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Summary 

An asymptotic description is derived for the interaction between a 

shock wave and a turbulent boundary layer in transonic flow, for a particular 

limiting cas e. The dimensionless difference between the external-flow 

velocity and critical sound speed is taken to be much smaller than one, but 

large in comparison with the dimensionless friction velocity. The basic 

results are derived for a flat plate, and corrections for longitudinal wall 

curvature and for flow in a circular pipe are also shown. Jn Part I, solu- 

tions are given for the wall pressure distribution and the shape of the shock 

wave. In Part II, solutions for the wall shear stress are obtained, and a 

criterion for incipient separation is derived. Part III contains simplified 

solutions for both the wall pressure and skin-friction distributions in the 

interaction region; these results are presented in a form suitable for use 

in computer programs. 



INTERACTION BETWEEN A NORMAL SHOCK WAVE 

AND A TURBULENT BOUNDARY LAYER 

AT HIGH TRANSONIC SPEEDS 

Part I - Pressure Distribution 

A. F. Messiter 





1. Introduction 

In several recent studies, asymptotic methods have been used success- 

fully for the derivation of rational approximations which describe the inter- 

action of a turbulent boundary layer and a weak, stationary, normal shock 

wave. It appears that correct limiting forms of the equations can be deter- 

mined, that numerical or analytical solutions to these equations are ob- 

tained easily enough to be of practical interest, and that numerical accu- 

racy may be adequate for important parameter ranges. In the limiting 

case to be considered here, still for an unseparated boundary layer, 

the shock wave extends close to the wall, the upstream influence is 

small, and analytical solutions can be obtained for most of the flow 

field. Pressure distributions are derived in Part I; the wall shear 

Stress and the possibility of predicting separation will .be discussed 

in Part II. 

In many transonic flows of interest, there occurs a shock wave which, 

in an inviscid-flow approximation, is normal to a solid boundary, at values 

of the Reynolds number large enough that the boundary layer along the wall 

is fully turbulent. Since the strength of the shock wave must decrease to 

zero in the supersonic part of the boundary layer, there can be no discon- 

tinuity in the pressure at the wall. It is observed that the shock wave 

becomes slightly curved and is displaced slightly in the upstream direc- 

tion. As the Mach number upstream is increased, still below the value 

required for separation, the shock wave extends further into the boun- 

dary layer; experimental results [ 1, 21 show an initially rapid rise 
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in the wall pressure, followed by a gradual decrease in the pressure 

gradient over a distance several times larger than the boundary layer 

thickness. 

Asymptotic descriptions of these flows, in the limit of infinite Reynolds 

number, have been discussed in References [3] through [lo]; in particular, 

Ref. [8] contains the first steps of the present work. In each of these 

studies, the representation of the undisturbed boundary layer in terms of a 

velocity-defect layer and a wall layer [ll, 12,131 is regarded as providing an 

asymptotic description as the Reynolds number tends to infinity [14-181. 

The pressure gradient in the boundary layer is large near the shock wave, 

and consequently the forces resulting from changes in the Reynolds stresses 

are of higher order than terms retained, in most of the boundary layer. 

Thus, as for laminar flow [19,20,21] , an asymptotic descr’iption of the 

changes in the mean flow can be obtained with the use of inviscid-flow equa- 

tions for most of the boundary layer. 

The form of the velocity profile, however, implies two important 

differences from the laminar-flow case. First, for an unseparated turbu- 

lent boundary layer the wall layer is extremely thin, and the displacement 

effect resulting from deceleration of fluid close to the wall remains very 

small, even in a large pressure gradient. Thus, if the undisturbed velocity 

profile is known outside the wall layer, an approximation to the pressure 

can be found without knowledge of the flow details near the wall and there- 

fore without any further assumption about the nature of the turbulent 

stresses. Second, for a slightly supersonic external flow the sonic line is 
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located at an arbitrary position (outside the wall layer) in the undisturbed 

boundary layer, depending on the relative sizes of the nondimensional fric- 

tion velocity and the nondimensional difference between the fluid velocity 

and the critical sound speed in the external flow. As the Reynolds number 

tends to infinity, one can then study three cases, such that the ratio of 

these parameters tends to infinity, remains constant, or approaches zero. 

Adamson and Feo [3] considered an incident oblique shock wave in a 

flow with velocity only slightly greater than the sound speed, such that the 

sonic line is located very close to the edge of the boundary layer. The 

corresponding asymptotic formulation was shown to lead to a local-inter- 

action problem requiring solution of the transonic small-disturbance equa- 

tions for the local perturbations in the external flow, expressed in appro- 

priately scaled variables. The influence of the boundary layer is repre- 

sented on this scale through an effective wall boundary condition specifying 

a linear relationship between the streamline slope and the pressure gradi- 

ent. Melnik and Grossman [4] studied a normal shock wave having strength, 

as measured by the nondimensional pressure jump, of the same order as 

the friction velocity, so that in the limit the sonic line is at an arbitrary 

location in the boundary layer. Numerical solutions of the transonic small;; 

disturbance equations were obtained for perturbations in the defect portion 

of the boundary layer and in the neighboring external flow. Changes in the 

wall layer were also discussed in each of these papers. Melnik and Grossman 

later [5, 61 obtained additional numerical solutions for axisymmetric pipe 

flow. At higher upstream speeds, which might be characterized as “high 
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transonic speeds,” the shock wave is stronger but the boundary layer can 

remain unseparated. For this case, a first approximation for the flow per- 

turbations outside the wall layer was given by Adamson and Messiter [8] . 

The shock-wave strength, although still small, was taken to be large in com- 

parison with the nondimensional friction velocity, so that in the undisturbed 

boundary layer the distance from the sonic line to the wall is much smaller 

than the boundary-layer thickness. The corresponding problem has also 

been discussed for an incident oblique shock wave [7, q] . A brief prelimi- 

nary description of some of the present results was given in Ref.. [lo] ; a 

few details have since been modified. 

In the present work, analytical solutions are derived which incorporate 

additional physical effects as higher-order terms for the case, first dis- 

cussed rather briefly in Ref. [8] , when the sonic line is very close to the 

wall. The functional form used for the undisturbed velocity profile is des- 

cribed in Section 2, to indicate how various parameters will be calculated 

for later comparison with experiment. The basic solutions for the pressure 

distribution are derived in Section 3. ha Section 4 corrections are added 

for flow along a wall having longitudinal curvature and for flow in a circular 

pipe, and comparisons with available experimental data are shown. The 

restriction to weak shock waves is removed in Appendix A, and it is verified 

there that the simpler solutions of Section 3 are adequate. Some additional 

results pertinent to the asymptotic matching of solutions in the region of most 

rapid pressure rise, near the beginning of the interaction, are derived in 

Appendix B. 
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2. Undisturbed Velocity Profile 

Nondimensional rectangular coordinates X and Y are measured alnng 

and normal to the wall, respectively, with Y = 0 at the wall and X = 0 at 

some point on the shock wave, e. g., at the mtersection of the shock wave 

with the edge of the boundary layer as defined below. The reference length 

is a geometric length such as the length of the boundary layer from a lead- 

ing edge up to the shock wave. The nondimensional mean-velocity compo- 

nents U and V, referred ts the critical sound speed in the external flow, 

are in the X and Y directions respectively, and the term p ’ VI /p has been 

included in V. Here primes denote fluctuations about the mean, and p ’ V’ 

denotes an average value. The nondimensional mean pressure P, density 

p, temperature T, and viscosity coefficient p are referred to the criti- 

cal values of pressure, density, and temperature, and the corresponding 

viscosity coefficient, in the flow just outside the boundary layer and ahead of 

the shock wave. The sum of the nondimensional Reynolds stress and viscous 

stress, in the boundary-layer approximation, is denoted by T, and has been 

made nondimensional with twice the dynamic pressure, in terms of the same 

reference quantities. For later convenience the friction velocity u- is made -I- 

nondimensional using the external-flow density: 

2 Tw 
u = -= = l+E 7 

‘e 
$ UZCf, ue (2.1) 

where the subscripts e and w indicate values in the external flow and at tha 

wall, respectively, and c 
f 

is the undisturbed value of the skin friction 

coefficient, referred as usual to the dynamic pressure in the external flow. 
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The nondimensional difference between the fluid velocity and the critical 

sound speed in the external flow is E , and in the present case u << E c-c 1. 
l- 

For simplicity, an adiabatic wall is assumed and the total enthalpy is taken 

to be uniform. The ratio of specific heats is y and is constant. 

As in references cited above, it is assumed that the undisturbed 

boundary layer can be described asymptotically in terms of a velocity-de- 

fect layer and a wall layer. The defect layer occupies most of the boundary 

layer, and its thickness is taken equal to a boundary-layer thiclmess 6. 

The velocity differs from the external-flow velocity by an amount of order 

ur, the shear stress is T = O(uz), and the layer thickness is 6 = O(uT). 

The much thinner wall layer has thickness denoted by g, and the velocity 

there is small, of order ur. Coordinates measured in terms of these non- 

dimensional thicknesses are defined by 

%J 
g= !+y 1 

e T T Re 
(2. 3) 

e 

where x << 6, and x has been set equal to the ratio of the nondimensional 

local kinematic viscosity and a friction velocity u,CT,/ Te) 112 

based on the density at the wall. The Reynolds number Re is based on the 

geometric reference length, undisturbed external-flow velocity, and 

kinematic viscosity; all parameters are understood to be evaluated imr-ne- 

diately upstream of the shock wave. 
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The velocity Uu in the undisturbed boundary layer just ahead of the 

shock wave is expressed in the defect layer in terms of y and in the wall 

layer in terms of F, as follows: 

uU 
N ue + UTUO1(YL y = O(1) (2.4) 

U 
U 

- u,‘Tw/ Te)1’2 G,,(;L ;= O(1) (2.5) 

The form of the profile is shown in Fig. 1 for ur <C E << 1. Equations 

(2.4) and (2. 5) are [13] , respectively, the “law of the wake” and the “law 

of the wall,” written here for a compressible boundary layer, and are 

taken to be asymptotic representations valid as ur + 0, with y and G held 

fixed respectively. Throughout most of the analysis also E + 0 such that 

UT/E -0. In the wall layer the Reynolds stress and the viscous stress 

are both of the same order as the wall shear stress T 
W 

Since 

Y = O(E) is extremely small, the momentum equation gives T - -rw. As 

;= Y/L*, the viscous stress becomes extremely small, while T re- 

mains equal to ~~ in the limit, provided that also y = Y/ 6 + 0. The mix- 

ing length approximation ~‘p (ydUu/dy)’ = T t . . . is introduced here for 
W 

y << 1 and c >> 1, where K is the von K&rm&r constant, taken equal to 

0.41. For a perfect gas with uniform total enthalpy, p T = pwTw and 

T = $(u t 1) - 3~ - l)U2. Integration gives, for y << 1 and y >> 1, 

U 
U 

= I- sin{ I--+Tw/Te)’ up -l ln 7 t c,) (2.6) 

where c = constant and r = (Y t 1) 112 
/h l 

- ,y2 This is van Driest’s 

[22] result, with the added simplifying assumption of uniform total enthalpy. 
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Expansions of Eqn. (2.6) for Uu + 1 t E and for Uu * 0 shpuld agree, 

respectively, with expansions of the defect-layer velocity (2.4) as y + 0 and 

of the wall-layer velocity (2.5) as y * 03. For Uu + 1 t E and Uu --c 0, 

respectively, Eqn. (2.6) gives 

U 
U 

- 1 f E + (ur/K)(ln y - 2lT) (2.7) 

U 
U 

- u~(T,/T,)~‘~(K -’ 1,&c, (2.8) 

where II is Coles’ [13] profile parameter; c = 5.0 and, for zero 

pressure gradient, TI = 0.5 or perhaps a little larger. Since v = (6/$y, 

comparison of Eqns. (2. 6) and (2.7) gives 

u K -%~(a/$ = CT,/T,’ l/2 
7 

U$E ) - UT(2rk -’ -I- cl (2.9) 

where Ui(e ) = I? sin-‘(IYWIUe). The expansions (2.7) and (2.8) require, 

respectively, y - 0 slowly and y + co slowly as ur + 0; since 

U 
I- 

= O(l/ln Re), from Eqn. (2. q), one might take, e.g., y = O(urJ 

and y = O(uin) as u 
I- 

+ 0, where m > 0 and n > 0. A difference from the 

incompressible case arises because Eqn. (2.8) with y = (6/6)y does not 

agree with Eqn. (2.7). That is, the expansion as y + co of the wall-layer 

solution does not agree with the expansion as y -r 0 of the defect-layer solu- 

tion. Thus these solutions have no common domain of validity and cannot 

be matched. This type of problem has been discussed in detail by Lager- 

Strom and Casten [23] , with a model example related to flow at low Reynolds 

number. Jn the present case, the density has different values for y = O(1) 
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and for T = O(l), and the difficulty is resolved by use of the solution (2.6) 

for i C-Z Y << 6.; this feature was also noted by Adamson and Feo [3] and 

by Melnik and Grossman [4] . 

The defect layer, where y = O(l), has nearly constant density and is 

described in a first approximation by incompressible-flow equations. The 

domain of validity of Eqn. (2.6) can be made to include y = O(1) if 

K -‘(In y - 2lI) is replaced by uol(y), where uol(y) is the same function as 

for incompressible flow. Then 

U 
U 

= r sh{sin-l(r-lue) + r-1(Tw~e)1'2"r~01(~)) (2,101 

Expansion for ur + 0 gives Eqn. (2.4) if y is held fixed, Eqn. (2.7) if 

y + 0 sufficiently slowly that also u ln y * 0, and Eqn. (2.6) if 
7 

y = (6 /F)G -+ 0 more rapidly, such that ur ln y is held fixed. The use of 

Eqn. (2.10) was suggested by Maise and McDonald [24] , who showed that 

this assumed profile permits good correlation with experimental data for 

adcabatic flat-plate boundary layers. Their interpretation of Eqn. (2.10) 

notes that a transformed velocity I? sin -l(rwluuj is predicted to have the 

incompressible form Ui (E ) + (Tw/Te) l/2 ur uol(y) everywhere outside the 

wall layer. 

A second relation between 6 and ur for a P/a X = 0 can be found with 

the help of the von K&m& integral d the momentum equation, following a 

derivation similar to that for incompressible flow given, e. g., by 

Cebeci and Smith [25] . The result is, to second order in ur/U 
e’ 
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T 
2 

co2 
U 

-+-(3 F- 1) j- uOldy) -r 

ml e 0 
e 

The positive constant ml is. defined by 

ml = - 8 jom uOIWdy 

(2.11) 

(2.12) 

and occurs in another context in the following section. For analytical 

purposes, the function uol(y) is represented in Coles’ [13] form 

uol(y) = K -l ln y - rfK -+1 + cos TryI (2.13) 

for 0 < y < 1, with uol(y) = 0 for y > 1. 

In the derivation which follows, the boundary-layer thickness is taken 

as one of two important characteristic lengths. The other length is the dis- 

tance from the wall to the sonic line in the undisturbed boundary layer, de- 

noted in nondimensional form by 6 *. Substituting Eqn (2. 13) in Eqn. (2. lo), 

setting y = 6,/h, and expanding for 6 */6 -, 0 gives 

UTK -%6 /6 *) = ‘(Te/Tw)1’2[Ui(c ) - vi(o)] _ 2n K -luT (2.14) 

As E ‘0, ln(6/6 * )-KU ;le [l - (v - l)E/4 t . ..] - 2r1; thus 6,/h +O 

if ur/e +O. An alternate form of the velocity profile (2. 6) in terms of a 

* 
coordinate y = Y/6*, is 

uU 
= I? sin{sin -‘(r-l) t T=1(Tw/Te)1/2~ -+n y*> (2.15) 

for y + 0 and y + co. 
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3. Interaction Along a Plane Wall 

As ur 4 0, the orders of magnitude of the mean pressure gradient and 

fluid acceleration near the shock wave are larger than in the undisturbed 

boundary layer. The Reynoldsrstress transport equations can be used to 

show that in most of the boundary layer the contributions to the mean forces 

resulting from changes in the turbulent stresses are sufficiently small, in 

comparison with the pressure and inertia terms, that they may be neglected 

as u + 0, not only in a first approximation but also in the calculation of 
-I- 

some higher-order terms. Correct asymptotic representations of the mean 

velocity and pressure perturbations can therefore be derived using inviscid- 

flow equations. Also, as noted at the end of this section, displacement 

effects resulting from flow changes very close to the wall are ext’remely 

small, and so the largest terms in the solution for V should approach 

zero as the distance from the wall decreases. 

In the equations which follow, all laminar and turbulent stresses are 

neglected, as are the entropy changes across the shock wave; order-of- 

magnitude estimates given at the end of this section show that the neglected 

terms are in fact of higher order than any of the terms retained. The equa- 

tions describing the fluid motion can then be written in the following form: 
2 

2 
a = 4 (y + 1) - ;cv - 1)q2 

p&v;; = -Y -lv P 

(3.1) 

(3.2) 

(3.3) 

13 



Here <, q, and a = (P/p) 
112 

are, respectively, the velocity vector, the 

magnitude of the velocity, and the sound speed, all nondimensional with the 

critical sound speed in the external flow just ahead of the shock wave. The 

gradient and divergence operators imply differentiation with respect to the 

nondimensional variables X and Y. Crocco ’ s theorem, simplified by the 

assumption of uniform total enthalpy, is 

Fix&y -1 
TVs (3.4) 

where s = curl ;T, and the specific entropy s has been made nondimension- 

al with the gas constant R. Since the upstream value of V contributes terms 

of higher order than those to be retained here, the shock-polar equation 

becomes 

2 
vd 

= (uu-ud)2 
UuUd - 1 

zu;/ty +u - uJuUd - 1) 
(3.5) 

where the subscripts u and d here denote, respectively, values immediately 

upstream and downstream of the shock wave. Since the jump in the velocity 

vector across a shock wave is in a direction normal to the shock, the shock-- 

wave slope is 

dX 
S vd - =- 

dY 
uu-“d 

(3.6) 

where the shock-wave location is denoted by X = Xs(Y). 
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If the nondimensional friction velocity uT is SITUPS in comparison with 

the nondimensional shock-wave strength E , the sonic line in the undisturbed 

boundary layer is very close to the wall, as can be seen from Eqn. (2.14) 

and Fig. 1. That is, if u 7 + 0 and ur/e * 0, then also 6* /6 -. 0. A com- 

plete description of the local pressure changes would require both an “outer” 

solution, obtained by taking a limit of the equations with coordinates Y/6 and 

X/A held fixed, and an “inner” solution, obtained with Y/d, and X/A, 

fixed, for suitable choices of A and A:<. The shock wave can extend nearly 

to the wall, as shown in Fig. 2, andso the upstream influence described 

w by the inner solution is very small; it is shown later that 4 = O(u, 6 *), 

where 6 */6 = O(exp(-K E/u~)) from Eqn. (2.14). For the outer solution, 

therefore, Uu can be taken equal to the undisturbed velocity (2.10) or (2.4). 

The inner solution describes perturbations about the undisturbed boundary- 

layer flow, while the outer solution describes perturbations about a different 

boundary-layer flow, downstream of the shock wave; the two solutions 

should match in a proper asymptotic sense. 

For Y = O(6) the length scale A in the downstream direction is found 

from Eqn. (3.1) and the vorticity equation to be A = O(bo6), where 

bz(e ) = 1 - Mi and MO is the Mach number in the external flow behind a 

normal shock wave. Coordinates x and y are defined by 

X x = - 
b06 

where 

(3.7) 

bO 

= (y +phl/2{1 +2y -kl)E t . ..I (3.8) 
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Since the shock wave is nearly normal, the shock-polar equation (3. 5) gives 

Ud=(ltE) -l t O(UT). This result suggests that throughout the flow down- 

stream of the shock wave U should be represented as a constant value 

1-E t... plus small perturbations of order u . 
7 

It is convenient to sepa- 

rate the rotational part, which can be calculated from Crocco’ s theorem 

(3.4), and the irrotational part, which is to be found from the solution of 

Eqn. 

u + I- 

(3.1) satisfying the appropriate boundary conditions. In the limit’as 

0 with x and y held fixed, the velocity components are then expressed 

in the form 

u = (lte) 
-1 

t uTuy (x,y;c) t u;uy(X,y;4 + . . . 

V/bob ) = 

(3.9) 

(3.10) 

where the functions of E shown will be expanded below for E - 0. 

The entropy s is nearly constant along a streamline, and the equation 

of state gives P = p T, since changes in p ’ T’ are of higher order than 

terms to be retained here. It follows that along a streamline P T -Y 1% -1) 

N p T-v/h-1) 
e u 

to the order required here. Substitution of T = a2 from Eqn. 

(3.2) then gives the pressure as 

p/p e 
= 1 -y(U-Uu) -y2(uu-9wJu) + -*- (3.11) 

Also, Crocco’ s theorem gives fi - y 
-1 

P ds/d+, where Gy = p U, +x = - pV, 

and L? = V 
X 

- U y, and so Q/P - Qu/Pe along ‘a streamline. Substitution in 

the expression for Q allows calculation of terms in the rotational part of U: 
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u1 
Ir) = (lt2ye +...)uol(y) (3.12) 

(r) = -Y 2 
all 

u2 4 
Uol(Y) -l-y s dol(Y) + lx(x’ Y)dY + l l l 

Y 
(3.13) 

Substitution of the representations (3.9) and (3.10) into Eqn. (3.1) leads to 

differential equations for +, and +2: 

+ 1xx++1yy = O (3.14) 

t (1+x )(Mo/bo)‘(2 + (Y -W~)(u(lr) + +lx)+lxx 

t(1+e)M2+ (r) 
0 lylUly -I- 2+ 

h? 
(3.15) 

Expansion of the shockwave slope (3.6) gives, after integration, the shock- 

wave location x ;: xS(y;uT,e) as 

x =ux 
S 

T sl(Y;E 1 + *a - = 2E 5 (1t$e t . . . H+,(o, y;c 1 - +p, l;E 11 

t . . . (3.16) 

where the origin of coordinates has been chosen so thatx 
S 

=Oaty=l. 

Thus the shock wave is located atx = 0 in a first approximation, as implied 

in Fig. 2, and the flow properties are to be studied in the quarter-plane 

x> 0, y> 0. Boundary conditions atx = 0 are found from the shock-polar 

equation (3.5), expanded in Taylor series aboutx = 0: 

$lx@, Y) = -2{ 1 t (y -l)E t . ..)u.,(y) (3.17) 

+2x(0, y) = -xsl(y)+lxx(o, Y) +$ (1 - (y - 3 Q”‘y) 

-y-l 2 
2 Uol(Y) + - - l 

(3.18) 

It is also required that Q,,(x,O) = (p,,(x,O) = 0 and thatalldisturbances 

approach zero as x2 ty2 * CD. 
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The limiting form of 91 as E + 0 was first given in Ref. [8] ; here a 

term proportional to E is included. The solution is expressed in terms of a 

distribution of sources along the y-axis: 

(3.19) 

The extended definition uol(-y) = uol(y) gives a potential for - co < .y < co 

which is symmetric about y = 0 and thus satisfies the boundary condition 

there. As x2 t y2 - 0, the contribution to the complex velocity is 

uT(4 1X -i41YJ = - 
2UT{l t(y -1)E. + I.. IK -+hl 2 - 2rI)t... (3.20) 

where z = x t iy. The pressure P 
W 

at the wall found from evaluation of Eqn. 

(3. 11) as y * 0 is 

pw -pf cn uOlh)du 

P = .2y UT{1 t(2y-l)E t...jp J (3.21) 

e 0 
2 2 t... 

x +rl 

whe r e Pf/Pe = 1 ty(2e t (2y -l)E2 t...) is the pressure ratio across a 

normal shock wave when the upstream speed is U ‘1-l-E. 
e At larger dis- 

tances, as x2 t y2 + 03, 

~~(4~~ - i4 ly) = 
ml 

UT{1 -F(y-1)E t...]{~+..‘I (3.22) 

where ml is defined by Eqn. (2.12); substitution of the approximate analyti- 

cal form (2.13) gives m 1 = 8(1 t R)/K. That is, the integrated effect is 

that of a concentrated source having nondimensional volume strength per 

unit length equal to (1 t . . . )mluT6. One-fourth of this fluid appears to be 

added to the external flow in the quadrant x > 0, y > 0. Since 
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d(p U) - (1 - Mt)dU along a streamline downstream of the shock wave, and 

l 0 - M‘ - (y+l)E, the local increase in the boundary-layer displacement 

thickness is $y fl)E mluT6 + . . . , as can also be found by direct calcula- 

tion. An equivalent observation was made for E = O(uT) by Mehik and 

Grossman [5,6] . Perturbations in turbulent stresses contribute only a 

higher-order change locally; the present result does not include the fur- 

ther displacement effect which occurs on a larger length scale as a new 

equilibrium velocity profile is approached. Finally, the shock-wave shape 

found from Eqn. (3.16) is, for y * 0, 

X,(Y) - xp = 26 2 (1 t (y -$)e t . ..I{ tyt . ..I 

and, for y + co, 

XJY) - xs~O) = 
ml 2 (1 +(y -$)E +...I{- 
2a Iny 

uo1h7)bj drj + . . .). 

(3.23) 

(3.24) 

For y = Y/b + co, the shock-wave displacement continues to increase, and 

should be matched with a suitable perturbed external-flow solution evaluated 

as Y+O. 

The solution for 4, can be found in two parts. A particular solution 

of the differential equation (3.15) can be made to satisfy homogeneous 

boundary conditions 42x(O, y) = 4,,(x, 0) = 0 if sources aredistributed 

over the entire x, y plane with the source strength chosen to be an even 

function of both x and y. The boundary condition (3.18) at x = 0 is then 

satisfied by a distribution of sources along the y-axis, with strength taken 
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to be an even function of y SO that 4 
2Y 

remains zero at y = 0, as in the 

solution for 4,. Of special interest is the total source strength found by 

carrying, out the integrations as x 
2 2 

-I- y - co, with the help of integrations 

by parts and Eqns. (3.14) and (3.17). The pressure, correct to order 

+x2 -f- y 
2 -112 

1 as x2 t y2 * 03, and the second-order source strength m2 

are found to be 

.P - Pf 

P =- 
y{uT[l t(2y-1)E t...]ml +uz(l t...)m2 t...) 

e 

1 x .- - 
2a 2 2 (3.25) 

x +Y 

O"2 
m2 = 2(5y t9)s uOIWy - 2(y +l) j 

O” 2 4 ly(x, 0) dy 0 0 (3.26) 

For a constant value of y such that y >> 1, P initially decreases as x in- 

creases from zero, reaches a minimum at x = y, and then increases again. 

However, there is a small error at the shock wave x = x,(y) = O(E 
-1 

UT h-l y), 

because the largest term in Eqn. (3.25) is O(E 
-1 2 

uT ln y/y 
2 

), whereas the 

correct first approximation is found from the shock-polar equation as 

-;y B 
-1 2 2 2 

uTml/(2q) l If it is desired, the accuracy of Eqn. (3.25) can 

be improved near x = xs by addition of a term - y uZ~~+~~(O, y)/(x’ + Y2) 

2 
with y 42x(O, y) approximated by its leading terms O(ln y) and O(L) as 

y + 00; away from x = xs the added term is smaller than the second-order 

term originally shown. 

As x2 t y2 -. 0, the perturbation velocity becomes large, and it is 

again clear that an inner solution is required. For the choice of origin 

20 



shown in Eqn. (3.16) and in Fig. 2, x,(O) # 0 and so the singularity in Eqn. 

(3. 20) is displaced from its correct location through a distance 

- xp = O(UT/E 1. The-domain of validity near x = 0 can be extended slightly 

by addition of a term - 2uT~ -‘(l t . . .)ln(l - xs(0)/z) in Eqn. (3.20) for 

~~(4~~ - i4 lyL Th is is accomplished formally by taking a limit as x + 0 

with e x/uT held fixed and then constructing a composite solution. The cor- 

rection is local, and introduces only a smaller change of order E -“uf/ I z I 

when )z/xs(0) ] >> 1. The modification is, however, necessary for matching 

with the inner solution. A discussion of the inner solution given in Ref. [8] 

is briefly reviewed here, in a slightly modified form. For Y = 0(6*), the 

undisturbed velocity is U 
U 

= 1 t O(UT), and the differential equations show 

that changes in U along a 

1’2 AX = O(uT 6%). Inner 

u8 and &C are defined by 

streamline are also O(uT) in a distance 

variables x* and y* and disturbance velocities 

(3.27) 

(K T1’2 1/2 x::: = e ) L X - bo6xs(0)] 
wp6 f 

(Y +I) T * 

K T1’2 
u* = e v:c = 

(K Ti’2) 3’2V 

U 
w - 11, 

(Y $1) 1’2u3’2 

(3.28) 
7 

7 

where factors (K Tt’2)1’2 have been included for convenience. Equation 

(3.1) and the vorticity equation are then approximated by the transonic small- 

disturbance equations with prescribed vorticity: 

* u::c a $: ,a x - av*/ay* +... = 0 (3.29) 

21 



(3. 30) 

‘The shockwave relations (3.5) and (3.6) become 

*2 
Vd 

(3.31) 

* * 
dxs 

“d -=- 

dy’: u; -u; 
(3.32) 

where the subscripts u and d again refer to quantities immediately upstream 

and downstream of the shock wave and the shock-wave location is given by 

X* = XI (y*). As x* + - co, u* approaches the. undisturbed form 

Cl* -lny*; the boundary condition at the wall is v* (x*, 0) = 0; and as 

x* -+ co, y* + cm the solution should agree with the outer solution evalu- 

ated for x - x,(O) + 0, y + 0. 

Although complete solutions for u* and V=: can only be obtained numer- 

ically, the asymptotic behavior is found relatively easily upstream as 

x* + - co and downstream as x* * oo, y* -f co. As x* + - co, the solution 

has the form 
8 

ll* -JOY* +eh f(y*), v* “k 
-lekxr, f, (y* ) (3.33) 

where f” - (In y*)k2f = 0 subject to the conditions that f’ (0) = 0 and that 

incoming disturbances be absent as y* + co; the latter implies 

f’ N - (h y:ql’2 kfasy* +oo. Numerical integration gives k = 0. 59. 

Downstream a suitable class of intermediate limits should be studied. As 

y* 4 al, a shock wave is present and must approach the nearly normal 

shock wave described by the outer solution. Thus, for y* + oo, since 
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* 
U -1ny*, Eqns. (3. 31) and (3. 32) give u* (0, y”) N - ln y*. If an inter- 

U 

* * 
mediate variable y 

rl 
= y /r)(ur ,c ) is introduced, with l<< T](u~ ,E ) << 6 /6 , 

then In y* -lnr)+lny 
rl’ 

where the first term is large and constant where- 

as the second term is O(1) and variable. In each of the differential equa- 

tions (3.29) and (3.30) the two largest terms remain of the same order if 

* 
X = O(r~fi ) and v* = O(fG ); then x* and y* (ln y 

* l/2 
) are of the 

same order. In the limit as x* * co and y* * co with x* /(y* In y*) held r 

fixed, ln y* H ln x* and so also x* /(y * AZ) - X* /(y” )dhT). For the 

derivation of higher-order terms, not to be shown here, it is convenient to 

make this replacement. In this limit, then, the largest terms in u* + ln y* 

and (ln x*‘) 
-l/2 * 

v can be written as functions of x*/(y* f-- In x*). The solu- 

tions are easily obtained and the results for U and V finally can be rewritten 

as 

u - 1 + (CTi’2)-lu 
T 

ln y* - (i(T;~2)-lu 
T 

hl{x*2(L,x*)-1 + y*2] (3.34) 

l/2 -1 
V - {(-i+l)k Te ) 

* l/2 
urlnx I 

l/2 -1 
2(~ Te ) uT tan-l{y* (ln ~*)l’~/x*}(3.35) 

Factors (1 - M 
2 l/2 

) - {(y+l)(KT~‘2)-?ITln x*>1’2, where M is the local 

Mach number, appear in the locations expected for solutions of the Prandtl- 

Glauert equation. The flow is represented by superposition of a known rota- 

tional flow and an initially unknown irrotational flow, described in terms of 

perturbation velocities U - 1 and (1 - M 
2 -l/2 

) V which are linear in 

We 
1/2)-l 

uT and are functions of variables (1-M 2 -1’2[.X - bo6xs(0)]/6 * ) 

and Y/6,. For a limit such that [x - ~~(0)) 
2 

t y2 + 0 sufficiently slowly, 

23 



with (1 - M 
2 l/2 

) y/[x-xs(0)] held fixed, the largest terms obtained if Eqns. 

(3. 34) and (3. 35) are rewritten in the outer variables x and y are identical 

to the largest terms found from Eqns. (3.9) and (3. lo), with the help of 

Eqn. (3. 12) and a modified Eqn. (3.20) in which z is replaced by x - ~~(0) 

t iy. Introduction of the inner solution thus removes the logarithmic singu- 

larity which appears in the outer solutions for the velocity and the pressure 

as x, y - 0. 

In the derivation of these results, terms 8 (p U’ U’ )/a X, 8 (p TJ’ V’ )/a Y, 

etc., were omitted from the momentum equation, and therefore a correspond- 

ing set of terms was omitted in Eqn. (3. 1) and in the calculation of the 

changes in vorticity. Expressions for these quantities, and therefore also 

order-of-magnitude error estimates for the solutions given above, can be 

obtained from the Reynolds-stress transport equations [25] . The equation 

for a (p U’ U’ )/ax contains, in particular, terms proportional to 

pu’ i u/ax. 
-. 

Ahead of the shock wave p U’ U’ is expected to be of the 

same order as b U’ V’ , of order uf. Relative changes at the shock wave 

have been estimated [26] to be proportional to the shock wave strength and 

are therefore small. Thus, p U’ U’ = O(z) downstream of the shock also; 

since a u/ax = )(E -li2) for X = O(E l/2 u7), the product is O(uze 42) . 

Other terms involving velocity correlations are likewise at most 

O(U26 -u2 ). Neglected terms in the expansion of Eqn. (3. 1) and the vorticity 
-I- 

equation are also of this order, and can easily be shown to be small in 

comparison with any of the terms retained. Similarly, the derivative of 

the entropy along a mean streamline contains terms proportional to 
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p uf VI a u/a Y, etc., and therefore is small enough to be neglected in the 

derivations above. At the shock wave the entropy jump for Y = O(6) con- 

tains a constant term of order E 
3 

and functions of y which are of order 

2 2 
EU EU 7’ T’ ‘-- l 

It can then be shown that these changes are also suf- 

ficiently small that Q/P and PT 
-Y/(Y-1) remain constant along a mean 

streamline to the order considered here. Finally, the changes in Reynolds 

stresses become important in a sublayer where the perturbation in T Y is 

no longer negligible in comparison with the perturbation in p UUx. For 

x = O(E li2u ) 
T’ 

since T = O(ut) and Ux = O(E-l”), the sublayer is de- 

fined by Y = O(uTe 2 1’2). A s will be shown in detail in Part II, the relative 

change in 7 is O(E), and the new term in U which,contributes to a displace- 

ment effect is O( E UT). From the continuity equation it follows that the 

2 2 
corresponding term in V is O(E uT). Thus, as y -L 0, the largest term 

in the outer solution for V which satisfies a nonzero boundary condition 

2 2 
is O(E UT), smaller than any of the terms retained above. All of the 

neglected terms arising from these effects are smaller than the terms 

retained by at least a factor of order E. 
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4. Geometric Effects and Comparison with Experiment 

The theory of the preceding section.leads to a limiting.form for the 

pressure distribution as uT + 0 and uT/’ * 0, for unseparated flow. In the 

flow past an airfoil at supercritical speed, with a shock wave terminating 

a region of supersonic flow, the additional effect of surface curvature can 

also be-important in changing the pressure distribution and delaying sepa- 

ration, as discussed below and in Part II. The boundary layer might remain 

attached for Me up to about 1.25, depending on the profile shape; Re may 

be about 5 x lo7 or perhaps as high as 108; and the flow ahead of the shock 

wave experiences a favorable pressure gradient, with magnitude which de- 

pends on the airfoil shape, so that the profile parameter II is 

smaller than 0. 5 (e. g., Ref. [30] ). For a combination of parameters which 

is favorable with regard to requirements of the present theory, with M = 
e 

1.26, Re = 108, and II = 0, the relative position of the sonic line is given 

by 6, /6 = 0.10. This value would increase as Me or Re decreases or as 

II increases, as seen from Eqn. (2.14). Experimental results, however, 

are not yet available with detailed local pressure measurements for values 

of the parameters which correspond to such airfoil flows and which meet 

the requirements of the theory. For all available data, either the flow is 

separated or the values of the parameters are such that the sonic line is 

not close to the wall. Nonetheless, a comparison with data from Refs. [l] 

and [2] has been carried out, and the agreement seems favorable provided 

that corrections for geometric effects are included. 
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A wall having convex longitudinal curvature is described locally by 

y - +x2, where K << 1 if the radius of curvature is large in comparison 

with. the reference length used in the definitions of X and Y. A local solu- 

tion for the inviscid external flow near the foot of a normal shock wave shows 

.a discontinuity in streamline curvature [27,28] . Ahead of the shock wave 

Py > 0 to provide the required acceleration toward the wall; if the flow is 

irrotational, it follows that Uy < 0. The shock-wave relations give Uy > 0 

and P 
Y 

< 0 downstream; therefore also V x > 0, whereas the tangency con- 

dition at the wall requires Vx < 0 as Y * 0. The term in the complex 

velocity which satisfies the required conditions as X, Y * 0 has the derivative 

boUjf) _ ivk’ - - (4/n)K In Z t iK t O(K) (4.1) 

1 -1 2 
for 0 5 arg Z 5 TIT, where Z = b. X t iY and, as before, ho(c) - (Ytl)E. 

The largest omitted term is of order K and is real; the value depends on 

the flow description for Z = O(l), and is known for symmetric two-dimen- 

sional or axisymmetric nozzle flows [29] . 

Terms U(‘) and V(‘), of order K~-l’~u ln u and Ku?, respectively 
T 7 

when Z = O(ur), are now added to the expansions of U and V given by Eqns. 

(3.9) and (3.10). The rotational part of U is unchanged, and reformulation 

of the boundary-value problem for the perturbation potential shows that $1 

is unchanged, whereas now. +2 depends on K, through nonlinear terms in 

the potential equation; that is, + 2 = 9,(x, y;~, K). The new terms in + 2 

contribute a change in U which is O(Kut), smaller than terms retained pre- 

viously provided that K = o(l). Thus, to the order considered here, for 
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UT/E - 0, a curvature correction is simply added to the earlier results. 

The new term in the pressure, written in terms of x and y, is 

,(d _ 2’1Kb p(2xln 6 txln(x2ty2) tzy-Zytan-‘:tAx} (4.2) 

where the constant A is determined only if a solution is known for the external 

flow at larger distances. 

An early careful and comprehensive experimental study was carried 

out by Ackeret, Feldmann, and Rott [l] . In Figs. 3 and 4, predicted pres- 

sures are compared with their experimental results for l$ = 1.32, corre- 
e 

spending to E = 0.247, 
5 

andRe = 9.6 x10 , based on distance to the shock 

wave. Eqns. (2.9), (2. 11) and (2.14) are used for approximate evaluation 

of other parameters. One more experimental value is needed; 6, is chosen 

since it is easily read from the measured velocity profile and since only 

In6* enters the equations, so that an error has small effects on other quan- 

tities. For 6* = 0.0055, the calculations give u = 0.051, 6 = 0.021, and 
7 

II = 0.28. This value of II seems plausible (e. g., Ref. [30] ) because of 

the observed small favorable pressure gradient ahead of the shock wave. An 

adverse gradient of about the same magnitude is evident downstream, and is 

estimated here by Pi18 P/i3 X = 0.12, where Pt is the upstream stagnation 

pressure. A corresponding term is added to Eqn. (4.2) and the term propor- 

tional to K6 Ax is neglected. The local curvature of the plate can be inferred 

from measured pressures immediately behind the shock wave. It is estima- 

ted that ‘;‘” P/a Y = 0.15; since Py m -y Vx, it follows that K = 0.2. With 

the kind assistance of Prof. Z. Plaskowski of the Institiit fiir Aerodynamik, 
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ETH Ziirich, the author was able to measure ordinates of the plate actu- 

ally used in the experiments; values in an appropriate neighborhood confirm 

the estimate K = 0.2. The origin x = 0 is chosen at the estimated position 

of the shock wave at the edge of the boundary layer, found using measured 

pr,essures outside the boundary layer together with Eqn. (3.24). 

The comparison in Figs. 3 and 4 shows that the curvature effect is 

comparable in importance with the boundary-layer displacement effect; 

addition of the curvature term leads to a more pronounced “shoulder” in 

the predicted wall pressure distribution. The longitudinal pressure grad- 

ient due to tunnel divergence is also seen to be important. At the plate for 

typical values of x, say 4 < x < 14, the prediction gives about 75 percent 

of the pressure drop below the value for a one-dimensional flow; outside 

the boundary layer, at Y/6 E 3.6, the agreement is somewhat better. It 

is found that the velocity in Eqn. (3.21) is closely approximated by (const.)/x 

forx 22, so that Eqn. (3.25) for the pressure is adequate here, with the 

correction (4.2). Modest changes in the assumed values of the parameters 

do not have a major effect on the comparison; for example, at a given X, 

ml/x does not depend strongly on II because d increases if II decreases. 

The upstream exponential decay predicted by Eqn. (3.33) is also shown in Fig. 3, 

in the form AP/Pt - ur exp { k(xV - XI)}, with xi taken equal to -14 for 

approximate agreement with experiment. A major difficulty with this com- 

parison is that the upstream sonic line lies at about y = 6 ~ /6 = 0.26, and 

the shock wave ends at a still larger distance from the wall, so that the 

* 
inner region for x = O(l), y* = O(1) is not negligibly small. At a higher 
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Reynolds number and therefore a lower ur, the shock wave would extend 

closer to the wall, and the size of the region ‘in Fig. 3 where no prediction 

is given would be smaller. A second serious difficulty arises because the 

flow probably was separated. The authors of Ref. [l] stated that reversed 

flow would not be ascertained at any point; however, the velocity profiles 

shown seem inconclusive, since measurements were not possible very 

close to the wall. Calculations based on the theory-of Part II of the present 

paper, for the parameter values given in Ref. [l] , indicate that the flow 

was in fact separated, with a very thin separation bubble having length 

equal to a few boundary-layer thicknesses. The effect of such a bubble 

would give a more gradual pressure rise in the region of greatest disa- 

greement in Fig. 3. Finally, a slight unsteadiness in the shock wave posi- 

tion would also contribute to a decrease in the measured pressure gradient. 

A correction for flow in a circular pipe can be derived in terms of 

cylindrical coordinates x+ and rt defmed by 

t X 6 
x = 

bo(E)R = xx’ 
t 

r = 1-g = 12, (4.3) 

where R is the ratio of the local pipe radius +o the reference length, and Y 

is measured inward from the wall, SO that r 
t 

= 0 at the axis, Solutions 

are to be found for E * 0, 
t t 

ur/~ + 0 with x , r fixed. The wall shape is 

given by r 
t 

= 1 t E 2f(X/R) withf .= OatX/R= 0. 
t 

Velocity components U , 

V+ in the x 
t 

, r’ directions can be written with the local curvature and 

boundary-layer effects shown separately: 
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U 
+ 

= U(‘)(X/R, r'; E) + KU(‘)(,f, r’, t i mlur k t ur i U(‘)(x’, rt) 

t . . . (4.4) 

V+ = v(‘)(X/R, r’;E) t K b (e)V(l)(x’, r’, -I- u 
0 

T k bo(C)V(‘)(xt, r’, t . . . 

(4.5) 

where now K = E 
2 

f”(O) is the wall curvature at the foot of the shock wave, 

made nondimensional with the reciprocal of the pipe radius. The terms 

u(o) and V(O) are the terms which would be present if the effects of the 

shock wave were ignored [29] . Terms proportional to K contain the local 

curvature effect, and terms proportional to urb/R contain the local boun- 

dary-layer displacement effect. The latter is described in terms of a ring 

source of radius r 
t 

= 1 located at xt = 0 and having volume strength per 

unit length equal to mlu76 t . . . . numerical solutions for u7/E = O(1) given 

by Melnik and Grossman [6] also include this effect. For xt * co, the fluid 

added at the source gives an increase of 
t 

1 mlur6/R in U , shown explicitly 

in Eqn. (4.4). 

The local solutions for X/R = O(E l/2 ) are found in terms of a stream 

function defined by 8 +(i)/a rt = rtUti) , $(‘)/a xt = - rtV(i), where i=l, 2. 

The largest terms in Eqn. (3. l), combined with the irrotationality condition, 

l.ead finally to 

+(i)(x+ r+-l = 5 a(i) , e -‘n”+ r+J (x 
n=l n 

1 n 
r+j (4.6) 
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where J1(Xn) = 0 for n=l, 2, 3,. . . , so that the wail boundary condition 

+ (‘)(x’, 1) = 0 is satisfied; also L/J (i) 
t 

+Oasx -03, and boundary values 

t 
are to be specified at x = 0. To the order required, the shot,k-polar equa- 

tion reduces to the Prandtl relation, and so $ (1) t2 
= r (1 - r +2)/4 at 

t 
X = 0. The condition that the ring source gives no term of order 46/R 

t t 
inU atx =Oimplies* (2) t2 t 

= -m r 
1 / 

4 atx = 0. Comparison with the 

wall boundary condition shows that $J (2) is discontinuous at the foot of the 

t 
shock wave x 

t t 
= 0, rt = 1; the value obtained as x + 0, r + 1 depends on 

the direction of approach. The coefficients a (1) can be found from the solu- 
n 

tions of Messiter and Adamson [29] or by direct calculation, and the coef- 

ficients a(‘) 
n 

are found directly: 

a(l) = _ 4 
n 

X;fJo(X J 

,w = ml 
n 25,Jobn) (4.7) 

for n=l, 2,3, . . . . 

For calculation of the pressure distribution and the shock-wave shape, 

it is convenient to introduce the corresponding velocity potential + (2) , which 

satisfies a Q (‘)/a X’ = U(2) and 8 $(‘)/a rt = V(‘), and which has a loga- 

t 
rithmic singularity at x =O, r+= 1. With the help of the asymptotic form 

for Jo(X nr’), one can show the singular part explicitly: 
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(-$ 
-7r (n t $x+ 

I. 
t 3./2 e 

r(nf$)(r 1 
cos[n (n t z)r ‘J] } 

ml 

2w (r+, 1’2 
R{ 

&x 
1-P 

t 2 taJ.& - 4p ) (4.8) 

where In 5 = - (7r/4){x 
t 

t i(l - r’,}, and dz indicates that the real part 

As x+ 
t 

is to be taken. * 0 and r * 1, the largest term in the complex 

velocity U(2) - iv(‘) is due to a two-dimensional source of strength m 1’ 

in agreement with Eqn. (3.22). The change in the boundary-layer displace - 

ment effect is then found by subtracting the source term from U 
(2) 

- iV 
(2) 

t 
and adding the constant term which remains as x + co. If the numerically 

small contribution of the infinite series is omitted, the corresponding 

correction to the wall pressure is 

AP 
W 6 -- 

- = -Y UTR 2 P 
e 

-5n x+/4 
1 

t- t 
--I -7rx 7TX 

-e 

(4.9) 

As x+ = X/(b 
0 

R) --t 0, APw/P e 
approaches a constant value - =-yT6 /R, 

which implies an additional second-order correction to the boundaryGlayer 

solution found in Section 3 for X = O(bob ). The shock-wave shape is found 

directly from the potential; in particular, as rt + 1 the displacement of 
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the shock from its intersection with the axis is found by adding the pertur- 

bation potential from Section 3 to that found here, and subtracting the com- 

mon term proportional to In Y. The result is 

AXs = - (4ne) 
-1 

(y+l) WC 112 mlu76 In(R/6) + O(ur6 E -l/2) (4.10) 

In Fig. 5 a comparison is made with pressures measured in a circu- 

lar pipe by Gadd [2] , for Me = 1.12 and E = 0.097. The length of an equiv- 

alent flat-plate boundary layer is not a given quantity; instead, Gadd’ s 

estimated value for boundary-layer thickness is used here, along with the 

estimate 6 +/6 = 0.45 found from the measured velocity profile. The sonic 

line is therefore still further from the wall than in the Ackeret experiment. 

Other approximate values are calculated as ur = 0.04, 6 = 0.02, and 

II = 0.1; the Reynolds number corresponding to these values is Re = 

6 x 10% A pressure gradient due to small divergence of the test section 

is estimated downstream by Pt -la p/ax = 0.06. The effect of finite pipe 

radius is seen to be about as large as the boundary-layer displacement 

effect. The upstream exponential decay is also shown, with x1 again taken 

equal to -14. Again there is a relatively large region where no prediction 

is made and where numerical solution of the transonic small-dist.urbance 

equations is required. Such a solution was obtained by Melnik and Gross- 

man [4] for thi s case and is also shown in Fig. 5. For large x the analy- 

tical and numerical solutions differ by an amount about equal to the correc- 

tion for the change in pipe cross-section area. 
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5 . . Concludinp Remarks 

The ‘interaction of a turbulent boundary layer with a weak normal shock 

wave has been described here and elsewhere [3,4,8] in terms of a rational 

approximation based on systematic asymptotic expansion procedures. The 

interaction is characterized by two small parameters, a nondimensional 

friction velocity u7 and a nondimensional shock-wave strength e, and limit- 

ing forms of the local solutions can be studied as u -+Oa.ndE +O. For the 7 

case u 
4 + 02 c31 , analytical solutions indicated that separation does not 

occur; solutions for ur/e held fixed [4] , with the first approximation de - 

scribed by the transonic small-disturbance equations, gave the same result. 

If, finally, u,/’ + 0, it appeared that analytical solutions would be pqssible 

and that perhaps the onset of separation could be discussed. Solutions for 

the pressure have been obtained here and will be used in Part II for the cal- 

culation of wall shear stress and a discussion of incipient separation. 

The largest terms in the pressure, of order u 7’ are derived quite 

easily, and a number of higher-order effects have been added. Corrections 

of order eu7 give, e. g., a 35% change if M = 1.25. A partial solution for 
e 

terms of order uz shows that these terms likewise are significant, typically 

giving changes of 25% to 50% for Re = IO6 or 10 
7 

. Corrections of order 

KU l- 
and ur6 /R, obtained in analytical form for a wall with longitudinal cur- 

vature and for a circular pipe respectively, are found to be numerically 

important for the tests of Refs. [l] and [2] . 
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In the solutions for these higher-order terms, the dependence on the 

parameters is of course shown explicitly, and the relative importance of 

different effects is therefore apparent. It is not, however, possible to ob- 

tain analytical solutions in the asymptotically small inner region which 

accounts for the upstream influence. For values of the parameters cor- 

responding to actual transonic flight conditions, it is possible for this re- 

gion to be relatively small. Experimental results, however, are not avail- 

able in this parameter range; for existing data, either the flow is separated 

or the sonic line is not close to the wall. Nonetheless, some comparisons 

with such data were attempted, and the agreement seems fairly good down- 

stream from the inner region. The predicted pressures remain somewhat 

higher than the experimental values, and the correction terms calculated 

thus far are large enough to suggest that additional higher-order terms would 

be likely to give still further improvement. 

An essential feature of the asymptotic flow description in terms of u 
T 

and l is the two-layer structure of the undisturbed profile, expressed by the 

law of the wake and the law of the wall. It is this property which permits 

the calculation of interaction pressures without knowledge of changes in 

shear stresses close to the wall. In other studies [31, 321 which were not 

based on use of this profile, derivation of a sublayer solution was necessary 

before the calculation of the pressure could be completed; these studies also 

introduced a linearized formulation for the main part of the boundary layer. 

In the present asymptotic description for uT/e ‘0, sublayer effects do not 
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appear even among the second-rder terms in the pressure. Linear equa- 

tions appear naturally as a consequence of the limiting case considered, 

and the procedure for adding higher -order terms is clear. In the formula- 

tion for uT/e held fixed [4] , again the flow details near the wall do not 

influence the pressure. The differential equations obtained in the limit 

are, however, nonlinear and numerical solution’is required. For uT/e + co 

[3] , the pressure once more is found without knowledge of changes in the 

wall shear stress. 

A complete asymptotic description for 0 < U~/E < co is therefore now 

available, with numerical solutions obtained as u 
7 

+ 0 and e - 0 if uT/c is 

fixed and analytical solutions if uT/e + co or uT/e -+ 0. For accurate. 

calculations in parameter ranges of practical interest, some further ex- 

tensions appear to be needed. In the present case, as u,/’ + 0, the neces- 

sary condition that the sonic line be close to the wall is met for a rela- 

tively narrow range of the parameters. The solutions for wall pressure would 

be more useful if a simple curve fit was introduced for the inner region, say 

by means of a straight line tangent to the source solution downstream and to 

the exponential solution upstream. The choice xz Z= -14 in the exponential 

term was made for agreement with experiment in Fig. 3; the results shown 

in Fig. 5 suggest that the magnitude is too large and that perhaps a more 

* 
suitable tentative value would be x = -10. 

0 
The present solutions also suggest 

that terms of higher order than those retained in Ref. [4] are likely to be 

important for UT/E = 0( 1). In this case the curvature correction would no 

longer have a simple form, but would have to be incorporated in the numerical 
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solutionthrough the use of modified boundary conditions. Moreover, it ap- 

pears thatcertainterms of order ut, and possib1y.stil.l other higher-order 

corrections, will also be essential for numerical accuracy, in the wall 

shear (Part LZ) as well. as in the pressure. Finally, thelocalintera+ion 

influences the potential flow at larger distances; the manner of introducing 

corrections in the externalflowdeserves further study. 
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Appendix A: Interaction at Supersonic Speeds 

Solutions as uT + 0 with e fixed, such that the.restriction to weak 

shocks is removed and the flow is considered supersonic rather than tran- 

sonic, permit estimation of previously neglected higher-order terms in 6. 

It is found that an outer solution obtained for X/6 and Y/6 fixed can no 

longer be matched with the inner solution derived for x* and y* held 

fixed. Instead, it appears that a set of intermediate limits should also be 

considered, such that uT In y* is held fixed, e.g., such that y = (6,/6)y* 

= 0(6z/6n)forO< n< 1. 

For each value of uT In y* such that 0 < uT ln y* < uT In (a/6 *), 

the velocity profile (2.15) gives a value for U in the range 1 < Uu < 1 + E. 
U 

The flow downstream of the shock wave is then described in terms of small 

perturbations about a uniform flow with properties found from the jump 

conditions for a normal shock wave, and indicated by a subscript o, as 

follows: 

u, = $ (A. 1) 
U 

P 

$ 

l-U", 
-1 = 2y 

e (YWJZ, - (Y - 1) 

PO 

-=s 
PU 

B2 = 1 _ M2 = ’ - uz, 
0 0 

1 x=&J2 
ytl 0 

(A. 2) 

(A.31 

(A.41 
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The perturbation quantities can be expressed in terms of variables X/(.BoY) 

and either uT In y* or uT ~II x*; the latter is more convenient. Variables 

LT and X are defined by 

-1 x 
O- = UK 

7 InB6’ 
0 * 

(A. 5) 

Here CJ = O(1) and X = O(l), B. = Bo(~), and 0 C (r < u6 , where us will be 

defined in Eqn. (A.8) such that Uo(u6) = (1 t l ) -1 
. If u + 0, then 

B2 - 
0 

(ytl) (K tie’2) -’ UT hl X*, as noted following Eqn. (3.35), and A is pro- 

portional to x*/(y *c ), the similarity variable suggested for the deriv- 

ation of Eqns. (3.34) and (3.35). The relation K -lu h (Y/6 *) = u - K -lu In X 
7 7 

* * 

implies the equivalence of u In y and u ln x 
7 7 

already noted. At the shock 

wave X = As(u), any quantity f has the form 

f(K -‘UT lIl y*) - f(U)-K -lUTf’ (U))ln x s (A. 6) 

where f may be, e.g., Uu, U d9 Pdor Pd’ In particular, Uu at the shock 

wave is evaluated by replacing K 
-1 

uT ln y* with u in Eqn. ( 2.15) and then 

setting f = Uu in Eqn. (A. 6); therefore Uo(u) is defined by 

l/Uo(r) = J? sin {sin-‘(r-l) t I?-‘(Tw/Te) 1’2cr} (A. 7) 

where I? = (ytl) l/2 
/(Y -lF2 as before. For U. (ud ) = (1-l-E) -l, u6 is defined 

bY 

-1 
% = K 

uT h(6 /6 8 ) t 2n K&l 
7’ (A. 8) 

and can be calculated with the help of Eqn. (2.14). It also follows that 

u& = -(l t c)-2. 
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For the region downstream of the shock wave, Eqns. (3. l), (3.3), 

(3. 5) and (3. 6) suggest expansions of the flow quantities in the form 

u = u,(U) t K 
-1 

UTU1(k,U) t . . . 

V = Bog -‘uTV,(A , u) t . . . 

P = P,(u) t K 
-1 

u,P+A,.u) t . . . 

(A. 9) 

(A. 10) 

(A. 11) 

P = p,(u) t . . . 

The differential equations (3.1) and (3. 3) lead to the system 

(A. 12) 

U 
lA 

-XV 
lA 

= -A-+J’ 
0 (A. 13) 

ypUU tP 
-1 

0 0 1 
lA 

=-ypUA 
0 0 % (A. 14) 

A 
- A -‘P:, 

YP u v 001 
- AP = 0 (A. 15) 

A lA 

The vorticity s2 = Vx - Uy, referred to later, is found from these equa- 

tions as 

(A. 16) 

The solutions for U1 and PI must satisfy boundary conditions at the shock 

* wave A = A s, and it is required that VI + 0 as A -t co. The results are 

P’ 
u1 = -WolnA- o 

2YP ouo 
In (A 2tl) (A. 17) 

p:, 
v1 = yp u 

0 0 
(:-tan-l A) 

PI = 

(A. 18) 

(A. 19) 

As A + 0, U1 and PI have a logarithmic form consistent with the second 
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term in the expansion (A. 6). Equation (3.6) for the shock-wave shape gives 

-1 
TT B P’ 

X/K UT 
0 0 

2 YP owJ3 
Y (A. 20) 

for 0 < u < CT~ ; thus A 
S 

= O(ur). The slope dXs/dY is 0 {u i’2/(ln x*)1’2} or 

O(uJ as u+Oor” *r 
6’ 

respectively. Since PI + 0 as X + 00, the wall 

pressure is found from Eqn. (A. 2), for 0 < u < (r6, as 

P 
W 

1 - u: 
--I, = 2y 
P 

WluJ~ - (Y-1) 
+ O(u 1 l- 

(A. 21) 
e 

For X = O(6) and Y = O(6), variables x and y are defined by 

X 
x = 

Bob6 16 

Y 
Y = d (A. 22) 

where Bo(u&) is the value given by Eqn. (A. 4) with Uo(u6) = (1 t s)-‘. The 

differential equations give fi - - Uy - (yp U) -‘Py, and ahead of the shock 

wave R - - (uT/6)u’ o,(Y). Relative changes in a along a streamline are 

small except at the shock wave, and so the first approximation for C2 remains 

a function of Y, which can be calculated from the shock-wave relations, in a ’ 

form which agrees with Eqn. (A. 16) as y + 0. The flow is then described as 

a uniform flow at speed U,(u 
6 

) with superimposed small perturbations, the 

rotational part being shown explicitly: 

(A. 23) 

(A. 24) 
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For u * 0, it follows from Eqn. (3.1) that Q must satisfy Laplace’s equa- 
l- 

tion. The shock-wave relation UdUu - 1 gives the boundary values for (p,(O, y), 

the shock-wave location being taken as x - 0 in a first approximation; also 

+,(x, 0) = 0 and V+ * 0 as x2 t y2 * 00. The solution is 

p; b6) W 

+tx, Y) = - s u 
TJy P o(Q)Uo(ur) _ w 01 

(r#h2 + (y-rj)231'2dr, (A. 25) 

This result has the same form as the solution (3.19), which is recovered if 

the coefficient Pi /(p oUo) is expanded for E * 0. As x2 + y2 + 00, the com- 

plex velocity and shock-wave shape have the same form as .in Eqns. (3.22) 

and (3. 24), respectively, but the source strength is now ur6 yPb/(2y p ,Uo), 

evaluated at u = u 6’ 
Since P 

X 
- - y po(~~)Uo(~g)Ux, the wall pressure is 

P 
W 

- Poba) + 
w “o,l’“: dr) 

(A. 26) 
0 x tr) 

The expansion as x* 
* 

+ w of an inner solution derived for x = O(1) 

gives Pw/P 
l/2 -1 

e 
-1t2y(rcTe ) uTInx*, which does not agree with the ex- 

pansion of Eqn. (A.26) as x * 0. Instead, the two results are the leading 

terms of Eqn. (A. 21) expanded for u -C 0 and u + era respectively. Thus 

one can construct inner and outer limit-process solutions, but they cannot be 

matched in the usual way, and the expansions (A. 9) through (A. 12) are not 

limit-process expansions. This asymptotic structure is closely analogous 

to, and is a direct consequence of, that for the velocity in the undisturbed 

boundary layer. A solution for Pw which is valid for 0 < u’ u 
6 

can be 

written in a form analogous to Eqn. (2. lo), by use of a suitable correction 
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to the argument of the function PO: 

P -P(u t 
06 

(A. 27) - 
W 

If u 
I- 

-f 0 with x held fixed, the first two terms in the expansion of Eqn. 

(A. 27) are the terms shown in Eqn. (A. 26). Ifu +Oandx+Owith 
7 

UT lnx+ held fixed, Eqn. (A. 21) is recovered. The result (A. 27) would 

replace Eqn. (3. 21) if E were not small. However, 0 < E -C 0.3 if 

1-c Me< 1.4, and even at E = 0. 3 these two results differ only slightly; 

e. g., Po(u,) differs from its three-term representation as E A 0 by less 

than three percent at M = 1.4. 
e 

Corrections for E = O(1) are therefore of 

far less importance than the higher-order effects described in Sections 3 

and 4. 
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Appendix B : Intermediate Solutions 

For ur<<e << 1, intermediate solutions can be derived for 6+ << Y << 6 

and urlj2 ls,<<x <<E1’2 6. In applications where U~/E is a much smaller 

number than in the examples of Section 4, these solutions can be used to give 

higher-order terms in the region of the steepest gradient in wall pressure. 

From a theoretical viewpoint, the solutions can be used to show details of the 

higher-order matching of terms in the outer and inner solutions. The first- 

order inner solution for the wall pressure as x“+ 00 is P,/P e N 1 + O(u, lnx’), 

whereas the outer solution as x *O gives P,/P, N Pf/Pe + O(ur lnx), where 

pf’pe - 1 t O(E). That is, the inner and outer solutions for Pw describe 

small perturbations from different constant values. Matching of the solutions 

is nonetheless possible provided that E-+ 0; if, however, E = O(l), the solutions 

no longer can be matched, as explained in Appendix A. Derivation of some 

higher-order terms for E 4 0 helps to verify that the matching procedure can 

be carried out to higher order. 

A shock wave in the external flow can extend into the boundary layer 

almost to the sonic line, which is located close to the wall in the present case 

for ur << E. Near the sonic line the beginning of the pressure rise implies 

outgoing compression waves, in 2 weakly rotational mean flow described by 

the velocity-defect profile, which will coalesce to form an outgoing shock 

wave with very small downstream inclination from the normal to the wall. 

For Y = O(&), the undisturbed profile is U, : I + O(u,), and an “inner” 

solution, discussed briefly in Section 3, describes changes in U which are 

also O(u,) along 2 streamline. In the limit as uT “0, nontrivial equations 
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are obtained for describing this initial change if X = O(u, 1’2 6.+) and V = O(u, 312) . 

These are the transonic small-disturbance equations, with prescribed vorticity. 

For the second approximations , to be discussed below, an additional term must 

be retained in the expansion of Eqn. (3.11, and a correction to the vorticity is 

needed. To second order in I+, for Y = 0(6,x), the entropy s is unchanged 

across the shock wave, and also pu = 1 t O(ur), so that the streamlines are 

approximately lines Y = constant. The first terms in equation (3.4) give 

S-iU~ Y-l Tds/dY, where Q = avjax - BU/BY, and changes along a streamline 

are related by R -l AS2 NT -’ AT - U-l AU . Since U N 1 and T N 1, and since 

Eqn. (3.2) with T = a‘ gives AT H - (Y - 1) AU, the change in vorficity becomes 

AR- - YL2AU. The total vorticity is then 

av au due dUU -= - 
YE- ay yy + Y (U - UJ y + * * - (B. 1) 

where U, is found from Eqn. (2.15). A somewhat longer calculation based on 

expansion of the differential equation for the vorticity shows that this change 

in vorticity contains two contributions, one from the change in density and one. 

from the torque which acts on 2 fluid element because the pressure gradient 

and density gradient vectors are in different directions. 

-:: 
Coordinates x , y 

* * * 
and perturbation velocity components u , v are 

defined in Eqns. (3.27) and (3.28). The inner region Y = 0(6,), X = O(U:/~ he) 

sketched in Fig. -2 is to be understood 2s vanishingly small in the limit 2s 

u,/c+O. To the order needed in the derivations which follow, Eqn. (3.1) and 

the vorticity equation become 

* 1 $: u”u;*-v*=-(y--)cr UTU ::< 2 >:: 

Y 2 
ux,+ --* 03.2) 
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dUZ: 
$ 

_I. - u 
$2 U due 

v 
x Oh- Y 

.& = - - 
dy” 

t Ycu” UT (2 - I$)- + . . . 
dy= 

(B. 3) 

zhere u z refers to u* in the undisturbed boundary layer, found from Eqn. 

(2.15), and a” is a constant defined by cc)‘; = (K Te l/2)-1 
. Changes in the slopes 

of the characteristics dx”/dy* =u 
$-l/2 

are O(l) in the region where x * and 

y* are O(l), and so the outgoing compression waves presumably will first 

coalesce to form a shock wave at a finite value of y*. The shock-wave shape 

will be described in the new variables by x 
a::= x;(y*)e The shock-wave relations 

(3.5) and (3.6) become 

-2 vl‘ =- 
d 

; (u;-uy (u;+u;-uT(y*u;2+...) (B. 4) 

03.5) 

where the subscripts u and d again indicate values immediately upstream and 

downstream of the shock wave. In obtaining Eqn. (B.4) use has been made 

:k 
of the anticipated result that ud a - uz, since the shock wave is nearly normal. 

The value of uz can depend on the solution, since for y 
* 

= O(1) the pressure 

disturbance extends ahead of the shock wave. But the outgoing compression 

waves which originate here, l/2 within 2 distance X = O(u, Se) upstream, are 

overtaken by the shock wave when Y >> 6+, and so the upstream flow is the 

undisturbed boundary-layer flow when Y >> 6+. Henceforth the subscript u 

will refer to conditions in the undisturbed boundary layer. 

The discussion preceding Eqn. (3.34) suggests the use of variables t 

and X defined by 
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c 

t = ln x” (B. 6) 

A= 
y* (lnxJ?)l,2 = y (y+ l)1/2 (X u7 lnx*)l/2 (B.7) 

This definition of A is equivalent to that given in Eqn. (A. 5) if UT hx* is small. 

Solutions are now sought for + -+ 0 and t + 03, such that ur t -+ 0 and A is 

held fixed. If u* and v” are now regarded 2s functions of the new variables 

t and A, the differential equations become 

1 u::: 1 -:: t (1 
$/2 ‘x Ut 

+qthv; 

= - (y - +) &JT k2 u*2 

- &) v;) $ A q 

Yt 1 = - l+(Y”Uy(Yu~~-~tt...)t.. 

I . .) t --- (B.8) 

(B. 9) 

The forms for the first terms in an expansion for u” should correspond to 

the terms required at the shock wave, found from uz N - In y* with y* = x*/(At U2) , 

and the forms for additional terms in uy and v * are found using equations (B. 4), 

(B. 8), and 03.9). It is then assumed that 

u*~(tu~(X) + (lnt)iil(A) t u,(A) + (t -‘lnt) U,(A) 

t t-l u2(A) t --- )t (Y*u 7 {t2u (I) o (A) t (tlnt)ii,(l)(A) 

t t+‘)(A) t a..> t ..a (B.10) 

V*N (t1’2vl(A) t (t-1’21nt)~2(A) t t-1’2 v,(A) t **.) 

t CAT (t 3’2 vl(1)(A) + . . . } $ . . . (B. 11) 
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It will be seen that these assumed forms are sufficient to provide the first 

few terms of a self-consistent set of solutions to the inviscid-flow equations. 

When the assumed expansions (B. 10) and (B. 11) for t - 03 and ur t - 0 

are substituted into the differential equations (B. 8) and (5. 9), it is easi,ly 

seen that the largest terms u 
0 

and uo(l) are constants, the values of which 

are to be determined from the shock-wave conditions. In the new variables 

the shock-wave shape can be written as A = As(t). Substitution in the shock- 

polar equation (B. 4), with uz found from Eqn. (2.15), gives 

p -l/2 
vl(xs) t *a- = 2 {t-tuO(As) t s.-){t- 2 Lint 

- 1nA _ Y - I cy::c u t2 
S 4 -I- t s a. ttuO(As)t (lnt)Kl (rcs) 

+ ulbs) + mm*$ pu t2U(l) 
7 

o (As)t...-u*uTt2t-..]1’2 

03.12) 

Equation (B. 5) gives the shock-wave shape in the form 

dx; $2 vl(As) -I- . -. 
-= 
dy* t - tuO(As) t ..a 

=o I 03.13) 

Integration then gives x: = O(y*/(lnx ) " 1'2) and so As = o&. Thus the 

functions of As in Eqns. (B-12) and (B. 13) can all be written as series 

expansions about A, = 0, withlnAs N - lnt. Thelargestterminthe square 

root in Eqn. (B. 12) must be O(t 
-l/2 

), and so the first several terms inside 

the brackets must add to zero. In particular, it follows that 

u,(A) = - 1 , U;‘+A) = y (B-14) 
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The differential equations for iii, ul, and vl are 

ii’=0 , 
1 

u;-Xv;=+ , Au’tv’ =-1 
1 1 (B. 15) 

and it is also required that v + 0 as A + cc. AS A -+ 0, it is found from the 
1 

solution for ul that ul N 1nA t const. The shock-polar equation (B. 12) then 

givenEl(Xs) = l/2 and u,(A) - 1nA + 0 as A + 0. The solutions are 

A 
up = ln- 

X2+1 ’ 
v,(A) = 2tan-‘(t) (B.16) 

L.-l/2 * 
The largest terms in u* t lny” and in (lnx-*) v , i.e., u 

1 
t lnA and 

vl’ 
respectively, are functions of the variable A = (x*/y*) (lnx *-l/2 ) and so 

have a self-similar form. Furthermore, if M is the local Mach number, 

(1 - M2) N (Y t I)(1 - U) and so, using lny* w lnx” for A = O(l), 

1 - M2 N (Y t 1) (YIur lnx” (B. 17) 

A N (1 - M2)-1’2 x/y (B. 18) 

That is, the Prandtl-Glauert factor (1 - M 
2 l/2 

) appears in a familiar position 

in the variable A, and also appears in the velocity component V, which can be 

written V N (1 - M2)1’2 ~2%~ vl (A). (1) Also, the solutions for uo, iil, and u. 

are consistent with the result u’ N - lny” t 
3tY 

d 
- CY” uT ln2 y” which would be 

4 

found if the shock wave were exactly normal. The expansions (B. 10) and 

(B. 11) for u* and v4 then describe small perturbations about 2 parallel flow 

with UN 1 - CY*U lny 
3tY e + - 2 

I- 4 
(a* uT In y”) , and the largest terms satisfy 

equations which are essentially the Prandtl-Glauert equations, but with 

specified non-zero vorticity, and written in a self-similar form. These 

terms are given in Eqns. (3.34) and (3.35). 
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The pressure is then found from equation (3. II), and for X * co 

Pw/P e 
N 1 + 2Ycr* urlnx:i (33.19) 

where P, w 1 - YE t . .. . The result (B. 19) was given by Adamson and 

Messiter [8], and, with the replacement lny * H 1*x*, the first-order solutions 

(3.34) and (3.35) also are easily shown to be equivalent to their results for the 

velocity components. In addition, the first-order shock-wave shape, for 

6” -C-Z Y << 6, follows from equation (3.6) as 

xp -+ Tr (lnx$) -l(Y t 1)1’2 
* l/2 

(ru*urlnx ) Y 

03.20) 

An attempt at using the term 4 (3 t Y) a*uT t 
2 * 

in u to obtain a correction 

in the wall pressure Pw leads to a difficulty because the second-order term in 

the pressure formula (3.11) contains a factor lny*, whereas a result for X -+ 00 

is required which depends only on x”. If the replacement lny*:: lnx* + 1nX is 

made in this expression, it might be anticipated that a higher-order term in 

u* would permit cancellation of the term in P which contains the factor 1nX. 

With this assumption the improved approximation for Pw is found to be 

Pw/Pem 1 + ZYa*u lnx” t 
I- 

+Y(3Y-l)(~~“urlnx”)~+.-. (B. 21) 

The calculation of higher-order terms below shows that the cancellation does 

actually occur, and so the assumed result (B. 21) is in fact obtained for Pw. 

-11) Solutions are next derived for ii2, u2, ul , and u:l). The differential 

-(I)’ equations (B. 8) and (B. 9) give u1 = 0 and 

57 



-1 
u2 -AT;=2 ~,,;-~, AU'tv' =o 

2 2 

4 
-xv;= (+p; -$) ‘Us + V~ =~(Vi - f vl) (B.22) 

(1) 
u1 

- A vl(lJ' , =$5Ytl)u; -$(Y+l,$ AlIl(l)l tv;l)' =-+(3Ytl) 

The shock-polar equation (B.12), after substitution of the solutions (B. 16), 

and with the additional terms now needed, is 

J/2+. . . t (Y*u t3’2 y(l) (As) t l . . 

T 

=il'2{2tt...}{y 
Y-l 

AITtIntt- 
2 

o"uTtlnAs t -.. 

+ (t 
-1 

lnt)E2 (As) t t 
-1 

u2 (As) t "*uT (tlnt)El(l)(As) 

t (Yell 
T 

tul(l)(x l/2 
S 

) t ..-tLZ*UTt(lntt21nXs)+ . ..> (B.23) 

where the functions of A, are to be expanded about the result (B.20) 

A 
1 -1 

, fort-w. Since the differential equations give ii1 

a:dWu:"I - $ (Yt3)lnA as A - 0, 

(1) = constant 

it follows from the shock-polar equation 

(B.Z3)thatu!') (A) = - (Yt3)/4 and L 

‘G,(O) = u2(0) - + lT2 

In addition it is required that Tj2, 

ii2(A) = - 
A2 

2(X2+1) 

= [u,(l)(A) ty lnA]A=A =o 
S 

(5.24) 

(1) 
v2' v2 +OasA-oo. The solutions are 

V,(A) = $ (tan-lA -f -A) 
1+X2 

7 

u,N = 
1 A2 

- In - 
A -1 2 3TrL 

X2+1 X2+1 
-$ln- 

X2+1 
- tan 1) t-g-- 

v,(A)= - 
A A 

-ln- t $ (tan -lx A2 _ +- 1 

A2tl X2+1 X2+1 +z s 
Obln(A2t1) dA 

A A2t1 

(B.25) 

U,(~)(A) = 
2 

-i(Y-1)1*(X2+1)-$(Y+3)lnA -$(5Ytl)- 
X2,1 

v,(')(A) =$(Yt5)(tanm1A -5) -$- (5Ytl)L 
X2+1 
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The improvecl solution for the wall pressure is, in terms of t = lnx*, 

p,\./p - 1 +Yo”ur{2t-lntt+ t -1 
U 

lnt -$ t-l $ --a} 

;Y(~~~uT)2(~(3Y-1)t2-~(3Y-1)tlntt~ (5Y+l)t+...) + --- (B-26) 

The solution for u”(x+, y”) as x* + co can be compared with the expansion as 

x - 0 of the result derived for x = O(1). Retaining only the terms which in- 

crease in size, one finds for the velocity 

:‘; 
IJ-1.4--a”~ lnx’ 

1 xc ” 
T 

f~cr urlnlnx t ry”ur In A - e*uT In (1 tX2) 

Y’3 
+4( 

Y-b3 - 4 (a”UT)21nx:~Inlnx” 

t (2UT) 
2 -y-l 2 ln(A’t 1) - 2 3ty In), _-- 5Ytl AL 

. . 4 A2 lnx* + . (B-27) 
+ 1 

As x”-+ 0, the largest terms in Eqn. (B. 27) agree with the largest terms in 

the expansion of Eqn. (3.9) as x -+ o(, , found with the help of Eqns. (3. 12) and 

(3.20). For another comparison, the expansion of Eqn. (A. 27) for the 

pressure as E - 0 and x --f 0 is equivalent to the three terms shown in Eqn. 

03.21). 

The order of magnitude of V as A -+ co can be found from consideration 

of the region for A >> 1 in which changes in T can no longer be neglected in the 

X-momentum equation. For intermediate limits such that A + 00 slowly, the 

inertia and pressure terms are still dominant, whereas for intermediate limits 

such that y -+ cc, slowly, the equation remains -ry N 0. There must then be a 

special limit for which all these terms are retained. It is found rather easily 

that this balance of terms occurs for Y/X = O(u,). Solutions in this limit are 
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obtained in Refs. [3] and [4] and in Part II of the present work, for the cases 

E<<U 
T’ 

E = O(uT), and E >> uT, respectively. For the present case (Part II), 

a term of order u 2 lnx:k . 
T 

in U, when substituted in an expansion of Eqn. (3. l), 

leads to the result that V = O(uT lnx”), smaller than any of the terms in V 

retained above. It is this argument which implies the boundary condition V + 0 

as the distance from the wall decreases, to all orders of magnitude considered 

in this and subsequent sections. 

The result (B.26) does include the correction term anticipated in Eqn. 

(B. 21) and also shows a number of additional terms. In one of the smaller 

terms a factor lny* has been replaced by lnx’ in anticipation, as before, that 

the omitted part In A would be cancelled in the next approximation. This minor 

difficulty appears to arise because a different approximation is needed if 

*: 
Y = O(1) and therefore 1nA =-O(t). Here u* is not correctly approximated 

by -lny* because the gas in this region has not passed through a shock wave, 

but instead has undergone changes described by the transonic small-disturbance 

equations in a region where x * 
= O(1). However, Py is extremely small if 

y” = O(1) and x” >> 1, and so Pw is obtained from the above solution in the 

limit as A + cu. If the expansion had been carried out instead in terms of In y” 

rather than lnx * , it would evidently have been necessary to derive additional 

“inner ” solutions for y” = O(l), because in this formulation P is expanded for 

In y” + 03 and does not approach a function of x” as the corresponding similarity 

variable becomes large. 
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1. Introduction 

When a shock wave impinges upon a wall, it penetrates the boun- 

dary layer along the surface and both the shock wave and the boundary 

layer are changed from their undisturbed states. If the boundary layer 

remains unseparated, these mutually induced changes take place in a 

small interaction region. For a turbulent boundary layer, it has been 

established [l-8] that an asymptotic description of the interaction re- 

gion requires a three layer structure. In the outermost layer, com- 

prising most of the boundary layer, pressure forces are much larger 

than forces resulting from Reynolds or viscous stresses so the govern- 

ing equations are those for an inviscid flow. For the limit process 

to be considered, the solutions for this inviscid flow region are those 

given in Part I of this paper [q] , hereafter referred to as (I). Imme- 

diately adjacent to the wall is the wall layer, in which viscous and 

Reynolds stresses dominate to lowest order. Between these two layers 

is the Reynolds stress sublayer [l] (referred to as the blending layer 

in reference [Z] ) in which momentum transfer toward the wall is carried 

out by turbulent means (Reynolds stresses); the dominant terms in the 

equation of motion are the Reynolds stress, pressure gradient, and 

inertia terms. 

This paper is concerned with the analysis of the flow in the two 

inner layers, the Reynolds stress sublayer and the wall layer, the goal 

being the calculation of the shear stress at the wall in the interaction 

region. As indicated above, the limit processes considered are those used 
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in (I). Thus, if c is equal to the nondimensional difference be - 

tween the velocity and ihe critical sound speed in the flow external to 

the boundary layer, and u -I- 
is the nondimensional friction velocity, we 

consider limit processes such that ur << E << I. In previous analyses 

for E << ur (R f e erence [I]) and B = O(ur) (Reference [2]) it was found 

that it was not possible to formulate an asymptotic criterion for shock 

induced separation. Here, it will be shown that even for a >> u 
7 

there is no apparent asymptotic separation criterion. However, exam- 

ple calculations will be used to show that the equation derived for 

the wall shear stress may be used to predict conditions for incipient 

separation with reasonable accuracy. 

It is worthwhile reiterating the fact pointed out in (I) that for an 

unseparated boundary layer the solutions in the inviscid and inner la- 

yers are uncoupled. Because the inner layers are so thin, the change 

in pressure across them is negligible to the order retained and so the 

solution for the pressure found in the inviscid layer in the limit as 

the wall is approached is indeed the wall pressure. With this pressure 

distribution known, then, solutions in the inner layers may be found, 

leading to a relation for the wall shear stress. Ihus, the unseparated 

flow case is a weak interaction problem. This is not the case for a 

laminar boundary layer and occurs for the turbulent boundary layer 

because the wall layer is so thin that the upstream influence of the 

interaction causes negligible lifting of the fluid from the wall; that is, 

to the order retained the V component of the velocity is zero, in the 
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invis cid layer, as the wall is approached. This point will b’e discussed 

again later. 

In order to complete the formulation of the problem in the inner 

layers, it is necessary to specify a c1osur.e condition. Here, we use 

a mixing length model, including the van Driest damping factor, to 

write an eddy viscosity [lo]. Such a closure model appears to give sat- 

isfactory results as long as the flow is unseparated [II] and has the 

virtue of simplicity; when the flow is separated, use of such a model 

gives results which have the correct trends but which do not agree well 

with experiment. 

2. Solutions in the Inner Layers 

As in (I), transonic flow over a flat plate with a turbulent 

boundary layer is considered, with a normal shock wave intersecting 

the boundary layer; an adiabatic wall is assumed as are conditions 

such that the total enthalpy may be taken to be uniform throughout the 

flowfield. Nondimensional Cartesian coordinates X and Y are measured 

parallel and perpendicular to the wall respectively, with the origin at 

the point where the normal shock wave intersects the boundary layer. 

Lengths are made dimensionless with respect to the distance from the 

leading edge of the flat plate to the shock impingement point, E, and 

Cartesian velocity components U and V with respect to the critical 

sound speed in the flow upstream of the shock wave and external to the 

boundary layer (hereafter referred to as the external flow), a* 
e’ 

The 
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overbars indicate dimensional quantities. The mean temperature, T, 

density, p, pressure, P, and viscosity coefficient, u, are referred 

--* - * 
to their critical values in the external flow, e. g., Te, Pe, etc. We 

write the Reynolds number, Re, in the usual fashion and for convenience 

* 
define a Reynolds number parameter, Re , as follows 

(la) 

-* -*- 
Re* = ( ’ a L ,::: ) (lb) 

CI e 

The term < p’ V’ > /p is included in V, where the primes denote fluc- 

tuating quantities and the bracket denotes the average value. The 

2% 
friction velocity, u 7’ 

is made dimensionless with respect to a 
e’ 

and 

is defined in terms of the external flow density as follows 

2 
7 7 

U 
7 

E-&y :;;“” = 
1 Uez Cfu 

a e e 
e 

(2) 

where 7 is the shear stress at the wall in the undisturbed flow at 
wu 

x = L, and where c fu is the corresponding skin friction coefficient de- 

fined as shown. Finally, the external flow velocity and Mach number 

are written in terms of a parameter, E, as 

U = l+E e (34 

U2 
Mt= e 

1 - (~)(U2-1) 
2 e 

(3b) 
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where for. transonic flow, E << 1. As in (I), the problem considered 

here is one for which u << c << 1. 
T 

In both inner layers to be considered here, the characteristic 

thickness of the region is small compared to its characteristic length. 

As a result, normal Reynolds and viscous stress terms may be neglec- 

ted compared to the corresponding shear stress terms and the trans- 

verse pressure gradient is negligible, to the order retained in the anal- 

ysis. The solutions to which these inner layer solutions must match 

in a direction normal to the wall are those solutions found in (I), 

-- 
expanded in the limit as y = Y/6 -b 0, where ‘6 = 6 /L is of the or - 

der of the boundary layer thickness. In the limit as x = X/A * - co, 

where A = a/c is of the order of the extent of the interaction region, 

the solutions must match with the corresponding relations in the undis- 

turbed boundary layer. It is seen, then, that the flow problem in the 

inner layers of the interaction region is formulated as a boundary la- 

yer problem with a known pressure gradient. This also helps explain 

why an additional layer (Reynolds stress sublayer) is necessary in the 

turbulent boundary layer case. That is, in either the laminar or tur- 

bulent interaction, there is an outer layer in the interaction region 

where pressure forces dominate over shear forces, and inviscid flow 

equations hold to lower orders. Obviously, then, solutions in the outer 

layer do not satisfy the no-slip condition at the wall and a new boundary 

layer must be considered at the wall. In laminar flow, a boundary 

layer is described asymptotically by a single layer and so only one 
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so called viscous sublayer is needed in the laminar interaction. How- 

ever, a turbulent boundary layer has a two layer asymptotic structure; 

as a result, two inner layers are needed to describe this boundary 

layer in the interaction region. The Reynolds stress sublayer is the 

equivalent of the velocity defect layer, as will be seen. 

With the above remarks in mind, it is possible to write a simpli- 

fied set of governing equations in which only those terms needed in 

either of the two layers considered here are retained. They are as 

follows: 

1 ap +,I+$----+ 
Y ax 

k2DY 

aP 
E = 

0 

T+(+J’= y 

P = p T = P(X) 

* 
YRe u 

D = {1-exp(- 26 ‘)I2 

where y is the ratio of specific heats, D is the damping factor, 
2 

(44 

(4b) 

(4c) 

(44 

(44 

(4f) 

and 

K = 0.41 is the von K&man constant. Since terms of order u will 
7 

be retained in the solutions, it should be pointed out that terms such 

as < p ’ U’ > /p in the continuity equation (4a), and < p t T’ > in the 
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2 
equation of state, (4e), which are of order ur, are not included because 

perturbations from the undisturbed flow values of each of these terms 

would be of higher than second order. Since the undisturbed flow solu- 

tions-are considered known to second order, and we are interested only 

in the perturbations from the undisturbed flow, it is not necessary to 

include the terms in question. As mentioned previously, it is assumed 

that the wall is adiabatic, and turbulent and laminar Prandtl numbers 

are unity, so that the stagnation enthalpy is constant, as in equation 

(44 l 

As shown in (1)~ for the case E /uT > > 1 the distance from 

the wall to the sonic line is exponentially small compared to the thick- 

ness of the boundary layer. Since the extent of the upstream influence 

of the interaction region is ordered by the thickness of the subsonic 

region, the upstream influence is confined to a region, hereafter 

referred to as the inner region, which is exponentially small in the x 

direction compared to the main part of the interaction region, hereafter 

referred to as the outer region. That is, in the x direction, the inter - 

action region actually consists of two regions, one thin compared to 

the other; in the y direction, each of these regions is subdivided into 

the three layers mentioned previously. Following the procedure em- 

ployed in (I), the solutions in the outer region will be shown here 

in some detail. Because the upstream influence is confined to the inner 

region, the flow entering the shock wave in the outer region is simply 

the undisturbed flow at the point in question. Inner region solutions, 
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which are found using precisely the same methods employed in the outer re- 

gion, are given in reference [12] . 

Reynolds Stress Sublayer 

In the Reynolds stress sublayer, which is intermediate to the outer 

inviscid flow layer and the wall layer, inertia terms are balanced by both 

the pressure gradient and Reynolds. stress terms in the equation of motion 

in the flow direction. The extent of the outer interaction region is X = O(A), 

where, as shown in (I), 

A=b6 
0 

6 = O(UT) (5a, b) 

b 
0 

If the dimensionless (referred to L) thickness of the layer is taken to be 

Y = o(t), say, then since the Reynolds stress = O(ut) and from (I), 

a P/8X = O(uT/A), th e f act that the pressure gradient and Reynolds stress 

terms in Eqn. (4b) must be of the same order indicates that ^6 = O(uT A). 

A 
Here, for convenience, we define 6, ^y and x as follows: 

t = uA (64 
l- 

Y = a$ X = Ax (6b, cl 

The solutions to which those in the Reynolds stress sublayer must 

match as $ * co are those in the outer inviscid flow layer, written in the 

limit as Y/d = y + 0. The equations for the U component of velocity and 

the pressure, (Eqns. (3.9), (3.12 1, (3.19 1, (3. 21) and (4. 2) of (I) are 

summarized here for convenience. Thus, 
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U(x,O) = (IfE) -1 
-f- UTC(1f2Y E t..*h,,(Y) 

t(lt(y-1)s t...)ul(x)It... 

- K6 $ ln(Co6x) t . . . 

- ury(1 t (2y -l)E t . ..)u (x) 
1 f ..- 

tK6 4u 
7r Jn (Co6x) t . . . 

u,(x) = - e J 03 Uolh)dv 
0 (x2 -t r12) 

(74 

(7W 

(74 

where P 
e 

= 1 - YE t 0( s3) is the dimensionless pressure in the external 

flow. The function uol (y) describes the variation of the velocity from its 

value in the external flow in the velocity defect layer in the undisturbed 

flow. That is, if Uu represents this velocity component, it may be ex- 

panded as 

U 
U 

= ue + UT Uol(Y) P-3) 

and u 
01 

(y) is the variable part of the velocity distribution in the velocity 

defect layer in the corresponding incompressible boundary layer [13] . 

The form given by Coles [14] is used here 

Uol(Y) = K -jln y - l-I (1 t cos ITry)] O<yLl 

(9) 

= 0 Y’ 1 
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where II is Coles’ profile parameter. The las‘tterms inEqns. 

(7a) and (7b) are due to the curvature of the wall, i. e., for a wall with 

convex curvature described locally by 

y= - +,X2,+ . . . (10) 

where K << 1 and K + 0 as u * 0 and E 
7 

+ 0 such that K/e -c 0. The 

value of the constant Co is found from the solution for the flow field exter- 

naltothe boundary layer. 

If Eqn. (7a) is written in terms of the Reynolds stress sublayer varia- 

ble, ^y , the result is 

U(x,O) = (1 + E) 
-1 2 

tuJt2yC t...)(; lrl; tQol(Q)t...) 

t (1 t (y -l)E t . ..)u,(x)] -I- . . . 

- K6 $ In (Co6x) t . . . (11) 

where 

c;,,(p) = K-‘(bl 9 - 2R) (12) 

Thus, equation (11) is the equation to which U(x, ^y) must match as $ + co. 

As mentioned previously, a P/a Y = 0 to the order retained here. This is 

easily derived from the equation of motion in the Y direction (e. g., see 

reference [12]). Hence, the pressure as written in equation (7b) holds 

throughout both the Reynolds stress sublayer and the thinner wall layer. 

In view of the form of equations (11) and (12), the general expansions 

for U and V are written as follows 
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A 

U(x,j)) = (l+E) -IL t g; In; +ciol(P) +“u,(x,?)l 

tEU 
$ 

L Ln(~)"lQ(x,$, t e UTq& -I- --- 
I-K 

tK6 f;lc(x,$;6) -I-... (134 

V(x, $, = ~lvl(x' $1 + * * - (13b) 

The corresponding expressions for the temperature, T(x, 9). and density, 

p (x, ^y), are found by substitutin g equation (13a) in the energy equation, (4d) 

and substituting the resulting expression for the temperature and equation 

(7 b) in the equation of state, Eqn. (4e). If the expansions for U, V, P, and 

p and stretched variables x and y are substituted into Equation (4b), the 

governing equations for 61, file, and 611 are found. Thus, 

a$ 
1 

a6 
- = -t 2 +[(l+& 
ax (144 

04 b) 
a6 1Q 

- = 
ax a (2K9 -) 

6 a^, 

aC; 
11 

aG 
ty ;i-;;-’ = 

aG 

ax 
--+ (14 cl 

af: 

ati 
1 

ait at 
Ic = 
ax 

_- Ic + 
Y ax 

a( 2# p -4 

a? a+ 

where from Eqn. (7b), $1, Pll, and Plc are defined as follows 

A 
P,(x) = - Y u,(x) (154 

Gll(X) = - y @Y -uup (15b) 
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A 
Jgx; 6) = y In (Co6x) (154 

A 

It should be noted that both file and Plc really denote two terms, one of order 

ln 6 and one of order 1. They are written as one here for convenience. Also, 

it is found [12] that cl = O(E uz), thus confirming the result used in Part I 

that, to the order considered here, V(x, 0) = 0 in the outer inviscid flow 

layer. 

Insofar as file, 9) is concerned, it is seen from Equation (11) that 

Q 1 + u,(x) as 0 + 00. It will be shown later that the same functional dependence 

must hold as 0 + 0. Since Pl = P,(x), the solution which satisfies both 

matching conditions and the governing equation, (14a), is 
A 
P,(x) 

Cl = C,(x) = - y = u,(x) (16) 

This result has been used in deriving equations (14b) and (14~). It iseasily 

shown [l, 121 that the solutions to equations (14b) -(14d) may be written as 

follows 

c: 
x BlQ(5 1 

IQ = 2y + (x-s exp { - (17a) 
x B# 1 

+ 2YQOl + so (x’c ) expC - (17 b) 

c x 
A 

-“‘“0 

(BQc(5 )h 6 + BlcK )I 

ulc= y (X-E 1 
exp{ - --P-}d5 2K (X-6) (174 

where the Bi(c) are functions to be found by matching. As ^y + 00, the inte- 

gral terms in each of equations (17) go to zero exponentially and it is seen 
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that the remaining terms match with their counterparts in equation (11). 

As x --c 0, for ‘9 = constant, the solutions satisfy the shock wave jump con- 

ditions to the relevant order, as they should. As 0 * 0, one finds [1] the 

following asymptotic behavior for the integrals 

s x Bi(S) 
o (X-S) 

exp(- o 
2K (X-6) 

Id6 -- AL By In( 2K ) ’ gi(x) ’ - l l (Ha) 

gi(x) = lim L. J 
x-b Bi(S 1 

b--O 0 
(x-5 d6 + Bib4 b b] - ~,Bi(x) (18 b) 

where y = Euler’ s constant = 0.57721. 
e 

The solutions for U may thus be found from equation (13a), (16), and 

(17). Since, as mentioned previously, one can find the density and temper- 

ature in terms of the velocity, using the energy equation and the equations 

of state, it is seen that a complete analytical solution may be found for the 

Reynolds stress sublayer in the outer region, valid to terms of order Q u . 
T 

It should be noted that the continuity equation could be used to find the term 

of order ul in V; since it is not used anywhere in this analysis, the solution 

for V is not included. Finally, it is of interest to write the solution for U 

in the limit as $ + 0 for later use in matching with the wall layer solution. 

Thus, 
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A 

u = (1tE) 
-1 

t UT[K %I 5 + G ,,m f up1 

A 

t E UTK -‘h(; )[2y 
P 

- BIQWd 2K 1 f g,,(x) + * l l 3 

P + E u,[(y-I)U+X) t 2ya,l(9) - Bll(xM 2K) + gll(4 f . . - 1 + l -0 

t K6[- AL - (Bpc(x)ln 6 + Blc(x) J.n( 2K) + g&) In 6 

-I- g,,(x) t . . . ] t . . . (19) 

Wall Layer 

At the wall, Reynolds stresses are zero and the skin friction is, of 

course, due entirely to viscous stress. Immediately adjacent to the wall, 

then, is a layer in which, as the wall is approached, momentum transfer is 

a.ccomplished less and less by turbulent means and more and more by 

molecular mechanisms. In this layer, Reynolds and viscous stresses 

are of the same order. The flow entering the interaction region in this 

layer has a velocity U = O(ur) and this order holds in the interaction re- 

gion as well. If the thickness of the layer is taken to be Y = 0( 6), then by 

equating the orders of the Reynolds and viscous stress terms in equation 

(db), one can show that K = O[(R~U~)-~]. Here, in order to write 6 in 

terms of familiar quantities, we set 

i = A(Re* ur) 
-1 

(204 

A= O(l) (20b) 
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With these orders for Y and U, and since in the interaction region. X = O(A) 

and aP/aX = O(u7/A), it is seen that, even though a pressure gradient 

exists, the only terms in equation (4b) are the Reynolds and viscous stress 

terms, to the order retained. The resulting equation is easily integrated 

to give 

TW(X) = ;w/;wu 

(214 
(21b) 

Y = ‘;;; (214 

where, as indicated in Eqn. (21 b), the shear stress at the wall, TW(X), is 

made dimensionless with its value in the undisturbed boundary layer at 

2 = z, so that as x = X/A --t - 03, 7w - 1. Equation (2la) is essentially 

the same equation used in references [l] and [2]; the only difference lies 

in the closure conditions used. 

With the orders mentioned above for U, P, X, and Y, and for 

p = O(l), it is easy to show [12] that V = O(uT6/A) and to corroborate equa- 

tion (4~) to the order retained. Since U = O(uT), then from the energy equa- 

tion, (4d), it is seen that T = Tw t O(z) and from the equation of state, 

equation (4e), then, that variations in p in the Y direction are also O(uz). 

Hence, to order uT, 2 P=P w and as pointed out previously by Melnik and 

Grossman [2] and Adamson and Feo [I], the fact that p, # p e leads to the 

result that limit process expansions in the wall layer do not match with 

corresponding expansions from the Reynolds stress sublayer; thus, this 
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difficulty arises only in compressible flow. The difficulty may be overcome 

by taking advantage of the range of validity of equation (21a). That is, in 

any intermediate limit i << Y << %, equation (2la) is still the governing 

equation; it is necessary to retain additional terms only for Y = O(t). 

Hence equation (2la) may be used to derive solutions which will match with 

A 
those found using limit process expansions in either limit, Y = O(6) or 

Y = O(6). Although the methods of solution used by Adamson and Feo and 

Melnik and Grossman are equivalent, the latter’ s method is more straight- 

forward and will be used here. 

It is clear both from physical arguments, and from consideration of 

equation. (2la) that as Y increases such that y >> 1, the viscous terms be- 

come negligible compared to the Reynolds stress terms; this is borne out 

by using the solution to be derived to compare the two terms. Also, for 

y >> 1, the damping factor D is represented by unity plus exponentially 

small terms (eqn. 5). Finally, the density may be written in terms of the 

velocity and pressure,in general, by using equations (4e) and (4d). Since 

P = P(x) to the order retained, equation (21a) may be integrated to give, 

U(X,Y) = r sin 1 wu (L T K In ‘; + B(x))) (224 

I- = ,’ 
y+l 
Y-1 (22b) 

where T w = (y+l)/2 is the temperature at the wall and Tw/Te can be 

.found in terms of Ue from the energy equation, (4d). B(x) is a function of 

integration which should be evaluated by matching equation (22a) with the 
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limit process expansion solution valid in the wall layer ($ = O(l)); that is, 

it should be found as a result of integration from the wall to the y value in 

question, using the boundary conditions at the wall. However, it is only 

necessary to evaluate B(x) to lowest order here, and this may be done by 

noting that if there were no shock wave, then B(x) = C, the constant from 

the undisturbed flow wall layer solution (eqn. (2.8), in (I)). Here, then, 

B(x) is written in terms of an asymptotic expansion 

B(x) = C t w (u,) Bl(x) + . . . (23 

where w(uT) d 0 as uT + 0. 

Since equations (22a) must match with equation (19), in the limit as 

y + 03, 9 -) 0, it is seen that T w must have an expansion of the following- 

form 
A 

TW (X) 
2 

= 1 tale t a25 t . . . + UT T1(X) + E UT K ’ l-d$ )TIQ(X) 

t E uT Tll(X) t . . . t K6 TIC(X) t . . . 

That is, as y + 03, such that uTK-‘ln v = O(l), 

t 
uT In y = u lo s t uT In t 

7 
6 

turlnp 

where, as shown in (I) (equation (2.9)) 

U T 
1 h i = ($+2 

6 

r sin-L( ue/rl - u,(? t C) 

W 

(24 

(2% 

(26) 

and the expansion for 7 
W 

shown in equation- (24) follows to insure the indica- 

ted matching. Thus, if equations (7b), (23)) (24), (25), and (26) are 

substituted into equation (22a) and the resulting equation is compared with 
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equation (19) term by term, the unknown parameters and fun ctions in equa- 

tions (24) and (19) may be found. The resulting solution for Tw, the shear 

stress at the wall in the outer interaction region, and the corresponding 

values for the Bi and gi (calculated once the B. 
1 

are known using equation (18b)) 

in equation (19) are 

Tw(X) = 1 tale t 
albl-l) 2 

2 
E t... -u 

1 al 
a,)(Y +y - 4) 

4-E UT 
{ 

al 
ul(xlkp - 3Y 

3al -2) +Y(Y ++I 

al 
- 2rI K -+2y - a,)(y + $ - 7 ) 

t K -‘(+l 
al al 

-y)(y --y)(hx -ye +h2K) +--- 
> 

2alx 
tK67 In (Co6x) t . . . (272) 

al=-4 2 !- 
y-l (&I 1 -1 + zy 

I-) (27b) 
WC) 

(274 

811 
= Bll(ln x - ye) (274 

where u,(x) is given in equation (7~). Equation (27a), then, is the solution for 

TV in the interaction region, including the effects of curvature in the ex- 

ternal flow field. It has, in most respects, the same form as the equation 
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derived by Melnik and Grossman [Z],differing mainly in the order of the various 

terms, the inclusion of specific analytical solutions at each order of approxi- 

mation, and the inclusion of the curvature terms. 

The order to make numerical calculations for a given Reynolds number, 

Re, and external flow Mach number, Me = 1 t (ytl)s /2 + . . ., it is necessary 

to provide relations for uT and 6 in terms of Re and E . One of the required 

equations is equation (26), with equations (20) for 6; the other is given in (I), 

(eqn. (2.111, 2.12)). This equation, with the values of the integrals as given 

by Cebeci and Smith [lo] is repeated here for completeness. 

d=U7K 
U 

ue (ItIT) + (u22 
f 2 

U2 

I (1 -l-l-I )&l(>) 

$1 _ e )-l/2 

r2 

12 + we/n21 
[I - (ue/q21 

(2 t 3.1787II t ; II 2, (28) 

where T,/T 
W 

= I - (ue/rf f rom the energy equation, (4d). Finally, it is neces- 

sary to write an equation for the viscosity, p(T), to be used in equations (20). 

Here, u = Tn was used, with calculations being performed for n = 3/4. 

Finally, it should be noted that although the solutions presented here are 

found to orders of approximation such that pressure gradient and inertia terms 

were not retained in the equation of motion in the wall layer, higher order 

solutions involving these terms have been investigated [l 21. It was found that 

the first terms to involve the pressure gradient were of order 6/A in U and of 

order 6/uTA in T 
W 

. Thus, they give very small corrections to the solutions 

presented. 
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3. Numerical Calculations and Separation Criterion 

The variation of 7 with x for various values of external flow Mach num- 
W 

ber (and thus B ) and Reynolds nurrh ers representative of modern aircraft are 

shown in figure I.. The numerical computations were carried out using equa- 

tions (27a) for 1-1 = T 3’4, y=l.4, II =1/2, C= 5andK=O; these values 

seem to be suitable for flow over a flat plate. The curves show the general 

features found experimentally in the interaction region. That is, T (x) goes 
W 

through a minimum, say (~~)~m; as Me increases, (~~)~m decreases, 

while as Re increases (TW)min increases. Thus, the effect of increasing M e 

and therefore the strength of the shock wave is to decrease the value of T 
W 

everywhere in the interaction region and hence to force the flow toward sepa- 

ration; increasing Re gives the opposite effect. It should be noted that 

7 
W 

4 1 as x + 0 because the solution shown in Eqn. (27a) is for the outer 

interaction region. A solution for Tw valid in the inner region can be written 

in terms of the solutions for the pressure perturbations in the inner inviscid 

flow region [12]; The solution is found in precisely the same manner as 

that illustrated here for the outer region and results in a solution similar to 

that given in Eqn. (27a). Finally, a composite solution for T could be writ- 
W 

ten, using the solutions valid in the inner and outer regions. Because of the 

limit processes considered in this work (E >> ur), this composite solution 

would show only a small variation in T 
W 

for x < 0. However, since analytical 

solutions cannot be obtained for the pressure in the inner region, no solution 

for Tw in the inner region has been included here. 

It is not possible to compare the solution for T 
W 

with experimental results 
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for a completely t\-vo dimensional unseparated flow because none are available. 

In those cases where the flow was apparently unseparated (e. g., references 

[15, %I), TW was not measured, and in more recent work, where T w has been 

measured (e. g., references [17, 18, 197) the flow is separated. In separated 

flow, the shock wave takes on a lambda configuration near the boundary layer 

and a relatively strong pressure gradient develops in the Y dire-ction in the flow 

external to the boundary layer [18]; the flow picture is quite different from 

the unseparated flow case considered here. 

Although experimental results for truly two dimensional flow are not 

available for comparison, there is one set of measurements in a tube in which 

the flow is approximately two dimensional [20]. Thus, if R is the dimensionless 

- 
(with respect to L) radius of the tube, 6/R g 0.04 to 0.08; in addition, the 

changes in the core flow (external to the boundary layer) due to the rapid in- 

crease in the boundary layer displacement thickness through the interaction 

region give corrections which are asymptotically of higher order than those 

retained in Eqn. (27a). In presenting the tube data, Gadd fitted power law 

velocity profiles to the measured profiles and inferred values of g (dirnen- 

sional boundary layer thickness) immediately upstream of the interaction. 

Using equations derived using power law profiles, he also gave Reynolds num- 

bers associated with the tunnel stagnation pressure and Mach number for 

each test. Skin friction measurements were derived from Stanton tube 

measurements. In determining the flow parameters to be used in calculating 

7w for comparison with each of Gadd’ s experiments, it was decided to use 

Gadd’ s values of g, Re, Me, and stagnation pressure, 4, as being a self- 
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I 

consistent set of data to calculate the necessary E , u 
7’ 

6, and R for use in 

T 
W’ 

Thus, it is easy to show that if u = Tn, 

F M 
Re6 =$ 

e 

at [1 + y Mt]& 
(1 - 

W 

(29) 

Here, a and ; 
W 

w are the d.imensional speed of sound and kinematic viscosity 

respectively, evaluated at the wall temperature (atmospheric temperature, 

taken to be 59OF.) and in the case of Yw, at atmospheric sea level density; 

Fat refers to atmospheric pressure. Using the given values of Me, p, 8, and 

T -;, Eqns. (3), (26), (with Eqn. (20) for b), (28) and (29) were used to calcu- 

late the equivalent E , u 7’ 
6, andIS. From equation (2), then, the correspond- 

mg “fu 
could be calculated. The ratio of the calculated Cfu to the value in- 

ferred from the standard tube measurements ranged from 1.05 to 1.29 in 

four cases reported by Gadd (Figures 25 to 28, reference [20]). For this 

reason and because of uncertainties in the calibration of the Stanton tube, it 

was decided to compare values of c /c 
f fu’ 

which is equal to T 
W 

as given in 

equation (27a). The results of this comparison are shown in figure 2, for the 

case M e = 1.15,, Re = 7 x 106, (Figure 25, reference [20]). The remaining 

parameters are given under figure (2). The point X’ /6 = 0, defined by Gadd 

as the position at which P, /Pte = 0. 528, was found by using equation (7b). 

It is seen that the measured upstream influence is not small. That is, 

“r/ Cf u 
is not small for X < - 1 say, as required for this theory,so that even 

if the solution for ~~ for x < 0 were available, it is not expected that it would 

give good agreement. In fact, using the above mentioned parameters, 
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6,/6 = 0.5,where 6, is the dimensionless distance to the sonic line in the 

undisturbed boundary layer; evidently the values for Re, E , and II do not form 

a good combination for comparison with the theory. On the other hand, a 

slight unsteadiness in the position of the shock wave could have contributid 

to the slow variation of the measured c /c 
f fu 

upstream of and in the neighbor- 

hood of the minimum. Nevertheless, the value and the position of the minimum 

of c/c f fu are predicted quite accurately. Downstream of the minimum the 

comparison is fairly good; in this regard, however, it is interesting to note 

that the negative curvature seen on the calculated curve but not on this partic- 

ular experimental curve, is a feature found in other experimental results 

which could not be used here because small separation bubbles existed. 

It is of interest at this point to consider the problem of predicting condi- 

tions under which the interaction brings the flow to the point of incipient sepa- 

ration. First, it is seen from equation (27a) that there is no asymptotic condi- 

tion for incipient separation; that is, unlike the laminar case, in which 

45 E 
S 

= O(Re ) is the asymptotic criterion [21],thereis no relation between E 

and Re which holds in the limit as Re * 03 as a condition for separation. 

This is an important difference between the two flows,and it is of interest to 

investigate the reason for its occurrence. The effect of the interaction, 

through the induced adverse pressure gradient, is to slow the fluid. In the 

boundary layer, then, the stream tubes must become wider and, due to the 

constraint of the wall, the V velocity component increases at points away 

from the wall, causing the outer flow to lift away from the wall also. In the 

laminar case, the thickening of streamtubes is greatest in the viscous sublayer. 
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The resulting V component of velocity is large enough that the flow external 

to the boundary layer is affected to lowest order so that the external and 

boundary layer flows must be considered simultaneously, i.e., a strong 

interaction results [21,22]. No matter how large Re becomes, this strong 

interaction occurs, with the thickness of the viscous sublayer and boundary 

layer decreasing as Re increases, according to their asymptotic dependence 

on Re. The sublayer momentum flux and viscous stresses decrease and the 

strength of the shock wave necessary to cause enough displacement of.the fluid 

to result in separation decreases as Re increases. In the turbulent case, even 

for E >> u T, the interaction is a weak interaction to lowest order be- 

cause the wall layer is so thin. Thus, until separation occurs, the outward 

displacement of the fluid in the wall layer due to the interaction is too small 

to cause any effect .in the lowest order solutions in the flow external to the 

boundary layer. A strong interaction does not occur until a separation bubble 

exists. Since there is no mechanism through which variations in the wall 

layer and external flows can interact, before a separation bubble is 

formed, it appears that no asymptotic criterion exists for incipient separation. 

However, it may be that such a criterion will result from an asymptotic solu- 

tion for the separated flow problem in the limit as the size of the bubble shrinks 

to zero. 

Although the solution for Tw(x) does not give an asymptotic 

criterion for separation, there remains the possibility that conditions 

for incipient separation can be found simply by assuming that equation (27a) is 

an accurate solution for Tw(X) at values of Me and Re near separation. It is 
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clear from figures 1 and 2 that the solution shows the correct form, 

with a minimum value, and it is possible to calculate the correspond- 

ing values of Re and Me(i. e., E ) for which (TW)min = 0, the condition 

for incipient separation. It must be emphasized that equation (27a) is not 

being used in an asymptotic sense in such a calculation; thus in order for 

T w to go to zero, one or more terms in the expansion must become as large 

as the first term. Instead, we consider equation (27a) as being a good approxi- 

mation to TV in a numerical sense as long as E 3 and u: (the orders of 

the first terms neglected) are small compared to one. 

To illustrate the use of equation (27a) for T\-,(X) to predict conditions 

for separation, we choose the remainder of Gadd’ s tubes flow experi- 

ments in which cf was measured [ZO]. That is, Gadd presented four plots 

of c vs. 
f 

X’ /6 (Figures 25-28, reference [20]), the first of which is shown 

in figure 2. In each case he also performed oil-flow. experiments, which 

indicated that in one case (used in figure 2) the flow was not separated, but 

that in the three other cases, separation did occur. Although the plotted values 

of c 
f 

did not indicate the occurrence of separation in these three cases, it 

should be noted that the values of c 
f 

were inferred from measurements from 

a Stanton tube aligned facing the flow; thus, accurate reverse flow measure- 

ments could not be made. Calculations of T were made for each of 
W 

these cases, using the same method for calculating the necessary param- 

eters, as mentioned in the discussion of figure 2. The resulting values 

for (Tw)mti = ( Cf/Cfu)min for each case are as follows: 
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(1) e M = 1.27 Re = lo7 (Tw)min = - 0..080 

(2) Me = 1.26 Re = 1.27 x lo7 (7w)min = - 0.020 

(3) Me = 1.34 Re= 1.93x 10 
7 

(TWjmin = - 0.344 

Thus these calculated results indicate that in all three cases the flow is sepa- 

rated, in agreement with the oil-flow experiments. In case (2), the extent 

of the region where 7 
W 

< 0, i.e., the extent of the separation bubble, appears 

to be very small; the flow is barely separated. 

If we denote by Mes the Mach number of the ex.ternal flow at incipient 

separation, equation (27a) may be used, with the condition that (Tw)min = 0, 

to find M as a function of Re. 
es 

A typical result is sho.vn in figure (3) for 

K = 0 and II = l/2, i.e., for conditions associated with flow along a flat 

plate. It is seen that according to this prediction, Mes increases as Re 

increases. This result is in agreement with measurements made by Roshko 

and Thomke [23] f or supersonic flow at high Reynolds numbers. The magni- 

tude of the increase in M 
es 

over a large range of Re, however, is small 

enough that this result could help explain the conclusion that there was little 

or no variation with Re, reached by Settles, Bogdonoff, and Vas [24] . 

The effects of curvature on MeS, as predicted by equation (27a) can also 

be compared with experimental results. Evidently, the only data available 

are those presented in figure (37) of reference [20], reproduced here as 

figure 4. The value of the coordinate along the abscissa, t, is given as 

t g 2. 6 6/R where R is the radius of curvature; in view of equation (lo), 

then, one can write t = 2.66 K. Although there is no dependence on Reynolds 

number shown, it is assumed here that the range of Reynolds numbers is 
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106 to 10’ and calculated results are given for both values. Finally, on an 

airfoil with supercri tical flow, the flow is accelerating up to the shock wave; 

since II depends on the pressure gradient in the undisturbed flow upstream of 

the interaction, the value of II on an airfoil will be different for different 

curvatures. For zero pressure gradient II g 0. 5, whereas for highly accel- 

erating flow II is smaller and can become negative [25]. Therefore, at t = 0, 

II = 0. 5, (K = 0) and at t = 0.015, it was decided to use a value of If for mod- 

erately accelerated flows, lI = 0. The values of Mes at t = 0 can be found 

from figure (3). Those at t = 0.015, for which K = 0.021 at Re = lo6 and 

K = 0.028 at Re = 107, were calculated, again using equation (27a). The re- 

sults are shown in figure (4). It is seen that at the conditions associated with 

flow over a flat plate (t=O) the calculated Mes compares very well with the 

value given by the line drawn through the experimental data. On the other 

hand, at higher cur.vature (t = 0.015) the calculated values are considerably 

less than those found experimentally. In reference [20] there was some dis- 

cussion of the fact that criteria for separation might have been too stringent 

in the curved surface cases so that, for example, the point through which 

the drawn line passes at Mes = 1.31 perhaps should have been at Mes = 1.29. 

If this were the case and if negative values of II were called for, the agreement 

at t = 0.015, would be much better. 

The present results for criteria for shock induced incipient separation 

may be compared with theoretical predictions given by Bohning and Zierep [26], 

who postulated a two layer model for the interaction region and were 

able to calculate an equation for c f’ Two comparisons were made, both for 

92 



6 
flat plates, at Re values of 106 and 5 x 10 ; these Re are in the range of re- 

sults presented in reference [26]. At Re = 106, the predicted values of Mes 

are 1.24 and 1.18 and at Re = 5 x 10 
6 

they are 1.26 and 1.30, where the 

M 
es 

calculated by the present method is the first, in each case. Thus, al- 

though the two solutions give the same Mes at some Re between lo6 and 5 x 10 , 
6 

Bohning and Zierep’ s solution shows a much greater variation of Mes with Re 

than that shown here. However, the present results appear to be in closer 

agreement with experimental measurements [23,24] for a related problem. 

The present theory could not be compared with very recent analytical results 

given by Lnger [27] , who also used a two layer model, since conditions for 

incipient separation were not presented. 

Although there appears to be no asymptotic criterion for separation in 

the limit as Re -, 00 (u 
7 

+ 0) and E * 0, there remains the possibility that 

there exists a criterion involving a large Me as Re -f 03. Thus, it is neces- 

sary to consider the behavior of 7 for E = 
W 

O(l) * Based on the present anal- 

ysis, it is seen that for e = O(l), UT << 1, the solution for TW(x) would be 

of the following form in the outer interaction region: 

TW(X) = T 

Wd 
(E) +UT T (x;E) +... 

w1 
(30) 

where TWd(E ) 
is the value which TW(x) approaches far downstream of the shock 

wave. Since the lowest order solutions for the velocities would be of the same 

form in each of the layers as for E Cc 1, it is seen that, from matching 

solutions in the limit u + 0, one would obtain 
T 

7 

Wd 
r s;n{(p,p) 

l/2 -l( ue 
sin 

d e 
pl = Ud (31) 
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Here Pd and Ud are the values of P and U immediately downstream of the 

shock wave in the inviscid flow external to the boundary layer respectively, 

and are thus the values which P and U approach as x ? 03 in the interaction 

region. If the jump conditions across a shock wave are used to write Ud and 

Pd/Pe in terms of Ue and these expressions are substituted into equation (31), 

one obtains an expression for T in terms of U . 

TWd = [: ; +$;; 1 i] ;:;;;(;j 

Thus, 

(32) 

If Ue = 1 f E is substituted into equation (32) and the resulting equation ex- 

panded for E << 1, it is found that T 

Wd 
= 1 t ale t al(al-1)e 2/2 t . . .) in 

agreement with the first three terms of equation (27a). 

It is clear from equation (32) that, since 15 U < I? for l(Me< co 

(see eqn. (36)), T Wd # 0 for any Me; instead Tw goIs through a minimum 
d 

value of 0. 512 at Me = 2. 55, for y = 1.4, and then begins to rise with.in- 

creasing M . 
e 

Hence, there is apparently no limiting value for Mes as 

Re +co. Moreover, since U + I? asM boo, it is clear that T + co. 
e e 

Wd 
Recalling the definition of Tw(x), one can see that this limit means that for 

high Mach number flow the shear stress far downstream of the interaction 

must be large compared to that of the undisturbed flow. This apparent 

anomaly can be explained by considering equation (21a). The density, in the 

first term, can be written as P/T through the equation of state. Now, in the 

wall layer, the temperature differs from the constant temperature of the 

wall by only higher order terms. On the other hand, since 8 P/El Y = 0 
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through the wall layer and Reynolds stress sublayer, P is the pressure from 

the inviscid flow layer and so varies from P, to Pd. As M 
e 

-c co, Pa/P, -c co 

and so from equation (21a), r * 03 also. 
Wd 

In general, since the Reynolds 

shear stress, - p < U’ V’ >, includes the density, this result appears to be 

independent of the specific closure condition as long as < U’ V’ > does not 

go to zero as M + co, e 
and is another significant departure from the laminar 

case. Experimental verification of the large values of 7 

Wd 
at high Mach nurn- 

bers is given in measurements by Marvin, et al. [28] . 

4. Concluding Remarks 

The use of asymptotic methods of analysis results in a relatively simple 

relation for the shear stress at the wall in the interaction region. This relation 

may be used to predict conditions for incipient separation. In order to obtain 

the proper variation of Tw vs. x, which includes a minimum in T 
W’ 

it is neces- 

sary to include terms of higher order than the first approximation; evidently 

this would be the case also if one were to calculate T 
W 

for the case uT = O(E ) 

Although the range of parameters in available experiments does not allow 

for exhaustive testing of the theory, comparisons which could be made are en- 

couraging; more accurate results should be obtained at the high Reynolds 
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numbers associated with modern transonic aircraft. 
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Figure 1. 'I, vs x for various values of Me and Re, for flow over a flat plate. 
(Eqn. (27a) with n = 0.5, K = 0). 
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Figure 2. Comparison of calculated (eqn. (27a)) and experimental (ref. 20) val es of 
Cf/Cfu vs Xl/S. Experimer$al conditions; Me = 1.15, Re_= 7 x 10 B , wall 
temperature = 15OC (59OF), Pte = 137.9kPa gauge (20 psig), 6 = 0.305 cm 
(0.12 in.). Corresponding calculated parameters; E = 0.120, UT = 0.03968, 
6 = 0.01634, II = 0.312, K = 0. Xl/& = 0 at Pw/Pte = 0.528 from eqn. (7a). 



Figure 3. Me, (Mach 
number at incipient separation) vs Re for flow Over a flat plate, 

calculated using eqn. (27a) with (T~)~. = 0, n = 0 5 
., K=O . 
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Figure 4. Effect of curvature parameter, t, on Mach number for incipient Separation, 

M es, from reference [ZOI. Triangles and circles COrreSpOnd to different 
airfoils. Present calculations shown as follows: at t=O, W-Re=106 
r[ = 0.5, K = 0; x - Re = 107 I[ = 0.5, K = 0. At t = O.O15,l- Re = 1i6, 
rI = 0, K = 0.21; x - Re = 104, II = 0, K = 0.28. 



INTERACTION BETWEEN A NORMAL SHOCK WAVE 

AND A TURBULENT BOUNDARY LAYER 

AT HIGH TRANSONIC SPEEDS 

Part III - Simplified Formulas for the 

Prediction of Surface Pressures 

and Skin Friction 

A. F. Messiter and T. C. Adamson, Jr. 
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1. Introduction 

In Parts I and II an asymptotic description of the interaction 

between a fully turbulent boundary layer and a weak normal shock 

wave is derived in detail for a particular limiting case. Here in 

Part III simple approximate numerical calculations of the corre- 

sponding wall pressure and skin friction distributions are described. 

2. Undisturbed Boundary Layer 

The interaction is characterized by two small parameters, a 

nondimensional friction velocity u T and a nondimensional shock- 

wave strength E. If U e is the undisturbed external-flow velocity 

immediately outside the boundary layer and ahead of the shock wave, 

made nondimensional with the critical sound speed, E is defined by 

U = l+E 
e 

If. Me is the corresponding external-flow Mach number, 

(1) 

(1 + E)2 = 
$(u+l)M,z 
1+y-l,M2 

2 e 

(2) 

The friction velocity is likewise made nondimensional with the 

critical sound speed, and is defined in terms of the skin-friction 

coefficient cf just ahead of the interaction by 

2 
U 

-r 
= $UeZCf 

106 

(3) 



I - 

For simplicity an adiabatic wall is assumed and the total enthalpy 

is taken to be uniform. Thus the ratio of the wall temperature to 

the temperature in the external flow is 

T 
--=1+y-l 2 W 

T 2 M e 
e 

(4) 

where y is the ratio of specific heats, taken to be constant. For 

numerical calculations, the viscosity coefficient is represented by 

a power law: 

c1W -= 

‘e 
(5) 

The Reynolds number Re is based on external-flow quantities just 

ahead of the shock wave and on the boundary-layer length L, the 

distance from the leading edge to the shock wave. 

The undisturbed mean-velocity profile U used in Parts I 
U 

and II is given as a transformed incompressible profile by 

I? sin-l(r-lUu) = Ui(e) + (Tw/Te)1’2~,u01(y) 

where 

ui(e) = Tsin-l(r-lUe)s -Jy = (YiL)V2 
Y-l 

(6) 

Also, y = Y/6, where Y is the coordinate normal to the wall and 6 

is the boundary-layer thickness, both made nondimensional with 

the boundary-layer length L. For some of the derivations the 
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function uO1 (y) is represented in Coles’ form 

uol(y) = K -%‘l y - K-h (1 + COS r y) (8) 

where K = 0.41 is the von K&-m& constant and II is a profile 

parameter. For very large Reynolds numbers and for zero pres- 

sure gradient, II =: 0.5 or a little larger; for a favorable pres- 

sure gradient, as appears over most of an airfoil surface, the 

value is smaller. An equation defining the nondimensional dis- 

tance Y = 6= from the wall to the sonic line in the undisturbed 

boundary layer is found by setting U = 1 in Eqn. (6): 
U 

- u+-I[l + cos(r 6*/b)] (9) 

where Ui(0) = 7? sin-‘(I’-‘). If E << 1, the first term on the right- 

hand side becomes (Te/Tw) li2[ up - Ui(O,] - E[l - (y-l)E/4 . . .] ; 

if u << E, then 6 
T 

~ << 6. 

In the calculation procedures shown below, the parameters 

needed are IM 
e’ 

Re, 6, u T, I-I, and 6,; as already noted, 6 and 

6, are dimensionless. Values for these quantities might be ob- 

tained in a number of different ways. If the first three were 

given, the last three can be calculated, as shown below; instead, 

all six quantities might be available from a numerical boundary- 

layer solution; or perhaps the nondimensional displacement 
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* 
thickness 6 or momentum thickness 8 might be among the given 

* 
quantities . If needed, the definitions of 6 and 8 give, for small 

up, 

2 
* 

s -- 6 3 
u 

7 

K 

u 2 

e e e 

(10) 
T 2 

8 1+rI u7 
U 

-- --- 
s K u 

2 t 3.1;l-I + 1.5rI 2 (3 $- 1) 7 

U2 
(11) 

e 2K e 
e 

For illustration, the parameters Me, Re, and 6 will be rsgar- 

ded as given; then Eqn. (9) relates 6, to the other quantities, and 

two additional relations can be derived. As described in Part I, 

asymptotic matching of Eqn. (6) with a wall-layer solution gives 

UTK -‘h(6 /c) = (Te/Tw) 
l/2 

up - UT(2n K 
-1 

+ 4 

where 6 is the nondimensional wall-layer thickness 

(12) 

(13) 

and c E 5.0 is a constant appearing in the wall-layer solution. The 

momentum-integral equation gives 
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2 u 
2 

2 +3.18l-I +1.5l-i -r 
4(1 + II) 

l- U 
2 

e 

(14) 

Equations (12) and (14) can be solved simultaneously for ur and II . 

In an iteration, perhaps an assumed value of ll (say 0.5) should be 

substituted into both right-hand sides; Equation (12) would then be 

solved for u r, and that result would be substituted into Eqn. (14) 

to give a new value of II ; the new II would again be substituted into 

both right-hand sides, etc. It can be seen from these equations 

that, since ur is small, the choice of definition for 6 does not have 

a strong effect on the solutions for u 
T 

and for the product (1 -I- II ) 6 ; 

also, the largest term in the pressure given below is proportional 

to llr(1 +lI)6. 

3. Pressure Distribution 

The solutions of Part I are derived for values of ur and E 

such that ur -CC E << 1. The coordinate X, nondimensional with L, 

is measured along the wall, with origin taken here to be at the 

intersection of the shock wave and the edge of the boundary layer. 

The shock-wave shape is X = Xs(Y), where IXs(Y) 1 is small’but 
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nonzero because of the interaction. The solutions are written in 

terms of coordinates x and x* defined by 

X x=-z ,x 
bo6 A 

t 
(K T l/2)1/2 

e x - xp x - Xs(0) 
x = 

(y+l) 1'2uT1i2 d * 
= 

A* 
(16) 

2 
whereb =1-M 

2 
0 0 

and MO is the Mach number behind a normal 

shock wave with upstream Mach number Me. It follows that 

bo2 = 
ue2 - 1 

u”-g 
e 

(17) 

and for E << 1, b 
0 

’ = (y+l) E (1 -$Zy+l)e + . ..I. The value of 

X (0) is found approximately from the results of Part I as 
S 

. ..I (2 t 1.59l-r) (18) 

The pressure P is nondimensional with the critical value in 

the external flow; Pe and Pf refer to values upstream and down- 

stream of a normal shock wave at Mach number M 
e 

; Pt is the 

stagnation pressure in the undisturbed external flow; and P is 
W 

the wall pressure. The solution for x = O(1) is expressed in 

terms of source distributions and is approximated downstream, 

as x + 00, by P = Pf t (const.)/x. The first term in the constant 
W 
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factor is proportional to the increase in boundary-layer displace- 

ment thickness caused by the shock wave, as also found by Melnik 

and Grossman [l, 21 . This first term, representing the effect of 

a source at the origin, is found to approximate the effect of the 

distributed sources quite accurately for x >, 2. An expression for 

the smaller second term is found by using an approximation for the 

shock-wave shape to evaluate one of the integrals derived in Part I; 

the function of II appearing in this second-order source strength is 

then approximated by a linear function for 0 <, II <, 0.5. The solu- 

tion for x* = O(1) is needed only in a region which is extremely 

small if u 
-r 

<< E and would require solution of the transonic small- 

* 
disturbance equations. Upstream, as x -. - co, these equations 

are approximated by linearization about the undisturbed profile, 

and the solution for x -+ - co is found to have the form 

Pw/Pt 

- Pe/Pt t u 7 
exp+ (x* - x0* ) , where k = 0.59 and x0* is 

as yet unknown. 

The description given in the preceding paragraph would suffice 

for the idealized case of a flat plate in a uniform flow, where the 

pressure approaches constant values upstream and downstream of 

the interaction. For flow past an airfoil the boundary-layer effect 

can be expressed instead in terms of the pressure difference from 

a potential-theory pressure which continues to vary as the distance 
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from the shock wave increases. Upstream, for X C X 
U’ 

the ex- 

ponential solution is added to a potential-flow solution P 
W 

= Pu(X). 

Downstream, for X > Xd, the source solution is added to a 

potential-flow solution P = P,(X). 
W 

Close to the shock wave, for 

x < x < Xd, 
U 

PvJ is approximated by a straight line drawn tangent 

to these upstream and downstream representations. The tangency 

conditions are sufficient to determine the equation of the straight 

line and the values for Xu and Xd. 

The functions Pu(X) and Pd(X) include the effects of nonuni- 

form external flow associated with nonzero values of a P/a X and 

3 P/a Y ahead of the shock wave. If Pd(X) were known very accu- 

rately, the singular behavior dPd/dX = O(K In X), where K is the 

local surface curvature, would appear for X * 0, as explained in 

Part I. However, the potential-flow pressure distribution is pre- 

sumably found numerically, with the shock wave spread over a 

few mesh points, so that the singularity is obscured. The values 

of Xu and X 
d 

are expected to lie outside the region of rapid pres- 

sure rise corresponding to the shock wave; if this is not true, 

some simple extrapolation of Pu(X) and/or P,(X) should be used 

so that the smearing of the shock wave resulting from the numeri- 

cal calculation does not influence the pressures calculated here. 

A specific location must be estimated for the shock wave, so that 
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the origin for x can be defined. 

Three representations for the wall pressure are therefore pro- 

posed, one for each of three intervals, as follows: 

P p (Xl k(x* -x0* ) 
X<X: x=+{li-u e 

u p 
1 

T 
t t 

(19) 

P 
xu< xc x 

W 
Pd(Xd) 

d: pt= 
P t ax + .p 

t 

P P,(X) 1 ymuT 
X>Q +7---- 

t t Pt 2”x 

(20) 

(21) 

where Pt = { (y+1)/2} ‘/(‘-‘) = 1 893 for y = 1 4 . . . The constants 

xu, Xd’ 0, and p are determined below from the requirements 

that Pw and dPw/dX be continuous. As already noted, k = 0.59. 

* 
A value x 

0 
= -14 was proposed in Part I for agreement with a 

particular experimental pressure distribution. Here Eqn. (19) 

* 
is given in a slightly modified form, and the choice made is x0 = -10, 

partly to improve agreement with a second set of data and partly to 

avoid any implication that the value is accurate to two significant 

figures. Finally, 

m=8 ‘y (1 t (y-l) E + . . .) t 120(1 -I- 6rr)uT (22) 

where the first term is the integrated first-order source strength 

given in Part I, and some simplifying approximations have been 

114 



introduced in the second term, as explained above. 

The continuity requirements for P 
W 

and dPw/dX then lead to 

the following system of equations to be solved for X 
U’ 

Xd, a and p: 

PdWd) - PuWu) 
P 

t 

ymu x = 
p&(X,) 

d 
+(l -&; +xd(xd -xu) p A 

t t 

t 
PuWu) 

P t 
XdUT ed k(x 

* 
U 

- x0*)) (23 

PuWu) 
At 

Pt kA* 

p;Gy ymu 
7 

P 2 
t 

uTexp{k(xu* - x0*)] = 
2TXd Pt 

where 

P’ (X,1 
t d 

- Ppy 

Pt 
A 

ymuT p;(X,)A 
cy = 2 + Pt 

2 Tr XdPt 

p = - 
YVT XdP&(Xd) A 

VXP - 
d t Pt 

X 
U A* Xu * t Xs(0) 

x =- zz 
U A A 

(24) 

(2% 

(26) 

(27) 
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Xd 
= xd 

x- (28) 

Equations (23) and (24) are to be solved simultaneously for xu and 

x. Ifu 
d T 

-CC E, then A* << A, the exponential function is numeri- 

tally small, and Ix, 1 << x 
d 

. Also Pu(X ) = Pu(0) and Pd(Xd) 
U 

= Pd(0), the values found at X = 0 by extrapolation, and terms con- 

taining Pt(XU) or PIa are numerically small. These estimates 

can be used to give a first guess for x 
d’ 

and the equations can then 

be solved iteratively in essentially the form given. 

The constants found from Eqns. (23) - (28) are to be substi- 

tuted into Eqns. (19) - (21) to give the wall pressure as a simple 

function of distance and a somewhat more complicated but known 

function of the parameters. To indicate the level of accuracy which 

might be expected, some of the curves from Figs. 3 and 5 of Part 

* 
I are replotted here, with x 

0 
now set equal to -10. A comparison 

with experimental pressures from Ref. [ 31 is shown in’ Fig. 1 for 

Me = 1.322, Re = 9.6 l 105, 6 = 0.021, uT = 0.051, II = 0.28, 

and 6 */6 = 0.26. Effects of nonuniform external flow, resulting 

from tunnel area change and longitudinal wall curvature, have been 

estimated and included in the predicted pressure. For a circular 

pipe, a comparison with experimental results from Ref. [4] and a 

numerical solution from Ref. [2] is shown in Fig. 2, for Me = 1. 12, 
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Re = 6 x 106, 6 = 0.02, ur = 0.04, II = 0.1 and 6,/6 = 0.45. Again 

the effects of a nonuniform external flow, in this case resulting from 

a finite pipe radius and a small area change, are included. For 

these comparisons a value for 6, or for 6 */6 was regarded as 

given and the value of II was calculated using the approximate 

form of Eqn. (9), with 6 */6 taken to be small; use of the complete 

equation would change the theoretical curves slightly. 

The representation for the wall pressure given by Eqns. (19) - 

(21) is an approximation to the asymptotic solution derived in the 

limit as u + 0, T 
e-+0, andur/e -CO. The scaling is then clearly 

correct if u,/e is very small and can be shown to remain correct if 

UT/E = O(1). The complete problem formulation for u 
7 

= O(E) was 

given by Melnik and Grossman [l, 21 , in terms of the. nonlinear 

transonic small-disturbance equations with prescribed vorticity, 

subject to suitable boundary conditions. For a given value of II a 

one -parameter (essentially UT/E) family of numerical solutions can 

be obtained; in their calculations II = 0. 5. Their results likewise 

have exponential decay upstream and source-like behavior down- 

* 
stream. Values for the constants k, m, and x 

0 
could in principle 

be inferred from a sequence of numerical solutions as ur/e - 0; 

however, the value of m for a given II would differ somewhat from 

that given above because second-order terms included here do not 
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correspond exactly to terms in the solutions of Refs. [I] and [2] 

which become of second order as ur/e * 0. A value of x0* obtained 

3: 
from numerical solutions would differ from the value x = -10 

0 

inferred from the two measured pressure distributions shown in 

Figs. 1 and 2. 

The present results are quite simple in form and give good 

accuracy for the cases shown in Figs. 1 and 2. The numerical solu- 

tions of Refs. [l] and [2] , which give a correct approximation to 

the pressure for small values of ur and e and for l /ur = O(l), 

require a considerably greater amount of computation and depend 

on two parameters. It would therefore seem that the present re- 

sults might be considered adequate for a practical airfoil calculation. 

Any approximate description of the interaction which is to be 

considered reliable should be based on a correct representation of 

the undisturbed mean-velocity profile. The profile is characterized 

by two very different length scales, a boundary-layer thickness and 

a much smaller viscous length, and so is represented in terms of 

the law of the wake and the law of the wall, described by Coles [5] 

for incompressible flow and extended for compressible now by 

Maise and McDonald [6] . Both the present work and that of Mehnik 

and Grossman are based on this two-layer structure for the undis- 

turbed profile. The derivations of Refs. [i’] and [8] , on the other 
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hand, do not properly represent the undisturbed profile and intro- 

duce approximations into the equations of motion in a rather arbi- 

trary way. In spite of these supposedly simplifying assumptions, 

the derivations remain complicated and do not show the dependence 

on parameters analytically. 

The present results, therefore, (a) are expressed by simple 

functions of distance with dependence on parameters shown explicit- 

ly; (b) are based on a systematic approximation to the equations of 

motion; and (c) for the cases shown in Figs. 1 and 2, reproduce 

numerical and experimental results quite well. Furthermore, by 

use of results given in Parts I and II the pressure distribution 

away from the wall and the shear stress at the wall can also 

be calculated. Several comments should be made, however, con- 

cerning values of constants and expected accuracy for P : 
W 

* 
(1) The tentative value x = 

0 
- 10 is a rough estimate based on a 

comparison with two measured pressure distributions, and perhaps 

should be improved. 

(2) Additional uncertainties appear in both theory and experiment. 

The shock-wave position is unsteady because of turbulent fluctua- 

tions in the boundary layer, and the maximum measured dPw/dX 

is therefore at least slightly reduced. If even a very thin separa- 

tion bubble is present, the beginning of the pressure rise will be 
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moved somewhat upstream. LI the theory, some simplifying 

approximations have been introduced here in the expressions 

derived in Part I for Xs(0) and for the second term in m. More- 

over, omitted terms of still higher order than retained in Part I 

might be numerically important. 

(3) The origin x = 0 has been placed at the intersection of the 

shock wave with the edge of the boundary layer; the position 

estimated from numerical potential-flow solutions alone is not 

sufficiently accurate. Perturbations in the external flow resulting 

from the local boundary-layer displacement effect must therefore 

be calculated, so that x can be measured from the perturbed shock- 

wave position. For the simplest correction method, Pw obtained 

for the undisturbed shock wave can be used in the boundary-layer 

equations for calculation of the displacement thickness as a func- 

tion of X in the interaction region. Calculation of the potential 

flow over the new equivalent body then gives the perturbed shock- 

wave shape, and the origin for P can then simply be shifted 
w 

appropriately. In this calculation, the neglect of Py is not justi- 

fied; however, the error arises primarily for Xu < X < Xd, 

where the interpolation formula for Pw has been used. In a sense, 

then, this additional approximation can be regarded instead as a 

kind of interpolation for the displacement thickness, and probably 

introduces very little additional error. 
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(4) The theory was derived for unseparated flows with 

u -c-c E << 1, T 
but the approximate version, with the straight-line 

interpolation, is being proposed for use in a broader range. For 

Fig. 1, as noted in Part LI, it is believed that a very thin separa- 

tion bubble was present in the experiment. For Fig. 2, the Mach 

number is low enough that u,/e = 0.4, which is certainly not 

very small. More comparisons with experimental data are needed 

to provide a better guide to the parameter ranges for which the 

approximation might remain reasonable. 
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4. Skin Friction 

Simple equations for the shear stress in the interaction region 

may be derived also, when the approximate forms for the pressure, 

given in Eqns. (19) and (21), are used in the equation for T 
W- 

That 

is, in Part II, it was shown that T could be written in terms of 
W 

the perturbation in pressure at the wall, P,(x) = - y u,(x), in the 

major (outer) part of the interaction region, It is easily shown [9] , 

that the same holds true in the initial part of the interaction region 

where upstream influence first causes changes from the undisturbed 

surface pressure and skin friction. Thus, from Ref. [9] , it is 

shown that in this (inner) region, 

al pI+(x*) 
7 = 1+ur2 + . . . 

W Y 
(29) 

and so, using Eqn. (19) for Pl* (x*), for X < Xu, 

uT a 
k(x* -x0*) 

f = ltle t . . . 
W 2Y 

(30) 

Likewise, if Eqn. (21) is used for the pressure perturbation, 

P,(x) = - vu,(x), in equation (2i’a) of Part II, one can show that, 

for X > Xd 

T =l- 
wd 

tu 
W 

T p t E uT (-B t Cln x) Old 

al 
A = -z 

3al 
‘z[l-3y--7 + F (Y + $)I} @lb) 
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B = -K 
al al -‘h(f )(2y-a,)(y t + - 4) t K -‘IZI (2y-al)(Y + * - 4) 

al al + (2yfl -,)(Y -y )(Y, -In 2K)1 

c = K -‘(2y+l - 

(3lc) 

al = -4 d u-l 2 (sin-l + )-l t 2y (314 

In Eqn. (31~) y = 0.57721 is Euler’ s constant and K = 0.41 is the 
e 

KbrmSn constant. In Eqn. (31a), 7Wd represents the wall shear 

stress calculated using the pressure downstream of the shock wave. 

For flow over a flat plate, ~~~ is given by Eqn. (32) of Part II; 

for E << 1, TWd=ltale tal(al-1)E2/2 t . . . as in Eqn. (27a). 

Finally, 7 = cf/c fu where c 
W f 

is the skin friction and the subscript 

u refers to conditions upstream of the interaction. 

Equations (30) and (31a) are simple relations for cf/cfu up- 

stream of Xu and downstream of Xd. In the intermediate region, 

just as was done for the surface pressure, we use a straight line 

tangent to the solution given by Eqn. (30) at Xu and to the solution 

given by Eqn. (31a) at Xd. The values for Xu and X 
d 

found here 

are clearly not the same as those found for the surface pressure 

distribution. In addition, cfu and cfd, the skin friction upstream 

and. downstream of the interaction respectively, are considered 
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to be known functions of X. That is, the present calculations may 

be considered to be a correction to the cf distribution found using 

typical boundary layer methods, this distribution being in error 

within the interaction region. Because c 
fu 

and c 
fd 

wo uld include 

the effects of wall curvature, terms involving these effects are 

not included here. The proposed equations to be used, then, are 

xc x 
“f = 

al k(x* -x0*) + 
. . . 

U 
cfu(X)[l + uT 2y e 

, 
Wd 

x -z x < Xd 
U 

Cf = Cfd(Xd) + (Ycx+Pc 

x> x 
d % = cfd(W + cfuWu)bT f f E uT(-B + Cln xl] 

Wb) 

(32~1 

where 

X 
A* x* +x&o) 

x=T= A (33) 

It may be noted that as x becomes very large, the term - B t C ln x 

does not approach zero. This term evidently indicates that relaxa- 

tion to a final value of cf takes place on a scale large compared to 

a boundary layer thiclmess. Because B is a large number 

- B t C ln x goes through zero for x large (e. g., x = 200). More- 

over, since ln x does not vary rapidly with large x, the contribution 

of this term is not significant for a considerable range of values of 

x about the point at which it equals zero. Hence after the term 

- B t C ln x has gone to zero, it should be dropped from the 
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expression for c . 
f 

The equations necessary to find X 
U’ 

Xd, (Ye, and p are 
C 

obtained by equating the relevant expressions for c 
f 

and d c 
d 

dX 

at Xu and X 
d’ 

They may be written as follows: 

cfu(xu) 
- cfd(Xd) = Axu cfi (xu) - Axd Cf; (x,) 

+ UT cru(xJ[= - 
Xd 

E(B + C(1 - In x,,,] 

-u 
1 

A 
7 

cf: (xu) f f+ Cfu(xu)} -’ 
* 

0 
{ 

$ ( Cfk (X,) - cf; (Xu)) -I- Cfu(Xu) (- -$ + 
7 

“d 
l $)t 

l 
1 

cfu(Xu)(l - k xu $ ) - xuA cf:(X)} (34a) 
* 

k(x * -x0+) 
U 

e = 3 [A 
al 

cf: Mu) + k $ c~~(X~)]-~ 
8 

l ” [ cf; (X,) - cfu mu)1 + Cfu’Xu’L % + 
7 

Xd 

zl} (34b) 

uA 
cy = A cf; (x,, + Cfu(xu’ - + + E UT ;} (34cl 

C 

Xd 

PC = -Ax c’(X)tu c 
d fu d T fuOQ{&; - e(B + C(1 - In xdH} (34d) 

where 
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c; = d cf/dX. 

An illustration of the results obtained using the present 

simplified equations is shown in figure (3) where the experimental 

results are those of Gadd [4]. The numerical values of the param- 

eters are those given in figure 2, Part II. In addition, xs = 1. 54, 

Xd 
E 1.37, xu= -6.10, andTwd= cfd/cfu=0.85andx *= - 10. 

0 

If the calculated results in figure (3) and figure(2) of Part II are 

compared, one can see that the effect of using the approximate 

form for P,(x) is to change the location and value of (-rw)min 

= ‘cd cfu)min slightly. Comparison of calculated and experimental 

values in figure (3) shows that the upstream influence is under- 

& 
predicted for x = 

0 
- 10 as in the surface pressure calculations. 

However, unsteadiness in the shock wave position, with oscillations 

of relatively small amplitude, could easily account for the difference 

between calculated and experimental values. 
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Figure 1. Pressure at wall with longitudinal curvature: Me = 1.322, Re = 9.6 x 105; 
Pd(X) is calculated from theory of Part I, with curvature effect (K * 0.2) 
included. 
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/ 'Figure 2. Pressure at wall of circular pipe: Me = 1.12, Re w 6 x 10'; Pd(X) is 
calculated from theory of Part I, with effect of finite pipe radius 
(6/R L) 0.055) included. 
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Figure 3. Comparison of calculated and experimental values of cf/cfu vs X1/6, where 
xt/S = 0 at Pw/Pte = 0.528. Parameters as in Figure 2, Part II. 


