NASA TECHNICAL MEMORANDUM

NASA 114-78298

MATED VERTICAL GROUND VIBRATION TEST

By Edward W. Ivey Systems Dynamics Laboratory

(NASA-TH-78298) MATED VERTICAL GROUND N8J-32425 VIBRATION TEST (NASA) 96 p BC A05/MF A01 CSCL 22B

> Unclas G3/16 28757

July 1980

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

المرج برتي

No.

TABLE OF CONTENTS

1 · · · · ·

. . .

. . .

4

ş

_*

فموجدة والالامة والألام الموجور الردامان

. •

Ž.

		Page
Ι.	SUMMARY	1
II.	INTRODUCTION	1
ш.	BACKGROUND	2
IV.	TEST REQUIREMENTS	4
v.	INSTRUMENTATION	5
VI.	SHAKER°	. 5
VII.	TEST EQUIPMENT	6
VIIJ.	DATA REDUCTION	6
IX.	LAUNCH	7
x.	BOOST	68
XI.	CONCLUSION	84
BIBLI	одгарну	89

PRECEDING PAGE BLANK NOT FILMED

iij

LIST OF TABLES

1

. .

۰.

e destruction in the

. . .

1 × 4 × 1

Table	Title	Page
1.	Technical Problem Areas and Requirements	3
2.	Liftoff Suspension System Modes	11
3.	Liftoff FCS Sweeps	13
4.	Flight Control Frequency Priorities (Symmetric MVGVT Liftoff Modes)	15
5.	Flight Control Frequency Priorities (Antisymmetric MVGVT Liftoff Modes)	16
6.	Liftoff Pogo Sweeps	17
7.	MVGVT Modal Correlation [Configuration — Liftoff (Symmetric)]	18
8.	MVGVT Modal Correlation [Configuration Liftoff (Antisymmetric)]	2:
9.	Payload Bay Sweeps	45
10.	MVGVT Liftoff Pitch/Roll Mode, Lox Tank Full	46
11.	MVGVT Liftoff Test Pitch/Roll Mode, Lox Tank Empty	46
12.	SRB Burnout Suspension System Modes	48
13.	SRB B/O FSC Sweeps	49
14.	Primary FCS Response Frequencies SRB Burnout Transfer Functions	50
15.	SRB B/O Pogo Sweeps	51
16.	MVGVT Modal Correlation [Configuration — Burnout (Symmetric)]	52
17.	MVGVT Modal Correlation [Configuration — Burnout (Antisymmetric)]	54
18.	SRB RGA Mounting Ring Fix FCS Evaluation	57

LIST OF TABLES (Continued)

ţ

Table	Title	Page
19.	1307 Bulkhead Computed and Measured Yaw Rates (Deg/Sec)	59
20.	Suspension System Modes	71
21.	Flight Control Sweeps	72
22.	Start Boost Symmetric	73
23.	Start Boost Antisymmetric	74
24.	Mid Boost Symmetric	76
25.	Mid Boost Antisymmetric	77
26.	End Boost – Symmetric	79
27.	End Boost Antisymmetric	80
28.	Lox Tank Low Level Boost	81
29.	Samso Sweeps	83
30.	Full Scale Dynamic Testing Experience in Past Programs	85

۰.

LIST OF ILLUSTRATIONS

Figure	fitlə	Page
. • 1.	Launch configuration	8
2.	Typical hydraulic dynamic support	9
3.	Suspension system for shuttle vehicle	10
4.	Space Shuttle MVGVT Orbiter/ET/SRB	24
5.	Space Shuttle MVGVT Orbiter/ET/SRB	25
6.	Space Shuttle MVGVT Orbiter/ET/SRB	26
7.	Space Shuttle MVGVT Orbiter/ET/SRB	27
8.	Space Shuttle MVGVT Orbiter/ET/SRB	28
9.	Space Shuttle MVGVT Orbiter/ET/SRB External Tank Lift-off Symmetric	29
10.	Space Shuttle MVGVT Orbiter/ET/SRB External Tank Lift-Off Symmetric	30
11.	Space Shuttle MVGVT Dwell Data Orbiter *** External Tank *** Solid Rocket Boosters	31
12.	Space Shuttle MVGVT Dwell Data Orbiter *** External Tank *** Solid Rocket Boosters	36
13.	Space Shuttle MVGVT Symmetric Orthog Orbiter *** External Tank *** Solid Rocket Boosts	37
14.	MVGVT Kinetic Energy Distribution Symmetric Motion Orbiter *** External Tank *** Solid Rocket Boosters	38
15.	Space Shuttle MVGVT Symmetric Orthog Orbiter *** External Tank *** Solid Rocket Boosters	39
16.	Space Shuttle MVGVT Symmetric X-Orth Orbiter *** External Tank *** Solid Rocket Boosters	40
17.	Linear regression analysis	41
18.	Linear regression analysis	42
19.	Decay trace	43

<u>vi</u>

1 2

• 5 • •

1. N. N.

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
20.	1307 bulkhead accelerations at 4.7 Hz in g's/lb	58
21.	Lox dome acceleration transfer function, pre SRB separation	60
22.	Lox dome pressure transfer function, pre SRB separation	61
23.	Lox dome acceleration transfer function, 100 second	62
24.	Lox dome pressure transfer function, 100 second	63
25.	Lox dome acceleration transfer function, 80 second	64
26.	Lox dome acceleration transfer function, 80 second	65
27.	Bulge mode frequency change with flight time	66
28.	Critical damping curve for the lox dome bulge mode	67
29.	MVGVT boost configuration	69
30.	Suspension system for Orbiter/ET boost configuration	70
31.	First fuselage symmetric bending linearity check	82

...

TECHNICAL MEMORANDUM

MATED VERTICAL GROUND VIBRATION TEST

I. SUMMARY

The Mated Vertical Ground Vibration Test (MVGVT) was conducted to provide an experimental data base in the form of structural dynamic characteristics for the Shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls and flutter criteria for the Space Shuttle under various payloads and operational missions.

The MVGVT program consisted of two basic configurations. The two configurations tested were simulated launch and boost. The launch configuration was composed of two Solid Rocket Boosters (SRB's), an External Tank (ET), and an Orbiter (OV 101).

For the launch configuration, the liftoff and endburn (Pre-SRB Separation) flight conditions were tested. The Lftoff testing began on October 20, 1978, and ended December 2, 1978. The end burn testing started on January 30, 1979, and ended February 28, 1979.

The boost configuration was composed of the ET and the OV-101. For the boost configuration, three flight conditions (start boost, mid boost, and end boost) were tested. The boost test started on May 30, 1978, and ended July 14, 1978.

The Shuttle test program was conducted under Johnson Space Center's (JSC) direction and implemented by Rockwell International Corporation. Marshall Space Flight Center (MSFC) was heavily involved in all phases of the test. They were responsible for the ET, the SRB, and the Space Shuttle Main Engine (SSME) dynamic math models. MSFC was also involved in the LOX modal survey test. For MGVGT, MSFC was responsible for the suspension system design for launch and boost and was also involved in establishing the test plans and requirements. Additional responsibilities included data evaluation and analytical correlation.

II. INTRODUCTION

The purpose of this report is to present the MVGVT boost and launch program evolution, the test configurations, their suspensions, and the test results compared with predicted aralytical results.

していていたいでないできるとうな

III. BACKGROUND

The dynamic behavior of space vehicles during different mission phases is a key consideration in their design, development, and verification. The complexity of a space vehicle like the Space Shuttle increases the difficulty required to accurately calculate this dynamic behavior especially to the accuracy requirements required by the Shuttle vehicle. The accuracy requirements are shown in Table 1 and were established by the various disciplines of pogo, loads, controls, and flutter. To meet this accuracy a full scale Mated Vertical Ground Vibration Test (MVGVT) program was required. The complexity of the Shuttle vehicle is unique. The Shuttle complexity is created by the coupled interaction of a four body system with many joints and local load paths. In addition, the Shuttle includes the viscoelastic effects of the SRB's with the unsymmetrical stiffness and mass effects of the Orbiter.

In the early phases of the test program there were a number of test configuration options available that would have possibly met configuration requirements. However, the problem was to arrive at a configuration that would be acceptable for the prediction and verification of an analytical structural dynamic model to a prescribed accuracy for use in controls, loads, pogo, and flutter while maintaining a program of low cost and minimum schedule impact. This led to the inevitable evolution of the test, test article, and test requirements.

The following at one time were considerations in the MVGVT program and deleted:

1) Use of water to simulate the LH_2 in the ET – The water would have introduced hydroelastic effects. Also, an 8 psid internal tank pressure would have had to be maintained in the tank during loading and testing or the aft dome would have sustained structural failure.

2) Use of polystyrene granules to simulate the LH, in the ET -

The granules would have caused friction which could have affected damping and the granules themselves would have been costly.

3) Testing the maximum Q time condition — This time point was eliminated primarily due to cost; however, it was felt that testing of the two end conditions (liftoff and end burn) would be adequate.

4) Reduction of the orbiter payload from 65,000 to 32,000 lb — The payload weight was reduced because 32,000 lb was the heaviest payload flown on the first six flights. It was believed that the rigid 32,000 lb payload would adequately "work" the longerons in the payload bay without unduly influencing orbiter modes. Since it was not feasible to simulate various payload configurations, the scheme of adding ballast to the existing approach and landing test pallets was the least expensive method of providing for a dummy payload.

2

T'1

Items/Users	Control	Pogo	Flutter	Loads
Structure Model	Motion Sensor Gimbal Force	Propellant Pressure Thrust Forre	Surface Motion Aero Forces	High Stress Points All Forces
Frequency Range	0 - 10 Hz	0 - 40 Hz	0 - 40 Hz	0 - 40 Hz
Frequency Accuracy	5% < 4 Hz, 10% / 4 Hz	5% < 3 Hz, 15% / 3 Hz	5.6	10%
Damping Range	۲ 0.005	с 0.01	∿ 0.€1	۰ 0.01
Damping Accuracy	10% < 4 Hz. 20% / 4 Hz	208	20 	20%
Slope Accuracy	10% < 4 Hz, 20% > 4 Hz	N/A	15%	20%
Deflection Accuracy	108 < 4 Hz, 208 < 4 Hz	208	158	20%
Pressure Accuracy	N/A	30%	Not Tested	Not Tested

TABLE 1. TECHNICAL PROBLEM AREAS AND REQUIREMENTS

1 | |

;

.

;

•

.

- - -

•

;

3

:

۰.

-

4 1 4

.,

•

ź

į,

5) Use of water or drillers mud instead of inert propellant in the SRB for maximum Q — The use of these materials would have introduced adverse hydroelastic effects.

. .••

6) Have the SRB motors loaded with inert propellant to maximum Q then ballast the SRB for liftoff with sleeves either internal or external – This would have degraded the viscoelastic effect and in addition the stiffness of the SRBs would have been different from flight.

7) Considered a flexible payload, rather than one that was rigid — This would have overly complicated the analysis and math model correlation and subsequent modification of the math model benefit, although a rigid simulation on flexible supports was advantageous to check out payload/Orbiter interaction.

In the early phase of MVGVT there was a concern in the boost test that the test article would couple dynamically with Building 4550 through the overhead support truss and air bag assembly to the extent that the test data would be invalidated. To resolve this question, structural dynamic math modes of Building 4550, the overhead truss and air bag assembly, and the test article were generated. Modal characteristics of the coupled system were calculated and compared. The results showed that the spring supported test article provided isolation from Suilding 4550 and that the elastic modes of the test article were not affected by the modes of the building and the overhead truss.

IV. TEST REQUIREMENTS

The test article was subjected to sinusoidal excitation by driving shakers selected and located so as to excite and isolate all significant modes of vibration both symmetrical and antisymmetrical. The frequency range of interest that was surveyed is as follows:

1) For transverse excitation 1.5 to 30.0 Hz.

2) For longitudinal excitation 1.5 to 50.0 Hz.

The test objectives of the Shuttle vehicle MVGVT were:

1) To verify the coupled dynamic math models of the mated Shuttle configurations through correlation of analytical predictions to measured test data. These data shall consist of mated structural resonant frequencies, mode shapes and damping characteristics for selected simulated flight conditions.

2) To obtain experimentally the modal translation and rotations at the Orbiter and SRB guidance sensor and effector locations for the mated Orbiter/ET and Orbiter/ET/SRB configurations. 3) To obtain experimentally the test transfer functions from the excitation sources to the guidance and control sensor locations for the mated configurations.

. :

4) To measure ET umbilical feedline modal data to verify the $f \rightarrow a$ -line math model.

A listing of the accuracy requirements for the Shuttle dynamic medal data as specified by the users, namely controls, pogo, flutter and loads are listed by disciplines in Table 1.

V. INSTRUMENTATION

The accelerometer locations selected were based on the Shuttle System pretest vibration analysis. The interfaces, ET/SRB (launch) and the ET/Orbiter (launch and boost), were of prime importance and were heavily instrumented. Instrumentation on the ET LOX tank, side walls, bulkhead, and sump areas were also emphasized such that the instrumentation correlated as much as possible with the LOX tank modal survey test. The instrumentation used was as follows:

1)	Accelerometers	-	320	Channels
2)	Strain Gauges	-	30	Channels

S)	Force	Transducers	-	40	Channel	5

- 4) Pressure Transducers 10 Channels
- 5) Rate Gyros 9 Channels

VI. SHAKERS

The shakers used in the MVGVT were either rigid or suspended 150 lbf and 1000 lbf electrodynamic shakers. The rigid shakers were such that the combined shaker and support had no natural frequencies less than 100 Hz. The suspended shakers were free pendulum with a maximum frequency of 0.5 Hz.

For the launch liftoff and end burn tests, the pendulum frequencies of the cable mounted shaker assemblics prevented adequate shaker force from being transmitted to the test vehicle at low frequencies (Up to 2.5 Hz). This problem was solved by rigid mounting 20 selected 1000 fof shakers which, once the low frequency data were obtained, were derigidized and cable mounted again.

VII. TEST EQUIPMENT

The data acquisition system used was SMTAS. The system has the capability to monitor, record, and process excitation input parameters up to 24 channels and display selected input parameters to the console operators. It has the capability to monitor, record, and process signals from 320 accelerometers and rate gyros, 45 force, and 50 pressure and strain gauge measurements. SMTAS provided control for a maximum of 24 shaker channels capable of driving a maximum of 38 shakers.

VIII. DATA REDUCTION

The modal frequencies determined to be of interest during the sweeps were individually tuned and purified. This isolation was accomplished by utilizing the following techniques.

1) Observation of input force/velocity Lissajous patterns.

2) Vector resolutions of force and acceleration in coquad plots.

3) Strip chart recordings of selected channels and decay traces.

4) Orthogonality charts.

SMTAS provided data printout for test evaluation by furnishing the following data formats:

1) Normalized orthogonality matrix showing mode numbers.

2) Shaker force distribution and polarity listing.

3) Transfer function plots — transducer response (Engineering units) versus frequency.

4) Modal vector plots.

5) Coincident - quadrature plots versus frequency.

6) Kinetic energy distribution tables.

7) Modal dwell data.

- 11 -

:

<*****

į

8) Plots of digitized decay traces.

9) Calculated force distribution listings.

10) Linear regression plots (launch).

11) Cross orthogonality plots (launch).

IX LAUNCH

A. Liftoff

1. Configuration. The liftoff (T + 0 sec) configuration tested consisted of the \overline{CV} -101 Orbiter mated with an ET and two full solid SRB (Fig. 1).

a. External Tank. The E_1 was a flight weight tank assembly of production design configuration including the nose fairing, LOX tank assembly, intertank assembly, LH_2 tank assembly, orbiter to tank attach fitting, SRB to tank attach fittings, feedline and external tank to orbiter feedline disconnects. There was no simulated LH_2 . The LOX tank fuel was simulated with de-ionized sodium-chromatc-inhibited water.

b. Orbiter. The Orbiter OV-101 was a flight type production with modifications required for MVGVT. The OMS Pc' were mass simulators with clastic link actuator simulators with gimbal olocks. The payload installed on the orbiter consisted of two 16,000 lb rigid ballasted pallets.

c. SRB. The SRB's were flight type production assemblies. A pressure ring on each of the SRB's for liftoff only was installed at the aft SRB/ET attachment. These rings were installed to simulate the effects of internal pressure of the ignited SRB's by adding stiffness. The pressure rings were removed later during the test to examine the dynamic effects between the "rings on" and "rings off" condition. The SRB nozzles were omitted.

2. <u>Suspension</u>. The liftoff test configuration utilized a soft suspension system that was provided by the four existing Saturn V Hydrodynamic Support (HDS) Units. The HDS's provided the vertical support as shown in Figure 2 and six degrees of freedom for the supported vehicle. Each SRB aft skirt was attached to an adapter truss which rested on the HDS system. The lateral stability and soft spring rate in pitch and yaw were provided by Firestone air bags #323 and #319, respectively. The lower bags were attached to the SRB aft skirt and the upper bags were attached to the SRB frustrum. The suspension system is presented in Figure 3.

3. Test Results and Analysis.

a. Suspension System Modes. Six rigid body suspension system modes were obtained and arc summarized in Table 2. The suspension system modes assure that an adequate separation exists between the elastic modes and the rigid body modes. Phasing of the instrumentation was also accomplished at this time. All six modes showed excellent agreement.

ч 2

ł

8

•

.

٠,

11

ì

. . .

• • • • •

9

;

ř.

2

、よいした これともに、あったいな

ate e

Ì,

10

.....

•

;

۰.

<u>_</u>

111

. ...

Mode No.	Test Frequency (Hz)	Predicted Frequency (Hz)	Description of Motion
3	0.196	0.193	Z-Translation
ဗ	0.24	0.23	Y-Translation
35	0.27	0.27	θX (Roll)
4	0.314	0.338	9Y (Pitch)
4	0.510	0.50	9Z (Yaw)
1	0.67	0.68	X-Translation

TABLE 2. LIFTOFF SUSPENSION SYSTEM MODES

3

-

• `

11

۰,

-1

; Z b. Flight Control Transfer Functions. Flight control transfer functions for seven sweeps are enumerated in Table 3. Three additional sweeps were taken using shakers on the Orbiter and SRB to excite the modes and are shown in Table 3A.

During one of the sweeps an abnormally high transfer function value was observed on both SRB's at the forward SRB mounting rings where the rate gyros are mounted. This was due to a local resonance of the rate gyros caused by a large (Approximately 200 lb) avionic box mounted on the ring frame. The left SRB local resonance occurred at 23 Hz and the right SRB resonance occurred at 25 Hz. These local resonances were subsequently verified in a separate modal survey test of the left and right SRB forward skirt and nose cone assembly. To alleviate this problem, the ring frames of both SRB's were structurally stiffened which increased the local resonant frequency and decreased the amplitude gain.

The flight control group identified a number of significant structural modes that appeared on the transfer function sweeps. These modes were assigned priority numbers based on importance to flight controls and are listed in Tables 4 and 5.

c. Pogo Wide Band Sweeps. Wide band frequency sweeps were run independently on all three orbiter main engines. The excitation force in each case was along the engine longitudinal axis. Table 6 lists the sweep number and frequency range for each engine sweep. The six engine axial modes above 16 Hz were identified and dwells were taken.

d. Modal Test Results versus Pretest Analysis. All acceptable modes tuned during liftoff symmetric tests are shown in Table 7. The antisymmetrical modes are shown in Table 8. The correlating pretest analytical frequency and the computed modal damping from the decay traces are also shown in those tables. The last column gives the percent error between the test and analytical mode.

For each modal dwell, at a resonant frequency, a set of data was generated by SMTAS for that mode. A typical data set is shown in Figure: 4 through 19. This particular mode is a symmetric mode that occupies at a frequency of 2.059 Hz and is a coupled pitch/roll mode of the SRB's. Figures 4 through 10 show the overall view of the test article with displacement vectors (quad amplitude) which is an aid in defining the mode.

Figure 11 presents a tabulation of the acceleration broken down into coincident (CO) and quadrature (quad) with phase angle for each accelerometer recorded. Figure 12 shows the force levels used to tune that particular mode to its resonance. There are 32 shakers available; however, only a few selected ones are used in the tuning of a particular mode. The orthogonality between the test modes is shown in a matrix in Figure 13 and Figure 15 lists the modal generalized mass.

5

1.

					LMS	AS Swe	ep No.
Sweep No.	Shakers	Phase (deg)		Type Motion	1-7 Hz	7-17 Hz	17-30 Hz
1	RT/RB14Y LT/LB14Y	180/0 0/180	SRB Yaw		1	9	2
7	FL10Y FL11Y	00	ORB Yaw	FLINY	сı	œ	ç
ന	RR 06Z /RL 07Z LL 062 /LR 07Z	0/180 0/180	SRB Pitch	LR072 ARL072	17	19	20
4	FB10Z/FB11Z	0/0	ORB Pitch	Fall2	4	10	11
ى ب	RR 06Z /RL 07Z LL 06Z /LR 07Z	180/0 0/180	SRB Roll		18	21	22
Q	FB102/FB112	0/180	ORB Roll		з	12	13
۲	MT01X	o	ENG No. 1 Axial	FB112	Ŕ	-30 Hz 14	
				MT01X			

.

TABLE 3. LIFTOFF FCS SWEEPS

•

J

ころうちょう うちょう かんしょう ちょうちょう ちょうちょう ちょうちょう かんしょう しょうしょう うちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

_{،۶} 13

~

:

е 4

a

.

لا دوره المرارية و و

and the state of the second states and

And Such Prove

Sweep No. Shakers (deg) Type Motion 2-15 Hz 8 RR/LL062 0/180 Pitch each man, and			Phase			SMTAS Sweep No.
8RR/LL06Z RL/LR07Z FB10Z/FB11Z0/180 180/0Pitch 	Sweep No.	Shakers	(deg)		Type Motion	2-15 Hz
9 RB/RT14Y LB/LT14Y FL10Y 0/180 180/0 Yaw FL0Y RT14Y 23 9 FL10Y 0 Yaw F10Y 23 10 FL11Y 0 Yaw F10Y 23 10 RR/LL06Z 0/180 Yaw F10Y 23 10 RR/LL06Z 0/180 Roll F10Y 25 10 RL/LR07Z 180/0 Roll F10X 25 10 RL/LR07Z 0/180 Roll F10X 25	œ	RR /LL 06Z RL /LR 07Z FB 10Z /FB 11Z	0/180 180/0 0/180	Pitch		24
9 ILB/ILT14Y 0/180 Yaw F10Y 23 7 FL10Y 0 Yaw F10Y 23 7 FL11Y 0 Naiv Iniv 23 10 RR/LL06Z 0/180 Roll Faiv 25 10 RL/LR07Z 180/0 Roll Faiv 25 10 RL/LR07Z 0/180 Roll Faiv 25					LAOTZY ARLOTZ	
ID FL11Y 0 Reity LB14/ LB14/ 25 10 RL/LR07Z 0/180 Roll FB10Z/FB11Z 0/180 Roll FB10Z/FB11Z 25 10 FB10Z/FB11Z 0/180 Roll Reity 25 25	6	RB/RT14Y LB/LT14Y FL10Y	0/180 180/0 0	Yaw		23
10 RL/LR07Z 180/0 Roll Faint 25 FB10Z/FB11Z 0/180 LL00Z Anonz Anosz		FL112	0		RB14V (LB14V	
EB102/FB112 U/100 LLOSZ PUC	10	RR/LL062 RL/LR072	0/180 180/0	Roll	Fair Fair 12	25
		71193/20193	001 /0		LLOSZ PUCH RLO7Z	

,

.....

÷

TABLE 3A. (Concluded)

Ξ.

Е. Е

3

TABLE 4. FLIGHT CCNTROL FREQUENCY PRIORITIES (SYMMETRIC MVGVT LIFTOFF MODES)

`•: •;

2

÷.,

····

こう 見 えれい

いたのであるというというないであるというです。

۰.

				Respo	nse Chan	nel Priori	ty*
	Test	Approximate Transfer		r r t	a c	ORB Norm.	Nav.
Mode No.	Frequency (Hz)	Function Resp. Freq. (Hz)	Test Mode Description Dominant Motion (Kinetic Energy)	skb Pitch RGA's	OKB Pitch RGA's	rit. Cont. Accel.	Base Pitch RGA
ъ.	2.05	2.1	SRB Pitch (0.25) and Roll (0.34), ORB-ET Z Trans (0.24)	1	1	1	e
6	3.02	3.0	SRB Pitch (0.38) and Roll (0.27). ET Pitch (0.10). ORB Z Trans (9.10)	1	1	1	ę
11	3.23	3.3	ORB Pitch (0.33), X (0.36), SRB Z Bend (0.25)	3	-	-1	ε
23	4.39	· # ·	FDLN-X (0.17). ORB Z (0.17), SRB X (0.17). Z (0.22)		2		ę
14	5.25	. J. 2	ORB Z Bend (0.17), FT Z Rend (0.27), SRB 1st Z Bend (0.46)	1	2	2	ç
18	5.65	5.6	ORB X (0.18), Z (0.55), SRB Z (0.09)		2	3	3
13	0.6	0.6	ORB Z Bend (0.76), Out of a with SRB Z Bend (0.06)			4	4
2 A/S?	10.1 A/S?	10.0		4	4		4
26	11.94	12.2	SRB 2nd Y (0.7), I.T. (0.08)				4
22	12.41	12.5	LWR Ogive (0.19). Dome Bulge, Feedline (0.15)				4
19	14.52	14.5	F/A Payload X (0.05) Out of z , ORB Z Bend (0.08) LWR ENG P (0.07)				ব
1 1	;	23	Local LSRB RGA Ring Resonance/SRB 4th Z Bend	1			
1	1	25	Local RSRB RGA Ring Resonance/SRB 3rd V Bend	1			
*Onda:	1 = Moet Sign	di filosot					

Code: = 1 = Most Significant = 4 = Least Significant

" 15

. . .

~

*** * * * * * * * *

A SAMAGE

TABLE 5. FLIGHT CONTROL FREQUENCY PRIORITIES (ANTISYMMETRIC MVGVT LIFTOFF MODES)

15

•

1

•

•

,

6°17,

5

					Res	ponse (Channe!	Pmarit	۲•	
	Test	Approximate Transfer			808	B, e	ORB	FC	Nav Bas	· @
Mode	Frequency	Function Response	Test Mode Description Dominant Motion	SRB	{	0	Acc		RGA	8,1
9.	(H2)	Freq. (Hz)	(Kinetic Energy)	RGA	Үаw	Roll	Norm	Lat	Үвw	Roll
9	2.08	2.1	SRB Y Bend (0.63) ET out : with SRB (0.21). SRB X (0.12)	-	-	1		-	3	
80	2.23	2.2	SRB Pitch (0.48) and Roll (0.13), ORB Y (0.21)				•			
Ξ	2.47	2.5	SRB Pitch (0.59) and Roll (0.13). ORB Roll and Yaw (0.12). ET Roll						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
13	3.57	3.5	SRB Pitch (0.12), Rcll (0.07) and Yaw (0.08). V.T. Side Bend (0.26)		3			61		
51	3.53	3.5	Gear Train, ORB Y (0.42), SRB Z (0.28)		· ·					
10	4.12		SRB Z Bend (0.62) with Roll (0.08). ORB Yaw (0.18)	1	1 60			N		
205	5.13	5.2	SRB 1st Y Bending		-					
-	5.45	5.5	SRB 1st Z Bend (0.43). Y Bend (0.12). Wing Bend (0.07)		4 69					
10 sym?	6.43 sym?	6.2						•		
18	9.3	9.5	Upper E.T. Torsion		γ γ					
19	10.65	10.8	SRB 2nd Y Bend (0.61). Z Bend (0.29)		4				4 ,	
31	13.89	13.8	V.T. Torsion (0.68), Elevon Z (0.09)		•	_	-			
2	23.84	23	Local LSRB kGA Ring Resonance/SRB 4th Z Bend (0.65)						4	
õ	24.81	25	Local RSRB RGA Ring Resonance/SRB 3rd Y Bend							
*Code: 1	= Most Signifi	cant				1				٦

4 = Lesst Significant

۰.

-

· · · · · · · · · ·

• •

a server the server a server and

• • • • • •

•,*

. . .

16

•

Excitation	F	requency Ran Segments, H Sweep No. (ige z)
Upper SSME Axial	2-12	12-30	30-50
	(1)	(2)	(3)
Lower Left SSME	2-12	12-30	30-50
Axial	(4)	(5)	√(6)
Lower Right SSME	2-12	12-30	30-50
Axial	(7)	(8)	(9)

њ. . . .

•

··· ··· ···

а °т

.

and a star a second the standard and the start and the start of the st

TABLE 6. LIFTOFF POGO SWEEPS

1

į

and the second second

. . . .

ii a

÷., ke î ,

ŝ

 TABLE 7. MVGVT MODAL CORRELATION

 [CONFIGURATION - LIFTOFF (SYMMETRIC)]

			Test Mode			Analysis Mode	
Mode No.	·bau	Damp	Description	Mode No.	Freg.	Description	Percent Error
10	2.05	0.013	SRB Roll (0.34), Pitch (0.25), Yaw (0.16), Orbiter Pitch (0.08), ET-Z (0.13)	4	2.11	SRB Roll (0.38), Pitch (0.45), Yaw (0.04), Orbiter Pitch (0.04), ET-Z (0.07)	£
2	2.61	0.014	SRB Yaw (0.95), ET Pitch (0.02)	രഗ	2.93	SRB Yaw (0.84), ET Pitch (0.02) SRB Yaw (0.83), ET X (0.07)	11 8
ن، 	3.02	0.017	SRB Pitch (0.38), Roll (0.27), ET-Z, Bending (0.10), Orbiter-Z (0.07)	00	3.18	SRB Pitch (0.38), Roll (0.34), ET-Z, Bending (0.06), Orbiter-Z (0.08)	Ś
1	3.24	0.010	ORB Bending (0.32), X (0.36), SRB Z-Bending (0.25)	2	3.14	Orbiter Bending (0.44), X (0.43), SRB Z-Bending (0.06)	ŝ
12	3.88	0.015	SRB-X (0.60)、Yaw (0.13), FWD ET Shell (0.24)	<u>б</u>	3.87	SRB-X (0.47), Yaw (0.38), FWD ET Shell (0.14)	1 ~
23	4.39	0.0013	SRB Z-Bending (0.22), Roll (0.08). F/L Fluid (0.17), Orbiter Bend (0.17)	=	5.16	SRB Z-Bending (0.26), Roll (0.06), Orbiter Bending (0.54)	× 18
14	5.26	0.016	SRB Z-Bending (0.47). ET Bending (0.27), Orbiter Bending (0.17)	12	5.39	SRB Z-Bending (0.15), Y-Bending (0.13), ET Bending, Axial (0.33), ORB Bend (0.15)	67
13	5.65	0.005	Orbiter Pitch. Bending, In-Phase Wing Bending (0.55), Orbiter X (0,18)	11	5, 16	Orbite: Z, Bending, In-Phase Wing Bending (0.54), Orbiter X (0.03)	6,
10	6.43	0.037	lst Wing Bending (0.68), Out-of-Phase Upper SSME (0.13)	15	6.60	1st Wing Bending (0.64)	r,
21	6.78	0.011	SRB Sym Haw and Y-Bending (0.85)	18	7.62	SRB Sym Yaw and Y-Bending (0.67), Propellant (0.12)	12
15	7.02	0.011	VERT Teil FWD/AFT Rocking (0.21), Out-of-Phase Wing Bending (0.18)	16	6.88	Vert Tail FWD/AFT Rocking (0.07), Out-of-Phase Wing Bending (0.22)	- 2
	*Corr	elatio	n not reliable				

*Correlation not reliable % error error not applicable

١.

•, •

18

•

TABLE 7. (Continued)

, ,

•

ť

•

ومرور والمرور

the second s

			Test Mode			Analysis Mode	
Mode No.	Freq.	Датр	Description	Mode No.	Freq.	Description	Percent Error
32	7.45	0.031	SSME No. 3 Pitch (0.20), Out-of-Phase V.T. FWD/AFT Rocking (0.11)	20	8.08	LWR SSME Pitch (0.50), Out-of-Phase V.T. FWD/AFT Rocking (0.41)	∞
27	7.77	0.009	lst LOX Tank Bulge. UPR LH ₂ (0.34). LOX Ogive (0.14)	18	7.62	Bulge Mode Overwhelmed by SRB Energy	- 2
16	8.42	0.016	SRB 2nd Z-Bending (0.62). Roll (0.05)	22	8.36	SRB 2nd Z-Bending (0.67), Roll (0.08)	-
ŗ.	00 .6	0.008	Orbiter Pitch and Bending (0.76). Out-of-Phase SRB Pitch (0.06)	26	9.40	Orbiter Pitch and Bending (0.76), Out-of-Phase SRB (0.02)	4
9 91	11.94	0.025	SRB 2nd Y-Bending (0.71). Motor Case No. 3 Prop (0.00)	32	10.91	SRB 2nd Y-Bend (0.37). No. 3 Prop (0 48)	10
				50	14.20	SRB 2nd Y-Bend (0.47), ET Y-Bend (0.40)	19
<u>;</u>]	12.41	0.002	LON Dome Bulge (0.0016). F/L (0.15). LON Tank (0.29)	;	12.99	LON Dome Hulge (0.0064). F/L (0.0001). LON Tank (0.55)	ۍ د
19	14.52	0.010	FWD/AFT P/L X Out-of-Phase (0.14), LWR SSME Pitch (0.16)	72	17.89	FWD/AFT P/L X Out-of-Phase (0.31)	23
8	14.87	0.022	SRB Torsion (0.58). ET (0.14)	54	14.73	SRB Torsion (0.3%), ET (0.12)	
31	14.87	0.030	Outb'd Elev ROT Out-of-Phase With Inb'd Elev (0.22)		14.61	Outb'd Elev ROT Out-cf-Phase With Inb'd Elev (0.11), SRB Torsion (0.30)	3
33	15.97	0.003	1.0N Dome Bulge (0.0066). LON Tank (0.30). SRB Axial (0.12)	57	15.15	LOX Dome Bulge (0.0025), LOX Tank (0.17), SAB Propellant (0.42)	ß
1	15.97	0.027	Payboad Pitch (0.12), ONS POD X (0.18), ET (0.25)				
					1		

19

, .

. .

•

••••

.

* *** * *

ŝ

.

TABLE 7. (Concluded)

· • •

.

, ,

;

			Test Mode			Analysis Mcde	
Node No.	- beug	Damp	Description	Made No.	Freq.	Description	Percent Error
8	16.15	0.012	OMS POS X (0.16). Out-of-Phase P/L X (0.07). Crew Mod X (0.03) and Z (0.05). ET (0.28)				
2	18. %	0.041	SRB Axial (0.43), LOX Dome (0.0092), ET (0.48)	°9	15.90	SRB Axial Out-of-Phase with Propellant (0.12), LOX Dome (0.0054), ET (0.85)	19
*	27.48		SSME Axial, UPR Out-of-Phase with LWR (0.22) OMS POD (0.33), ET (0.20)				
\$	30.53	0.014	SSNE Axial. LWR Out-of-Phase with UPR (0.28). OMS POD (0.06). ET (0.35)				
ž	31.23	0.044	UPK SSME Axial (0.31), OMS POD (0.19), ET (0.24)	169	32.97	UPR SSME Axial (0.44), OMS POD (0.07), ET (0.16)	G
37	34.74	0.018	UPR SSME (0.48) Axdal In-Phase with LWR (0.01), OMS POD (0.14). ET (0.07)	184	36.69	UPR SSME Axial (0.56), OMS POD (0.05), ET (0.01)	9

. .

3

* • • •

;

;

į

, ,

.

* • • • •

·.•

٠

.

۰.

·

TABLE 8. MVGVT MODAL CORRELATION [CONFIGURATION - LIFTOFF (ANTISYMMETRIC)]

r

· · · · · ·

• • • •

1

1.55

,

ţ

i

5 5

K

;

÷

: *

•

			Test Mode			Analysis Mode	
Node No.	Freq.	Demp	Description	Mode No.	Freq.	Description	Percei.t Error
10	2.08	0.010	SRB Yaw and Y-Bending (0.63), ET YB (0.20)		2.2C	SRB Yaw and Y-Bending (0.74)	9
60	2.24	0.010	SRB Pitch (0.33). Roll (0.18), Orbiter Y-Bend (0.29), Roll (0.03)	Ś	2.31	SRB Pitch (0.82), Roll (0.07), Orbiter Y-Bend (0.03)	m
11	2.41	0.014	SRB Pitch (0.60), Roll (0.12). Orbiter Roll and Yaw (0.12)	ç	2.73	SRB Pitch (0.13), Roll (0.31), Orbiter Roll and Yaw (0.41)	10
13	3.37	0.016 0.022	SRB X(0.35). Y-Bend (0.16), Vert Tail Y-Bend (0.16)	-	3.61	SRB X (0.58), Y-Bend (0.13), Vert Tail Y-Bend (0.06)	~
।- २।	3.53	0.003	Gear Train. SRB Roll (0.08). ET (0.09). Vert Tail Y-Bend (0.40)	00	3.76	Gear Train, SRB Roll (0.11), ET (0.01), Vert Tail Y-Bend (0.57)	i-
ю	4.12	0.014	SRB Roll (0.20). Z-Bend (0.04). ORB Yaw (0.44). Incld C.M Y (0.10)	a	3.86	SRB Roll (0.25), Z-Bend (0.16), ORB Yaw (0.27), Incld C/M Y (0.07)	~
5	1.71	0.010	SRB Roll (0.27), Pitch (0.12), ORB Yaw and Roll (0.39)	11	4.88	SRB Yaw (0.25), Pitch (0.05), Roll (0.02), ORB Yaw and Roil (0.58)	4
6) (1)	4.98	0.016	Wing 1st Bend (0.38). SRB Y (0.14). SRB Z (0.19). FUS Y (0.06)	15	6.0	Wing 1st Bending (0.27), F P/L Y 0.20), SRB Y (0.09), SRB Z (0.06). Fuse Y (0.05)	
30	5.14	0.014	SRB Y-Bend (0.59). Z (0.13). Roll (0.03). ET Y Dend (0.13)	12	5.42	SRB Y-Bend (0.41), ET Y-Bend (0.23)	ى م
-	5.45	0.013	SRB Z-Bend (0.43), Y-Bend (0.12), ONS POD Y (0.05)	14	5.55	SRB Z-Bend (0.64), Y-Bend (0.03), Roll (0.03)	5
25	5.57	0.016	Orbiter Yaw and Y-Bend (0.31), SRB Y-Bend (0.18), Z-Bend (0.15), Rcll (0.04)	15	6.01	Orbiter \aw at Y-Bend (0.47), SRB Y-Bend (0.09), Z-Bend (0.07)	8

۰.

,

•

י י ז

₹~ .

.

f

;

4

and a second of the second second

•1

i,es

21

(Continued)
80
APLE (

			Test Mode			Analysis Mode	
Mode No.	Freq.	Damp	Description	Mode No.	Freq.	1. emotion	Percent
16	7.41	0.22 0.28	ET Y-Bend (0.72), SRB Y-Bend (0.11)	18	6.95	ET Y-Bend (0.48), SRB Y Bend (0.28)	2
24	8,30	0.010	Payload Y Out-of-Phase (0.21), FUS Torsion (0.21), Out-of-Phase Wing Bend (0.10)	23	8,90	AFT Payload (0.03), FUS Torsion (0.20), Out-of-Phase Wing Bend (0.14)	٢
18	9,28	0.011	ET LOX Tank Torsion	28	10.21	ET LOX Tank Torsion	0
24	10, 10	0.028	SRB 2nd Z-Bend (0.60), Yaw (0.10), Arial (0.04)	32	10.63	SRB 2nd Z-Bend (0.56), Yaw (0.15), Axial (0.04)	, w
19	10.65	0.022	SKB 2nd Y-Bend (0.61), Z-Bend (0.29)	35	11.24	SRB 2nd Y-Bend (0.60), Z-Bend (0.19)	ų
31	13,89		Vert Tail Torsion (0.68)	61	16.22	Vert Tail Torsion (0.39), Outb'd Elev. Twist (0.15)	17
17	14.56	0.010	Gear Trair W/SRB Torsion ET Roll (0.53), SRB Torsion (0.36)	2 4 2	14.20	Gear Train W/SRB Torsion, ET Roll (0.53), .7RB Torsion (0.15)	r.
12	14.72	0.028	Gear Train W/ET Torsion (0.12), and SRB Torsion (0.59)	47	14.20		4
19	16.85	0.037	SRB 3rd Z-Bend (0.81), ET Shell (0.24)	64	16.69	SRB 3rd Z-Bend (0.55), ET Shell (0.19)	
38	17.01		Crew MOD Y (0.06), Out-of-Phase FWD FUS Side Bena (0.29)	72	18.30	Crew MOD Y (0.06), Out-of-Phase FWD FUS Side Bend (0.21)	4
14	18.90	0.030	5RB Axial (0.78)	87	20.75	SRB Axial (0.59), Y-Bend (0.28)	10
26 .	21.54	0.02	Fuselage Torsion, Side Bend, Yaw (0.25), OMS POD (0.17)	72	18.30	Fuselage Torsion, Side Bend, Yaw (19), OMS POD (0.15)	

22

1

ţ

ł,

٠,

TABLE 8. (Concluded)

¥

.

, • •

•

` .

.

•

-

المراجع من مار في

e e a Parada Istalia de La Cara VIII.

Mode No. Freq. Dam					
	1p Description	Mode No.	Freq.	Description	Percent Error
7 23.84 0.02	22 SRB 4th Z-Bend (0.65)	112	24.89	SRB Z-Bending (0.41)	*
30 24.81 0.01	12 SRB 4th Y-Bending (0.63)	123	26.35	SRB Y-Bending (0.47)	Q

. ...

· · .

a

an antise station afferences of the second

ź

and the state of the second

. .

7 ~ ~ y + y

.

₹ 1

. . .

24

2

÷

۰. ۰.

Ĭ,

·', * a*,

. ;

.....

4 . 5

;

۱ ۲

-

5

•

24.1.1.1

,

. .

•

*

.

;

ż

26

•

- '

. . . .

ċ,

· ··· · · ·

ì

27

•

:

: :

:

• •

.`.

J

ŧ

;

•

· · · · · · · · · · · ·

1.

ないないたちに見たい

29

- **4**.

÷

:

-

. . .

.*

. . . .

. . . .

ļ

.....

÷ 🖡

.

;'

٠i
LIFTOFF

10/01/70 DATE

> **F316Z** REF. FORCE

Synthetic 1.198 5 7850 **3.6565**

.

	301 336	C0 C/B	GUID GVIB	ACC C	PEASE	ACC LOC	CO G/LB	GUAD G/LB	ACC G	PEASE
	XICOAL I	-0.000005	-0.00033	0.9175	-103.0	A3 FTEADX	200000-0-	-0.00010	0.0212	0.66-
			0.000030		93.1	45 PTC-652	6 00001 0	-0.000040 -0.000040	6.00.0 0	
			0.00000	0.0010	1311	A PTCASX	200000 O-	-0.0013	0.0.00	- 93.9
		0.00034	0.60014	0.0076	72.1	ZOVOJA 61	0.000015	0.0073	0.002	10.4
	230-10-0	63, 663.4	0.00015	0.5031	8.77	SO FICTOR	-9.00006-	-0.0013	0.922.7	-23.6
	112.5.1.5 6	200000-0-	-0.600040	0. 210	-103.0	21 FICCUS 12	0.020016	290000.0	5.CL79	75.3
	23 	10.000 C	0.00020	0.0014	142.9	52 F. O'SK	-0.0000.0-	-0.00001	0.0171	-1
	20.000	0.000006	0:620023	0.0125	74.8	33 PCCCV	10000010-	0.00001	0.020.0	107.7
	10 10101	2000000-0-	-0.00039	0.0203	-103.1	51 F1.34X	-C. OCCCB	-0.00133	0.0229	
	11 12 11	-0.000028	0.00002	0.0015	142.5	35 FT0332	91000010	2200000	0.010	र २ २
	271121	0.000	0.000015	0.000	73.3	35 FICESY	0.000000	0.00011	0.CC.	9.00
		0.00000	-0.010.045		-103.3	NATCHE 22	-0.00007	230010-0-		
				0.0110	0.02			0100 - 3 O-		
				0000	4 021					
			600000-0-	0.0150	1001		-0.000	-0.00.023	0.112	
0		B(0010.0	0.600023	0.0120	77.3	63 10.262N	-9.01100	-0.5000-0-	2	-100.1
)R	20 T 25V	C.C.C.C.O	4:0000 O	0.0232	81.0	64 F. 061X	-0.0001 33	-0.0015	0.0.0	2.001-
	21 71 2212	0.00009	0.00003	4210.0	74.0	ZC9CILI E9	0.000010	0.00109	0.03/2	
Gj Pr	22	-0.00031 -0.00031	-0.00002	0.0012	-120.2	X990J 99	-0.075503	-0.00015	0.0111	0.101-
N M	23 1 1 1 1 2 3 3	20.000.0	0.00034	0.0181	37.8	Z20004 29	0.00018	0.00109	0.6571	5
		-9.000009	-0.000331	0.0014	-147.7	68 FL065Y	10.000.0-	-0.00.00.0-	9.0016	3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
N S		2.000.0-	-0.010.0-	0.6211	-99.3	1:09CT4 69	200000-0-	-0.00013	2.0.0	
	205131 50	0.00010	0.00001	0.0267	7.8.7	AC2574 02	-0.000000	-0	6.140.0	
P	X22317 22	200000-0-	-0.00048	0.0233	2.69-	71 ATC71	-0.00008	-0.00007	0.0193	-10.13
A		-0.0000-0-	-0.000041	0.0213	-99.2	122 110727	-0.00000		++CO.0	
G		0.675511		0.0223	6.22 22	2320111 82	0.00001	0.00000	0.00	0.02
E				1020.0	J	X420721 22				
] [7]		ちていていた。			6.02 00	1012 N. 1012 N				
ĮS , ,						77 11202777		00100 e		1
		200000-	-0.00039	0.0236	0.00-	232012 82	10000 C	10100.0	0.0331	1.77
	33 10002X	-0.0000B	0.00001	0.0011	156.0	Y07017 05	-0.00.000	0.00001	0.0013	154.1
	25 F.2335X	10.0000 CO.00	-0.000937	0.6141	1.101-	DO NTOCOT	0.000237	Q. CUNI 52	0.43.0	5.02
	2100 1 28	9.030712	6.0000 · 0	0.0253	12	2100/01 18	0.00003	0.000129	0.0677	20.62
		6: 1206.0	9°0000	0.0039	32.6	22 17,0027	-0.600003	-0.00001	0.000	1.50
			120000-0-	0.0144	-102.2	252071 20	0.000004	0.000000	0.6110	
					6.32		0.00020			
				1100.0	0.441-			-0.000 A		2
	THE TRACT	0.066014	0.00068	00000 0		ZSEDIM UN	0.000013	0.000055	0.6347	9.62
							• * * * * * *			
		Figure	11. Space	Shuttle MV	GVT Dwel	1 Data Orl	biter *** E	External Ta	nk	
)	I	(2) 未米米	HA Doolog	Donatomo				
					IAVOOU DII	DOUSIELS				

POOR QUALITY

. 31

•

` :

.

1

• -

.

-

i ł

A States	Ĩ	
	F	
	-	
L LANA	L.	
	3	
	1	
	8	
	5	######################################
	8	
	i, i Ac	
	*	
	B	
s alja ,at i alja at i at i	í ř	
	3	
	. B	**************************************
	, , ,	
	2	
	8	
	g	稿稿订려점줮뮾뛎두뮄붱웜뎝볞붭쳠븮낓닱댢븮챵쑫넊딹둗졎딹졁둗봦둗잗远꾿졆돧멾꾞쿝 늰
	1 204	

۰.

م ، المراكد المراكد ، المراكد ،

. .

· * · · · ·

· · · · · · ·

· ,

...

. . .

a 5.

. .

•••••

~

ORIGINAL PAGE IS OF POOR QUALITY

,

and the state of the state

41

· · · ,

...

:

LITOTT DATE THE

:

ł

.. .

.. .

i

а 4 Ж

. .

•

an - Athenias

1000

10-21-71 11-10-11 11-10-11

NUT. POINT FILEZ

ACC LAC	52 8		D DOM	PLASE	ACC LOC	60 C/B		ACC C	ISVEL
			0000	141 5	718CAT 198	-AAAAAA	-0.604000	0.002	-127.4
				- 22	222 FA222X	-0.600332	000000	6+00-0	102.2
				2.061	VECCAN ECC	-0.00001	000002	0.0011	-103.2
			6.6007	-1661-	224 FA2247	-0.600018	-0.000012	0.0403	-102.3
			0.0061	-163.1	225 PA225X	0.00002	0.020697	0.0038	76.2
THAT'S SAI			0026	-111-6	226 FA226Y	0.060003	0.00013	0.0069	7.3
		0.00014	0.772	44	277 TA 277	-6.000016	-0.000487	.0460	-100.6
IDA ZAIGAR	80/90e. 0	000023	0.0122	1	228 EA228K	0.000011	0.003036	0.0064	20.1
165 EALBOY	100000-0-	0.00	0.0004	153.4	229 EA2292	-0.00017	-0.000074.	0.0394	-102.8
186 51186		0.066.422	0116	78.5	230 EF230Y	-0.000000	0.000000	0.0002	0.071
167 141073	0.00000	0.00018	.00.0	76.1	231 EA231Y	0.00005	●.0CU324	0.0128	0.97
NBO IVE SEL		0.000011	0.0960		232 EA2322	-3.600017	920000-0-	0.0403	-102.4
100 EA1873			0.0026	5.6-	233 EA233Y	-0.0000	02000000	0.0156	-9:3.8
106IVA 051			0000.0	-126.9	234 EA234X	-0.000002	-0.000010	0.0054	0. 190. 1
191 EANDIR	100000.0-	-0.00085 	. 0.026	-103.2	235 FA235X	0.00000	0.00019	0.010.0	4
192 EN 922	-0.0000	-0.0017	9.091	-161-	236 E1236R	0.000005	0.000021	0.0110	5-22
ISS EVISOR	0.000002	0.0000	6. CM3	1 . 1	237 E1237R	0.000004	0.00015	0.0010	5.57
206172 061	0.00003	9.000914	0.0075	6.77	238 FA238T	-0.00000	-0.00007	0.60.13	-118.6
196 TALOGR	100000 T		0.0103	-101-	239 EA239R	0.000006	0.003027	0.0143	26-9
196 EA196Y		0.00002	0.0039	76.5	240 EA240T	-0.000033	010000-0-	0.0034	-104.3
197 EA1973	0.00000	000000	0.033	74.1	241 FA241R	610060.0	 C00043 	0.0223	2.92
NEGINZ DEI	-0.00002 -0.00002		0.0036	-109	243 EA2 12T	-0.000006	-0.003018	0.0039	-103.3
	600000 0	0.00010	0.0215	76.9	240 EA243X	0.000003	0.003016	0.0083	27.5
			9000.0	4.121-	244 RF244X	0.00000	0.00002	9.8013	67.4
KIOCVI IGI		89000.0	0.0346	76.2	245 hr245X	-0.0000.0-	-0.000001	3.0008	-143.3
402 EA202	0.00001	0.00034	0.0921	0.62	246 FF246Z	-0.000012	-0.00062	9.0326	-101.2
HOUT LOT	100000.9-		●. ●023	-106.1	247 RT247Y	0.030009	0.003046	0.0242	29.62
	999990.0-		P.0167		248 RR248Z	-0.00C021	991600.0	0.9500	-101-
206 EA2068	0.99996	0.00015	- 2001	74.1	249 RF249Y	-0.000011	-9.039649	0.0261	-102.7
206 EV29 20	1000000 0-	-9.00021	••• 111	-104.7	259 1:1230X	0.00000	0.00002	0.6011	69.8
207 EA2773	100000-0-	-0.00032	0.0168	-102.7	251 EL231Y	-0.00008	0.00003	0.0018	1.56
			0.0013	147.1	252 RL2322	200000 0	600000	4000 B	
		24000.0			XI:CZUI DOZ				
					29671N 962				
	110000.0				VACTIV ACT .				
	0.00000		0.0122	26.6	257 KT237Y	0.00012	800000	0.63.0	
				1.501	2463 R1238X		2.00000 a	8-00-8	
215 TA2165		-0.003010	0.0053	-100.1	269 MP2692			9.11.	8.10I-
BIG EASI 6Z	-0.000312	-0-000 - 0-		-165.2	260 KL260X	-0.00001		6100.9	
	0.00000	0.000027	0.0143	76.8	261 1.2261Y	- 2100000		0-0-CS	4.1011
			1410-0		AZGZIN Z94	443000*0			
							S		

Figure 11. (Continued).

.:

• •

. . .

•

ì

ì

4

. 3

	BVL	- 96 -	13.0	4.90-	182	83.2	-168.4	•		10 10 L	4.101-	-101.5	73.2	-102.1	0.07	-102.3	4.92	103.9	-101-	13.4	78.4		-103.8	-194.4	65.1	-100.3	-103.4	-102.2	8. 18			73.9	70.1		14 14 14	¥ :
	0 84	0.0239	-0.053		. 43.64	0.0256	0.0048	9.00.6		0200	0.433	• •176	0.0017	0.0139	0.0047 0.0047	0.0117	0.0203	0.0011	0.604X	0.0038	0.0103	0.0052	0.0359	0.0040	0000 0	0.004	0.0041	0.0110	0.0052	0.000		0.0035	9.9928			
H		e ecterie	0.090120	0.00013 0.00013		0.00049	••0000ee	0.00012				.009033	0.00003	0. 600000		000023	 400036 	0.000002		0.00007	0.00020	•.•00010 • 000010	0.00067	0.000007	 600001 	0.3000019	00000	000021	0.003010	0.000034	- 001013	 • • • • • • • • • • • • • • • • • • •				
	828		0.00024			0.0008	- 0.0000	0.00000				- 790909.0-	100000°	-0.000006			6.00000	-9.630001		0.020002		0.00002		-0.00002 -	0.00000	- 036002		-0.00003 -	0.00001	0.00012		10000	9.00002			
			201011 015			314 LINGSY	815 LT404X	316 102973			226 RU331Z	321 Ru3927	322 NI363X	2020 NU3892	324 NL3942	326 RIT3077	327 RL300Z	528 LR399X	266811 620	230 LL/001	332 M 602M	383 E7603H	335 FF605F	336 EV6063	826 EF607R			341 576118	342 EFGIN	243 EA7018		346 EATON	MOLTE AND			President all in the second
		20	1	C,		1.0011	1		+ · 82	22	Ş	73.2	18.4	1.1			76.6	76.1				, , ,		•	78.4	•. 1 01 -		-160.7	-101-	2.10						
	9 10 P					0.0602		0.0115			0141	0.0166	0.6510	0.0234			0.028A	0.0020			120.0	0.923		.000%	9299.0			0.0369								
•						-0.0112	230000 ° 2	0.00072	12000.0			0.00032	0.00039	0-00040			.0:063	.00000.0		0.000112	0.0000	-0.02001			0.00000.0			-0.00070		0.00090		0.000				
ž	572 8	- mine					010000.0	0.00004	210000.0			0.0006	0.00312	0.00011			. ecents	0.00001			0.00000				• . • • • • • • • • • • • • • • • • • •		0.696916	0.000/18	0.00(003	+1000-0		0.00030				
	VCC Lec		16 RT2667				I KUZUI	TATES I			192518	T RISTY	73 PI2782	1627JX 64			IS KT283Y	XNC2311 M		TIPET I	- 2082.N. ET			104211 E			ALTONZ		- 102201 -	2100 E		200014 5	ZINOLA D			

1113

· · · · ·

Ą

4

34

1.-1.

نه.

		NCCETAIC 2001 5 320 2.0003				·••••		21 NG BHIT	16/31/70	
				2W	T. FORCE	FB10Z				
	ACC LOC	60 6718 C0	OUND CALB	9 DOV	PLASE	300 L00	CO C/LB	CUAD GALB	ACC G	PIASE
1					5	21 0814 600	0.600001	0.00010	0.00.50	82.4
			0.00000	0.3327	92.8	323 AJC257	0.000033	0.613021	0112	0.2.
		-0.00116	-0.00006	0.0037	-153.8	551 AJ341Y	-0.000001		0.010	
10	1.22.1	23 2020 0-	0.401049	0.6429	1:3.6	400 AJUE32		0.000010	0.0056	73.5
5	1037Z	-0.000.00	-0.000000	6100.0	-174.7	AUT AUGENCIA				
			40.000°0		164.9					
5			0.610319	0.0037	162.5	•				
			000000	10.0	-161.3					
5		61.10 M	0.00000	0.0663	163.7					
2		0	-0.0000		6.67- 1					
					2.62-					
			C. (019	0.0033	6.22					
: I) } ·	×		00000	C.507B	2.071					
۰۱. و		6.0.0.0	-0.1 350	0.3333	0.31-					
	2	E: 1.1.1	6.1.100	C	112.0			1		
			0.0.000	0.6129					(
				0.0410	1.00.1				24	
			0.00000	0.0013	57.0			P		
		1	0.07700	0.00.13	0.3				22	
10.1	A	9.901 2	0.01 0020	0.0013	50.2			をや		
۲. H	2	0.0000.0	00000000-0-	0.0053	0.1-			1 ر ل		
22.2	Acur'	0.0771		4100-0		-				
	21:00							P. A.		
	20000	0.00023	0.00003	0.0147	6.1					
Ìã	1.1.2.	-11.000162	3.004335	0.0037	161.2			E T		
50	20101	0.00000	240000-0-	0.0605	2.55-					
3	L'CITA	980560 6-	010000.01	4/10/0	-100.4			8		
				0.0290	152.2					
i.	ZU	9.000 127	010100-0-	0.0223	1.72-					
100	YEC. VI	-).600033	0.00012	0.0230	167.0					
	Z005-1	0.000046		0.0376						
55		-9.693017	0.00000	0.10.0	0 10					
			0.000063	0.0328	5.66					
:5	32	-0.500313	0.000337	0.0235	109.7					
325	1.0227	-0.000528	0.000322	0.0451	108.9					
	26604	-0.0000	0.000043	0.0277	2. 62 2. 62					
	XLOTIZ		000000	6.CU31	88.2					
				Figure	11. (C	oncluded).				

and the second second

•

.

ŧ

LIFTOFF

· · · ,. ,.

· • .

. -

. +2 (m .

.

.

۰.۲

ίς.

D

-

.

. . . .

.

and a second of the second

.

the synthese internet in the second second second

• •

ė.

455, z z

.

	304			4.6	8) 0 1 0 -		• 8				
	E	777]	8235	1010	8281			2885 1	7	1631	
	V			-9811 -9000	8480 8480 8480	0000					
	•	12.3. 12.3.									-
					••••••••••••••••••••••••••••••••••••••						Retarno
											iter ***
				Taker	0 11 12 11 0 11 12 11 0 28 12 10						ata Orb
			••••						26.12		Dwell I
		F # F <u></u>					***** ****				TVDVM
1 1 1 1 1 1 1					1. 800 1. 800 1. 8. 6 1. 8. 6	4.45.4					Shuttle
	2 =		:222		:222	9 23	2 22 1				Space
											12.
	- `, •										Figure
	1 El 90										
	The Let	4 17 04 2 0									
R 1	·•• .			يىرە يىليە بىي ت ە		بر بین این ا					т.

ł

a the second of the

_

. 1. .

-

· • · · · ·

5

1.1.1.1

۰.

÷

38

12. Space Shuttle MVGVT Dwell Data Orbiter *** External Tank *** Solid Rocket Boosters.

•

.

ORIGINAL PAGE IS OF POOR QUALITY

۰<u>۴</u>۰۰

..;

LIFTOFF

0.6567 0.3203 0.1961 0.3137 2.6703

KINTER REAL TARE TARES TARES

11032 FITD 1 0.0557 1.0003 2 6.3353 -0.6451 1.6635

000011 20000- 10000- 10010 B

4 0.0127 0.0014 -0.0019 0.0055 1.000

5 2.003 0.0014 0.3670 0.1020 -0.0929 1.0000

Figure 13. Space Shuttle MVGVT Symmetric Orthog Orbiter *** External Tank ** Solid Rocket Boosters.

37

		DAT	FRIGUERCY OF DIFL 10/31/78 T11 FODE -	L = 2.0588 32 4:00:33	L 1 F T 0 F		
0171103 02011720	×	*	N	Xel	VET	182	TOTAL
	1800-0 1800-0 1900-0 1900-0 1900-0	0,000 0,000000	0.0121 0.0212 0.0213 0.0213	0,0000 0,0000 0,0000 0,0000 0,000	0000.000.000.0000.0000.00000.000000000	0.000 0.000 0.000 0.000 0.000 0.000	1210'0 1210'0 1210'0
	00000 00000 00000 00000		00000		00000000000000000000000000000000000000		55505 00050
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000			00000000
20112 6.2	0.9160	0.0004	0.0011	0.0011	0.0021	0,6	5101.J
TUTAL TAIT							
							90090000 2000000000 2000000000000000000
TOTAL ET				•			0.1334
SLD LAT DETH							
Alteria			0 1 1 1 0 1 1 1 1	0.0038 0.8470 0.8470 0.9500 0.9500 0.9000 0.0000	00000000000000000000000000000000000000	9. (****) 9. (****) 9. (*****) 9. (************************************	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
TUTAL SNB	0.0038	3981°0	.2495	0.3435	.0024	0.0023	0.7633
						TOTAL : 00 B/ET/SRB.	0000.1
Figure 14.	MVGVT Kineti	c Energy]	Distribution	Symmetric	Motion (Orbiter *** E	xternal

and the second second second

 Tank *** Solid Rocket Boosters.

.

••••

and a second second

.

ORIGINAL PAGE IN OF POOR QUALITY

.38 **•**

-

.

•

•

;,

ł

LIFTOFF

11 12

¥ - ------

t

••••

 FILE
 CHO

 9.6667
 9.0001170277

 9.00030
 9.000112020

 9.1561
 0.000101208

 9.0157
 0.00010208

 9.0157
 0.00000208407

 0.0157
 0.00000208407

 0.0157
 0.00000208407

SIGH

Figure 15. Space Shuttle MVGVT Symmetric Orthog Orbiter *** External Tank *** Solid Rocket Boosters.

39

٠.,

;

.

•

5

. ₩ LIFTOFF

•••

6.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
3.15 0 1.1 10 1.1 1
4.741 6.0134 6.0134 11.12.0134 11
6011-011-000 6011-011-000 6011-011-010 6011-000 6011-000 6000 6
9,1002 0,0000 0,00000 0,00000000
3.1429 8.0747 8.0747 8.0747 8.0747 11.0115 11.0115 21.01555 21.01555 21.01555 21.015555 21.0155555 21.0155555555555555
2.6350 2.6377 10.18956 110.18956 110.18956 110.18956 110.18956 110.18050 100.180500 100.180500 100.180500 100.180500000000000000000000000000000000
2.4733 110.4513 110.4513 111.1514 111.1514 111.1513 111.1
2.1779 6.9179 6.9179 6.9179 6.9179 6.9179 115.05030 115.05030 25.050300 25.050300 25.050300 25.0500000000000000000000000000000000
0.0669 6.1739 6.1739 6.1739 1.1.17375 1.1.17375 2.1.173755 2.1.173755 2.1.1737555 2.1.1737555555555555555555555555555555555
6.001460000019886 666916607486098939 666916607486098939 666916607486098939
0100251202050505050505050505050505050505

FILT TCox

• •

. .

⊾ Ì-

CINL NOTALZD MASS PATHUX

.

					010010- 1 010010- 1	N -0.1126	2000 1000	. 0.12. 3	2010-0- 1	E040101	1293.0 3	++102.0 .	0.11.4	0.0112	
20070-		0.10.0-	-0-	2. (3) (3) (3)	0.216	1.10.0-	10.01	0.0.0	0.101.0	-0.01	-0-10-	-0.144	-0.0531	9900.0	
2010.0-			B 11 11 01	-1.51 C	9700.8-	0.11.0	0.0213	9.7	0100.0-	111.0°	10.20.0-	-0.2175	-0.00.4	-0.0517	
-0.0306	0.01	9.(0.0-	-0°C2'0	-0.10	0.0.13	-0.0172	0.0016	-0.0218	0.0112	-0.1142	-0.1032	-0.2206	-0.06.79	0.0546	
0.1025	-0.0177	0.0103	-0.0136	0.0136	1117.0	0.1113	0.0223	864.5 0	-0.0310	0.0360	6260.0	-0.0486	0.0762	0.0370	
-0.1469	-0.53.0-	-0.0602	0.0273	-0.000-	0.0759	01:1:0	-0.0033	0.0354	-0.0029	-0.147.0-	0.0009	-0.2230	0.9653	0.0693	
0.0273	0.073.0	0.0111	-0.0.11	0.0403	-0.1323	0,0000	-0.2300	0.0014	-0.0122	-0.0009	0.123%	-0.2375	0.0075	-0.0504	
00.14	SCO	4140	0303	00.63	+200.	.1919	1 3.0.	4900.	C104	0116	1500.	.1257	0:36	0770.	0000.
ò	0	9	• •	o	0	?	?	0	Ŷ	Ŧ	Ô	0	Ŷ	0	-
0.0127 0.0	-0.11(13 0.	-0-0000-0-	0.1711 0.	-0.0114 0.	0.173 0	-0-1128 -0-	0- 00000-0-	0.00.27 0	0-0110-0	6 B610.C-	-0.0211 0	0.1498 0	-0.0303 -0	0.1733 6	1 6160.0
-0 2000 0 0205 0-	-0.0.04 -0.10.03 0.	-0- 0:00- 6210-0-	-0.1224 0.1721 0.	-0.0023 -0.0114 0.	0.0592 0.173 0	0- 87.1.0- 6220.0-	0- 0000- 0000.0	0.0068 0.00.27 0	-0.7165 0.0710 -0	0 010 - 2857 0-	-0.6176 -0.0211 0	0.0121 0.1498 0	-0.0126 -0.0393 -0	-0.0637 0.1733 0	0.0028 0.0919 1
·0 2000·0 6689·6- 6000-0-	-0.11.2 -0.0.44 -0.10.23 0.	0- 0303 -0.3174 -0.0350	0.0301 -0.1224 0.1741 0.	-0.0034 -0.0023 -0.0004 0.	0.5332 0.5592 0.173 0	0.2277 -0.0789 -0.1128 -0	- 60000 - 2000 - 6000 - 600000 - 600000 - 600000 - 600000 - 600000 - 60000 - 60000 - 600000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 600000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 600000 - 600000 - 600000 - 600000 - 6000000 - 600000 - 6000000 - 600000 - 6000000 - 6000000 - 60000000 - 600000000	0.0003 0.0068 0.0007 0	-0.01.0 -0.0165 0.0710 -0	-0.1070 -0.0283 -0.0798 -0	-0.0423 -0.0176 -0.0211 0	-0.0237 0.0121 0.1498 0	0.018 -0.0126 -0.0333 -0	-0.0410 -0.0637 0.1733 0	-0.0100 0.0028 0.0919 1
0 200010 638916- CUESTO- 801110-	-0.0111 -0.1112 -0.014 -0.1113 0.0	-0- 00000- 4210-0- 2000-0 C000	6.0151 0.0331 -0.1224 0.1724 0.	0.0632 -0.0034 -0.0023 -0.0144 0.	-0.0030 0.0002 0.0692 0.073 0	-0.2723 0.2277 -0.667 -0.1128 -0.	0- 60000- 80000 80000 80000- 600000-	0 200010 190010 Eccere 200010-	-0.0014 -0.00.37 -0.0165 0.0710 -0	6 86103 -0.1010 -0.0103 -0.6103 4	-0.0313 -0.0123 -0.0176 -0.0211 3	0.1293 -0.0237 0.0121 0.1498 0	0.0413 0.0318 -0.0126 -0.0393 -0	-0.0222 -0.0410 -0.0637 0.1733 0	-0.0213 -0.0100 0.0028 0.0919 1
		-0- 2000-0- 4210-0- 2000-0 2000 00000		-2.9659 0.0630 -0.0034 -0.0023 -0.0114 0.	9.6146 -0.0039 0.5332 0.542 0.73 0	-6.1331 -0.2723 0.2277 -0.6379 -0.1128 -0.	0- 60000- 20000 20000- 60000- 60000	0 200010 090010 00000 200000 010010-	0-012019 -0.0014 -0.00.37 -0.0165 0.0710 -0	-).(149 0.0199 -0.1070 -0.0233 -0.0798 4)	3.6321 -0.6313 -0.6423 -0.6176 -0.4211 3	-0.1738 0.1293 -0.0237 0.0121 0.1498 0	-7.1343 0.0413 0.0318 -0.0126 -0.6393 -0	3.2069 -0.0222 -0.0410 -0.0637 0.1733 0	6.0206 -0.0213 -0.0100 0.0028 0.0919 I
2:0033 -0.0308 -0.1300 -0.0301 -0.4850 0.000		0-0-050010- 421010- 810310 - 800010- 600010-	-2.01.27 0.0151 0.0201 -0.1204 0.1721 0.	-0.0000 0.0000 -0.0004 -0.0023 -0.0144 0.	0.0146 -0.0530 0.0022 0.0592 0.073 0	-0.1331 -0.2223 0.2277 -0.7359 -0.1728 -0.	01 6000101 802010 80000 8000101 6000101 600010	0 200010 190010 E00010 200010 2000111	0.2015 -0.0016 -0.00.00 -0.0108 0.0010 -0	6 8610.0 2007.0 0101.0 - 00101.0 - 601010 - 601010-	3.0321 -0.0313 -0.0523 -0.0176 -0.0211 3	-0.1738 0.1233 -0.0237 0.0121 0.1498 0	-0.1343 0.0413 0.0018 -0.0126 -0.0313 -0	3.2069 -0.0222 -0.0410 -0.0637 0.1733 0	6.0226 -0.0216 -0.0100 0.0028 0.0919 I

Figure 16. Space Shuttle MVGVT Symmetric X-Orth Orbiter *** External Tank *** Solid Rocket Boosters.

;

40

•

.

ş

. . - . .

こうない いっちょういい あまたいのない 御をがな

•

γ. 44

						•		
2.108	2.059	ፈበ	B * X . 003 . 679	0.003 -0.005 34.177	0.398	0.599 0.774 0.063	0.143 0.180	
5Q=	RQ=	= <u>-</u> 00	+ ⁰ 0		EU=		= - X≻ ₩	
ANAF	IST5	NAM LSTM	8 8 8 66 70 11	VINT XINT SLOP	STDD		RONL	

Figure 17. Linear regression analysis.

41

; • • •

i

Figure 18. Linear regression analysis.

The kinetic energy distribution for the mode is given in Figure 14. From this listing it can be seen that the principal kinetic energy is in the SRB (76 percent) and that the mode is a roll/pitch mode of the SRB. The cross orthogonality between the analytical mode and the test mode is shown in the lower matrix in Figure 16. The upper matrix in the same figure corresponds to the analytical modal frequency.

The linear regression analysis presented in (Figures 17 and 18) is another aid in matching the analytical mode to the test mode. Ideally the analytical mode matches the test mode when the plotted line is at a 45 degree angle. The decay trace is shown in Figure 19, where selected accelerometers are monitored and the input force is cutoff. Modal damping can be calculated from these decay traces.

e. Payload Bay Response Sweeps. Nine payload bay sweeps were performed during the liftoff testing. Accelerometers were special patched for those sweeps. Accelerometer readings were recorded on the two simulated payloads and on the payload bay. The shakers used, their phasing and frequency ranges for each sweep are shown in Table 9.

f. Pressure Rings Removed. The stiffening rings were attached to the SRB's at the aft ET/SRB interface. These rings were made up of three segments bolted together to simulate the stiffening effect of the SRM chamber pressure during burn. These rings were attached to the SRB's during all of the preceding test phases. These rings were later removed and narrow band sweeps from 1 to 4 Hz were run for symmetric and antisymmetric excitations. The SRB pitch-roll mode which responded more to pressure than other modes was tuned. The symmetric and antisymmetric modes were first tuned with two segments of the ring removed. There was no appreciable change in frequency. The third segment was thought to be stiffening the aft/SRB interface so it was also removed. Again there was no appreciable change in frequency. Table 10 summarizes the result of the above tests.

Altering the aft ET/SRB interface stiffness of the SRB was not effective in changing the pitch/roll modal frequency as the pretest analysis indicated. The analysis assumed that the forward ET/SRB attachment is free to roll. Instrumentation was installed to measure the relative amount of rotation for the last two modes. The test indicated that the interface was locked and was carrying some moment.

g. Special Test of the Forward ET/SRB Interface LOX Tank Empty. It was thought that the LOX tank weight was causing enough friction on the ET/SRB ball joint to prevent free rotation at that interface. To verify this and to determine that the bolt torque was not causing seizing, tests were run with the LOX tank empty and with the bolt torqued and loose (Table 11). The test results, as shown in Table 11, indicated that with the LOX tank empty the SRB/ET ball joint was free to rotate. The bolt torque was not effective.

Sweep No.	Shaker Used	Shaker Phasing (deg)	Frequency Range (Hz)	Frequency Increment (Hz)	Number of Oscillations Per Increment
1	FL10Y FL11Y	0 0	2 - 50	0.1	10
2	FL10Y FL11Y	0 180	2 - 50	0.1	10
3	FB 10Z FB 11Z	0 180	2 - 50	0.1	10
4	FB10Z FB11Z	0 0	2 - 50	0.1	10
5	LL06Z RR06Z LR07Z RL07Z	0 180 180 0	2 - 50	0.1	10
6	LL06Z RR06Z LR07Z RL07Z	0 0 180 180	2 - 50	0.1	10
7	RB 14Y RT 14Y LB 14Y LT 14Y	0 180 180 0	2 - 50	0.1	10
8	RB 14Y RT 14Y LB 14Y LT 14Y	180 0 180 0	2 - 50	0.1	10
9	LB01X LT01X RB01X RT01X	0 0 0 0	2 - 50	0.1	10

TABLE 9. PAYLOAD BAY SWEEPS

۰. د

į

÷

Ţ

1.

٠.

is the set of the

. AY

TABLE 10. MVGVT LIFTOFF PITCH/ROLL MODE, LOX TANK FULL

.

;

1

an interviewer wards the

Test Condition		Symmetr	ic	A	Antisymmet	ric
	Mode No.	Freq Hz	Damping C/cc	Mođe No.	Freq Hz	Damping C/cc
With Rings	ى م	2.05	0.013	ao	2.235	0.010
Two Segments Off	40	2.02	0.018	32	2.235	0.009
Three Segments Off	42	2.04	0.017	33	2.235	0.011

TABLE 11. NVGVT LIFTOFF TEST PITCH/ROLL MODE, LOX TANK EMPTY

T3st Conditions		Symmetr	ic	7	Antisymmet	tric
	Mode No.	Freq. Hz	Damping C/cc	Mode No.	Freq. Hz	Damping C/cc
Bolt Loose	43	2.314	0.018	ŦŦ	2.196	0.012
Bolt Torqued	45	2.314	0.017	1		

۰.

.

- 15" +

0

· , •

· ··········

h. Special Test of the Forward ET/SRB Interface – LOX Tank Refilled. It was thought that the ball joint had been worn smooth in the previous test (LOX tank empty), so the LOX tank was refilled to simulate the liftoff test condition and the pitch/roll modes were retuned. The test results showed no appreciable change in frequency and damping to the provious test condition with the LOX tank full. It also showed that the LOX tank weight was sufficient to lock the forward interface.

B. End Burn (Pre-SRB Seperation)

1. Configuration. The end burn (T+125 sec) configuration tested consisted of the OV-101 Orbiter mated with an ET and two empty SRB. The ET and Orbiter test articles were the same as those used during the liftoff test and have been previously described. The two SRB tanks contained no inert propellant and since the test condition simulated was end burn, the pressure rings used to simulate internal pressure for liftoff were not required. The SRB nozzles were omitted as in liftoff.

2. <u>Suspension</u>. The end burn configuration utilized the same suspension system as was used in liftoff. However, the pressures in the HDS system and the pitch and yaw air bags were reduced to obtain a softer suspension system. This was done to maintain an adequate separation between the rigid body modes and the elastic modes.

3. Test Results and Analysis.

a. Suspension System Modes. The six rigid-body modes were obtained and are summarized in Table 12.

b. Flight Control Transfer Functions. Nine flight control transfer functions were taken for the SRB and Orbiter in roll, pitch, and yaw. These sweeps are presented in Table 13 and show the shakers and phasing used, the type motion produced, and the frequency range covered.

The last three sweeps were taken using shakers on both the Orbiter and the SRB simultaneously to excite the Shuttle pitch, roll, and yaw. Shaker force ratios were specified for these sweeps to simulate actual flight conditions. Significant response frequencies were identified for flight controls and are presented in Table 14.

c. Pogo Wide Band Sweep. Wide band frequency sweeps were run independently on all three orbiter main engines. The excitation force in each case was along the engine longitudinal axis. The three pogo sweeps are listed in Table 15. Four engine axial modes were identified by the pogo group above 16 Hz and dwells were taken for each mode.

d. Modal Test Results versus Pretest Analysis. All acceptable modes tuned during the end burn symmeteric tests are shown in Table 16. The antisymmeteric modes are listed in Table 17. The correlating pretest analytical frequency and the computed modal damping from the decay traces are also shown in those tables. The last column gives the percent error between the test and the analytical mode.

"÷ 47

Mode No.	Test Frequency Hz	Predicted Frequency Hz	Damping C/cc	Description of Motion
3	0.255	0.302	.077	Z-Translation
53	0.275	0.258	.009	Y-T ranslation
51	0.549	0.528	.037	θX(Roll)
54	0.549	0.603	.034	θZ(Yaw)
1	0.647	0.59	. 022	X-Translation
2	0.657	0.671	.048	∂Y(Pitch)

• . • . • ·

i - · ·

. . . .

TABLE 12. SRB BURNOUT SUSPENSION SYSTEM MODES

¥...

è

:

					.WS	TAS Sweep	No.	-
Sweep No.	Shakers	Phase (deg)		Cype Motion	2-7 Hz	7-17 Hz	17-30 Hz	кетак
-	E.T./RB14Y LT./LB14Y	180/0 0/180	SRB Yaw		2	80	6	
÷1	FL10Y FL11Y	00	ORB Yaw	ELIN-	Ω	10	11 & 11A	
ę	RR 062/RL 072 LL 062/LR 072	0/180 0/180	SRB Pitch	LIND7210 RL M72		12	13	
7	FB10Z/FB11Z	0/0	ORB Pitch	F8112	m	14	15	
ij	RR06Z .RL07Z LL06Z LR07Z	180 U 0 180	SRB Roll		ŝ	. 1		
ç	FB102 FB112	0,180	ORB Roll	Faio21 Faii2	9	16		6-1 (No. 4) Rerun
1-	RK062/RL072 LL062/LR072 ER102/FR112	0/180 0/180 0/180	SRB /ORB Pitch	FBIOZI INTOLIZ		<u>2-15 Hz</u> 18	15-30 Hz	<u>Shakers</u> SRM Shakers-1.0* ORB Shakers-3.0
				LIDEZ PUT ANOSZ				*≂ Reference
80	RB14Y/RT13Y LB14Y/LT14Y FL10YFL11Y	0/180 0/081	SRB/ORB Yaw			22	23	SRM Sha Kers-1.3* FL10Y -2.0 FL11Y -4.0
Ø	RR062/RL072 LL062/LR072 FB102/FB112 FL10Y	0/180 180/0 0/180 0	SRB/ORB Roll	FLIOYACT		20	21	SRM Shakers-1.0* FL10Y -1.15 FB10Z -1.54 FB11Z

TABLE 13. SRB B/O FCS SWEEPS

SEN PEA

į

49

۰.,

Ĵ

• • • •

à. T

TABLE 14. PRIMARY FCS RESPONSE FREQUENCIES SRB BURNOUT TRANSFER FUNCTIONS

þ

:

, , , , ,

	Sensor/Axis		Primary Resp (2-7 Hz F	onse Frequency req Range)
			SRB Shakers	ORB Shakers
		Koll	2.5*,3.9,5.2	2.7*,4.1,5.3*
ORB PCA15	1307 Builkhead	Pitch	2.6*,4.8,6.1	2.7,3.4*,6.1
		Yaw	2.5,4.3	4.2
		Roll	2.5*,4.2	2.7*,4.5,5.4,6.8
•	Nav Bese	Pitch	Low Coherence	3.4
		Yaw	2.5	Low Coherence
		Pitch	2.6*,4.8,6.0	2.6*,6.8
с ф л	LSRB	Yaw	2.5,2.6,4.4	2.6, 4.0, 4.4, 5.3, 6.7
RGA'S	bebb t	Pitch	2.6, 4.8, 6.0	2.6*,4.9
	QVCV	Yaw	2.5,2.6,4.7	2.6,4.0,4.4,5.3,6.7
0	RB	Normal	2.6,4.8*	3.4
V	ccel	Lateral	2.5*,4.2	2.6,4.2

.

* Dominant Modes

.."

** Off Axis Response to 4.8 Hz SRB Pitch Shaker Excitation

`\

		SM	TAS Sweep	No.
Sweep No.	Shakers	2-12 Hz	12-30 Hz	30-50 Hz
1	MT01X Upper SSME Axial	1	2	3
2	ML02X Jower Left SSME Axial	4	5	6
3	MR03X Lower Right SSME Axial	11	10	9

TABLE 15.SRB B/O POGO SWEEPS

× 51

TABLE 16. MVGVT MODAL CORRELATION [CONFIGURATION - BURNOUT (SYMMETRIC)]

:

: . Je

. . .

			Test Mode			Annlysis Mode	
Mode No.	Fred.	Damp	Description	Mode No.	Freq.	Description	Percent Error
9	2.55	0.025	SRB Pitch (0.48), Roll (0.13). Orbiter Pitch (0.18)	4	2.50	SRB Pitch (0.22), Roll (0.56), Orbiter Pitch (0.08)	2.0
22	3.41	0.012	Orbiter Pitch (0.46). Axial (0.38). SRB Pitch (0.01), Roll (0.02)	3	3.11	Orbiter 19tch (0.37), Axial (0.32), SRB Pitch (0.19), Roll (0.06)	8.8
6	3.39	0.028	SRB Y-Bending (0.79), Z-Bending	2	3.57	SRB Y-Bending (0.51), Z-Bending	0.6
0:	4.78	0.019	SRB Pitch (0.64), Orbiter Z (0.16)				
15	6.08	0.007	Orbiter Axial (0.32), Z-Bending (0.27), SRB-Z (0.17), ET Feedüne (0.03)	6	6.19	Orbiter Axial (0.41), Z-Bending (0.24), SRB-Z (0.04), ET Feedline (0.14)	1.8
32	7.73	0.007	SRB Y (0.35), N (0.19), ET (0.10)	17	8.86	SRB-Y (0.57), E1 (0.27)	15.0
18	8.9 <u>0</u>	0.023	Orbiter Z-Bending (0.38). SRB Pitch (0.13). Roll (0.12)	61	9.04	Orbiter Z Bending (0.48), and Axial (18), ET (0.21)	1.3
23	9.94	0.016	ET (0.51 Intertank and LWR LH ₂ Tank). SRB X (0.14). Y (0.22)	22	10.64	ET (0.58 Intertank and LWR LH ₂ Tank). SRB X (0.19), Y (-11)	7.0
19	11.08	0.018	ORB Z Bending (0.40), Axial (0.14), SRB Z Bending (0.22), Roll (0.09)	24	11.19	ORB Z Bending (0.29), Axiai (0.13), SRB Z Bending (0.15)	-
1-	12.09	0.002	LOX Dome Buige (0.18), Feedline (0.14), SRB Axial (0.21), Y Bending (0.12)				
20	13.35	0.022	ORB Z Bending (0.50), Elevons Out-of- Phase (0.16)	28	12.31	ORB Z Hending (0.06), Elevons Out-of- Phase (0.72)	œ
22	13.74	0.012	SRB 2nd Y Bending (0.20), SRB Z Bending (0.10), Elevon Rotation (0.14), LWR SSME Z (0.05)				
36	14.56	0.012	ORB 2nd Z Bending (0.40), LH ₂ Tank (0.12)	36	14.3	ORB 2nd Z Bending (0.26), Wing Bending (0.21), Elevons (0.16)	2

÷

:

-

.

•••

•

÷

• • • • • •

ی بر این مرب ا

•

. **52**

TABLE 16. (Concluded)

-2) ---

, I.

A THE ANALYSING AND A

			Test Node			Analysis Mode	
Mode No.	· hau.	Damp	Description	Mođ. No.	Freq.	Description	Percent Error
31	15.11	0.012	SRB Z Bending with Torsion (0.39), AFT Payload Axial (0.24)				
24	16.05	0.011	LH ₂ Tank Shell Mode (0.20). SRB X (0.1) and Z Bending (0.1). OMS POD Axial (0.09)				
80	16.44	0.015	SRB Axial (0.27) with Y (0.15) and Z (0.09) Bending. LH ₂ Tank (0.16). LON Tank (0.15).	41	15.26	SRB Y Bending (0.23), LON Tank (0.32), LH ₂ (0.08)	2
21	17.83	0.035	SSME Z (0.45), LH ₂ Tunk (0.10)				
11	16.38	0.006	SRB 2nd Z Bending (0.36)	53	18.12	SRB Z Bending (0.50), Elevons (0.21)	-
30	21.78	0.014	Ceedline N (0.20). LH2 Tank (0.14). UPR SSME Z (0.07). LMR SSME N (0.06)	92	24.35	LH ₂ Timk (0.31), LWR SSME X (0.08). UPR SSME 2 (0.04)	3
33	28.75	0.022	UPR SSME X (0.17), LWR SSME X (0.06), LH ₂ Tank (0.31)	131	32.52	UPH SSNE X (0.11), Z (0.06), IMR SSME Z (0.11), X (0.06), LH ₂ Tark (0.27)	13
29	30.45	0.020	LPR SSNE X (0.29). LWR SSNE X (0.09). Z (0.09), LOX Dome and LH ₂ Tank Axdal (0.21)	1 35	32.96	UPR SSNE X (0.44), LOX Tank (0.08), LH ₂ Tank (0.06)	3 C
35	31.62	0.018	UPR SSME Axdel (0.42). LH ₂ Tank (0.19)	135	32.96	UPR SSME X (0.44), LOX Tank (0.06), LH ₂ Tenk (0.06)	4

53

•

.

. . . 4

1. 1. A. 1. 1. 1.

キノマエーンカ

۰.

.

TABLE 17. MVGVT MODAL CORRELATION [CONFIGURATION - BURNOUT (ANTISYMMETRIC)]

×

,

•

•

į

			Test Mode			Anulysis Mode	
Mode No.	Freq (Hz)	Damp	Description	Mode No.	Freq. (Hz)	Description	Percent Error
5	2.49	0.019	SRB Z Trans (0.45). and Roll (0.08). ORB Yaw (0.14) and Roll (0.11)	4	2.53	SRB Pitch (0.54), Roll (0.04), ORB Yaw (0.23) and Roll (0.03)	1.6
18	3.98	0.015	SRB Pitch (0.60), OMS Y (0.05), V.T. and Wing Bend (0.08)			None	
20	4.19	0.015	SRB Yaw (0.36) ORB Yaw (0.17), Wing Bending (0.13)	~	4.48	SRB Yaw (0.45), ORB Yaw (0.34)	(° 6
00	6.82	0.023	FWD P/L Y (0.21), FUS Y Bend (0.21), OMS POD Y (0.10)	10	6.10	FWD P/L Y (0.54), FLS Y Bend (0.14)	10.6
10	1.529	0.016	SRB X Trans (0.54) and Y Bend (0.30). ET Y Bend (0.14)	5	8.41	SRB X (0.42), Y Bend (0.23), ET Y Bend (0.21)	11.7
	7.92	0.037	SRB Z Bend (0.24), Roll (0.23), ORB Y Bend (0.11), Torsion (0.08)	12	6.721	SRB Z Bend (0.23), Roll (0.08), Y Bend (0.08), ORB Y Bend (0.28), and Torsion (0.11)	15.1
91	8.49	0.016	Tuned on AFT Payload Y (0.04). SRB X (0.30). ORB Y (0.19)			None	
9	9.71	0.016	SRB Y Bend (0.37). ET Y Bend (0.15). AFT P/L Y (0.07). OMS POD Y (0.07)	22	10.01	SRB 1st Y Bend (0.38), Z Bend (0.20). ET Y Bend (0.24)	3.1
61 61	11.86	0.013	SRB Z (0.24) and Y Bend (0.22). and LH ₂ Y Bend (0.32)			None	
12	12.52	0.009	ET Y Bending (0.90)	24	11.6	Elev Z (0.35), ET Y Bend (0.16)	7.4
17	13.35		LH ₂ Shell (0.34). SRB Y Bend (0.18). CC Y (0.02)	36	14.83	LH ₂ Shell (0.24), CC Y (0.08)	1.11

.

•

.

۰.

•

•

TABLE 17. (Concluded)

.3

1

2

, . •

			Test Mode				
						Andrysis Mode	-
Node No.	Freq. (Hz)	Damp	Description	Mode	Freq.		Percent
•				<u>;</u>	(711)	Description	Error
	14.13	0.028	ORB Y Bend (0.32) and Roll (0.07). CC Yaw (0.12)	30	13.15	CC Yaw (0.20). U-SSME Y (0.18), ORB Roll (0.08)	6.9
19	15.73	0.015	ET Y Bend (0.64), SRB Y (0.05)	41	16 25		
23	17.61	0.005	SRB Torsion (0.58), LH, Shell (0.09)	:		E1 1 Dend (0.33), SKB Y (0.03)	3.3
Ħ	18.67	0.013	SRB Z Bend (0.52) and Torsion (0.17)			VODe	
						None	

55

•

•

· · · · · · · · · · · · · ·

1.1.1.1

e. Special Tests.

(1) Verification of the SRB RGA Ring. As a result of the liftoff tests, an abnormally high transfer function value was observed on both the left and right forward SRB ring frames where the rate gyros are mounted. These local resonances occurred at 23 and 25 Hz respectively. These rings frames were stiffened subsequent to the liftoff test. An end burn test was used to verify that the "fix" was acceptable for flight control. A comparison of the pre-fix and post-fix test results are shown in Table 18. As can be seen from the table, a response magnitude reduction of 40 on the left SRB rate gyros and 7 on the right SRB rate gyros was obtained as a result of the structural fix.

(2) Investigation of the 1307 Bulkhead Deformation. A special test was conducted to assess the credibility of the yaw rate gyros mounted on the 1307 Orbiter bulkhead. Unexpected yaw rates were read during a symmeteric flight control sweep. Twelve additional accelerometers were mounted and read during a special 1307 bulkhead survey sweep. The bulkhead deformation in the symmetric 4.78 Hz mode is shown in Figure 20. The yaw rates computed from accelerometers are compared with rates measured by the yaw rate gyros and are shown in Table 19. This comparison indicated that the readings are credible; however, the readings reflect local deformations only. The flight control transfer functions indicated that the yaw rates were about three times the pitch rate for the 4.78 Hz symmetric mode, which was verified by the accelerometers.

(3) LOX Dome Transfer Functions. LOX dome acceleration and dynamic pressure transfer functions were obtained for the Pre-SRB separation test condition. In addition, the ET liquid level was adjusted to 100 and 80 sec burn times and the transfer functions were repeated. Since the liquid level tests were performed with the SRB's empty (not a flight condition), care must be exercised applying the data directly to the flight vehicle. In all cases the excitation was applied to the SRB bottom.

Acceleration and pressure transfer functions for the pre-SRB separation, 100 and 80 sec tests are shown in Figures 21 through 26. Acceleration and pressure frequency response amplitudes shown are per pound of the reference shaker force used in each sweep. Since two shakers were used on each SRB, the value of the indicated transfer function must be divided by two.

Modal frequencies of the two LOX tank bulge modes in the SRB thrust oscillation frequency regime were plotted as a function of burn time. These data are shown in Figure 27. The damping for each mode is plotted in Figure 28 for the burn times tested. The damping was calculated from the decay traces. TABLE 18. SRB RGA MOUNTING RING FIX FCS EVALUATION

.,

د. ; _____

. ł

2

.

.

÷

;

٤

÷

÷

والمحافظة والمحافظة المراجع المحافظة المحادث والمحافظة والمعاد

Sensor LSRB RGA RSRB RGA	Frequency (Hz) 23 25	Transfer Function Magnitude (deg/sec) lbf 80×10^{-5} 14×10^{-5}
 LSRB RGA RSRB RGA	23 25	2×10^{-5} 2×10^{-5}
 LSRB RGA	* 37	9.6×10^{-5}
 RSRB ~ GA	* 30-50	Peak Not Discernable Over 30-50 Hz Range

* Based on 30-50 Hz Minisweep

Conclusion: Fix is Adequate

57

* , * .

.

.`

يه و الله المراس

58.

ñ

A A CARACTER OF STREET

ì

!	Measured from RGA	Computed from Accel.	Ratio
Left Hand Side	1.16×10^{-4}	1.2×10^{-4}	. 97
Right Hand Side	1.05×10^{-4}	1.8×10^{-4}	.58

TABLE 19.1307 BULKHEAD COMPUTED AND MEASURED YAW
RATES (DEG/SEC)

•

:

;

and a grant set

د بید. د اید

60

.

;

* * *

· ·

1 ------

,

. .

> . ,

> > ۰ ب

> > > ;

.

•

61

-

ŕ

· •

...

•••••

***:

きょうご ばえって きい

いたのでもので、日本のの間間

¥

1.1

.

15

;

1

;;;

.

62

.

24 1. 1

, . ,

;

*** ***

in the second second

and a state of the state of the

63

and the second sec

1.4.4

64

÷

. . .

•

۹ •

ì

5

65

-

. .

7

-1

.

، ۲

> . 1

67

· . • •

مند. آآ

X. BOOST

A. Start Boost

1. <u>Configuration</u>. The start boost (T+125 sec) configuration consisted of the OV-101 Orbiter mated to the ET. The Orbiter contained a 32,000 lb simulated payload. The Orbiter and ET are the same as used in the liftoff tests and have been previously described. The start boost configuration tested was canted 9 degrees. The ET LOX tank was filled with 859,800 lb to a level of 320.3 in. $(X_T = 642.3 \text{ in.})$ of deionized sodium-chromate-inhibited water. The LH₂ tank was empty. The boost configuration was tested in Building 4550 and is depicted in Figure 29.

Suspension System. The overhead suspension system for the 2. start boost configuration consisted of two pyramid shaped truss air bag assemblies. Each assembly was composed of 12 #470 Firestone air bags with reservoirs, a rod tension member, spreader beam, cable assembly, and an ET spreader beam, which connected to the test article at the forward ET/SRB attachment. For pitch and yaw stability, upper and lower Firestone air bags #319 and #312, respectively, were used. The upper air bags were attached to the forward ET attach/spreader beam, and the lower air bags were attached in the vicinity of the ET to Orbiter attachment. This suspension system is depicted in Figure 30. Early tests indicated higher lateral restraint damping than anticipated. To reduce friction, steel guides were replaced with roller bearings, and teflon sheets on steel surfaces were installed on each of the lateral restraints. In addition, the yaw or y lateral air bag pressures were reduced to zero and the cables were made slack.

3. Test Results and Analysis.

a. Suspension System Modes. Obtaining rigid body modes for the end burn configuration was found to be very difficult. This was due to the fact that the shakers used were pendulum mounted. The pendulum frequency of the shakers were close to the rigid body frequencies; hence, the excitation force was insufficient to drive the vehicle with sufficient amplitude. This problem was overcome for the start boost and mid boost suspension system test by rigidizing eight shakers. The start boost suspension system frequencies and associated damping are shown in Table 20.

b. Flight Control Transfer Functions. A set of flight control transfer functions were obtained for the start boost condition. The shak s used and the sweep frequency bands are shown in Table 21.

c. Modal Test Results versus Pretest Analysis. All acceptable modes tuned during the start boost symmetric tests are shown in Table 22. The antisymmetric modes are shown in Table 23. The correlating pretest

68

T A Good Party .

MATED VERTICAL GROUND VIBRATION TEST (MVGVT)

ŧ

.

ř

 ç

Figure 29. MVGVT boost configuration.

٠.,

3

ŗ,

;;

÷.,

3

1 **8-**- ---

:

:

.

. . . .

ł

あるちまったらいとうないとないないないない

TABLE 20. SUSPENSION SYSTEM MODES

•

ی۔ م 1

;

;

	Start-F	loost	Mid-Bo	ost	End-B	oost
Modal Description	Frequency (Hz)	Damping (C/cc)	Frequency Hz	Damping C/cc	Frequency Hz	Damping C/cc
X-Translation	.647	. 022	.647	. 022	. 804	.040
Y-Translation	.373	.04055	1	1		1
Rol	. 804	>.10	.647	.075	.706	
P.tch	.529	<.10	.575	.032	1.077	.0812
		<.04*				
Yaw	. 235	. 055	.471	1	.431	. 018

* With rollers installed on the Z restraints

- Start and Mid Boost had Y restraints with zero air bag pressure and slack in cable. 1. NOTE:
- End Boost had Y restraints with air bag pressure and friction surface coated with teflon. 2.

71

•

:

٦ • •

• •

.

* * *** * * * * **** * * ***

:

ł

TABLE 21. FLIGHT CONTROL SWEEPS

;

and the second second second

່ມ. ເສີ.

			Sw	eep Frequency, H	Z
Shaker	Phase (deg)	Force (lb)	Start Boost	Mid Boost	End Boost
FL11Y	1	500	1-26	1-26	2.5-26
FB10Z	ł	550	1-36	1-26	2.5-26
FB10Z FB11Z	0	550 550	1-26	1-26	2.5-26
FB10Z FB11Z	180	550 550	1-26	1-26	2.5-26
FL10Y	1	500	1-26	1-26	2.5-26
FB11Z	3	500	1-26	1-26	2.5-26

i

SYMMETRIC	
BOOST	
START	
22.	
TABLE	

ŧ

ì

	Test		Analytical Mode	Percent	
<u>ی</u>	Freq. (Hz)	Damp (C/CC)	Freq. Hz	Frequency	Test Mode Description Dominant Motion (Kinetic Energy)
	3.431	0.014	3.27	-4.6	ORB Z Bend (0.47) and OMS X (0.15)
	6.157	0.022	6.245	1.4	ORB X and Z Bending, Feedline X
	6.471	0.03	6.70	3.5	1st Wing Bend (.78)
	7.608	0.017	7.808	2.6	V.T. Pitch (0.26) O/P W/Fuse Picch
<u> </u>	8.767	0.008	8.78	0.1	Feedline X (0.57), FWD Fuse Z (0.14)
	9.08	0.010	9.174	1	ORB Z Bend (0.47) V.T. X-Z (0.14), UPR LH ₂ Tank (0.19)
	11.43	0.031	1	1	Body Flap Rotation
	12.64	0.016	8.779	30	Feedline Bend (0.44) and Intertank
	13.386	0.012	12.459	- 6.9	LH_2 Tank Mode (0.68) N = 2
	16.008	0.01	19.05	19	Crew CAB X (0.05), P/L (0.08) OMS, LOX Tank
<u></u>	18.141	0.01	21.263	17.2	LOX Dome-Feedline Bend Y (0.29), Wing X (0.7)
<u> </u>	19.256	0.005	19.05	-1	Feedline O/P W/LOX Dome (0.13)
<u> </u>	19.55	0.03	20.29	3.7	Wing 2nd Bend (0.26), Elev (0.10)
<u></u>	24.814	1	24.2	-2.5	LOX Tank (0.35), LH ₂ (0.14), Feedline (0.18)
	27.867	•	1	,	1307 Bulkhead
	33.366	0.014	33.24	-0.4	Feedline X (Ends O/P (0.29), LH ₂ (0.39)

73

ţ

ANTISYMMETRIC	
BOOST	
START	
23.	
TABLE	

	Test		Analytical		
Mode	Freq.	Damp CC/CC/	Bran H ₇		Test Mode Description
	(211)	(0010)	211 · hatt	v red neurol	DOMINIANT MOTION (MINETIC ENERGY)
G D	3.412	0.015/ 0.22	3.76	10	FIN 1st Lat (0.80), Bend/FWD FUS LAT (0.11)
4	4.47	0.018	4.58	5	FUS Yaw Out-of-Phase (0.60)/ET Yaw (0.16), Wing Z Bending (0.13)
	2.57	0.027	5.86	9	1st Wing Z Bending (0.31), ET Yaw and Roll (0.52)
	6.51	0.016/	6.33	ç, '	ORB/ET (0.44/0.50), F Payload Y (0.30)
21	6.902	0.004	6.60	4 -	Wing Bending (0.22), In-Phase W.O.B. Elevon O_{Y} (0.20)
15	7.608	0.022	16.7	4	ET Roll (0.32), Out-of-Phase with ORB Roll (0.22)
G	12.720	0.016	13.61	2	Vert Tuil 2nd Bend (0.51), ET (0.04)
10	13.620	0.013	16.18	19	Vert Tail Torsion (0.8), ET Shell Mode (0.06)
-	14.364	0.016	14.783	ñ	FUS Bending (0.14), ET Shell Mode (0.6)
¢1	14.677	0.017	14.563	-1	Elevons (0.38), Out-of-Phase with Wing (0.17)
16	15.264	0.044	16.184	9	Orbiter Roll, LH ₂ Bending
20	16.7				Feedline Mode (0.68), ET Y Bending (0.27)
13	19.56	0.027	22.67	16	LH_2 Intertank Y Bend (0.73)
12	21.19	0.027	22.31	s	LWR Eng θ_{Z} (0.51), Wing X (0.15)
11	23.84	0 637	27.86	17	ET Torsion (0.25), LWR Fng Y (0.13)

analytical frequency and the computed modal damping from the decay traces are also shown in those tables. The test mode description and the percent frequency difference between test and analysis are also given.

B. Mid Boost

1. Configuration. The mid boost (T + 301 sec) configuration consisted of the OV-101 Olbiter mated to the ET. The Orbiter contained a 32,000 lb simulated payload. The mid boost configuration tested was canted 9 degrees and is depicted in Figure 29. The ET LOX tank was filled with 385,300 lb to 162 in. (X_T = 801 in.) of deionized sodium-chromate-inhibited water. The LH₂ tank was empty.

2. <u>Suspension System</u>. The suspension system for mid boost was the same as that described under the start boost. Again, the lateral yaw air bag pressures were reduced to zero and the cable was made slack.

3. Test Results and Analysis.

a. Suspension System Modes. The suspension system modes for mid boost were obtained with slack in the y restraints with zero air bag pressures. Excitation force was increased for this condition by rigidizing eight of the pendulum shakers. The suspension system frequencies and associated dampings are shown in Table 20.

b. Flight Control Transfer Functions. A set of flight control transfer functions were obtained for the mid boost configuration. The shakers used and the sweep frequency bands are shown in Table 21.

c. Modal Test Results versus Pretest Analysis. All acceptable modes tuned during the mid boost symmetric test are shown in Table 24. The antisymmetric modes are shown in Table 25. The correlating pretest analytical frequencies and the computed damping from the decs, traces are also shown in those tables. This test mode description and the percent frequency difference between test and analysis are also given.

C. End Boost

1. Configuration. The end boost (T + 477 sec) configuration consisted of the OV-101 Orbiter mated to the ET. The Orbiter contained a 32,000 lb simulated payload. The end boost configuration tested was canted 9 degrees and is depicted in Figure 29. The ET LOX tank was filled with 88,140 lb to a liquid level of 59.5 in. (X_T = 903.5 in.) of deionized sodium-chromate-inhibited water. The LH₂ tank was empty.

2. <u>Suspension System</u>. The suspension system for the end boost was the same as that described under start boost except both the y and s lateral airbags were effective. The suspension system is shown in Figure 30.

	SYMMETRIC	
	BOOST	
	MID	
	24.	
•	TABLE	

1

į

ť

	Test		Analytical	Dancant	
Mode No.	Freq. (Hz)	Damp (C/CC)	Freq. Hz	A Frequency	Test Mode Description Dominant Motion (Kinetic Energy)
•	3.70	0.012	3.37	л '	Fuselage 1st Z-Bending
12	6.43	,	6.50		Feedline Axial
11	6.47	0.037	6.56	1	Wing 1st Z-Bending
13	7.59	0.617	7.81	m	V.T. Pitch (0.29), Fuselage Pitch (0.28)
15	8.65	0.006	8.85	63	Feedline 1st Z-Bending (0.73)
16	10.53	0.058	12.30 10.41	16 - 1	Elevon Rotation Outboard/ Inboard Out-of-Phase
	11.62	0.037 -0.055	11.24	ي ا	Body Flep Z (0.24), LH ₂ (0.16), Feedline (0.08), P/L (0.07)
4	12.92	J. 022	12.98	0	FUS Z-Bending (0.13), Upper LH ₂ (0.13)
18	14.80	0.010	12.50	- 16	LH_2 Tank (N = 2) LOX Dome, PL Axial
ŝ	16.01	0.030			SSME Pitch (0.50), Fuselage Z (0.11), PL Axial (0.02)
17	16.44	0.008			Feedline X (0.67), Upper $LH_2 N = 3$ (0.24)
14	17.28	0.028	14.24/17.47	- 18/1	Fuselage 2-Bending (0.40°) , LH ₂ N = 3 (0.25)
	19.67	0.031			Wing 2nd Z-Bending
:	20.20	0.018			Crew Cabin Axial Out-of-Phase with Urbiter
30	20.67	0.005			Tank Dome and Feedline
31	23.43	0.005			Tank Done and Feedline
-	28.02	0.008			1307 Bulkhead Axial

ĥ

ANTISYMMETKIC
BOOST
MID
25.
TABLE

. . .

2

Ĩ.,

٠į

	Test		Analytical		
Mode	Freo.	Cume C	Mode	Percent	
Ķo.	(H2)	(C/CC)	Freq. Hz	Frequency	Test Mode Description Dominant Motion (Kinetic Energy)
-	3.471	0.622	3.78	6	V.T. 1st Lat Bend (0.84), FUS -Y (0.10), ET-Y and Roll (0.04)
8	4.627	0.028	4.689	1	FUS Yaw (3.61), O/P ET Bend and Yaw (0.14),
ñ	5.725	0.0157	5.812	1.5	Wing Roul (0.16)
10	6.392	1	6.358	- 0.5	FWD Payload (C.32) + FWD FUS Y (0.26), Wing and Elev Z (0.02)
9	7.609	0.15/0.016	8.50	11.7	OR3 Roll (0.62), O/P W/ET Roll (0.35)
17	S. P?3	0.02	8.50	9	FUS Torsion (0.19), Y B (0.25), Wing Z (0.15)
18	11.624	0.016	11.67	0.4	IB and OB Elev ROT (0.51), O/P Wing Z (0.11)
20	11.742	0.013	12.17	3.6	LWR SSME Y (0.15), 1/PW Eng I Y (0.02), Susn Svs (11.23)
4	12.681	110.0	13.662	.•	V.T. 2nd Bend (0.62)
ŝ	13.62	0.02/0.026	16.2	18.9	V.T. Torsion (0.81)
13	:4.29	0.014/0.02	12.17	-14.8	FUS Y Bend (0.16), FT Shell (0.48)
15	14.48	0.028	12.38	-14.8	Elev (0.37), O/P W Wing (0.16)
11	18.08	0.022	17.811	-1.5	E'f 1st Bend (0.85)
12	23.84	0.031/0.037	27.387	14.8	Wing Torsion (0.215). Elev (0.426)
60	24.012	0.01	27.85	15.9	Fuse (0.13), ET Torsion (0.22), Feedline (0.21)
3	28.96	0.01/0.02	22.08	- 73.8	ET Bend and Shell (0.90)

77

ĭ -

ŕ

1

;

1

` *

3. Test Results and Analysis.

a. Suspension System Modes. The suspension system modes for end boost were obtained with air bag pressure in the y and z lateral bags. The restraint lateral friction surfaces were coated with teflon and had not been converted to roller bearings for this test condition. The suspension system frequency and associated damping are also shown in Table 20.

b. Flight Control Transfer Functions. A set of flight control transfer functions were obtained for the mid boost configuration. The shakers used and the sweep frequency bands are shown in Table 21.

c. Model Test Results versus Pretest Analysis. All acceptable modes tuned during the end boost symmetric test are shown in Table 26. The symmetric modes were obtained with the y and z air bag restraints effective. The antisymmetric test modes are shown in Table 27. For these modes the 2 air bag restraint was effective; however, the y air bag had zero pressure and the cables were slack. The correlating pretest analytical frequencies and the computed model damping from the decay traces are also shown in those tables. The test mode description and the percent frequency difference between test and analysis ar also given.

D. Contingency Tests

1

1. LOX Tan. Low Level. A LOX tank low level to it we conducted to obtain selected p go oriented modes. The LOX tank contained 27,600 lb of weiter and filled to a level of 25 in. ($X_T = 938.0$ in.) The

y restraint ar bag pressure was set at zero with slack cables. Seven symmetric modes and i.vo antisymmetric modes were obtained. These test frequencies, corresponding analytical frequency and test mode descriptions are shown in Table 22.

2. <u>Fuselage Symmeteric Bending Mode Linearity Check</u>. The results of the horizontal ground vibration test (HGVT) indicated the fuselage first symmeteric bending mode is affected by a non-linearity associated with the Largo bay doors. It was felt that the Largo bay doors take axial locks at low force levels and stiffen the fuselage. To assess this non-linearity, plots of the frequency versus excitation force are shown in Figure 31. The frequency curves do indicate that the frequency decreases with increasing excitation force.

3. SAMSO Sweeps. Four payload bay wide band sweeps were run at the request of The Space and Missile System Office. These sweeps, with the shakers used, are presented in Table 29.

TABLE 26. END ROOST - SYMMETRIC

•

•

2

;

. * * * *

तः ई

	Test		Analytical		
Node No.	řreq. (Hz)	Damp (C/CC)	Freq. Hz	Percent Frequency	Test Mode Description Dominant Motion (Kinetic Energy)
8	4.16	0.016	3.70	12	Fuse 1st Z Bend (0.12), Feedline X (0.12)
17	4.24	0.01	3.70	13	Fuse Z Bend (0.13), Payload FWD Z (0.11)
8	4.31	ŋ. 009	3.70	18	Fuse 1 ZB (0.34), Feedline (0.17), LOX Tank (0.15), SSME Rocking (0.10), Vert Tail Pitch (0.04)
•.?	6.55	0.014.0.022	6.70	9	Ist Wind Hend (0.87)
6	D	0.006.0.011	1.33	-7	Feedline X (0.21), Out P/W LOX Dome 1 (0.16), Vert Tail Pitch 0.14)
92	7.26	0.006	1.33	-7	E.T. Z. Bend (0.35), Feedline X (0.22) and Orb Axial Out P/W ET
- 1 - 1	7.92	0.015 0.009			V.T. Pitch (Mithout Water)
10	8,53	0.007	8.97	,-	l cedline A (0.89)
=	9.32	0.020	9.7.	-+	lst Fuse Z Bend (0.50), ET Z Bend
16	13.19	0.012	11.8	-	fuse 2nd Z 'Jend (0.57)
61	11.41	0.013	14.6	-	Luse Z Bend (0.30), Feedline (0.12), LH₂ (6.11)
13	11.99	0.009			ET Z Bend, LH2 Tank Shell (0.30), ORB ZB (0.27), FWD PL X (0.10) Out P/W AFT PL X (0.06)
- Y-12	15.93	C.044			SSME's Pitching (0.65), OMS POD S X (0.24)
14	17.26	μ.01	17.3	o	LOX Dome Buige
22	18.20	0.025			SSME Pitch (0.23), OMS X (0.15). Feedline (0.22)
15	18.26	0.01			Feedline X (0.44), 1.0X Dome Bend
18.4*	18.85				LWR SSME's X
27	29.35	0.018			OMS POID X and ^X Out P/W SSME X
21	34.83	0.011	32.95	ي. ب	UPH SSME X (0.24), LWR SSME Torsion (0.09), OMS POD X (0.11), Fus. X (0.18), Feedline Y (0.15)

79

	Test		Analytical		
			Mode	Percent	
Mode No.	Freq. (Hz)	Damp (C/CC)	Freq. Hz	ے Frequency	Test Node Description Dumi nant Motion (Kinetic Energy)
-	3.47	0.01%	3.83	10.4	V.T. 1st Lat Bend (0.87)
63	5.06	0.02)	4.83	4 - 5	ORB Yaw (0.35), O/P ET Yaw (0.19), Wing Bc ⁻¹ O/P V.T. Bend (0.32)
4	5.65	0.018/0.025	5.89	4.2	Wing Bend (0.19), O/P ET Roll, LWR SSME Y (0.08) C/P V.
19	6.47	0.016	8.23	27.2	LWR Engine O/P (0.90)
5~	6.98	0.0:18	6.40	- 8.3	TWI) PL Y (0.26), FWD FUS Y (0.26), ET Yaw (0.26)
13	7.73	0.018	6.40	-17.2	FUS Roll (0.29), O/P ET Roll (0.29), J.B 1.lev ROT (0.29)
eî)	8.04	0.011	8.02	- 0.2	FWD PL Y (0.24), ET Roll (0.20), FUS Tersion (0.15)
0	9.27	0.¢18	8.02	- 13.4	AFT PL Y (0.32), Elev ROT (0.10)
90	10.80	0.1132	10.88	0.7	ET Y Bend (0.21), V.T. Y Bend (0.04)
10	11.62	0. 321	12.39	6.6	Elev ROT (0.20) I/P Wing Bend (0.05)
~	12.72	0.018/0.037	13.64	7.2	V.T. 2nd Y Bend (0.64)
14	13.62	0.028	14.63	7.4	V.T. Torsion (0.16)
16	14.48	1	1	ł	Wing Bend O/P Elev ROT
11	20.67	0.025	1	ı	ET Y Bending, LH ₂ (0.42) - Ogive (0.3 ¹)
15	21.31	0.037	19.47	- 8.6	Wing Torsion
20	22.13	0.044/0.027	22.31	8. 0.	LWR Engs. Z O/P (0.43), FUS Roll (0.47)
12	24.19	0.007	•		Feedline X and Bend (0.47), LWR SSMF Z and Y (0.15)

. .

ż

:

÷,

Ľ

TABLE 27. END BOOST ANTISYMMETRIC

à

90

۰,

BOOST
LEVEL
LOW
TANK
LOX
28.
ABLE

; ; ;

۳.) :

.....

. `,

	Test		Analytical		
Vinde	Emaci	C mo C	Node*	Percent	
No.	(Hz)	(C)CC)	Freq. Hz	Frequency	Lest Mode Description Dominant Motion (Kinetic Energy)
				S YMMET RIC	MODES
8	4 · 50	u.013	3.66	- 12.8	FUS lst Z Bend (0.45), ET Pitch (0.37), V.T. Pitch (0.05)
1	4.55	0.018	3.66	- 19.8	FUS 1st Z Hend (0.46), LOX Tank ZB (0.15)
e	15.85	0.018	15.03	-5.2	Feedline X (0.32), Susp. System (0.28)
1	17.26	0.01	19.57	13.4	LOX Tank Bulge (Possible)
9	18.26	0.055			LWP SSME X and Z (0.26), Feedline X (0.19), OMS (0.19)
4	20.25	0.01	13.30	-1.7	Feedlire X and Z (0.68), LOX Bulge (Possible)
47)	34.64	0 01	32.75	- 5.4	Eng. 1 X (0.23) O/P LWR SSNE
				ANTIS YMMETRI	C MODES
23	5.10	0.018	4.88	-4.3	Wing Z B (0.33), FUS (0.13) and ET (0.21) Yaw
24	15.19	•	,		Wing Z B (0.39) O/P FUS Roll (0.14), FL (0.13)

§1

:

.

1. 4mil

يلكن والمكال

5

;

2

ž

÷

/ Shaker	Phase (deg)	Frequency Range (Hz)
FL10Y-FL11Y	0	2.5-50
	180	2.5-50
FB10Z-FB11Z	0	2.5-50
	180	2.5-50

. **1**

ŝ

Tree and

ちちょうであた

٠.,

TABLE 29. SAMSO SWEEPS

XI. CONCLUSION

The following is a summary of the most significant results derived from the MVGVT Shuttle Test Program:

1) The left and right SRB forward mounted rate gyros exhibited abnormally high transfer functions which required a structural redesign.

2) The effect on the frequencies and mode shapes with the SRB stiffening ring on and off was neglible. This lack of difference may have been due to the additional flexibility of the ET at the aft ET/SRB interface.

3) The SSME axial modes did not correlate well with pre-test analysis. The pre-test math model used was a symmetric halfshell. A three-dimensional antisymmetric math model of the SSME engine and thrust structure was determined to be required.

4) The forward ET/SRB interface, which is a ball and socket design, was found to be fixed in the liftoff test. This interface is intended to transmit only shear forces between the ET and SRB. The ET/SRB interface was fixed due to the frictional forces created by the weight of the loaded ET and Orbiter.

5) Pre-test SRB Y bending modes for SRB end burn did not correlate well with test. This required additional shell modeling of the aft SRB/ET interface.

6) Unexpected large rate gyro yaw rates were observed on the Orbiter 1307 Orbiter bulkhead during symmetric (pitch) flight control sweeps. This was found to be due to local deformation which the flight controls group assessed as acceptable. The math model of the 1307 bulkhead was remodeled, however.

7) Test rate gyro values showed greater response variations than those used in the analytical studies in determining the Redundancy Management (RM) Trip Levels. For STS-1 flight, RM software trip levels and cycle counter levels were increased. The Fault Isolation Routine was modified to inhibit kicking out RGA's and accelerometers after first sensor failure. Changes to the control system for the other flights will be evaluated after STS-1 flight.

With the advent of structural complexity of space vehicles with increasing unsymmeterical jointed structures, the difficulty of dynamist modeling is becoming increasingly greater; therefore, modal survey testing will always be a necessary tool to aid the dynamist in the area of math modeling, and loads, controls, pogo and flutter design. Table 30 lists the various past full scale test programs with the major problems uncovered in each.

84

. .

Consequences if	Not Discovered	Flight control instability and possible loss of vehicle.	Pogo stability analyses would have been suspect.	Flight control instability and possible loss of vehicle.
	Hardware Impacted	Structural redesign was required to stiffen SRB ring frame which raised the local resonant frequencies and reduced the gain.	A new three dimensional asymmetric math model of the SSME engines and thrust structure was required. No hardware changes were necessary.	*RM software trip levels and cycle counter levels were increased. The fault isola- tion routine was modified to inhibit kicking out RGA's and ACC's after first sensor failure.
	Problems Discovered	SRB mounted rate gyros exhibited abnormally high transfer functions. The rate gyros mounted on the forward SRB ring frames resonated at local fre- quencies and high gains, which were critical to flight controls.	Axiai SSME frequencies and mode shapes did not correlate with pretest analysis. A half shell dynamic math model using symmetry was used in the pretest analysis.	Test rate gyro values showed greater response variations than anglysis. Response variations between RGA's were much larger than those used in the analytical studies in determining the Redundancy Management (RM) trip levels.
Test	Program	MVGVT	MVGVT	MVGVT

TABLE 30. FULL SCALE DYNAMIC TESTING EXPERIENCE IN PAST PROGRAMS

:

.

÷.

· · ·

. {

۴.

.

1.11 + 114

ź

*Above for STS-1 flight only, other flights will be evaluated.

. . . .

. 2

计分子分析 化合金

.

こうしょう ちょうちょう ちょうない

(Continued)
30.
TABLE

Test Progren	Problems Discovered	Hardware Impacted	Consequences if Not Discovered
DTV	Design deficiency in the SPS tank supports. Unexpectedly high local resonant coupling was detected between SPS tank and bulkhead support.	The upper support bracket for the SPS tanks was redesigned to eliminate a strong tank cantilever mode.	Hardware tailure resulting in loss of mission and possible crew loss.
DTU	High LOX and fuel dynamic tank bottom pressures. These pressures were under predicted by a factor of 2. The significance of these pressures was not under- stood until after Pogo occurred on AS-502.	The higher tank pressures contributed to the S-IC Pogo accumulator hardware design.	Potential loss of vehicle and crew due to Pogo.
DTV	High 18 Hz S-IC Crossbeam mode gains. DTV data showed that an accumulator should not be used on the inboard engine.	Elimination of a planned inboard engine accumulator.	Potential loss of vehicle and crew due to Pogo between an 18 Hz accumu- lator mode and the 18 Hz crossbeam mode.
DTV	Local rotation of the flight gyro support plate. Vehicle dynamic shears and moments deformed support plate. The math model under predicted this deformation by 135%.	The gyros were relocated to the bottom of the support ple e where the local rotation was much less. This required wire harnesses of new length. The flight control filter network was redesigned.	Flight control instability resulting in loss of vehicle.

. 86.)

÷

·, · ·

Test Program MARL	Problems Discovered Design deficiency in the IU	Hardware Impacted Short channel stiffeners were	Consequences if Not Discovered Large guidance errors that
	between the stable platform and the ring modes of the IU provided a mechanism for acoustically driving the platform accelerometer against the stops.	Damping material and a soft- Damping material and a soft- ware "reasonableness" test were added later in the program.	could cause loss of lunar mission.
DTU T	Design deficiency in the CSM interface. The single tor- sional sway brace produced unpredicted high coupling between command module torsional motion and S-IC engine deflection.	Additional torsional sway braces were installed on AS-501 on the pad. Sub- sequently, the F-1 engines were reorificed to reduce loads at engine cutoff. An engine precant program was implemented to maintain structural integrity in case of engine out.	structural failure of the CSM interface with loss of vehicie and possible crew loss.
Skylab ATM Test	Strong cross coupling between longitudinal and lateral motions indicated a possible structural failure at S-IC cutoff.	A 1-2-2 engine cutoff hard- ware and software mod was developed to reduce the longitudinal input to the ATM. Hardware redecigns were laid out in case they were proven necessary by further study.	Hardware failure with potential loss of mission.

TABLE 30. (Continued)

, .

•

ł

·** · · ·

.

?

: :

đ

- ころ そうめ していたいないたいないない

.

والمتعلقان والمتعارين ومعالف والمتالي فالمعالي والمعالي والمعالي والمعالي والمعالي والمعالي والمعالي والمعالي

:

.

•

China and and a c

Consequences if Not Discovered	Algo This test saved a possible proved redesign of the ATM by equate verifying structural integrity under the 1-2-2 ed. cutoff.	tallation Pogo instability with potential loss (vehicle and crew.	enter cutoff cutoff eloped. nodel is test thrust ds on i without
Hardware Impact	Test of the total Sky launch configuration the 1-2-2 fix was ad and that no hardwar changes were requir	Developmentd ins of the outboard LOX accumulators.	An accumulator was developed for the ce engine. A backup system was also dev The accurate math r developed during th supported extensive structure design mo subsequenc vehicles further te' ting.
Problems Discovered	The strong cross coupling in the ATM proved to be atten- uated rather than amplified by the way ATM cross coupling reacted through vehicle interface.	Strong pitch/longitudinal coupling caused by the lunar module increased the S-IC Pogo gain factor by 30%. This effect coupled with the tank pressure underprediction was the reason AS-502 Pogo was not predicted.	The mechanism triggering S-II Pogo was defined. Coupling between the first four LOX tank hydroelastic modes when they coalesced with the 16 Hz center engine crossbeam mode produced the Pogo instabilities.
Test Program	čkylab Mođal Survey Test	Short- stack	Mini A/C

ъ

•

.

and a set search and a set

•

TABLE 30. (Concluded)

1. 1. 1.

;;;

. . . .

1

. 88

BIBLIOGRAPHY

STS 79-0006, Mated Vertical Ground Vibration Test Liftoff Configuration on-site Data Evaluation Report, Space Division, Rockwell International, January 1979.

STS 79-0032, Mated Vertical Ground Vibration Test Pre-SRB Separation Configuration on-site Data Evaluation Report, Space Division, Rockwell International, March 1979.

SD-78-SH-0170, Mated Vertical Ground Vibration Test Boost Configuration on-site Data Evaluation Report, Space Division, Rockwell International, July 28, 1978.

ED23-77-205, Finite Element Model of the MVGVT Overhead Suspension System for Boost, MSFC, October 7, 1977.

ED23-78-30, MVGVT Suspension System Figid Body Modes, MSFC, March 8, 1978.

Technical Letter ASD-ED23-21632, Vibration Analysis of the Coupled Building-Vehicle System for the Mated Vertical Ground Vibration Test, Teledyne Brown Engineering, May 21, 1975.

JSC 08201, Mated Vertical Ground Vibration Test, Test Requirements and Specifications Document, JSC, February 6, 1978.

MVGVT-FTOR-002 Volume 1, Mated Vertical Ground Vibration Test Liftoff Configuration Test Operations Report, MSFC, February 1979.

MVGVT-FTOR-001 Volume 1, Mated Vertical Ground Vibration 4 300st Configuration Test Operations Report, MSFC, October 1978

89

APPROVAL

MATED VERTICAL GROUND VIBRATION TEST

By W. Ivey

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or nuclear energy activities or program has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

ROBERT S. RYAN Chief, Structural Dynamics Division

GEORGE D, HOPSON

Director, Systems Dynamics Division

& U.S. GOVERNMENT PRINTING OFFICE: 1980-640-247/114 REGION NO.4

19-