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Stability Optimization of Laminated Composite Plates

By

Yoichi HIRANO

Summary: This paper is concerned with the optimum design of plates with orthotropic
layers under axial compression and shear. The plates considered are the laminates of N
orthotropic layers whose principal material axes coincide with the plate axes, Each layer is
assumed to have the same thickness and an equal number of fibers in the direction of +a,
and —at with respect to the plate axis. The fiber directions which give the highest axial
buckling stress and the highest shear buckling stress are found by utilizing a mathematical
optimization technique I'or various aspect ratios of the plates. Inhomogencity in the direction
of the plate thickness (stacking sequence) is taken into account in this analysis.

NOMENCLATURE

a = plate length in the x-direction (Fig. 1)
A U = extensional stiffness of a laminated plate
b = plate length in the y-direction (Fig. 1)
Bid = coupling stiffness of a laminated plate
Di; = bending stiffness of a laminated plate
E t , E, = Young's moduli 	 of a	 unidirectional composite	 parallel	 and

transverse to the directions of the fibers, respectively
G 12 = shear modulus of a unidirectional composite
h = thickness of each layer
1111,,, = Eqs. (17)
k = the ratio of N, to Nr
rn, n = number of half waves in the x- and y-directions, respectively
N = number of layers
N^, Nx = applied force per unit length iu the x- and y-directions, respectively
AV,y = applied shear force per unit length

Ql, = reduced stiffness
Q ij = transformed reduced stiffness

S„1111 TMW UM„ = Eqs. (14)
T;a = Eqs. (8)
u, r, iv = displacements in the x-, y- and z-directions, respectively
u,,,,,,	 G,,,,	 w,n,,, = displacement amplitud s defined by Eqs. (10)

Vr,N = Eq. (18)
a i = absolute value of fiber d,":- .:;tions with respect to x in the i-th layer
a, j == Eqs. (12)
vl2 = Poisson's ratio of a unidirectional composite

nondimensional critical buckling stress defira,-d by Eq. (9)
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inverse of nondiinensional critical buckling stress', defined by E?q,
(lG)

1, INTRODUCTION

Itecently, filamentary composite materials have been suggested for primary
structures of aircrafts and spacecrafts. The reason is mainly due to the weight savings
which can be attained. There are many design criteria in applying the composite
Materials to structures. One of them is the buckling criterion. Several theoretical and
experimental papers' have been published oil the buckling of laminated composite
plates under axial coarpression and shear, Most of them give their results only for such
special cases as angle-ply or cross-ply plates. Thercrore, we do not have enough
information to design the laminated composite plates.

This paper will present a method to design !Ile laminated plates (Fig. 1) with
orthotrotlic layers under uniaxial or biaxial compression and shear, The design
criterion is the buckling stress, Each layer of the plate is assumed to have the same
thickness and an equal number of the same kind of fibers in the -F a; and -ac directions
with respect. to the .x coordinate in the same type of matrix. Therefore, each layer can be
considered to be orthotropic, Inhonlogeneity ill the direction of the thickness of the
plate (stacking sequence) is taken into account in the calculation.

The present problem is to find the fiber directions of all the layers that give the
highest buckling stress and, therefore, is ail unconstra'inc. i maximization problem. The
objective function and the design variables arc the critical buckling stress and the fiber
directions respectively. preassigned parameters are the material properties, the
thickness of each layer, the number of layers, and the aspect ratio of the plates. The
optimization technique used is Powell's method (conjugate direction technique). This
method is One Of the befit ones to hnd the optimal without Using the derivatives or the

objective function.

3, DumVA `CION oi . BUCKLING DIFFERUNTIAL EQUATIONS

Extensional, coupling and bending stiffness, which are expressed as A U, Bit , and /)il
respectively, are first Introduced, They are defined in terns of t ransformed reduced
stiffness as follows,

(. l ij , 13 i1, Djj)r	 ^)rj(l ,	 2) d^	 (1)
1. 2

The transformed reduced stiffnesses of each layer are calculated by the following
equatietis,

Y1t	 Q!t	 !	 2(Q13	 2Q )	 2	 4cos a +	 -f-	 c,c, sin^a; cos a i + Q22  Sin x;	 (2a)

Q ► . °= (Qj I + Q2:r — 4QO6) sin=0t; cos -a i + Q 12 (sin 4a; + cos-ta i )	 (?b)

Qc l siii4 oc i + 2(1;12 +'Qc,c.) sin 2ac cos 2oc, 4 Q 22 cos'►a; 	(?4)

SS i b	 0	 (2d)
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a,	 0	
(2e)

(QIt '+' ^) 	 -'Q ► z .., ?Q t, (,) sin ix;cos`x; + Qw '(siI ► 'tx j + COS `► x;)	 (20

where Q ;j 's are reduced sti p'nesses and are defined ,1s

Q11=1`141	 (3a)

Q22 —	 (3c)

Q e
	

(3ci)
Yt, == ^^i i 2

In E cis, (3) Q It, and C)2t, are equal to zero, because the number of fibers in the •1 'X j and

--hx, direction are the same, t, tensional, coupling and bending stift'nessee arc

calculated 1'61. the present case as

N,

r

N N	 'I

Iu, I,	 + atniu:uad hl;ttes \%i(11 otthutruhic 1Mers.

1.. - lt {(^;.i ) t ► (0O2 
I° ... .+. (U^ r),• - , _{< ((0)„	 (a)

2B;,	 N `+• 11, {_ t4) tf)_L - N ..1. 31,
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1	 N IMO	 Il' it^r1)lI l
	

2

{s (^^)°^^ 2	 ` 1	
a

{- (0 I,)N 11_I ^_ N 
I  

..L IN w. ^)	 .^	 N + (N ..v ')l'

MOS f	 N .{.. ^t 1 `	 I .^ t	 (N	 , )1' ^;	 (ac)

where h is the thickness of mwh hVer, N is the total number of the layers, and the

subscript of (00 is the number of each Myer.

Whitney and Leissa UI 
derived equilibrium equations for the actleral laminated

plates. `1'hcse equations are nory simplified for the present ploblcm as follo"s• 	 Sa)

I3	 ► 1',	 (131: w{= 3t3c,t,)u=..x., 	 (
a 1 1 it+a.^ ..{:. .4  at, ll vc °l ( .4 1-,

13	 q	 (9b)
:I,wC	 .^. (l31d -1° ?33t,n)11's,v ,r

	 ^211^,•1,^, _,

	

i	 •{a fl c,o)tr, ^t -{° ^'Ic,Ut^^x^ `{"	 a	 ,,.,.

1) 11 11 ,.* .<.^.. '{"'-( 3^t= "{° ' ^^AO)IP, ,earr t' 1) : :11 ' c^^^ ._.. f3 1 Il+,,.,.,

,.T (I;t^ ..{.. ?Boc,)N^.^ss 
.^, (13 t ^ .{. . .^,13t,t,)t',.^,,•

00()

3. C'At.0 ULA"11ON (N' ANAL IRWKt.1NC, 5'1 RITS

or the present case 1\` ,,,, iu ,,, (rte) is equal to zero, and the buckhn^; deformations

are assumed	

11u'= rr cos (rrrrrv,'(1) sin (,rrGr;'h)
((,a)

r -w. c sin (►nmv a) cos (my h)
(Gb)

	n w li sin (mnx!a) sin (► tr	 )

These deformations satisfy the simply supported boundary eol"iitiolls at "(1, tr and

1 , ...q, 1) (S2 of ltef. 9). Substitutin g, lags. (G) into Eqs. (5) iQj Ietting Q011, hive the

following buckling formula.

	

tl	 tt

	

''^ '1	
^s ,t .,1 } _ .1 .,_ , 1'taa	 L.I1 `I"2.1	(7)

g	 3 
'I 11	 »^	 t:.

Nvllcre

	

.1''`11 = -I t t rn= 7r= .,I_ ,400=002
	 (Sa)

r
R
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7"1 ; _ (A 12 + A (, (jmn7r 2(a/b)	 (8b)

Tr13 = B11?n37T3 
+ (B 12' 2B (,a)nm=7r3(a/b)

2
	 (80

T2 2 = A (, (,►n 2rr 2 + A Z ,It`n 2(a/b) 2 	 (8d)

	

7i3 = (B12 + 213(, 6 )1n 2 117T 3 ((►/1)) +BZ Zn 9r3((1/b)3	 (8c)

T '33 = D 1l m 47r'► + 2(D 12 +2D (, (,)m 2 11 2 7r'(a/1))2 + D 22 11'1C4((t/1
)
)a	

(81)

To get the critical Buckling stress the smallest value of Eq. (7) trust be found by a
searching procedure involving integer values of m and n. The critical buckling st ress is
denoted by (N,)/! and a new notation (/) is introduced,

	

Y ► = 12( jV,)"jj2j(R2t 3 Q22)	 (9)

For isotropic plates O is equal to 4, when alb= I and k=0,

4. CALCULATION OF SIiEAR BUCKLING STRI.SS

For the present case N,,. and 1V 1- are equal to zero, and the plates are assumed to be
simply supported (S2 of Alnu •oth) at four edges. The following deflection function
satisfy the boundary conditions.

x

It =	 E Ilnm cos --sin (l0a)
rn =- 1 n = 1	 a	

b..

1 ► 17rx	 117ra'
('nrrr sin	 cos	 (1Ob)

rn^ 1 rr= 1	 a	 b

► n7rx	 nyrt'
►►' _	 11'nrn sin — - sin T __	 (I 0c)

rrr-- 1 n =1	 n	 b

Substitution of Eqs. (10) into Eqs. (5a) and (5b) yields:

	

110X 1 1 1(nur + Qa 1 21'nrn _ ^^ 13 11 nm = 0	 (11 a)

	

IM 12 1 mr, + 41x22 ( rnn — 7M23 11'rnn = 0	 (11 b)

Where

x11 ° A ll ►n2 
+ fl a(,112R2	 (1'a)

1X 12 = (A, 2 + A (, ())mnR	 (12b)

x 13 = B I1 ►n3 + ( B 12 + 2B(,(, )111112 	 (12c)

x22 = A (, (,In 2 + A ZZ 1f2R2	 (1–'d)

«23 = (B12 + 2B66)1?12nR + BZZ n3R3	 (12c)

In the above expressions R is the aspect ratio afb of the plate,. From Eqs. (I la) and

K

k`
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(I l b) 1(nu, and P 	 be expressed in terms of 11'nu,,

7r Som ,
 (	 )

	

rlrrrn - 
ZZ ^rmn H rnn
	 13a

( 1) )I^rnn -"	 ^	 t1 urn 
[! ^ rnn

where

	

Sato ° « I3«22 — « 12 0C -1 3 	 (14a)

	

7nrrr ^ « 11 x23 — 0 12 0t 13	 (14b)
2

Now Fqs, (13) are substituted into Eq, (5c) and Galerkin's method is applied, Then we
get the following expression.

pq

Y—	 Hill	 0
lPgrn==ln-l.

where p and q are the number of half waves in the x- and y-directions respectively; 'P,
Hill,, and ['r„r are defined as:

r
(16)

1\ 32a32a2R

nr	 ► t

	

fl,,,,, = r1,	
rn' q~ — n= 

when it + m: odd and q + n: odd	 (1.7a)

	

= 0	 when fa + in: even or q + n even	 (.17b)

[ia = { D 11[ r' + 2(D 12 + 2Dea)1) 2g2R2 + D22q4R4

i B , I, ” + (B 12 + 2Br,(,)11g2R2 }Spey Lil,,,,

	J( B 12 + 2B(,(,)1)2gR + B22g3R3 }( 7r,g/ ti,nl)	 (18)

Eq. (15) is a system of homogeneous linear equations in Ic. This system call divided
into two groups, one containing lP for which in +n are odd and the other for which
rn+n are even. Two buckling forces are obtained from these two groups and the lower
one corresponds to the critical buckling force of the laminated plates.

A computer program to solve Eq. (15) was written, and was checked for the case of
isotropic plates by comparing with the results obtained by Stein and Nef' [10],

5. MU110D O OPTIMIZATION

The problem is to find the fiber directions which give the maximum critical buckling
stress without any constraints, Therefore we call one of the unconstrained
optimization techniques. Since the objective function for the case of axial compression
is the rather complicated function of the design variables and the objective function for
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TABLE' I, Material properties

Property
	 Boron/epoxy

(:,
	 2,11 x 10° kg; mm 2 (30 x 10' psi)

/i2
	 2.11 x 103 kg imu 2 (3 x 106 psi)

i't 2
	 0,3

G12
	 7,03 x 10 2 kgimm 2 (I x 106 psi)

TAilt t? 2. Optimum filer directions for 3-layered pk%tes
(aib= I, k= 0) under axial compression

Fiber directions Critical	 Number of
(in degree) stress	 half Wtnms

Case

a l 0(2 x, ^h	 m	 n

S 0.0 0.0 010 12,921	 1	 1
1 I. 45,0 45,0 45,0 22,000	 1	 1

S 0.0 90.0 0.0 12,921	 1	 1
` 1- 45,0 135,0 45,0 22,000	 l	 1

S 45,0 OA 45,0 21.664	 1	 1
1 1, 45.0 0.0 45,0 21.664	 1	 1

S 0.0 45,0 0,0 13,258	 1	 1
4

F 45.0 44,9 45,0 22,100	 1	 1

S 30.0 30,0 30,0 19.730	 1	 1S
1. 45,0 45.2 45,0 22.000	 1	 1

S 90.0 0.0 90.0 9,671	 2	 1
G F 135.0 45,0 135,0 22,000	 1	 1

S 45.0 4S,0 45.0 22.000	 l	 1 7
F 45,0 45,0 45,0 22,000	 1	 1

S; Starting values, F; Final optimum Values.

the case of shear is not obtained explicitly, optimization methods without using the
derivatives are suitable for solving the problem, Powell's method [11] (conjugate
direction technique) is selected for use, since it is one of the best methods to find the
Optill1Ut11 withOUt Using the derivatives [12]. This method is intuitively explained by
Fox [131 as follows, "Given that the function has been minimized once in each of the
coordinate directions and then in the associated pattern direction, discard one of the
coordinate directions in favor of the pattern direction for inclusion in the next
minimizations, since this is Likely to be a better direction than the discarded coordinate
direction, After the next cycle of mininlizations, generate a new pattern direction and
again replace one of the coordinate directions."

Powell's method is now applied to find the maximum Value of 0 and the nlininlunl
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TABU. 3,	 Optimum fiber directions for 4-layered plates
(alb= 1, k-0) under axial compression

Fiber directions	 Critical Number of
(he degree)	 stress half %N.1vesCase

a l 22	 a3	 as	 Y^ tat	 it

S 0,0 0.0	 0.0	 0,0	 12,921 1	 1I
F 45.0 45.1	 45.0	 45.0	 ?2,000 1	 1

S 30.0 30.0	 30,0	 30,0	 19,730 1	 l
F 45,0 45,1	 45,1	 45,0	 22,000 1	 1

S 45.0 45.0	 45.0	 45.0	 22,000 1	 13
F 45.0 45,0	 45.0	 45.0	 22,000 1	 1

S 90.0 90.0	 90,0	 90.0	 8.421 2	 14
F 135.0 135.0	 135.0	 135.0	 22.000 1	 1

S 90,0 010	 0.0	 90.0	 12.640 2	 15
F 135.0 45,0	 45,0	 135,0	 22,000 1	 1

S 45,0 0,0	 0,0	 45.0	 20,865 !	 16
F 45.0 45.1	 45.0	 45.0	 22,000 1	 1

S 0.0 45,0	 45.0	 0.0	 14.056 1	 17
F 45.0 45.0	 44.9	 45,0	 22.000 1	 I

S 1010 2010	 30,0	 40,0	 14,431 1	 18
F 45.0 45,0	 44,9	 45,0	 22,000 1	 I

S: Starting values, F: Final optimum values

value of iii. Starting values of fiber directions (a t , a, • , a„) are necessary to begin the
calculation, and the new fiber directions which give the higher buckling stress are
obtained after each iteration. Powell's method requires that the objective function be
unimodal. But we do not know if the function is unimodal or not. Therefore, trials with
several starting points are desirable,

6. NUMERICAL RESULTS FOR THE CASE OF AXIAL BUCKLING

Numerical calculations were made for the laminated plates with three, four and six
layers. The plates considered have the various aspect ratios and are under uniaxial or
biaxial compression. Seven or eight ditlerent combinations of fiber directions are used
to start the calculation. Computer code developed by Powell was combined to the code
written for the present problem.

Convergence limits for all the design variables were set to be equal to 0.1" and
maximum step size multiplier [14] in single variable search was set to be equal to 10,0.
The materials considered are Boron/Epoxy and the properties [8] sire shown in Table 1,
The thickness of each layer is assumed to be 0,254 mm (0.01 in.), The buckling formula
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Tnat1, 4.	 Optimum fiber directions for 6-layered plates
(alh=1, k=0) under axial contpres,.,ion

Fiber directions Critical Number of
'  (in degree) stress 11.111' waves

Case

a, aZ	 a,	 as a5 y 0 a	 a

S 0,0 0,0	 0,0	 0.0 0,0 0,0 11921 1	 11
F 45.0 45.1	 45.1	 44.9 45,1 45.0 22,000 1

S 30.0 30,0	 30,0	 30.0 30,0 30,0 19.730 1	 1
F 45,0 45,0	 45,0	 44,9 45,0 45.0 22.000 1	 1

G S 45,0 45.0	 45.0	 45,0 45.0 45.0 22,000 1	 13
F 45.0 45.0	 45.0	 45,0 45.0 45.0 22,000 1	 1

S 90,0 90,0	 90,0	 90.0 90,0 90,0 8.421 2	 14
F 135,0 135.0	 135,0	 135.1 134,9 135.0 22,000 1	 1

S 90.0 O.n	 90 ii	 0,0 90,0 0,0 12.272 1	 1
C	 5
i F 135.0 4' as	 135,4	 44,8 135.0 45,0 22,000 1	 1

S 45.0 0.0	 0.0	 0,0 45.0 45.0 21,664 1
6 F 45.0 45.0	 45,0	 45.1 44,9 45.0 22.000 1	 1

S 0,0 0.0	 45,0	 45,0 OA 0,0 13.258 1	 17
F 40 44.9	 47.4	 45,4 45,1 45,1 21.999 1	 1

S 10.0 20.0	 30.0	 40,0 50.0 60.0 11,711 1	 18
F 45.0 45,0	 44.8	 45,3 44,6 44.9 22,000 1	 1

S: Starting values, F: Final optimum values,

is a function of half waves in the x- and )-directions. Therefore, the numbers of half
waves in the x- and >>-directions were varied from t to 10 and from l to 5, respectively,
to get the buckling stress for the assigned fiber directions,

The results for three- and four-layered plates with alb= i and k=0 are presented in
Table 2 and Table 3, respectively. These two tables show that the results obtained do
not depend on the starting values of fiber directions except in Case 4 of Table 2. This
case shows that the calculation converged to local maximum, To show the numerical
convergence two examples are shown in Figs. 2 and 3 for Case 4 of three-layered plates
and for Case 8 of four-layered plates, respectively. In these figures the abscissa is the
number of iteration, Each iteration includes many function evaluations. From these
figures and tables it can be concluded that this method of finding the best fiber
directions woe ks well. Then, the method was applied to six-layered plates and some of
the obtained results are shown in Tables 4, 5 and 6. Table 4 is for the case of alb= 1 and
k=0. This table shows that the present method also works well for six-layered plates.
Almost all the fiber directions obtained are close to 45°, but some of the directions are
not close to 45 because of the slow convergence of the numerical calculations. Table 5
is for the case of alb =0.5 and k=0.5. The table shows that the final critical buckling
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TAIU e 5. Optimum fiber directions for 6-Layered plates
(olb- 0,5, k=0,5) under axial compression

Fiber directions Critical	 Number of

Case
(in degree) stress	 half waves

xl IX2 xa	 24 xs 26 Ql	 nl	 fl

S 0.0 0.0 0.0	 0.0 0.0 0,0 34.457	 1	 2 1
F 13.2 0.0 0.0	 0.2 15,9 QO 37,011	 1	 1

S 30.0 30.0 30..1	 30.0 30.0 30.0 32,633	 1	 1
` F 3.0 11.7 35.7	 -21,9 0.1 11.6 36.966	 1	 1

S 45.0 45.0 45,0	 45.0 45,0 45.0 26.016	 1	 1t
F 4.0 10,0 36,1	 -2.0 -21.8 2.1 36.934	 1	 1

S 90.0 90.0 90.0	 90,0 90.0 90.0 7,486	 1	 14
F 186,3 179.3 90.5	 180.0 189,3 167.9 36.492	 1	 1

S 90.0 0.0 90.0	 0,0 90,0 0.0 21.294	 1	 1S
1^ 173.2 0.2 146.6	 0.1 157.2 1.8 36.919	 1	 1

S 45.0 45.0 0.0	 0.0 45,0 45.6 26.441	 1	 1
6 1-1 0.0 2.4 138.7	 0,4 -25.3 2.4 36.796	 1	 1

S 0.0 0.0 45,0	 45.0 0.0 0.0 35,353	 1	 17 F 10,7 -0.9 36.4	 39.1 76,9 4.9 36,909	 1	 1

S 10,0 20.0 30.0	 40.0 50.0 60,0 18,566	 1	 18
F -7.9 -3.8 22,1	 -0.5 --7.4 12.3 37.024	 1	 1

S: Starting values, F: Final optimum values,

stresses obtained for the different starting values are almost the same but the
corresponding fiber directions are not the same, This may be due to the fact that the
objective function is not unimodal for this case. Table 6 is for the case of alb=1.0 and
k=0.5. Sununaryof the numerical results is given in Table 7. In this table the rows with
an asterisk show that the final resuits obtained depend on the starting values and the
values shown correspond to the highest critical buckling stress obtained among 8 cases.
In these cases the critical buckling stresses obtained are not much different from each
other, but the fiber directions highly depnd on the starting values. The fiber directions
in the rows without an asterisk have no decimal, because almost all the directions
obtained for seven or eight cases are close to the values shown.

The computer used was IBM 360/67 and average cpu time to calculate eight cases for
a six-layered plate under k=0 was 158 seconds,
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TAum 6. Optimum fiber directions for 6- layered plates

^.r
(alb= 1 , k=0,5) under axial compression

Fiber directions Critical Number of

Case (In degree) stress half' waves

a t a2 OCT	 0(4 ay 0!6 0 eft	 n

i S 010 0.0 00	 0.0 0.0 OA 8,614 1	 1
F 45,0 45.0 .45,0	 48 45.0 45.0 1067 1	 l

S 30,0 30.0 30,0	 30.0 30,0 30.0 13,154 1	 l
` F 45.0 45.0 45,3	 45,1 44.9 45,0 14.667 1	 1

3 S 45.0 45.0 45,0	 45.0 45.0 45,0 14,667 1	 1
F 45.0 45.0 45.0	 45.0 45.0 45.0 14.667 1	 1

4 S 90,0 9010 90.0	 9010 9010 90,0 7,486 2	 1
F 135.1 134,1 134.9	 135.0 135.0 135.0 14.667 1	 1

5 S 9010 0.0 00,0	 0.0 90.0 0.0 8.182 1	 1
F 134.9 44.8 134,9	 44.9 134.9 45.0 14,667 1	 1

6 S 45.0 45.0 0.0	 0.0 45.0 45.0 14.442 1	 1
F 45.0 45.1 44.7	 44,9 45.1 45.0 14.667 1	 1

7 S 0,0 0,0 45,0	 45,0 010 0.0 8.838 1	 1
F 45.0 15.0 45.1	 45,1 45.1 45.0 14.667 1	 1

8 S 10.0 20,0 30.0	 40.0 50.0 60,0 7.807 1	 1
F 45,0 45.1 44.7	 45.3 45.0 45.0 14.667 1	 I

S; Startigg values, F, Final opthilu n values.

7. NUMERICAL RESULTS FOR THE CASE OF SHEAR BUCKLING

Powell's computer code was rearranged into a code for the calculation of the shear
buckling stress, The material considered is Boron/Epoxy (Table 1). The thickness of
each layer is assumed to be 0,254 nun (0.01 in), The buckling stresses were calculated by
taking n:=1-3, n=1-3 for R=1; and n:=1  5, n= 1-5 for R= 1,5 and 3. The
numerica ,°_rrors of calculated buckling stresses for R=1 and 1.5 are less than 3% and
the error for R= 3  is 11°';, when all fibers are in the direction of 90" with respect to the
,r-axis. Therefore, the obtained results for R= l and 1.5 are accurate enough, but the
results for R=3 may not be accurate enough.

Numerical calculations were first made for the case of three-layered plates with R=1
and an example of the numerical convergence is shown in Figure 4. In this figure the
abscissa is the number of iterations, and each iteration includes many function
evaluations. Then calculations were made for the case of six-layered plates with R= 1,
1.5 and 3. The results for these cases are presented in Tables 8, 9 and 10. Asterisks in
these tables indicate that the numerical calculation was stopped because of the fact that
a maximum change in a single variable search did not alter the objective function value.
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TABLE 7.	 Summary of optimum fiber directions for the case of axial compression

No, of
layers

k alb ai a2 as aq as 0% rp

3 0 1.0 45" 45 45" 22,000

4 0 1.0 45° 45 45' 45' 22.000

6 0 0.5 0" 0' 0' 0' 01 0' 42.171
6 0 0.8 38' 38° 38" 38' 38' 38' 23.154
6 0 1.0 45° 45' 45' 45' 45" 45' 22.000

*6 0 1.25 49.9` 51.0' 484 48.6 51.0° 49.9` 23.116
6 0 2,0 45` 43' 45 45' 45` 45' 22.000

*6 0.5 0,5 7.9` ^1,8` 22.1' 0.5" 7.4 12.3" 37.024
6 0.5 1.0 45' 45' 45' 45" 45' 45' 14.667

*6 0.5 2.0 67.1' 56.4 56.2 55.5' 64.0" 61.4' 12,556

6	 1.0	 1.0	 45'	 45'	 45'	 45`	 45'	 45"	 11.000
*6	 1.0	 2.0	 71.6'	 68.1"	 77.5'	 61.2	 71.1''	 74.i'	 8.051

r
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`I'mil 1,	 8.	 0116111WI1 liner directions 361 , 6 . 11IJ'ered pl ;lies (U; b 1) 11lidel' shear

Film . direetiolls (ill degl'ee)

x l :Y, ,XI

S 0.0 0,0 0.0 0.0 11,0 0.0 1,97531
F 45,6 0,0 0.1. 0.1 0,0 43.7 1.2708

S 30.0 30.0 33.0 10.0 30,0 30.0 1..665
ti
` F 45,2 44.9 -15.0 15.1 45.1 45.1 1.1283

S 45.0 4S,0 45.0 45.0 45.0 45.0 1.1:83
3 1" Q5.0 45.0 45.0 -15.0 4S.0 1.1283

S 90.0 0.0 90.0 0.0 90.0 0.0 11911111
1., 135.0 45.0 134.8 44.4 13-1.1) 45.0 1.1283

S 45.0 45.0 0.0 0.0 45.0 415.0 1.1431i

S 0.11 t).0 •15,0 •15,11 0.0 0.11 1.9103
6 t; 1#.') -15,3 4S.4 ,15.3 45.1 45.0 111253

S 10.0 20.0 30.0 40.0 50.0 611.11 ?.0520
7

I , 451 45.1 4-13 45.1 40.0 45.0 1.1283

S 0.0 0.0 ,15.0 45.11 90.0 20,0 3.4567
8

t,

S 211.0 90.0 00.0 90.0 20.0 90.0 1,9753
y

F

S 61.0 60.0 60.0 60.0 60.0 60.0 661.25
l0

I: 45.1 45.0 •13.8 -15.0 45.1 44.9 1,1253

S: Starting values, F: Final oplinlunl values.

The computer used fin' the present case %vas 111M 3033 and epn time to obtain Table 9
was 1087 seconds.

8, CONC'I.tISIONS

A, method to fino the hest fiber directions of the laminated plates under axial
Compression and shear has been presented in this paler. broil Table 7 if can be said
that the best fiber angles ill layers are 45' ('or the plate with a/b=--1 and 2 under
uniaxial compression. For the plates with ajb•=0,5, 0.8 and 1,25 under k^,,,0 the best
angles in all layet's are 0", 35" and 50" respectively. It is hiteresting to note that the hest
fiber directions for the case of k-.=O is the same ill layers, even if the slacking;
sequence is taken into account. For the plates under k= 0, p imple conclusions cannot
be vbtained. From Tables 8, 9 and 10 the l'ollowing conclusion call be obtained far (lie
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Tntu.r 9. Optimum fiber directions for 6•hlyered plates (alb= 1.5) under shear

Fiber directions (in degree)
Case -- OX 105

Oc t 0(2 013 04 U5 IXf,

I S 0.0 0,0 0,0 0.0 0.0 0.0 12.279
F 54,6 54.5 54,4 54,3 54,6 54,5 4.4804

S 30,0 30,0 30,0 30,0 30,0 30,0 6.03222
F 54.7 54.4 54.6 50 54.7 54,5 4.4805

S 45.0 45.0 45.0 45.0 45,0 45,0 4.68013 F 54,5 54.7 54.2 54,3 54.8 54.4 4,4805

S 90.0 0,0 90,0 0,0 90,0 OA 6.86484
F

S 45,0 45,0 0,0 0.0 45,0 45.0 4.77495
F •

S 0.0 0.0 45.0 45,0 0,0 0.0 11,516
6 F 54,5 54.5 55.2 55,1 54.4 54,7 4,4805

S 10,0 20.0 30.0 40,0 50.0 60,0 934997
F 54.6 54,3 54.6 54.1 54.6 54.5 4.4805

S 0,0 0.0 45,0 45.0 90.0 90,0 12.4868
F 54,4 54,7 54.1 54.6 125,6 125.5 4.4805

S 90,0 90,0 90.0 90.0 90.0 90,0 6,78869 F 126.0 125.4 90.3 90.4 124.9 126,3 4,5004

S 60.0 60.0 60.0 60,0 60,0 60,0 4.5425
10

F54.6 54.4 54,3 54.1 54.4 54.6 4.4805

S: Starling values, F: Final optimum values.

case of shear buckling. An angle-ply laminate gives the highest shear buckling stress,
even if almost complete freedom is given in the selection of fiber directions. The best
fiber directions for the cases R= 1, 1.5 and 3 are 45`, 55" and 60" respectively. 'These
angles are equal to the ones obtained by Housner-Stein for the case of angle-ply
laminated plates.

This work was done during the author's stay at Rensselaer Polytechnic Institute as a
visiting associate professor and was supported by NASA under Grant No. NGL-33-
018-003. The author wishes to acknolwedge the helpful advice of Professor Nicholas J.
Hoff'.
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I'Am F 10. 0111imum fiber dircclions for 6-layered plates ((iH7=3) under she

Fiber dircclions (in degree)
Case ..__ 4_, r	 -... _.v.	 __ ql x 10"

'̀XI Uj Ua Oft US Ul,

S 0.0 0,0 0,0 0,0 0.0 0.0 23.473
r•

S 30.0 30,0 30,0 30.0 30.0 30.0 11.261
2 1'; 60.6 61.4 61.5 66.9 60,8 59.6 6.5480

S 45,0 45,0 45,0 45.0 45,0 45,0 7,51153
1" 61,2 58,5 62.3 62.7 61.0 59.6 6.5484

S 90.0 0.0 90.0 0.0 90.0 0.0 10.015
4

1' 90.0 35.4 90,0 0.0 90.0 0.0 9.6774

S 45.0 45,0 0.0 0.0 45.0 45.0 7,6926S

F 60.6 60.6 58.5 57.9 60.7 60.5 6,5469

S 0,0 0.0 45.0 45.0 0.0 0.0 21,5216

F 60,7 60,5 62.3 66,9 59.8 60.2 6.5477

S 10.0 20,0 30,0 40.0 50,0 60.0 13,175 7
F 60.9 60.8 60,1 69.2 59,5 60.0 0484

S OA 0.0 45.0 45.0 90.0 90.0 15.2048 F 59.3 121.0 88.2 58.4 116,8 119.5 6.5558

S 9010 90.0 90,0 90.0 90.0 90.0 8.2017

F 90,0 90.0 90.0 90.0 90,0 90.0 5.2017

S 60.0 60.0 610.0 60.0 60.0 60.0 6.547810

F 60.7 60,0 60,0 60.0 60.5 60,4 6.5476

S: Starting values, F: Final Optimum values.

Department of Aeroe^vna hies and Structures
Institute of Space and Aeronautical Science
University of Tokj,o
April 18, 1980
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