increase.

It is interesting that similar signatures are also found during magnetic

field enhancements which are definitely not shocks. In many cases, the KSP-

event is limited by the arrival of the piston driving the shock. In these

cases, the highest-energy channel displays a marked Forbush decrease. The two

features seen in the cosmic rays indicate the arrival of large e_tended

magnetic field discontinuities, which act as rigldity-dependent barriers _or

energetic particle penetration (for first results see B.24, B.25, C.3).

G. Jovian Electrons

The Helios orbits offer the possibility of observing electrons of Jovian

origin in the 0.3 to 2 MeV energy range at distances from I to 0.3 AU from the

1980023809-046
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Sun. These data are not contaminated by Earth magnetospherlc electrons from

which IMP data in this energy range suffer. The time period from launch of

Helios-i in December 1974 to September 1977 was centered around solar minimum

and, furthermore, showed exceptionally-low solar activity. This provided

excellent conditions to observe the dependence of Jovian electron events on

the "Jovian electro_ seasons" down to 0.3 AU where interplanetary shock

fronts, in connection with fast solar wind stream_,do not yet develop. This

observation favors a model in which the propagation of charged particles, at

least in this rigidity range, is governed by the large-scale structure of the

interplanetary medium and in which diffusion, especially perpendicular to the

magnetic field, does not play a significant role (A.18, B.23, B.26).

H. Modulation: Long-term Changes and Spatial Gradients

During the recovery phase of _olar cycle 20 we have observed significant

long-term variations in the cosmic ray intenslt/: While the Deep River

neutron monitor readings increased by 2.7_ between December 1974 and June

1975, we observe a 50% increase of 30 MeV protons with a phase lag of 2 to 3

months and a 100% increase in the Helium intensity at 30 MeV/n with a phase

lag of i month; i.e., Helium nuclei are modulated roughly twice as much as

protons of the same energy/nucleon.

To determine the radial gradients in the period of pronounced time

variations, we have reduced the effects of time variations by using the

ratios of the particle intensities measured by the GSFC cosmic ray experiment

on IMP-8, kindly provided by T. von Rosenvinge. From December 1974 to

December 1975, the proton gradients in the energy range 20 to 50 MeV are small

and generally consistent with zero within errors, whereas the Helium gradients

are small, but positive (A.7, A.12, B.12).

Scanning the inner solar system four times in 13 months of pronounced

time variations did not reveal a clear change in the differential proton and

Helium gradients. From this we conclude that the observed long-term intensity

variations occurred almost simultaneously and uniformly in the inner solar

system, indicating a large distance to the boundary of the modulation
*{"

region. This allows the Helios measurements to serve as a good baseline for

other deep space missions.
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The integral gradients for protons and Helium nuclei were determined

without a reference measurement at I AU, but during a time of only small

temporal variations (end of 1977 to beginning of 1978). During this time

period, the Helios spacecraft had traversed the space between i and 0.3 AU

eleven times. A superposed epoch analysis yields gradient values of 20±9%/AU

for > 51 MeV protons and 28_12%/AU for > 48 MeV/n Helium nuclei. These large

values, observed inside i AU, differ from the results of the Pioneer i0 and Ii

measurements taken between i and 18 AU. They can be explained by a radially-

dependent diffusion coefficient, as proposed by Morrill et al. (1979).

Comparison with a model of three-dimenslonal modulation is in preparation.

I. International Cooperation, Future Plans and Interest in the Scientific

Community

A rich research program for further investigation of the solar system is

still under way. The Hellos-Voyager workshop in the fall of 1978 and the

Helios Working Group Meeting in the spring of 1979 indicated a large number of

interesting solar events, covered by many spacecraft, from the new cycle.

Results from the Helios-Voyager workshop have been presented at two

conferences (Spring AGU Meeting, 1979; International Cosmic Ray Conference,

Kyoto, 1979). Future cooperation on a number of problems has started wit1_ the

APL/JHU group (Prof. E.C. Roelof), and cooperation with the Central Research

Institute of Physics, Budapest, is under way. Hopefully, Helios will survive

its next aphelion so that the coordinated efforts during the SMY will supply

an unprecedented opportunity for tackling and finally resolving the

acceleration and release processes during solar flares.

The great interest throughout the scientific community is documented by

invited and public talks. Integration into the University research program is

indicated by a number of Master's theses and dissertations (section C,

Bibliography).
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COSMIC RAY EXPERIMENT (E 7)

P.l. : James H. Trainor, Tahorat,_ry for High Energy Astrophysics,

NASA/Goddard Space Flight Center, Greenbelt, MD U.S.A.

Co-l's: Frank B. McDonald, Thomas. L. Cllne, Upendra. D. Desal and Bonnard .T.
Teegarden, Laboratory for High Energy Astrophyslcs, NASA/Goddard,
Greenbelt, MD U.S.A.

Kenneth G. McCracken, CS[RO, North Ryde, N.S.W., Australia

Mtchele Van Hollebeke, NASA/GSFC and University of Maryland, College
Park, MD U.S.A.

The purpose of the Helios experiment E7 is to carry out investigations of

the energy spectra, charge composition and flow patterns of both solar and

galactic cosmic rays. Three separate dE/dx vs. E telescopes, in combination,

enable the following particle speclea and energy ranges to be measured:

electrons, 50 keV to ~8 MeV; protons, I00 keV to "800 MeV; alpha particles, to

600 MeV/nucleon; heavier elements up to Neon to "200 MeV/nucleon. The

experiment includes a proportLonal counter to moLlitor solar X-rays in the

range 2 to 8 key wLth coarse event location on t,_ Sun.

In addition, HelLos-2 includes a gamma-ray barst detection system (co-

investLgators for this portion are T,L. Cline, U.D. Desai and B.J.

Teegarden). The instrumentation for the gamma-ray burst system Includes a

separate sensor with a memory that preserves each gamma-ray burst time history

with 4-millisecond time resolution. The purpose of thLs experiment is to

accurately triangulate gamma-ray transient source positions by comparing wave

front proftles with other interplanetary and near-Earth sensors.

Introduction

The Goddard Space Flight Center cosmic ray experiments aboard tleltos-i

and -2 are used to investigate a number of astrophysical problems ranging from

solar cosmic rays to interplanetary acceS-tatton process studies to stuJies of

the galactic _nd the so-called anomalous component. The broad solar minimum "_

condition whtch persisted from 1972 to the beginning of 1978 _avored some

studies such as that of interp!anetary energetic particle streaum related to

• m
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corotating interaction regions and that of the radial gradient and the energy

spectra of the galactic end anomalous components. Solar cosmic ray st-dies

progressed more slowly, with only a few solar flare events being observed by

Helios before late 1977, at which time a few large solar flares were reported

from the new solar cycle. A number of the studies described here are still in

progress, since the observation of a larger sample of events is necessary to

lead to definite conclusions.

A, Solar Cosmic Rays

(1) Intrinsic Characteristics of Solar Flares

One important characteristic in studying acceleration processes is

the source energy spectrum. This has been investigated in the past by Van

Hollebeke et al. (1975) using data from a large number of events observed at 1

AU. By analyzing the variation of the proton energy spectrmn with the

azimuthal distance from the flare to the observer connection longitude, these

authors found that over the limited energy range from 20 to 80 MeV, the

spectrum of the proton number density can be expressed as a power law in

kinetic energy (N(E)'E-8 for events associated with flares that are well-

connected magnetically to the observing spacecraft. 8 has a very small

dispersion, with 90% of the events ranging between 2°5 and 3.7. It was

further discussed that the effect of interplanetary transport can be

neglected, provided this spectrum is determined from measurements made at

maximum intensity. Thus, such a measured spectrum could be considered m a

good representation of the source spectrum.

From Hellos-I and -2 observations at ~.6 AU of a flare-associated event

magn_tically well connected, it now appears that over the extended energy

range from .3 to 300 MeV the proton spectrum departs slightly from a power

law, since it bends at energies below 1 HeY and steepens above 200 MeV. A

calculation by Ramaty (1979), using a Fermi acceleration process for the

second stage acce'eration, gives a v_ry good fit to the data. Figure 1

, illustrates this calculated fit (dashed line), superimposed on the measured

proton spectrum, for the April 8, 1978, event. To further confirm this study,

more observations at close distances to the Sun of events magnetically well

connected to Helios are necessary. Due to the increasing number of large

'' flares intoning from the new solar cycle, we expect that a conclusion of this

study viii soon develop.
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(2) Coronal Transport and
Particle Release

103 .......
'_ ..... APR"IIL........ lEvidence of a "fast \\ 08,1978

propagation region," where ener8etic \_ e HELIOS 2 .53 AU

particles appear to have nearly 102 _-

immediate access to the

interplanetary magnetic field over a
I

region extending i60 ° from the flare I0

site, was found earlier from

statistical studies of flare- >
; l00 £-s.2

associated events detected by a
a¢

single spacecraft observation at 1
¢J
MJ

AU near the Earth. Observations by
.' tO"1

Helios-I and -2, closer to the Sun •

and at different azimuthal distances
Z
o

with respect to the flare site, of a _-
o 162

few flare-associatd events have

further confirmed the existence of

this fast propagation region. In 1_3

addition, the fast component,

attributed to energetic particles

in front of the flare- 164propagating

associated shock, has been

identified in the case of the very

energetic event of _pril 28, 1_5 ........ I ........ I .......

1978,when Helios was at .3 AU from I0 I00 I000
KINETIC ENERGY (MeV)

the Sun, as a spike occurring Just

before the main increase of the

event. This study, presented at the Fig. 1: Source proton energy

16th International Cosmic Ray spectrum observed by Helios-2 at
• 5 AU. The dashed line is a fit

Conference. is being extended u_ing to the data by Ramaty (1979) usin 8

_ both magnetic field and antsotropy a stochastic Fermi-type accelera-

measurements to determine: (1) the tion during 2nd phase of accel.

role of the shock in the acceleration

_ mechanism praceedtn8 the release of the particles into the interplanetary

_ madtum, and (2) the physical process leading to the release of energetic

! particles in front of the shock.
!

! ! -
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Using mainly statistical analysis of observations of a large number of

events by a single spacecraft, past investigations of the energy dependence of

the release of particles into the interplanetary medium (after their transport

in the corona) have been quite controversial. Based on the observed increase

of the spectral index away from the flare longitude, and assuming that the

coronal propagation is independent of energy, Van Hollebeke et al. (1975)

concluded that there was a dependence of energy (or velocity) for the escape

rate. However, two similar studies at different energies by McKibben (1973)

and aeinhard (1975) did not show any dependence of the slope of the energy

spectrum _th heliolongttude. Helios-1 and -2 and Voyagers 1 and 2 provided

the first opportunity to resolve this apparent discrepancy. The spacecraft

longitudes were 120 ° apart during the observation of a series of solar flares

observed Ln September 1977. An analysis was performed by toulon et al. (1979)

of the variation vLth the b_eliolongitude of the spectral shape and of the

abundance of alpha particles relative to protons. For this series of flare-

associated events, the analysis supports the earlier conclusions of Van

Hollebeke et al. (1975). However, the energy spectrum for this series of

events is generally harder than that found in the previous statistical

analysis of flares detected during the previous solar cycle (see Fig• 2).

l_g. 2: Variation of the energy spectral \,
index with the flare heltolongitude relative 4 , _ //

o xx _% tss s

to the observer connection longitude. The _ 3 " ",, _."
data points are observations by Helios-2 and _- •,." ...-"

Voyagers 1 and 2 for the September 1977 _. ' _".,.I"_• =s_- Tseries of events. The dashed contours refer _ _s(,._
_' I • 3lrPT. I$

to the envelope which contained 90Z of the , ,s[,.24
I I I !

events observed during the previous solar °_0 ,0 0 _ ,a0
cycle and were previously analyzed by Van EAST WEST
Hollebeke et al• (1975) (From toulon eC L0.*,TU0t_ fL.t• (SPAC(CIIAFT COlill(CT[O TO 0")

al,, 1979).

Preliminary analysis seeems to indicate that this difference may reflect

changes in the dynamics of the acceleration process, either for this

particular active region only, or for all flares observed during the present

solar cycle. This study, which is of great Importance to understanding the

dynamics of acceleration processes relating to solar cycle, is being pursued

on more solar particle events which have since occurred.
,2
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B. Corotatin_ Energetic Particle Streams t Interplanetary Acceleration

The corotating energetic particle streams are the major source of MeV

protons in the outer heliosphere during solar minimum. The discovery of a

positive radial gradient by Pioneers 10 and ll between 1 and 4 AU led McDonald

et al. (1976) to propose interplanetary acceleration as the most plausible

explanation for the formation of those streams and to suggest the suprathermal

distribution of the solar wind as a possible source of particles. To assist

in the confirmation of this result and to define the possible type of

acceleration mechanism and the origin of the pre-accelerated particles,

detailed studies of the main characteristics of these events have been

performed. These studies used primarily the network of cosmic ray experiments

now available with Helios-i and -2 (between .3 and i AU), IMP-7 and -8 (near

Earth, at I AU), Pioneer II (between I and 5 AU) and Pioneer I0 (between I and

I0 AU) in correlation with solar wind measurements. They covered much of the

solar minimum period of Cycle 20 and ranged from .3 to I0 AU.

The main characteristics that such studies have revealed are:

(I) the existence of a positive radial gradient of some +350% per AU

between .3 and 1 bJJ. An average gradient exists of +100% per AU between 1 and

4 AU and a negative gradient of some -40 to -100% per AU beyond 4 to 6 AU. No

evidence of a latitudinal gradient for e < 15 ° has been found on the data

organized, with respect to heliolatttude.

(2) the close association of those particle events with corotating

interaction regions (CIRs) formed between the high-speed and low-speed solar

wind streams (as seen by Pioneer beyond 1.5 AU) was found to persist near and

inside 1 AU with the energetic particles contained onlz inside the high-speed

solar wind stream, in a region adjacent to the CIR.

The form and the radial dependence of the energy spectrum is of special

importance in defining the spatial dependence of the acceleration process. It

was found that an exponential in momentum of the form dJ/dP e e-P/Po gives a

good fit to the data for both proton and alpha particles. Po ranges typically

from 9 to 16 MV/n for most of the events and shows little variation with

radial distance from .3 to 4 AU, while the intensity may vary by mere than two

orders of magnitude over this distance (see Fig. 3). The variation of the

energy spectra wlth respect to CIR boundaries was also studied. These
J

results, published by Van Hollebeke st al (1978) and Van Hollebeke et al

\
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Fig. 3: Energy spectra of a corotatlng energetic
particle stream observed for 3 consecutive solar

rotations in 1976 (from Van Hollebeke et al., 1979).

(1979), have been used extensively by those and other authors in their

approaches to resolve the problems of the origin and interplanetary

acceleration of corotating particle streams•

C. Galactic Studies

Nith essentially identical cosmic ray detector systems (as on Pioneers I0

and ii), the Helios-I and -2 missions have provided a good baseline for

measuring directly the amount of residual modulation near solar minimum when

the oserved galactic cosmic ray intensity has its larger value, and at the

time when the anomalous component ts observed at 1 AU.

In order to determine the radial and rigidity dependence of the

modulation, the variation of the energy spectra with radial distance has been

measured over the extended range of energy from 5 to 500 HeV/n for alpha

particles and from 20 to 56 geV and 120 to 200 HeY for protons. The periods

selected for theu studies were late 1975, when Pioneer 10 was between 8.5 and

_. 9.1 AU and Pioneer ll at "3.8 ALl (McDonald et al., 1977), and from _rch to

June 1977 when Pioneer 10 was ~12.8 AU and Pioneer 11 at 5.1 AU (HcDonaM et

_- at., 1979).

i:
f,

g d
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It was found that the observed gradient decreases etch heliocentric

distance and that this change varies vlth energy from a ratio of 4 at 200 MeV

to 1.7 at 15 MeV. Such changes suggest that the diffusion coefficient may not

be a separable function of position and rigidity.

Above 1 GV the measured gradients of He and H are well described by

conventional modulation theory. At low energy the He is dominated by the

anomalous component. Observations durin 8 the second selected period show that

the spectral shapes of Helium at those energies are not greatly changed

between l and 13 AU (implying reduced energy losses for these particles). In

the same manner, the apparent energy loss for low-rigidity Hydrogen appears to

be appreciably smaller than expected (see Fig. 4). Those observations led

o HVOaOGEN_ p-in
Fig. 4: Energy spectra for • ,[UuM J- "- 3/,/.-*/,31. ,z.e Au
Hydrogen and Helium measured In o ,,0aom,_..

• I_LtUtl j --,, 311177 -1115/77 5.1 AU

by Pioneers 10 and 11 and o.,0_.l ......
Helios-1 and -2. The dashed .,[cw jntL,u_ l.u ,/,/,-,m/- J Au

llne through the Helios data _/_

is a fit of the form JHeltos =

Jll exp-(0o17/S). The dotted = _ ._.../..-.
11ne represents the flt _ ' _.. -

Jll=Jlo exp-(na/S) where _a Is =. ° "+'......
derived from the Helium _ o ,o*/
measurements (from McDonald et •,
al., 1979). ,

,,J

suggest alternate approaches ..,-t-"'._,_ " _;,__
to that proposed by l_8k et al -_----_- -¢_'_

(1974) to explaln the ........ , ........ , .......
_0 _o0

anomaloue component. KINETIC ENERGY(MeVIN)

The study of the radlal

gradient between .3 and 1 AU has been more difficult. In eddltion to the

radlal gradlent, measurements made by 8cling from .3 to 1 AU represent the

combined effects of temporal, azimuthal and latitudinal variations; some of

these variations are at least a factor of 3 larger than the expected radial

variation. The large-scale temporal and azimuthal effects have been elimine.ced

by usiqB the ratio of the particle intensities measured at Helios to that

measured by INPs 7 and 8 at 1 AU, after correcting for corotatlon effects.

%
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t
Transient effects, such as low-energy particle events and Forbush decreases

! associated with solar flares, have been eliminated from the data. The

: resulting measurements contain both radial and latitudinal 8radients and show

a gradient of less than 5% per AU for both protons and alpha particles in the

range of ~115 to 220 MeV/n. This result was presented at the 16th

International Cosmic Ray Conference and seems in disagreement with the

measurements of the University of Kiel group. It is presently being reviewed

with a more extensive set of data.

D. Gamma-ray Bursts

Gamma ray transients have been successfuly observed with Relios-2 on over

20 occasions during 1976 co 1979. At least six of these events were also
t

detected by the other space probes and Earth satellites forming an

interplanetary gamma-ray burst sensor network, including Pioneer-Venus

Orbiter, Veuera-ll and -12, ISEE-3, Prognoz-7 and the Vela system. Their use

as a long-baseline timing array for acurate wavefront triangulation has

produced the first precise (arc minute diameter) gamma-ray burst source

locations. The first source object identification for a gamma-ray transient

was the N49 supernova remnant in the Large Hagellanic Cloud, a galaxy outside

our own. The 5 Hatch 1979 transient originatin K there was shown not to be a

typical gamma-ray burst, but a new type of cosmic outburst.

The consequences of this discovery should prove to be very important in

high energy astrophysics. One recently suggested explanation (Ramaty et el.,

1980), taking into account both the great distance of the LHC and the exact

details of the observed spectrum of the transient, involves an internal

transition in a neutron star, which dissipates its energy with gravitational

radiation. If this is a true explanation, the 5 _arch 1979 transient is the

first detected neutron star transition and can be considered the first direct

evidence for sravitational radiation.

Studies of source locations of gamma-ray bursts of the classical Vela

variety are presently being undertaken with optical and X-ray telescopes.

,: These source fields are presently "empty" sky, not other supernova remnants or

other known X-ray emitters. _
'v

1980023809-062



6O

Bibliography

Cllne, T.L., U.D. Desai, G. Pizzichini, A. Spizzlchino, J. Trainor, R.

K1ebesadel, M. Ricketts and H. Helmken, "Helios-2/Vela/Arlel-5 Gamma Ray

Burst Source Position," Ap. J. (Lett.) 22__9,L47, 1979; also NASA TM-
79697, January 1979.

Cllne, T.L., U.D. Desal, G. Pizzlchlnl, A. Splzzlchlno, J.H. Trainer, R.W.

Klebesadel, H. Helmken, "Gamma-ray Burst Observations from Hellos-2," Ap.

J. (Lett.) _ _i, 1979.

Cllne, T.L., U.D. Des_i, G. Pizzlchinl, B.J. Teegarden, W.D. Evans, R.W.

Klebesadel, J.G. Lares, K. Hurley, M. Niel, G. Vedrenne, I.V. Estoolin,
A.V. Kouznetsov, V.M. Zenchenko, D. Hovestadt and G. Gloeckler,

"Detection of a Fast, Intense and Unusual Gamma Ray Transient," Astrphys.

J. 237, LI, 1980; also NASA TM-80570, September 1979.

Cllne, T.L., "The Unique Cosmic Event of 1979 March 5," accepted for

publication, Comments on Astrophysics; also NASA TM-80630, December 1979.

Cllne, T.L., U.D. Desal and B.J. Teegarden, "The Goddard Program of Gamma Ray

Transient Astronomy," in press, Astrophys. and Space Sci., 1980; also
NASA TM-80675, March 1980.

Conlon, T.F., F.B. McDonald, M.A.I. Van Hollebeke, J._. Tralnor and W.R.

Webber, "The Effect of Coronal Transport on Energetic Solar Particles,"

in Prec. of the 16th Int. Cosmic Ray Conf.. Kyoto, 1979; also NASA SP4-4.

Estulln, I.V., T.L. Cline, G. Vedrenne, A.V. Kuznetsov, G.A. Mersey, M. Niel,
B.L. Novak and K. Hurley, "Source Position Loci for the Gamma-ray Bursts

Recorded October 20 and November I0, 1977," Soviet Astronomy Letters

(Letters to the Astronomical Journal)_55, iI, 1979.

Evans, W.D., R.W. Klebesadel, J.G. Lares, T.L. Cllne, U.D. Desal, G.

Pizzichinl, B.J. Teegarden, g. Hurley, M. Niel, G. Vedrenne, IV.

Estoolln, A.V. Kousnetsov, V.M. Zencbenko, V.G. Kurt, "Location of the

Gamma Ray Transient Event of 1979 March 5," Ap. J. _ LT, 1980.

McDonald, F.B., N. Lal, J.H. Trainer, M.A.I. Van Hollebeke and W.R. Webber,
"Observations of Galactic Cosmic Ray Energy Spectra between 1 and 9 AU,"

Astrophys. J. _ 930, 1977.

McDonald, FOB., M.A.I. Van _ollebeke, J.H. Trainer, N° Lal and W.R. Webber,
"Galactic Cosmic Ray Observations in the Distant Heliosphere," NASA SP7-

14; also in Prec. of the 16th Int. Cosmic Ray Conf°. Kyoto, 1979.
k

Ramaty, R., S.A. Colgate, O.A. Dulk, P. Hoyua, J.W. Knight, R.P. Lin, D.B.
; Melrose, C. Paisis, F, Offal, P.R. Shapiro, D.F. Smith and M.A.I. Van _

:, Hollebeke, "Energetic Particles in Solar Flares," in Prec. of 2nd Skylab
Workshop on Solar Flares, Chapter 4, 1978; also _M-79660, 1978.

, Ramaty, R., S. Bonazsola, T.L. Cline, D. Kazanaa and P. Meszaroa, "On the
Orisin of the March 5, 1979, Gamma Ray Transient| A Vibrating Neutron
Star in the Larae Magellanic Cloud," Nature, in press, 1980.

' IIIlllI I [ I J I II III I

1980023809-063



61

Richter, A.K., M.A.I. Van Hollebeke, K.C. Hsleh, K.U. Denskat, E. Keppler,
F.B. McDonald and R. Schwenn "Energetic Particles at Interplanetary Shock
Wave" The April 29, 1980, Event," in Proc. of the 16th Int. Cosmic Ray
Conf., Kyoto, 1979; also NASA SP5-31.

Tralnor, J.H., D.E. Stilwell, R.M. Joyce, B.J. Teegarden and H.O. Whlte, Jr.,
"The Helios A/B Cosmic Ray Instrument (E7), Rauafahrtforschun8 19, 258,
1975.

Van Hollebeke, M.A.I., F.B. McDonald, 5.H. Tralnor mid T.T. yon Rosenvlnge,
"The Radial Variation of Corotatin8 Energetic Particle Streams in the
Liner and Outer Solar System," G. Geophys. Ras. _ 4723, 1978.

Van Hollebeke, N.A.I., F.B. McDonald, J.H. Tralnor and T.T. yon Rosenvinse,
"Corotating Energetic Particle and Fast Plasma Streams in the Inner and
Outer Solar System: Radial Dependence and Energy Spectra," in Proc. of
the Solar Wind Conf. IV, '_ecture Motes in Physics," ed. Prof. Bergeback;
also in press, J. Geophys. Res., 1979.

1980023809-064



62

SPECTROMETER FOR MEASUREMENTS OF

LOW-ENERGY ELECTRONS AND IONS (E 8)

P.I. Erhard Keppler, Max-Planck-lnstltut fur Aeronomie,

Katlenburg-Lindau, West Germany

CO-l's: Arne K. Richter, Klaus Richter, Gerhard Umlauft, Berend Wilken

_[ax-Planck-lnstltut f_r beronomie, Katlenburg-Lindau, W. Germany

Donald J. Williams, NOAA, ERL-SEL, Boulder, CO U.S.A.

A. Short Description of the Instrument and Its Primary Purpose

The instrument developed at our institute (weight : 3.5 kg; power:

4.4 W) utilizes an Inhomogenous magnetic field for separation of charged

particles. Protons (and heavier particles) traverse the magnetic field almost

unaffected and are detected in a telescope arrangement consisting of 2

semiconductor detectors (Sil_con surface barrier detectors). Electrons are

focused and detected by 4 semiconductor detectors. Positrons (if present)

will be deflected in the opposite direction and detected there in m_other

detector. The latter one Is protected in a telescope a[rangement, zn order to

suppress background. The instrument is almost normal to the spin axl_ of the

probe and detects particles which are coming [rom an angular range of ±15 °

above and below the ecliptic plane and 310 ° in the ecliptic plane. By

utilizing the probe spin, meas,irements are perf,, ed in 16 sectors in order to

determine the angular distribution of particles.

Their energy is determined by pulse-height analysis of the various

detector signals. The energy spectrum of the particles is obtained separately

in all 16 sectors. In total, there are 551 different counting rate words (8

bits each, quasilogarithmically compressed) transmitted; in addition, 3

status-lndicatlng and 20 housekeeping words (voltages, currents, temperatures,

noise) are transmitted. The shortest sampling time is about 6 seconds. In

regular intervals an in-fllght calibration is performed, during which, by

electrical means, the amplifiers, thresholds and complicated logic are tested.
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B. Highlights of Results

(i) Flagnetospherlc Studies with Helios

Fortunately for both Hellos-I and -2, it became possible to turn on

some of the instruments soon after launch, while the spacecraft were still

within the Earth's magnetosphere. Using the magnetometer data and our low-

energy particle data we were able to investigate tilepassage of the Earth's

magnetopause and magneto=heath more closely. The spacecraft, with its spin

axis in the ecliptic plane, traversed the magnetopause at the dusk side closer

to the subsolar point than most other spacecraft. From our study we were able

to confirm the existence of the energetic electron layer Just outside the

magxletosphere and also to identify what we call the "ion layer," which is of a

similar nature. The data indicate that the particles are streaming away from

the subsolar point along the magnetopause, and also that there seem to be two

popLlatlons present: one which Is clearly seen at higher energies with

typically flat energy spectra, and another seen only at lower energies with

typically steep energy spectra with a similar slope for ions and electrons.

It is this particle population which seems to stem from acceleration at the

magnetopause through a magnetic merging process. From the intensities we see,

we conclude that the energy flux appearing in these lower energy particles,

mostly the ions, ir consistent with what one would expect from merging. Also,

we propose that the acceleration process to be considered essentially brings

plasma particles up into the several tens to a few I00 keV energy range.

Thls, on the other hand, would only require acceleration of a minor percentage

of plasam particles {'I0-3), which would not be noticed by plasma

measurements.

(2) Interplanetary Studies

The flrst interesting event seen on Helios occured on January 6,

1975. Here, a shock front passed the spacccrsft which considerably affected

the low-energy ion population. Using the Helios instrument set we were able

to investigate this e_ent very closely so that the particle spectra obtained

during this event could be compared etch existing models of shock acceleration

of particles. Host important in this context was our finding that the

application of the Compton-d3etting correction at low energies was not only

mandatory, but that in order to perform the transformation correctly (and not
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rely on unproven or simplified assumptions), the energy spectra of Ions had to

be measured as a function of direction, whlch we actually do in 16 sectors.

We also noticed chat most instruments in the low-ene-gy reglme are sensitive

not only to protons but to heavier tons, as _II, vhlch, during fast solar

wlnd conditions, could actually result in comparable contributions to the

counting rate •

A study has now been completed tn which plasma and magnetic field

dace have been used to describe a shock. The energetic particle dace have

been searched to test for the circumstances whlch essentially allow

acceleration of charged parelcles. The general flndlnss of thls study were

, that partlcles are only accelerated if the shock propagates almost normal to

the magnetic field, and that sow particle population has to be present out of

which, apparently, the acceleration process works.

A vary Intarestlns obsarvatlon by the two Helios spacecraft was made

during the solar flare event in November 1977. (This event was discussed

during the Hellos-Voyager Workshop, and the results will be published soon.)

The two spacecraft, separated by ~25 ° In 1onsltude, observed the arrival of

relativistic particles simultaneously. Different from Helios-2, Helios-1 did

not sea low-energy partlclse st all, vhtle st 14altos-2, close to the

relatlvlstic psrtlcles, low energy electrons (_. 100 ksV) arrived in ramarksble

fluxse. Long after the peak of the ralatlvlstic partlclse, low-energy Ions

were also observed. This low-energy population was _rLped away when the

interaction rqlon, precsedln8 a fast solar dud stream, passed _Ilos-2.

Physlc_ properties of these interaction rqlons are presently balnl studied.

'.ov-4nergy electrons quite often show, uhan they arrive at the

spacecraft, a remarkable time dispersion effect. W8 are presently studying

vhetber these electrons are causing electron pinatas oecillsttous uhich have

oft_ been observed. A clear relationship batwen both tins never been

established, but hse often been suuseted.

_.th solar ectlvity returntn8 abruptly In S_pteubar 1977, w have

_ nov hsd numerous observations of low-energy particlet related to solar
_ flsrseo Several studies ere now under wy to lIFTastlgat8 thoen effects.
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(3) Possible Results Expected DurinK Solar Maximum

Wlth the rise of the solar cycle, which started almost suddenly In

September 1977, the conditions in Interpianetary space changed, _ well.

While during the qulec times Interplanetary shocks were a relatively rare

phenomenon, their number hse since increased, as has the number of tines we

have encountered low-energy charged particle populations. Thus, during the

maxlmom phase of the solar cycle, we expect to significantly increase the

number of examples of shock acceleration of charged particles to be studied,

thus to broaden the basis for reflnins and Lmprovlns models for

acceleration. The frequency of solar flares has also increased so that

propaaatlon studies of charged particles in the inner portion of the solar

system can be improved. Until nov we have seen only a :ew examples of flare

propagation, while the probes were vlthin the orbit of Hercury.
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ZODIACAL LIGh_ EXPERIMENT (E 9)

P.I. : Christoph Leinert, Hax-Planck-Institut f_r Astronomie,
Heidelberg-Konigstuhl, West Germany

Co-l's: Eckhart Pitz, tlartmut Link and Ingrld IUchter

Hax-Planck-lnstutut fur Astronomic, Heidelberg-Konigstuhl, W.G.

Hartha llanner, Jet Propulsion Laboratory, Pasadena, CA, U.S.A.
(formerly at MPI fur Astronomie)

The experiment consists of three photometers, each measuring the

brightness and polarization of the zodiacal light in three wavelength bands :

ultraviolet (360 nm), blue (420 nm) and visual (540 nm). On Helios-1 the

photometers are directed south of the ecliptic, scanning bands at ecliptic

latitudes -16 °, -31 ° and the region of the south ecliptic pole. Helios-2

survels the corresponding areas north of the ecliptic.

The primary purpose of this experiment is to deduce from the zodiacal

light observations the spatial distribution of interplanetary dust within

I AU.

Results to Date

From the beginning (1) the zodlacal llght observations showed a

remarkable smoothness and reproducibility. This is illustrated in Figure 1,

which shows the average sky brightness as a function of heliocentric distance,

as observed by Helios-1 and -2 during one orbit in the first half of 1976. A

more detailed presentation of all available measurement during January 1975

for one specific viewing direction is shown in Figure 2. Note that part of

the reJuinir_ scatter is due to changing star background. Work is in p_'ogress

to search for fluc_:,ations in the godtaal light of the order of a few percent,

which could be attributed to cpatial condensations of interplanetary dust or

to solar activity.

The increase in sky brightness towards perihelion is due to increased

zodiacal light brightness. The quantitative increase in zodiacal light

brightness alone is shown in Figure 3 for specific viewing directions. Again,

there is • difference between the inbound (upper) end outbound parts of an

7
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; Fig. 2: Variation of sky brightness during January
1975. The Intensity scale Is linear in arbitrary

: : units with suppressed zero.
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,," -2.22
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R (A.E.)

" Fig, 3_ Variation of zodiacal light brightness _rith _.-
'_ heliocentric distance R of Helios for various angular

distances c from the sun. i Sl0 is equivalent to 1.3 x 10-9
_ erg cm-2 s-I sr-I A-I. Upper points refer to the inbound part

of the orblt.
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orbit, due to the tilt of the plane of symmetry. The measurements are well

represented by straight lines, corresponding to a power law I(R)~R-2"3_0"I for

all viewing directions, From this, the radial distribution of interplanetary

dust can be determined as n(r)_r-1"31"0"I where r is the heliocentric distancep

of the dust particles. Detailed discussions (3,5,6) have shown that this

power law-dependence should hold from less than 0.i AU to outside ] AU.

The spin axis of Helios is oriented towards the ecliptic pole and the

photometers are scanning along bands parallel to the ecliptic. The tilt of

the plane of symmetry of interplanetary dust with respect to the ecliptic,

therefore, in general leads to a brightness difference between observations

performed--for a given position of Helios on its orbit--at the same angular

distance right or left of the Sun. This right-left asymmetry is largest when

Helios is close to the nodal llne of the plane of symmetry (uppermost set of

observations in Figure 4). It should be zero when Helios is perpendicular

11_ "-....--,_ -----_-,_-_____..____-N 35/.,° -

32° -

I I I ! I I I I I I I i

30 60 90 120 150
_. (o)

k

Ft_____: Determination of the node of the plane of symmetry of
interplanetary dust by the disappearance of the right-left

asymmetry. Points refer to observations right, crosses to 1
observations left, of the Sun. For each set of observations,

the heliocentric longitude of Helios is given.

1

i oRIGINAL pAGE IS

" OF pOOR QUALITY
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to the nodal line. The data presented in Figure 4 show exactly this predicted

behavior: The right-left-assymetry decreases while Helios is approaching the

position perpendicular to the nodal line, vanishes at this point, then builds

up again vtth opposite sign. It is the significance of these measurements

that the longitude of the nodal line may be determined, free from models,

directly from the longitude of Helios at which the zero crossing occurs.

Figure 5 shows that the longitude of zero crossing may be determined within a

few degrees from the variation of the right-left asummetry. The ascending

node of the plane of symmetry of interplanetary dust was found from eight such

independent determinations with Helios-i and-2 as

l] = 87_40• Similarly, the inclination of

the plane of symmetry can be determined by , , , , , , ,

an attitude maneuver. When Helios is at
.10 Right- left- asymmetry(%} .

the nodal line, the tilt of the spin axis Helios2. _=16"
e ;70"

necessary to make the right-left asymmetry +5 #/
disappear i8 Just equal to the tilt of the

plane of sy_etry. Such a maneuver was 0

performed (Figure 6) end gave an
-5

inclination of the plane of sy_etry of

i=3•0_0•30. There appear8 to be one _ell- -10

defined plane of symmetry from inside 0.3 ii

• 30o 330 • 6
AU to at least i AU (10). The plane found _(.}

by Helios clearly deviates from Jupiter's

orbital plane or the invariable plane of Fig. 5: Determination of the

solar system (fl - 107 ° , i = 1.6°). This longitude of Helios at which
the right-left assemetry

deviation still has to be explained, dissappears. The points give

electromagnetic forces associated with the average asymmetry observed

the moving interplanetary plasma are for angular distances < 70°
from the Sun.

possible candidates for such an

explanation •

Future work will include a search for a change in particle properties

with heliocentric distance, which should show as a change in color end

polarization of the zodiacal light. &_ extension of the Milky Way photometry

(7) and evaluation of the comet observations are also desirable• Because

Helios is situated far from any disturbing sources related with the Earth's

atmosphere, it is especially well suited to search for short-time fluctuations

t
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I I I I ! ! I ! I t I

-0.I°

0 _ I I I I i, .& .... J ..... k ......... .1_..., -- ..-I._. i

30 6o. ...............i;

_: Determination of the inclination of the plane o{
symmetry by an attitude maneuver on Days 341/342, 1977, close
Co the ascending node of the plane of symmetry. The intensity -.
scale is valid for the lowest curve only, others are displaced
by a factor of 2. Points refer to observations right of the
Sun. e sires the tilt of the spin axis from its nominal
position (Cowards the ecliptic pole).

with solar actlvlty or loos-term vsrlatlone _r_th solar cycle. Any observable

effects w_uld be important clues for the clarification of the dynamics of the

dust particles. It Is for chase topics that continued observation throush the

plane of maximum solar activity are extrael;- valuable.

(1) Link, H., C, LeinerC, E. Pies and N. Salm, "Preliminary _sulCs of the
Hel£os-A Zodiacal Light Experiment," in InCerpleneCary Oust and Zodiacal
Liaht. Proc. IAU Col !. N0._I , ed. N. Els_sser and N. 7achtig; Lecture
Notes in Physics _ 24, 1976.
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THE MICROMETEOROID ANALYZER (E I0)

P.I.: Eberhard Grun, Max-Planck-lnstltute fur Kernphyslk, Postfach I0 39

80, 6900 Heidelberg - i, West C_rmany

CO-l's: Hugo Fechtig, Jochen Kissel, Max-Planck-lnst!tute f[ir Kernphysik,

Postfach I0 39 80, 6900 Heidelberg - i, W. (_rmany

Peter Gammelln, Electron!g ProJectlerung, Waldmichelbach, W. Germany

MICROMETEOROID E>_ERIMENT - DATA A_ALYSIN

P.I.: Richard Helnrich Giese, Ruhr-_nlvers[tat Bochum, Bereich

Extraterrestrlsche Physik. Bochum, _. Cermany

CO.l's: Klaus Dietrich Sch_nidt, Gerhard Schwehm, R,hr-Univers1_at Bochum_

Bereich Extraterrestrische Phy_tk, Bochum, W. Germa_ly

The objective of the mlcrometeorold experiments _n the Helios mi_slon i_

to investigate the distrlbutfo_ of interplanetary d,st in the_ Inncr sular

system, to study its dynamics and to det.=rmtno the physics! and chemical

charac=eristlcs of mlcrometeoroid_. E_ci_ spacecraft carries on board two

sensors: the ecllptic sensor me._qures du_t particles which _,ave LraJectorics

within or close to the ecliptic plane w,:ile the south sensor (Helfo_-l) and

the north sensor (Helios-2) detect part[cleq _,ith highly inclined

trajectorles. The ecliptic sensor is shielded by a _l_in film as protection

against solar radiation. Micro_eteoro[ds are detected by the eleeLrons and

ions produced upon imprct onto the sensor and the ions are mass _nalysed in a

time-of-fllght spectrometer. From the charge released and frcm the rise-time

of the charge pulse, the mass and speed of micrumeteoroids are derived.

Orbital information of interplanetary dust particles is obtained from the

radial and azimuthal distribution of the impacts. The chemical composition of "

i mtcroaeteoroids is characterized by the impact mass-spectra _rom individual

•,- particles.
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About 25 impacts have been recorded per revolution of a Helios spacecraft

around the Sun. Ytsure I shows the orbits of the Earth and Helios-l.

Superimposed on the _etlos orbit are the positions whpre impacts were

observed, The bars attached to the heavy dots represent the sensor pointing

direction at the time of impact. The length of the bar indicates the measured

pulse height of the positive impact charge, which roughtly correspond to the

particle's mass.

HELIOS 1 = .eLIOS1
DecIs,IgTL - Dec 2_.197S

Dec. 12.1g74- _n.2_L 19711

i

'";J

• 5 _

!'

I_ i | | I i I •
Q3 U_ QS QS _7 oJ OS

H"LIOCENTItlC DISWtNCI_R[at

_: Impacts detected durins the
first 6 orbits of Helios-I around
the Sun. Sara attached to the heavy
dots indicate the potnttns direction F£1, 2. Radial varla-
of the experiment at the time of impact, tton of the observed am-
The length of the bars represent the pact rate on_o the
uasnttude of the charse re2eased upon uAcroueteoroid
impact • experiment •

The highest impact rate of approximately 0,3 impacts/day of particles

vlth masses m • 10"12S observed was observed as perlhellon (0.3 AU). Flsure 2

shows the radial dependence of the impact rate. The increase of impacts

towards the Sun can he fitted by a pover law wlth an exponent of -2,3_O.8.This

ueasurestent Is compatible with both measurements of the dust impact rate at 1

AU (1) and the increase of the zodiacal ltsht intensity tovards the Svm (2),

Zach utcromateoroid tnpact is identified by the Masureumnt of a tlme-ot-

fl£sht mass spectrum of the poetttva tons released upon impact. Ytsure 3

tires the raw spectrum of an individual impact and the best fit of the ion

mass spectrum. Mass analyses of the spectra showed that 40Z of the observed
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_ spectra have the peak abundance HELIOSI ?,°35.

VLbelow 35 mu whlch corresponds to _ ,,, .,,_ ,..,,_.,o, ,.._...

chondrltlc composlton; llkewlse. 40Z i _ _,..c,,_

have peak abundances above 35 mu _ _ B_I'"' ''_"_ _'°'='_'"'

which are prellmlnarily identified

as Iron mterolds (3). Twenty

percent of the spectra could not be

identifled in either class. O/_/_/_O

The azimuthal distributions of

impacts which were observed inside

0.55 AU from the Sun on both the

ecllptlc and the south sensors are _ 2s _ . ,0 ,2s _..
|ln_l Of fllgh!

displayed in Figure 4. Each impact

Is represented by an area vhlch Fiz. 3. Time-of-fllght spat-

corresponds roughly to the angular trum of the ions released
upon impact of a mlcrometerold

sensltlvtty vLth respect to azimuth, onto a Hellos sensor.

For each sensor three curves are

shown: small particles (I A < 2),

big particles (1 A • 2) and the sum of both. Host impacts on the ecllpt_.c

sensor were observed when it was pointin8 in the direction of _otion of Helios

(apex direction" 0°) • In contrast to that the south sensor detected most

impacts when It was _acln8 In bet_len the solar (90 °) and antapex (180 °)

directions. Orbit analysis showed that the "apex" particles which are

predominantly detected by the ecliptic sensor have eccentricities • < 0.4 and

seaimaJor axes a < 0.$ AU Fro,, comparison with corresponding data from the

south sensor it is concluded that the aver4se inclination of these particles

is below 30 °. The excess of impacts on the south sensor have orbit

eccentricities • > 0.4 and eealaaJor axes a • 0.5 AU IS-weteoro/ds (4), which

leave the solar system on hyperbolic orbits, are directly Identified by the

imbalance of outgoing (away from the Sun) and insole8 smell particles. The

data _rol the ecliptic and north sensors o_ Helios-2 are in aareement with the

date _rom Reltoa-I which indicates no stroK north-south anyaRtry of the

interplanetary dust cloud,

?
q

k
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HELIOS I ECLIPTIC _-;EhSOR
0.3AU R QSSAU HELLOS I SOU1_ SENSOR
Dec. 12.197_'- Joe, 26.1978 03 AU - R _ 0.SSAU

AA AS A S AA Dec,12197¢ - Jan, 26 1978
.... 30 * '" * ' " ' " ' _

u_ INOtVIDUAL ¢_ U

x_

10 _ F"... _ , ,. ",l10 , J / _,.

• L"" ........ * " I
. [ "'............... j0 ....._- , • , , .?......_'_-'._ 0 , j , _ , , .

-180" -90" O' 90" 190" -180" -90' (7 gO" leO"
SENSOR AZIMUTH SENSOR AZIMUTH

7is[. 4: Azimuthal distribution of impacts onto the ecliptic
and south sensor. An indlvidusl impact 18 represented by the
ensular pr,babillty distribution (upper right hand corner)
centered on the sensor polntln S direction (apex direction -
0°, sun dlrectLon - 900).
(e) ecliptic sensor
(b) south sensor

DurLns the first 6 orbits of ]iellos-1 around the Sun, the experiment

reetstered a total of 168 meteoroids; 52 partlcles were detected by the

ec1_pttc sensor and 116 psrticlee by the south sensor. Fisure $ shows the

pulme-heisht distributions of the positlve impact charms. The excess of

impacts on the south senior vlth respect to the impacts on the ecltptlc sensor

conelet predomlnantly of smell impacts (smell pulse-height numbers). But

lsrse /specie, 8e w11, wre etetletlcally eisnlflcsnt2y more abundant on the

south sensor than on the ecliptic sensor. Zodiacal lisht obeervetions show

that interplanetary dust t8 concentrated towlrdl the elctpttc plane (5), and,

hence, the ecliptic sensor should observe st least as many lmpects as the

south sensor. Therefore, it is assumed that the observed difference of the

number of impacts is dub to the only difference betvean the sensors, i.e. the

entrence fiim in front of the ecliptic sensor, ktended laboratory studies of

penetration effects succeeded in lndentifyin8 the penetration limit of ' he

Helios film (6) for lov-danelty projectiles. It we shorn that only very 1or

density particles (densities baler ! 8/ca 3) produce upon impact the chsrle as

observed by the south sensor but ere not able to penetret_ the film in front

of the elcipt_ sensor. Xt m concluded that st least 20_ of the perticlme

detected by the south meet have densities below ! /Jam3. This Is in good
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asreement with the interpretation of zodiacal lISht observations which require

fluffy particles as major parts of the _nterplanetary dust population (7).

,tk:s I BOUT,SE,SOm

HELIOS ! ECLIPTIC SENSOR u,c.lz.1o_-_n.2s.lm

Dec.12.197_- Jan.26. 1970 M n i

0,v,, 2°,| ',

S , _i ,

6 IA ,
I. • !

" ' [12 7 i :
0 • • i , | i s - * • i • • • • a_

POSITIVE PULSE-HEIGHTNUMBER 2_ Lj-J
0LL.A l * | a i._ L _-_.• • * • • A

0 t |l& S°? II Ok) HI2DM_QP

In'osITIVI[ P't,I,LSO - OqlOl_ pe.ae4En

FI_._..S: Pulse- he isht distributions of the positive ion
¢herse. The line4r pulse-heiiht number scale corresponds to e
1osertthstc cherp scale coverlns 4 orders of saSnttude of
charBe •
(a) ecliptic sensor
(b) south sensor

OsculetinS orbital elelents of atcroaeteoroids have been computed _rom

the hspect spend, the spacecraft position end vletrlni dlrectlon st the tlu of

impact. Due to the lerse field of vlew and the uncertainty of /_pact speed

masurem_uc, only probability distributions of the orbits1 elesente of

stcroseteoroids are cosputed (8,9). Since pertictee in the observed Bus

ranis are subjected to r_iation pressure, a use-dependent node1 of rsdistlon

pressure (10) is tekan hits account. Hany of the particles _Lth muses below

10"ll S ere hyperbolic orbits, vherese s11 particles above 10"11S ere on bound

ot_otts. These 18rser particles contribute to the sodiscal MLsht. The Stoup

of hyperbolic particles is classtfind in perticlee entortni and lesvini the

solar system or beln$ detected close to their perihelion. Table I obeys that

claseifLcstLon for the particles from the first 6 orbits of Relios-I around

the Sun.
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Table I: NU_4BERSOF HYPERBOLICPARTICLES

(assuming a mass dependence of the rsdlatton pressure accordln 8 to [I0]).

South Sensor Ecliptic Sensor

Znto the solar system 17 9

Out of the solar system 26 II

Detected close to perihelion 16 4

A lares number of particles on hyperbolic orbits have been detected

before perihelion on their inbound trajectory. These particles have their

origin outside the orbit of Helios. The difference between the inbound and

outbound particles are S-meteoroids, which are generated inside the orbit of

Helios. Theoretical conslderstlons y/eld that the meltlnS of particles near

the sun and the subsequent increase is radiation pressure which bZovs the

pertlcles out of the solar system is n_t an efficient source of B-mteorolds

(II).

It has been sho_n theoretically (12,13) that there exists s strons

couplin8 of ass11 interplanetary and interstellar dust particles to cha

interplanetary mqnetlc field and plasma. A continuation of the HelLas

mission dutiq tines of increased solar activity nay allow the experimental

verification of these effects.
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CELESTIAL MECHANICS (E II)

P.I.: Wolfgang Kundt, Institute f_r Astrophysik der Universit@t, _f dem
Hugel 71, D-5300 Bonn, N. Oermany

CO.l.'s: William O. Melbourne, John D. Anderson, Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, California, U.S.A.

Short Description

The purpose of the experiment is a precise evaluation of the spacecraft

orbit based on radio signal return times (=range) and frequency shift

(=Doppler) measurements, at an accuracy of kilometers or less in the orbit

plane. For known non-gravitational forces such as the solar radiation

pressure, solar wind pressure, (smaller) radiation reactions, and for known

signal path distortions by the solar wind plasma, the orbit in space and time

can be used to test theories of gravity.

Achievements

Both missions, 1 and 2, were badly degraded (for E II) by insufficient

coverage (effective 0.5 year rather than 2 years) and quality of range

measurements. Nevertheless, this mission is so far the best spacecraft

mission for a test of theories of gravity because of the high orbital

eccentricity, and semi-major axis and well-defined non-gravitational

accelerations.

The latter are much easier to assess for Helios than for other missions,

for the following two reasons: (1) its high spin rate reduces thermal

gradients and tat_gential forces; (2) by accident the incltuatton angle of its

solar arrays has such a value that surface normals point on average at some

45 ° with regard to the Sun that the solar radiation pressure does not depend

sensitively on the time-varying surface absorptivity (a perpendicular

reflection screen experiences twice the force of an absorbing screen). The

reduction is by a factor of 30. In this way, radiation pressure can be

determined with a relative accuracy of some 3"10 -3, Just below the level of

orbit deformations due to deviations from Newtonian behaviour. For earlier

_ missions, non-gravltatlonal forces _re I0 to 30 times less well known.

t'

[
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A determination of post-Newtonian effects on the spacecraft orbit

requires sophisticated software. In view of the large unknown non-

gravitational perturbations, a simple Gaussian fit of Just the searched-for

post-Newtonian parameters is bound to give largely overoptimistic res111ts;

evidence of this is abundant. We, therefore, developed an iterated (extended

batch) filter algorithm suitable to tackle any multi-parameter orbit

determination. This filter, called COSMOS, has been written and tested by Dr.

Eckhard Krotscheck at Hamburg, supported by Dipl.-Math. O. Bohringer, and is

presently being applied to the real data.

Here is how COSMOS proceeds: Given at a particular time, a set of

initial data and estimated values for a certain number of parameters

describing perturbations, together elth estimated uncertainties, COSMOS

predicts their propagation in time; i.e. the program calculates a tube of

gro_ing cross section containing the predicted orbit. At the time of the next

measurement, improved phase space and parameter space data are calculated,

together With reduced uncertainties, and the next step begins. The

uncertainty tube thereby acquires a shape similar to the legs of an insect,

and (hopefully) converges towards the real orbit. Should there be an error in

the physical model, or systematic errors in the measured data, the filter

: diverges. A divergent run is, therefore, the rule rather than the exception.

Krotscheck and Boh:_._,._r have tested our program on an orbit simulated at

the institute of our co-e_perimentors. After several months they recovered It

completely. In this process they discolered that the claimed value of the

astronomical unit was in error by some 30 Km, that the conversion from

universal time to ephemeris time had been performed with insufficient

precision, and that the tropospheric corrections had not been included.

We are presently trying the program on real data, In this process we

find ourselves repeatedly hampered by the fact that successive batches of

range data, while intrinsically smooth at the _ l0 m level, are offset by

kilometers or more in an erratic fashion. Cleaning the data appears to be a

highly non-trivial procedure.

Publications

Kundt, W., "Spacecraft Orbit Analysts," contribution to Gravitazione
$perimentala, proceedings of the 1976 Pavia Symposium by the Aeesdemia
gazionale dei Lincei, ed. B. Bertotti, Rome, 1977.
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FARADAY ROTATION EXPERIMENT (E 12)

P.I.'s: G.S. Levy, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, Californla, U.S.A.

H. Volland, Radloastronomisches Instltut, Unlversltat Bonn,

Auf dem Hugel 71, Bonn, W. Germany

Co-I.'s: M.K. Bird, Radioastronomlsches Instltut, Unlversitst Bonn

C.T. Stelzreid, Jet Propulsion Laboratory

B.L. Seldel, Jet Propulsion Laboratory

Experiment Purpose/Instrumentation

The scientific goal of this experiment is the investigation of the

dynamic and quiescent structure of the masnettc fields and electron

density in the solar corona. The analysis uses Faraday rotatlon

(polarizatlon) data from the linearly polarlz_d S-band downlink carrier

sisnal, which probes the solar corona during times of spacecraft

superior conjunction.

T
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Hi@hli@hts of the Investi@ation--Helios E 12

A. Experiment Description

The short-period heliocentric orbit of the Helios spacecraft allows many

repeated opportunities for conducting radio science investigations of the solar

corona during superior conjunction. Since the orientation of the linearly [,o-

larized carrier signal is known as it leaves Helios, measurements of the coro-

nal contribution to signal Faraday rotation _ can be taken by tracking the

received signal polarization and transforming this value back to the ecliptic.
0

This Faraday rotation is related to the coronal magnetic field B and electron

density N bye

= C N B • ds radians (i)

"_ e

where C = 2.36 x IO4 in mks units

f = 2.296 GHz

and the integral (I) is taken along the (straight line) ray path.

The data for the Faraday rotation experiment consists of _(t) taken typi-

cally at 10 second intervals. Using the known occultation geometry, one may

obtain _(r,@,_), where (r,@,_) are the heliocentric coordinates of the point

of closest approach of the ray path (the "solar offset"). At S-band, one gen-

erally obtains good coronal Faraday rotation data on Helios at solar offsets R

between

2 RS<R< 12 RS. (2)

Table I is a list of the Helios occultation opportunities, i.e. periods for

which (2) is fulfilled, in the years 1975 - 1980. The number of polarization

tracking passes and average length of pass at each occultation are also noted.

A dash entry indicates that the tracking station was not available for a given

occultation interval because of deficiencies in instrumentation. A zero entry

means that the station could have been used for the Faraday rotation experi-

ment, but the tracking station was needed for other projects. Helios operations

1980023809-089
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at Effelsberg were terminated in August 1976. Due to technical difficulties,

the Faraday rotati, n experiment could not be continued at the German replace-

ment station in Weilheim. The NASA Deep Space Network added automatic polari-

zation tracking at the 64m stations in Canberra (DSS 43) and Madrid (DSS 63)

in early 1977. Goldstone (DSS 14) was refurbished in May 1977 and was thus

unavailable for the first occultation of Helios 2 in that year. The DSN was

committed to _ull coverage of the Viking primary mission in September 1976.

This unfortunately left no time for observations of the unique "double occulta-

tion" of both Helios spacecraft.

Additional details concerning the experimental technique and instrumenta-

tion may be found in (2). The problem of correction for the Earth's ionosphere

is addressed in a supplementary work (6).

B. Areas of Investigation

Three significantly different variations in the coronal Faraday rotation

may be observed during occultatlon:

(1) a slowly varying rise oF fall in measured Faraday rotation which is

obviously due to the increasing or decreasing ray path offset in a

slowly-rotating quasi-static corona.

b

ii .....
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(2) a ubiquitous random oscillation in _(t) with higher fl,lctuation am-

plitude at lower solar offset distances.

(3) an occasional almost discontinuous drop or jump in the polarization

angle which may be due to transient phenomena in the corona.

Each of the above aspects of the Faraday rotation data has been analyzed

and some highlights of these investigations are presented here.

(I) Quiescent corona and large-scale sector structure

The measured coronal Faraday rotation during an entire Effelsberg track-

ing pass on 29 Aug 1975 is shown in Fig. i. A large positive value of _ was
&

registered at this time at solar offsets from 2.6 - 3.1R S. The two hours of

station overlap with Goldstone demonstrate that the measured polarization angle

and even the superimposed fluctuations are seen at both widely-separated ground

stations.

The observations from the first occultation of Helios 1 in April 1975 are

presented in Fig. 2. The rotation of the quasi-statlc corona is responsible for

the zeros in recorded Faraday rotation on days 110 and 115. The coronal magnet-

ic field configuration at these points causes the signal to undergo negative

and positive Faraday rotations along different path segments, which exactly

cancel out upon traversal of the entire corona. When _(t) is changing rapidly,

it is necessary to maintain continuous polarization tracking in order to dis-

tinguish between _ and _ ± n_. The problem that can arise is illustrated by

the sets of points labeled "180 ° ambiguity" in Fig. 1, when only the Goldstone

station was operating.

Under the assumption that the corona not change its distribution of mag-

netic field B and electron density N during an occultation, one may derivee

the rough longitudinal variation of N B which is consistent with observed mag-e

netic field polarities in interplanetary space (3). An example of such a de-

rived longitudinal configuration is given in Fig. 3. The diagram represents

the Sun, viewe@ from the North ecliptic pole at 26.0 Apr 1975, cut into six
4

longitudinal bins containing differing values of NeB. The arrows in each bin

indicate the polarity of the derived magnetic field (assumed radial). The

arrows in the outer circle are the daily IMF polarities as inferred from polar i

cap magnetograms (Svalgaard-Mansurov Effect). The computed coronal Faraday?
!
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_ -| _ Im Figure 3. Large-scale coronal

DAYNUMIR¢OalT) structure derived from Faraday ro-

tation measurements during first

Figure 2. Coronal Faraday rotation occultation of Helios I in April
during %nbound occultation of Helios I 1975. View is from solar north

on solar west limb in April 1975. The pole onto the ecliptic. Hello-

circles are observationc; the solid long_tude is divided into 6 bins

curve is the theoretical result from of aiffering NB. Other details

the model of Fig. 3 (3). are given in the text and in (3).

rotation from this configuration is given by the solid curve in Fig. 2. Using

le_s than six bins in longitude, one cannot determine a configuration which

gives a satisfactory agreement with the observed Faraday rotation. Models with

more than 6 bins were not tested since the integrated Faraday rotation data

are simply inadequate for determination of smaller-scale features.

The structure derived in Fig. 3 agrees with the white light coronagraph

data taken at the west solar limb at 1.5 RS. Intensity enhancements and deple-

tions An the coronagraph data are indicated in the areas stretching outside

the outer circle and inside the inner circle of Fig. 3. The coronal hole seen

in white light on the solar west limb on 26 Apr 1975 is matched An longitude

by the derived minimum in N B. Similar success in comparison with observede
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solar longitudinal structure was reported in (5), where solar radio maps at

2.8 and 11 cm were taken on the Effelsberg telescope in support of the May 1976

occultation of Helios 2.

(2) Faraday rotation fluctuations

The slowly-varylng component of the function _(t) is superimposed with

finer scale fluctuations, which increase in intensity at smaller solar dis-

tances (Fig. 4). Preliminary spectral analyses of representative data segments

have indicated the presence of peaks in the power spectrum at certain preferred

frequencies (7,8). Since these fluctuations were also observed in group delay

time data taken simultaneously, it was conjectured that MHD waves in the fast

mode were present in the outer corona. Another possibility is that the density

oscillations are caused by non-linear propagation of the intermediate (Alfv@n)

wave. The Faraday rotation observations on Helios appear to offer one of the

few methods available for direct

detection of Alfv_nic disturbances

in the region of high solar wind @ _

acceleration

Y !. • ,_NI JllA.'/U

._

"" "\: I"
Figure 4. Amplitude of Fara- |. ._
day rotation fluctuations as _ ._._'K. _-

.,..o**o.o,.o,...,o._.-i. -"_,-...-.--_.
rio. Ther_t-mea.-.q_r, l __ • |

°.v,.**o.o,0,=,.,..., _ ._.large-scale trend during each

_.._aU.o, sharplywith _ ":._"" E
solar distance (8). __ " ."_. [

1 % Ii, 8• •• i,

?
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(3) Faraday rotation transients

On a number of occasions during Helios tracking at superior conjunction,

the measured polarization angle has abruptly moved to a new value tens of de-

grees from the projected baseline. The best example of this behavior was re-

corded on 18 July 1976 during a long tracking pass at the Effelsberg ground

station (lower panel of Fig. 5). The magnitude, duration and signature of this

event were similar to those seen during the solar occultatiun of Pioneer 6 dur-

ing solar maximum (1). A simple model of the possible magnetic and plasma den-

sity structure of the coronal disturbance causing this Faraday rotation tran-

sient has been proposed by Bird et al. (4). The occurrence frequency of such

events was determined to be of the same order as that of coronal mass ejection

events, which were observed by orbiting coronagraphs on OSO-7 and Skylab.

The Faraday rotation observations of spacecraft signals passing through

a cc:onal transient offer the possibility of directly determining the magnetic

field configuration within the dis-
S0LRR_F_T [S0L. RR0]I)

•"__ turbance. The separation of magnetic

and electron density effects can be

i accomplished by comparing coronal

images during and prior to appearance

t7_ Im UT flOURS! _ • :m Fiqur_.__5. _ , :av rotation
transie! _ _,:. )n west solar

limb on _, ,._' 1976. The

SOLRROFFKT l_. RS011I translen_ ,.nt (] _ " panel;s_ . m_ . m_ . m_ . _ . m._ . m

quiet trac_ c; ': _, evlou,_

_ day (uPl:._,rp..--I;, hi=h was

; III 41. 1111 UT IHOUI_II _, IW

t
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equipment and conditions for making white light coronal images and Faraday

rotation observations on spacecraft during solar occultation have never yet

been achieved. The first such opportunity _ ,II occur in late 1979 during the

annual occultatlons of the Helios spacecraft. A cooperative research effort

will be conducted with the help of the coronagr_ph on the Solar Maximum Mission

(SMM), which should be in operation at that time. A second measurement interval

would occur in late 1980 should beth SMM and Helios still be operational. The

Helios E12 experimental team is participating in this cooperative investigation

within the framework of the SMM Guest Investigator Program.

C. Extension to Hatur.al Coronal Probe Signals

The success enjoyed with the Faraday rotation experiment on the Helios

spacecraft has been extended to observations of linearly polarized pulsar sig-

nals during solar occultation. About 10% of the over 300 known pulsars are lo-

cated close enough to the ecliptic plane to obtain a measureable coronal Fara-

day effect at their annual superior conjunction. The observations of P_R 2045-16

at the Effelsberg radio telescope in January 1978 (9) were somewhat inconclu-

sive, since the recorded coronal contribution was only 3-4 times gr,:ater than

the typical measurement error. Later observations of PSR O525+21 (June i978)

showed a c-.onal Faraday rotation of _--80 ° at a minimum solar offset of about

4.8 RS over the south solar pole (10). Pulsars, in contrast to continuous emit-

ters, present no serious observational difficulties close to the Su_. The solar

sidelobe interference at decimetric wavelengths is about 100 times stronger

than the so,_rce, but the pulsed nature of the pulsar radiation allows integra-

tion of the signal over the pulse window without driving the telescope off

source. Present plans call for a continuation of tbts experiment at Effelsberg

in 1979 and 1980, during which the polar corona is expected to as,sine its typl-

csl solar maximum configuration.

D. Statuary

The Faraday rotatinn experiment on the Helios mission has been shown

capable of providing important information about the quiet end disturbed mag-

netic structure of the solar co:'ona in the range 2- 12 RS. The unexpectedly

long lifetime of the Helios spacecraft presents the possibility of continuing
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this investigation up into solar maximum, which would thereby complete one

solar cycle over which Faraday rotatlon observations (together with Pioneers 6

and 9) were made. Dynamic effects such as coronal transients should be occur-

ring at a much higher rate during solar maximum. This will increase the chances

for obtaining simultaneous recording of an event in white light (coronagraph

on SMM) and Faraday rotation (Helios in solar oc-_itation) during the unique

observation opportunities in late 1979 and 1980.
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_EL[OS OCCULTATIONEXPERDI_r---TIHE DELAYMEASUREMENTS(E OC)

P.I.: P. Edenhofer, University of Bochum, g. Germany

Co-I.'s: Pasquale B. Esposito, Jet Propulslon Laboratory, Pasadena,
Callfornla, U.S.A.

E. I_neburg, Deutsche Forschungs- und Versuchsanstalt f_r Luft-
und Raumfahrt (DFVLR), Oberpfaffenhofen, W. Germany

" The experiment used the S-band radio subsystem of the Relios spacecraft

to measure the Doppler frequency, range and columaar electron content during

solar occultationa. These data were collected from launch date until October

1975 end June 1976, _especttvely, when terminate_i by a breakdown of the

transponders aboard. For this experiment it was especlally important to use

the 210 ft. antennae of the NASADeep Space Network. The objective of the

ezperlment is to determine the spatlal distribution and temporal variations of

the solar plasm by remote sensing as close as about 3 solar radii, where the

Sun is inaccessible to in sltu measurements of electron density (I).

Highlights
b

There are several highlights from the scientific data analysis of the

Hellos occultation experiment. The most striking result obtained so far is

i that for the first time experlmental evldence of hydromagnetic waves

propagating outward frc_ the inner solar corona Into the interplanetary medium

has been establlshed (2,3,9,12). _nerelly, hydromagnetic waves are

associated with oscillation of the solar and interplanetary magnetic field and

! of the plasam density, as wall. These waves are thought to be /_portant in

the process of energy transport heating the solar chromosphere and corona. We
i observed such wave phenomena from an analysls of the temporal variations of

the coluamar electron content (number of electrons along the ray path)

measured wLthln heliocentric distances as close to the Sun as about 6 solar

radix (Helios-2) up to 50 solar radii (Hellos-l).

? -i
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frequency (6,9). _ _Ts = _

Generally, there is o-

excellent asreement

between the results from
r_

these t_o data streams

measured vla physical -_

effects completely _
different from each _ |

other. _ong comparable _ _

Interplanetary space

missions, the Helios

mission a_loved, for the _ "

first time, radio _ _

science to make such '"

complementary _-

propasatlon effects. _,

The lnvesttsations

covertns this wave _. ,, "_ - , _.
,5 I'o5 >-.?

analysis are to be FRFQUENZ (HZ) _E -._

continued; several

publications are beln$

prepared. Fi_. 3

As a new

I application of usln8 radio trackln8 spacecraft data from solar occultattons, a

method has been developed, usln8 the Hellos occultation experiment, to

deteruine the radial speed of propaaatin8 solar plas_ disturbances from two-

way, coherent Doppler data of s slnale 8round station (I0). The method

exploits the spatial separation (typical value Is 20 x 103 ks) of the

telemetry up- end do.link between station and spacecraft due to their

different relative velocities vtth respect to the ltne of slsht between Earth

=
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and probe. Solar plasma disturbances intersect the up- and dowullnk, giving

rise to a peak in the autocorrelatlon function of the Doppler residuals as

taken from a precise orbital determination. Thls method of analysis was first

i applied to Hellos-2 data, generally reveallng t_ peaks corresponding to a lowand high propagation speed, respectlvely; e.g. varying from 200 to 400 km/s to

600 to 1000 km/s. Specifically, a Doppler data set collected on Nay 28, 1976

(exit phase, Rellos-2; distance some 8 solar radii), yields approximate values

of 240 and 950 km/s. It is possible that the temporal variability in the

i autocorrelatton function taken from a tracking pass of usually several hours

indicates a changing velocity from a predominant plasma stream, or a

i superpositioning of several plasma streams, _hich tends to smear the

! autocorrelatlon peaks. Further analysis is promlslng and continuing.

The inversion of the Xellos electron content measurements turned out to

be another highlight of our occultation experiment (1,7,11). The derivation

of electron density values is most important to the description of solar

plasma phenomena in terms of physical quantities such as energy density and

power flux (e.g., Flg. 3). Following two alternative, complementary

approaches, inversion methods have been set up for this experiment to get

electron densities out of electron content for the first time in remote

sensing of solar plasma: Either a gross, but numerically stable, structure is

derived for the electron density distribution in space, or the spatial end

tmporal power of resolution is Incensed by using an inversion procedure that

takes into account _atlstlcal properties of the data measured end the

densities to be deduced (11). The problem of choosing statistical weights was

solved for rmote sensing by taking a Kaleum-type filter algorithm to

compromise resolution vs. Instablllty (7). It was possible by using this

approach to deduce t_o-dimensional electron densities resolving a radial

dependence as well as variations in solar longitude (closest heliocentric

distance 5.8 solar radii). The plasma Is allowed to show a steady-state rJodel

_ profile for electron density and velocity describing the overall fall-off in

density and the solar wind properties. This _ prior_ information is used in

our adaptive weighting scheme for inversion, improved by extrapolating

information from two additional sources (4,8)z marth-bound observations of

the scattered light of the Sun (coronagraph) and i_X sltu measurements of

electron density alone the Helios trajectory (heliocentric distance greater

then 65 solar radii at perihelion). The inversion turned out to be stable,
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even if performed for each individual data point which yields a maximum

resolution in time (sampling rate 2 minutes). Generally, the inversion

procedure takes sequential averases from appropriately selected subsets of

data.

Performing this Helios occultation experiment resulted in several

opportunttias to observe transient phenomena of extraordinary solar events.

One exciting example is an electron content data set collected on April 30 and

May l, 1976 (t_ weeks after perihelion), by Helios-2. At a distance ray path

of 26 solar radii to the Sun, the enormous variation in electron content us 6

times the steady-state background value within about 2.5 hours of

observation. From Earth-based astronomical observations, this event could be

identified as a larse solar flare ejecting huse quantities of solar plasma

across the Helios ray path into interplanetary space. Combinin8 these

different sources of information made possible the determination of flare

propasation speed to be as high as approximately 900 ka/s. Work is still in

prosress on the study of further transient events of enhanced solar activity

as obvious from several sets o£ electron content measurements.

A major objective of the Helios occultation experiment was to determine

characteristic quantities of an empirical model for the coronal electron

density distribution (3,4). This part of our scientific data analysis is near

completion (8); three model parameters were derived including their standard

deviations. The model describes a spherically symmetric, steady-state

electron density distribution coverins heliocentric distances between

approximately 3 and 215 solar radii (up to the Earth's orbit). A high-

precision orbit determination prosrsa developed at JPL was taken to evaluate

about 3.5 nonth8 of Helios-2 time delay data around solar occultation. Apart

'_ from their physical sisnificance, such solar electron density nodels are

especially useful for navisationel purposes in space mission operations, as

well. Iuprovln8 these sodels means increased accuracy for correetin8 track.inS

" data for solar plasu effects and allowing for a proper noise level. It could

be verified for our experinent that the values derived for elecron density are%

_. consistent with chat _ measured by scattered lisht on Earth and tn situ
_ ml_ the Helios trajectory (8),
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