NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DEPRIMING OF ARTERIAL HEAT PIPES: AN INVESTIGATION OF CTS THERMAL EXCURSIONS

```
(NA5A-CR-165153) DEPRIMING OF ARTERIAL HEAT N81)-32688
PIPES: AN INVESTIGATION OF CTS THERMAL
EXCURSIONS Final Report, Sept. 1978- Aug.
1980 (TRW Defense and Space Systems Group) Unclas
214 P HC A10/MF A01 CSC. 20D G3/34 28773
```

FINAL REPRRT
AUGUST 20, 1.980

ID. Antoniuk
D. IK. Ed.wards

TRW SALES NO. 34129.000
CONTRACI NAS 3-21740

Prepared for
NASALEWIS RESEARCH CENTER
CLEVELAND, OHIO, 44135

[^0]
CONTENTS

Page
1.0 INTRODUCTION 1
1.1 CTS Thermal Anomalies 1
1.2 Review of Previous Work 5
1.3 Phase I Studies 10
1.4 Objectives of Phase II Studies 23
2.0 ANALYSIS OF BUBBLE LIFETIMES IN HEAT PIPE ARTERIES 25
2.1 The Spherical Bubble औodel 25
2.2 Governing Equations for the Spherical Bubble 27
2.3 Transformation and Numerical Solution 29
2.4 The Elongated Bubble Model 32
2.5 Properties Used in Calculations 33
2.6 Results for the Spherical Bubble 33
2.7 Results for the Elongated Bubble 40
2.8 Significance of Analytical/Numerical Results 46
3.0 CYCLIC FREEZE-THAW TESTS ON SN009 HEAT PIPE 48
3.1 Test 0bjectives 48
3.2 Apparatus and Procedure 48
3.3 Test Results 54
3.4 Significance of Test Results 72
4.0 CONCEPTS TO AVERT ARTERY DEPRIMING 75
4.1 Noncondensible Control Gas Selection 75
4.2 Operationa1 Procedure for Start-Up of a Frozen 76 Condenser
4.3 Mechanical Modifications 77
5.0 CONCLUSIONS 79
6.0 REFERENCES 80
APPENDICES
A. PHASE I STUDIES
A. 1 Excess Skew in Load Partitioning A-1
A. 2 Sudden Cooling Mechanisms
A.2.1 Instantaneous Heat Flow After Heat Pipe Reservoir Eclipse A-4

CONTENTS (Continued)

Page
A.2.2 Instantaneous Heat Flow After Heat Pipe Radiator Eclipse A-11
A.2.3 Condenser and/or Reservoir Shadowing Tests on SNOO9 Heat Pipe A-19
A. 3 Freezing Blowby Tests on SN009 Heat Pipe A-21
A. 4 TEP Thermal Analysis
A.4.1 Brief Review of LeRC Thermal Studies A-23
A.4.2 Generalized Variable Conductance Heat Pipe Modeling A-26
A. 5 Bubble Studies
A.5.1 Potential for Bubble Formation in CTS Heat Pipes: Fundamentals A-80
A.5.2 Potential for Bubble Formation in CTS Heat Pipes: Sample Claculations A- 86
A.5.3 Bubble Nucleation Experiments A-95
A.5.4 Glass Heat Pipe Bubble Nucleation/Migration Experiments A-99
B. PHASE II STUDIES
B. 1 Spherical Bubble Model Computer Program Listing B-1
B. 2 SNOO9 Heat Pipe Cyclic Test Data B-17

1.0 INTRODUCTIONS

1.1 CTS THERMAL ANOMALIES

The Communication Technology Satellite (CTS) was launched into an equatorial geosynchrouous orbit in January, 1976 and is stationed at 116° longitude. After completing nearly four years of operation, the CTS mission has recently been terminated.

The major payload on the CTS is the Transmitter Experiment Package (TEP) which consists of a high power travelling wave tube (TWT), a power processing system (PPS) and a variable conductance heat pipe system (VCHPS) shown schematically in Figure 1-1. Heat produced in the tube collector is directly radiated to space, whereas power dissipated in the ris is first conducted to the TEP saddle and the spacecraft south panel from where it is radiatively rejected.

The temperature control of the TWT is provided primarily by a variable conductance heat pipe (VCHP)/Radiator system which transports and rejects most of the heat dissipated in the tube body. Mounting details of the tube body to heat pipe evaporator saddle and the spacecraft south panel are sketched in Figure 1-2. As shown there are several interfaces through which the heat must flow to reach the heat pipes. Normally, heat reaching the aluminum baseplate is mostiy absorbed by the heat pipes and is transported axially to the VCHP radiator. A fraction of it, however, is conducted to the spacecraft south panel where it is radiated to space.

The VCHP system, shown in Figure 1-3, consists of three stainless steel/methanol dual artery heat pipes whose variable conductance is achieved with the help of external cold wicked reservoirs loaded with a 10 percent helium/90 percent.nitrogen gas mixture. Figure 1-3 shows the six positions in the VCHP/radiator system at which temperatures are measured in flight. The Transmitter Experiment Package is instrumented with four additional temperature sensors, two located on the Multistage Depressed Collector (MDC) and two sensors located on and near the tube body.

The CTS is the first spacecraft to rely on heat pipes to control the thermal performance of a major onboard system. The Transmitter Experiment Package has performed sitisfactorily except on four occasions in 1977, March 16, March 23, April 11, and September 10 when measured tube body
VARIABLE CONDUCTANCE HEAT PIPE SYSTEM.

Figure 1-2. Mounted CTS OST

Figure 1-3. Flight Instrumentation Variable Conductance Heat Pipe System
temperatures displayed sudden, rapid increases not normal for the TEP operating conditions and inconsistent with the design of the thermal control systems. The anomalous behavior of the TEP in these four occasions are referred to as the "CTS Thermal Anomalies" of days 75, 82, 101, and 253 respectively.

During all the anomalies, the continuous increase of the tube body temperatures was reversed by reducing the output power without damage to TEP. Operation of the TWT at the reduced power resulted subsequently in the recovery of the thermail control system with no evidence of degradation or changes in its performance.

After the fourth anomaly (day 253), the TEP was successfully operated at somewhat reduced power (below the open artery capacity of the heat pipes), and no further anomalies were detected.

1.2 REVIEW OF PREVIOUS WORK

Following the first occurrence (day 75), the CTS anomalies were the subject of investigations both at NASA Lewis Research Center (LeRC) and at TRW in an effort to understand the cause of the thermal failures, focussing particular attention on the VCHPS since it is in the thermal path from the tube body to space. The work performed at LeRC and preliminary studies conducted at TRW are documented in References 1 and 2, respectively.

LeRC's investigation included the use of flight-type TEP components in ambient and vacuum ground tests, analytical studies, flight data review, and CTS on-orbit tests. The objectives were to determine the most probable cause of the anomalies and to identify procedures or TEP operating modes which would preciude damage to the TWT in the event of recurring anomalies or of continuous degraded capacity of the thermal control system.

From the review of flight data for both normal and anomalous days the following observations about the anomalies were made:

1) All occurred after relatively long periods at constant, although differing, TWT RF power levels or heat rejection rates from the tube baseplate.
2) All the anomaiies took place near the Spring and Fall equinox periods during which sun angle with respect to the VCHPS radiator is relatively small and during the orbit quadrant where the CTS is almost directly between Earth and Sun in which case the VCHPS surface becomes increasingly shadowed by the spacecraft itself.
3) All the anomalies, except on day 253, were characterized by being preceded by temperatures measured at the extremity of heat pipe number 1 (HP1 with sensor HPT5. See Figure 1-3) being at or below -98 C, the methanol freezing point.
4) All the thermal anomalies were preceded or accompanied by a sudden abnormal but small increase in the difference in measured temperatures between the adiabatic sections of heat pipe number 3 and $1, \Delta \mathrm{~T}_{1-3}$. This increase in $\Delta \mathrm{T}_{1-3}$ was followed by a second increase, and at the outset of unstable tube body temperature rise, ΔT_{3-1} was observed to drop to a lower level.

Tests were performed with a TWT almost identical to the one outboard CTS. The results indicated that the anomalies could not have been caused by thermal interface failure inasmuch that: a) it is improbable that a failed interface could recover its integrity completely after an anomaly, and b) it was demonstrated that an interface failure results in tube body temperature rates higher than those observed during the anonialies.

Vacuum tests that most closeily approximated anomalous temperature profiles were those in which the tube base plate cooling was abruptly reduced from that required for thermal equilibrium at norma? operating temperatures. These test results suggested that the reduction in heat transfer capability of the variable conductance heat pipe system is, to a high degree of certainty, the cause of the themal anomalies.

Room-ambient tests at LeRC with a flight-type VCHPS indicated that $\Delta \mathrm{T}_{3-1}$ increases are caused by depriming of heat pipe 1 (HP1) or heat pipe (HP1) and heat pipe 2 (HP2). The temperature difference between the adiabatic sections of heat pipe 3 (HP3) and HP1 was found to depend on the priming states of the heat pipe arteries. The measured temperature differences ΔT_{3-1} were:
a) $\Delta T_{3-1} \doteq 1.1 \mathrm{C}$, all heat pipes are primed
b) $\Delta T_{3-1} \doteq 5.1 \mathrm{C}$, HP1 is deprimed
c) $\Delta T_{3-1} \doteq 7.8 \mathrm{C}$, HP1 and HP2 deprimed
d) $\Delta T_{3-1} \doteq 2.3 C$, all heat pipes deprimed

These values for $\Delta T 3-1$ are consistent with the temperature levels observed during anomalous days and tend to confirm the postulate that the anomalies are initiated by depriming of HP1, followed by depriming of HP2, and the oriset of tube body unstable temperature rise casced finally by depriming of HP3.

On day 253, while LeRC personnel were performing experiments on-board CTS, the fourth anomaly occurred. This event gave the unique opportunity to establish the stable VCHPS heat rejection capacity beyond which the tube body temperature beconies unstable. Ir was found the open artery capacity of the VCHPS is approximately 106 watts.

The comprehensive investigative work performed at leRC made significant contributions to the understanding of the CTS thermal aromalies. The most significant contribution is the fact that convincing evidence was made available to establish that the thermal anomalies were caused by unexpected reductions in the VCHPS heat transfer capability resulting from depriming of the heat pipe ateries.

The first preliminary investigation of the CTS thermal anomalies conducted at TRW is documented in Reference 2. This investigation, performed in direct support of LeRC efforts, focussed particular attention at the identification and analysis of potential artery depriming mechanisms.

Selection of depriming mechanisms was based on the premise that they must be consistent with three key observations:

1) All the anomaiies occurred during the eclipse season.
2) These anomalies are sporadic. Similar conditions on successive days can yield an anomaly one day but not the next.
3) The anomalies are triggered by depriming of arteries in HP1.

In the early study, among a number of postulated mechanisms, only three were identified which could be associated with eclipse seasons:
I) Condenser freezing
II) Marangoni flow
III) Gas evolution in the arteries due to rapid chilling

It was argued that under certain condicions freezing of CTS arteries could lead to depriming. Arterial failure could resuit from the transfer of mass from the evaporator to the frozen condenser where it would freeze and not be available for circsiation. This transfer of mass could be effected by vapor diffusion, by liquid pumping in fillets due to reduction of specific volume as it cools and/or by Marangoni flow. The fact that the CTS-type heat pipes will not fail due to condenser freezing when operated under no load or at high heat loads, led to the argument that the condenser freezing mechanism will work if the pipe is operated at the right load, not too high, not too low. However, several factors implied that, although condenser freezing can lead to artery depriming, it could not be the primary cause of the anomalies.

These factors are the fact that on day 253 an anomaly occurred before the radiator portion of HP1 approached freezing conditions, and the fact that with all pipes primed HP3 should freeze and deprime first since it carries least load and its radiator portion radiates from both sides, however, HP1 failed first. An additional factor is the fact that after the anomalies the VCHPS recovers before the radiator begins to warm up. It was thus argued that if sufficient excess fluid was frozen to cause artery depriming chere would be none available to rewet the evaporator. Therefore, condenser freezing was ruled out.

Marangoni Flow (surface tension flow due to temperature gradients along the a VCHP gas-blocked region) could induce a flow along fillets and excess fluid reservoirs toward the condenser end along the vapor-liquid interfaces. No flow, however could be induced in the wick and arteries which have structure to support the surface tension gradient. It was argued that Marangoni Flow could influence the VCHP in two ways:

1) If the condenser end is frozen, Marangoni flow toward that end would increase freezing under load. However, condenser freezing was argued not to be the primary mecharism for depriming.
2) If the heat pipe is not frozen, Marangoni Flo:v will cause a pressure drop along fillets and natural reservoirs reducing their pumping capacity. However, the reduction must be small, otherwise anomalies due to Marangoni Flow effects would occur on consecutive days under zimilar conditions, not sporadically. It was argued, however, that once deprimed,
the open artery capacity could be measurably influenced by Marangoni Flow.

In view of the fact that the control gases helium and nitrogen, particularly helium, have solubilities in methanol decreasing with decreasing temperature aid pressure, it was argued that this behavior could give rise to a potential depre.. ng mechanism which is consistent with sporadic occurrences during the eclipse seasons. This mechanism is gas evolution within the arteries during heat pipe chilldown.

It was postulated that when TEP ceases to operate several hours before an eclipse, the gas blocks the entire length of the heat pipes. During this off period, liquid in the arteries becomes saturited with gas surrounding the arteries at the gas-blocked condenser temperature and evaporator pressure. When the CTS enters eclipse, the heat pipes experienced rapid chilldown which causes the temperature and pressure to drop rendering the liquid in the arteries sufficiently supersaturated in dissolved gas to cause gas bubble nucleation within the arteries.

In the early study, it was postulated that gas would evolve at unspecified nucleating sites leading to numerous small bubbles, some of which would coalesce to form fewer but larger bubbles with intrinsic longer lifetimes. When the TEP is reactivated, the heat pipes would turn on leading to the establishment of a gas/vapor front and a build-up of stress in the active portion. It was postulated then that if the local liquid stress exceeds a critical level for a bubble before this bubble is redissolved or vented, the arteries would deprime. Of the three potential machanisms for artery depriming considered in this early study, gas evolution was argued to be the most plausible inasmuch that it ties the anomalies to eclipse seasons when the VCHP system experiences rapid chilldowns. Furthermore, it also provided an expianation for the sporadic occurrences within eclipse seasons since, it depends on the operating conditions before and after the eclipse and on bubble nucleation and aglomeration which are statistical phenomena.

Although no attempts were made at that time to analytically treat the gas evolution scenario, a simple experiment was performed to determine whether gas bubbles would be nucleated in the arteries under CTS conditions.

The experimental setup consisteu of a short section of CTS-type arterial wick inserted into a glass tube sealed at one end and valved at the other. The tube was filled with appropriate amounts of 10 percent He/90 percent N_{2} gas and methanol simulating CTS design parameters. The tube was then subjected to temperature reduction under hydrostatic stress in excess of open artery capacity. The imposed stress was equivalent to increased supersaturation which would erihance the probability of bubble nucleation. Experiments at temperature reduction rates of $-1.71 \mathrm{C} / \mathrm{Min}$ and $-0.9 \mathrm{C} / \mathrm{Min}$ yielded negative results even though the cooling rates were about twice those observed in orbit, and the imposed hydrostatic stress enhanced the probability of bubble nucleation.

The results of this experiment lead to the conclusion that the gas evolution mechanism could not have caused artery depriming under conditions experienceú by the CTS.

Thus, th's preliminary investigation at TRW was unsuccessful in its quest for a single or sequential series of mechanisms fior artery depriming consistent with all flight data. However, depriming due to gas evolution within the arteries was regarded as qualitatively consistent with all the observed anomalies and warranted further investigation.

1.3 PHASE I STUDIES

In view of the fact that previous investigations of the CTS thermal anomalies convincingly established depriming of the heat pipes in the VCHP system as the cause of the anomalies but failed to identify the mechanism or sequential series of mechanisms that led to depriming of the arteries, TRW (under contract to NASA LeRC - Zontract NAS3-21740) undertook a twostep investigation of the hydrodynamic characteristics of CTS-type heat pipes.

This section of the report summarizes the work performed during Phase I and refers to attached appendices (documents generated during Phase I) for further details.

The first task performed was to identify mechanisms which under a wide range of feasible conditions could lead to depriming of the heat pipe arteries. Ten mechanisms were postulated which are briefly described and classified in four basic groups in Figure 1-4. Also shown are comments on

Figure 1-4. Observations on Postulated Artery Depriming Mechanisms
the postulated mechanisms in light of observed characteristics of the anomalies and flight data. The approach in Phase I to investigate the potential of these mechanisms is shown in Figure 1-5.

The basic approach has been, for a given depriming mechanism, to conduct analyses in the following sequential order with the implementation of each succeeding task being contingent upon the results of the previous one:
a) Analytical "back-of-the-envelope" calculations and/or flight data review.
b) Calculations with more realistic analytical models.
c) Bench-scale experiments such as with glass heat pipe.
d) Experiments with CTS SNOO9 heat pipe which is similar to heat pipe 1 on the CTS.
e) Correlations of experimenta 1 data with thermal (SINDA) and heat pi.pe (VCHPDA) analytical models results.

Tasks a, b, c, and d were performed by TRW, whereas task e was the result of a joint effort with LeRC in which the experimental data generated at TRW facilities were correlated with the results of steady state and transient thermal analyses of TEP perrormed at LeRC. The LeRC study is briefly reviewed in Appendix A.4.1.

Mechanisms Exceeding Heat Pipe Capacity

The arteries in a heat pipe can certainly be caused to deprime if the imposed heat load exceeds the designed heat transfer capacity of the heat pipe. Exceeding the heat pipe capacity can be the result of increased dissipation by TEP, excess skew in load partitioning on the VCHPS, and high transient heat pipe load due to condenser and/or reservior shadowing.

Increased Dissipation (Column D of Figure 1-4). This is clearly not the cause of artery depriming since:

1) TEP power dissipation exceeding designed levels is not supported by flight power data
2) The heat loads are well below the system capacity when all three heat pipes are primed. In fact a single primed heat pipe can carry the maximum designed dissipation heat load.

investigation area	EXPERIMENT	ANALYSIS	COMPuter modelling
suction and blow-by freezing BANDC	SN OO9: FREEZE CONDENSER AS FUNCTION O S. S. LOAD AND TILT. ALSO AS PART OF transient power increase (I-G EFFECTS ON BLOW-BY?) IF DE-PRIMING OBSE AVE		- modify sinda model fó conrect gás año LIOUID INVENT. ALSO. RESISTANCES, dimensions, etc lget leric model from LOU GEDEON, ADD SUBROUTINE TO DECOUPLE heś fínom cond with ice plug - run sinda to determine gás froont positions and temp disitrib on anomaly DAYS - MODIF M MULTWick to include marangoni FLow and frezzing - RUN MUL TIWICK TO ESTABLISH inventory DISTRIBUTION AND STAESS AŚ FUNCTION OF freEzing process
bubile production G. HANOI	GLASS TEST SECTION ANDIOR GLASS HEAT PIPE: try to produce bubbles in he-saturated methanol by chilling, by freezing, by SUDDEN DROP IN PRESSURE (IONIZING RADIATION?)	CALCULATE NUMEER OF CRITTICAL SIZE bubbles which cían be genebated due to supersaturation in rapio chilloown. CONSIDER BOTH TEMPERATURE AND PRESSURE Effects conditions	
SUDDEN COOLING F	SN OO9: RAPIDLY CHILL/FREEZE CONDENSET ANOJOR RESERVOIR TO SEE IF PIPE CAN BE DEPRIMED \mid Yes DO PARAMETRIC LAB TESTS TO DETERMINE LEAST SEVERE CONDITIONS NECESSARY TO DEPRIME PIPES	FIRST ORDER CALCULATION OF INCREASE IN LOAD DUE TO COOLING-INDUCED EXPANSION OF FRONT if significant	SINDA CALCULATIONS: ARE MINIMUM NECESSARY CONDITIONS FEASIBLE. DDES THERE EXISTA WINDOW IN POWER PROFILE LLOW LOAD - EXCESS reservoirs full of lioulo to hanole transienti, high lóad - radiatóa neably FULL ON WITH LITTLE POTENTIAL FOR LOAD INCREASE, OR - RES ON NO. 1 MUST BE SHADOWED WITH HIGH LOAD ON 1 BUT 2 AND 3 NOT ON SIGNIFICANTLY)
EXCESS SKEW IN LOAD partitioning E			Sinda modelling: calculate load on h. p. NO. 1 THROUGHOUT ORBITAL TAANSIENT MULTIWICK: CALCULATE CAPACITY OF H.P. NO. 1 throughout orbital tanisient using sinia OUTPUT FÓR GAS FRONT AND TEMP DISTRIBUUTIONS
inertial acceleration load J		EXAMINE S/C ACCELEROMETELR DATA, IF available	
depriming seoueince		EXAMINE FLIGHT DATA IN DETAIL. DAY 253: ΔT_{3-2} AND ΔT_{2-1} ON ANOMALY AND NORMAL DAYS: CORRELATION OF TI, T2, T3 WITH body temp indicating primed state	

Figure 1-5. Approach to Investigate Potential Depriming Mechanisms
3) On many days preceding and/or following the anomalies, higher heat loads were accommodated without difficulty.

Excess Skew in Load Partitioning (Columin E of Figure 1-4). The three heat pipes of the VCHPS on CTS are designed to turn on sequentially so as to balance the load between them at full-on design conditions. However, very low sink temperatures during equinox conditions could result in the load of heat pipe HP1 exceeding transiently its capacity before HP2 and HP3 take up a significant share of the load. Failure of HP1 by the above mechanism or by any other could then result in a rapid transfer of load to HP2 which, due to inertial effects associated with rapid load transfer, could fail leading to a rapid transfer of load to HP3, yielding, perhaps, a "domino offect" failure of the whole system.

Failure of HP1 due to excess skew in load partitioning is discounted since LeRC transient thermal results for periods preceding the four anomalies indicate the maximum load on HP1 never exceeds 80 watts, a load that is well below its primed heat transfer capacity.

In Appendix A. 1 flight data are analyzed to determine whether there exists a regularity in the depriming sequence associated with the anomalies, and the possibility of a "domino effect" failure of the system is investigated experimentally.

The analysis of flight data showed that these exists some regularity in the depriming sequence as follows: HP1 deprimes first, HF2 deprimes next followed by depriming of HP3. (On days 89 and 253 the temperature data suggest that heat pipe 2 or 3 was deprimed, while HP1 carried the load.) Experimentally, attempts were made to deprime the SNOO9 heat pipe with rapid increases of load, simulating, under more stringent conditions, rapid sequential load transfer as heat pipes deprime.

Tests performed for both high (-18C) and low (-96C) sink temperatures and at 2.5 cm evaporator tilt, indicated no measurable rate effect attributable to fluid inertia and thus argued against a "domino effect".

High Transient Heat Pipe Load Due to Condenser and/or Reservoir
Shadowing (Column F of Figure 1-4). Sudden shadowing cools the heat pipe reservoir which causes the vapor/gas front to move toward the reservoir end of the radiator increasing the active portion of the condenser which
causes the heat load on the pipe to increase. In addition, shadowing of the VCHPS radiator increases the load on the heat pipes due to a drop in the effective environment temperature.

Although both effects will eventually lead to cooling of the heat source, movement of the gas/vapor front reducing the active condenser section, and reequilibration at the dissipation load, the transient peak may be sufficient to exceed the heat pipe capacity and deprime the arteries.

An examination of flight data corresponding to periods preceding and including the onset of the four anomalies shows a scenario of decreasing temperatures of the gas reservoirs and on sections of the VCHP system radiator. Telemetry data for temperature sensors HPT5 and HPT6 (see Figure 1-3) show that at these locations the temperature drop monotonically prior to the anomalies.

In order to explore the potential of this postulated mechanism for artery depriming, the transient loads possible under typical orbital conditions were estimated using a simplified analytical model of the VCHP system. The description of the model and the basis for the transient loads calculations are presented in Appendices A.2.1 and A.2.2, which address the effects of shadowing of the reservoir and condenser, respectively. The analytical estimates show, that under some assumed cooling rates, the instantaneous heat loads may be as much as 45 percent larger than steady state conditions would indicate. These analytical results were found significant enough to warrant further tests on the SNOO9 heat pipe.

Appendix A.2.3 describes a series of tests performed on the SN009 heat pipe during which the condenser or the gas reservoir was cooled at various rates while the evaporator was maintained at a constant heat load. In tests loads of 100 and 150 watts and cooling of the condenser at approximately $2.8 \mathrm{C} / \mathrm{Min}$ produced no depriming. No depriming was observed either in tests with 125 watts and at a condenser cooling rate of approximately $3.9 \mathrm{C} / \mathrm{Min}$. Thus, depriming due to rapid chilldown of the condenser was not demonstrated.

During tests in which the gas reseryoir was cooled repeatedly at successively higher rates depriming was observed. With 100 watts at the evaporator and the inactive condenser at -18 C , depriming occurred when the reservoir was cooled at the threshold rate of approximately $-3.2 \mathrm{C} / \mathrm{Min}$.

Although depriming due to rapid chilldown of the reservoir was demonstrated, the required rates were substantially higher than those observed during the anomalies. This fact eliminates the postulated sudden cooling mechanism as a potential cause of the CTS anomalies.

Mechanisms for Depletion of Liquid Inventory
Another possible cause of artery depriming in a heat pipe is depletion of liquid inventory, either depletion of total heat pipe inventory such as that resulting from a leak, or depletion of liquid from the active portion of the pipe such as could result from diffusion freezeout, suction freezeout or freezing blow by. Suction freezeout is the loss of liquid from freezing. Freezing blowby is the loss of liquid from the thawing of an ice plug allowing a high pressure evaporator to blow liquid from the active pipe into a low pressure gas reservoir.

Loss of inventory due to leaks will cause permanent changes in heat pipe performance, an event that is not supported by the observed complete recovery of the system following an anomaly. Diffusion freezeout is the transfer of inventory in the vapor phase from the active pipe into the frozen section where the vapor condenses and freezes. It is too slow a transfer process to have been effective during the time available prior to the anomalies.

Suction Freezeout (Column B of Figure 1-4). Suction freezeout has long been recognized as an artery depriming mechanism. Depriming occurs due to depletion of evaporator liquid because of the local density increase as a freezing front moves toward the evaporator end of the pipe. It is necessary, however, that the condenser freeze while the heat pipe is under load so that the natural liquid reservoirs in the evaporator do not contain excess liquid. Such excess liquid would satisfy the demand of the freezing process without stressing the arteries to failure. Suction freezeout is a viable explanation for depriming on anomaly days 75, 82, and 101. But not on day 253 , since the results of steady state and transient calculations on the CTS model performed at LeRC indicate no freezing on this day at the time of the anomaly.

This depriming mechanism was investigated analytically in the previous TRW's study ${ }^{(2)}$ where the mechanism is referred to as "Condenser Freezing".

The results of this investigation made in light of flight data and observation about the anomalies were summarized in Section 1.2 of this report.

In Phase I of this program, suction freezeout was subjected to experimental investigation with tests on the SNOO9 heat pipe. Several attempts to deprime the arteries by freezing the condenser while the SNOO9 heat pipe was under hydrostatic and thermal load were unsuccessful.

The experimental results support the conclusion of the previous investigation ${ }^{(2)}$ which states that although suction freezeout or condenser freezing can and may lead to artery depriming, it is not the primary cause of the anomalies.

Freezing Blowby (Column C of Figure 1-4). The CTS heat pipes contain substantial amounts of excess liquid. Such excess inventory is required for successful priming of the arteries in earth gravity testing. In zero gravity a slug of excess liquid generally bridges the condenser vapor spaces, acting as a moving membrane between portions of the non-condensible control gas. Subfreezing radiator temperatures can cause the slug of liquid to become an immobilized plug of ice separating the active section of the pipe from its gas reservoir. If during a transient a pressure differential develops across the ice plug, with the pressure higher on the evaporator side, and then the plug partially thaws, this pressure difference can blow liquid from the evaporator to the reservoir side and deplete the active pipe inventory causing the arteries to deprime.

Because freezing blowby requires freezing, this mechanism can not be the cause of the fourth anomaly, since freezing had not occurred immediately preceding the anomaly on day 253 . However, freezing blowby could account for some of the anomalies during which freezing occurred.

To explore experimentally the depriming potential of this mechanism, it was first necessary to develop means of forming an ice plug in the laboratory in the absence of the natural slugging of excess liquid expected in zero gravity. Appendix A. 3 describes a successful technique that was developed to form an ice plug in the SNOO9 heat pipe, and the procedure followed during the blowby tests. Three tests were performed during which depriming occurred each time. The results of these tests clearly established
that freezing blowby is a bonafide depriming mechanism and a candidate to explain at least some of the anomalies.

The latter statement is supported, to a certain extent, by some results from the CTS model analyses which showed that ice plugs formed in all the heat pipes on day 82 several hours prior to the onset of the anomaly. In addition, the results showed that the pressure on the evaporator side would have been higher than on the reservoir side when the plugs thawed forty five minutes before the last heat pipe deprimed. The significance of these calculated results is that they show conditions for freezing blowby may have existed on at least one day of the anomalies.

Mechanisms for Bubble Nucleation

The presence of gas inside the arteries of the heat pipe has long been recognized as detrimental to the stable operation of the pipe. Because the solubilities of nitrogen and, particularly, helium in methanol, decrease with decreasing temperature and pressure, there exists the potential of bubble nucleation within the arteries in CTS-type heat pipes as they undergo rapid temperature reduction. This potential is compounded by the decrease in pressure that results from temperature reduction in the closed heat pipe environment. Liquid methanol saturated with gas can become supersaturated with gas when undergoing rapid temperature and pressure reduction, an event that enhances the potential of bubble nucleation.

Bubbles that might nucleate inside the arteries during the transient cooldown of the heat pipes after the power is turned off and the spacecraft enters into eclipse, can coalesce to form fewer but larger bubbles. If, as the result of their size and the rather slow process of gas diffusion back into surrounding liquid, the bubbles survive until the heat pipes are once again activated under load, some bubbles might be convected into highstress liquid regions where they can grow in size and consequently deprime an artery.

The process of bubble coalescense and migration is recognized as statistical in nature.

The above postulated mechanism was examined during a previous TRW investigation; ${ }^{(2)}$ however, experiments under simulated anomaly conditions failed to induce bubble nucleation.

Despite these results, this mechanism was reexamined during the current program due to the fact that the postulated conditions for the mechanism to be activated can be supported by flight data corresponding to all the anomalies, and the probabilistic nature of the mechanism bears positive correlation to the sporadic occurrences of the anomalies. In addition, a thorough examination required the performance of experiments simulating more realistically the operating characteristics and anomaly conditions of the CTS heat pipes and investigation of the potential of other mechanisms, particularly freezing-thawing, to induce bubble nucleation.

Bubble Nucleation Due to Temperature and Pressure Reduction (Columns G and H on Figure 1-4). An analysis of the potential for bubble formation was performed based on fundamentals described in Appendix A.5.1. Sample calculations were made for two cases (1) a condenser depressurization case where the evaporator temperature is dropped at constant gas-blocked condenser temperature and (2) a condenser chilldown case where the gas-blocked condenser is cocled at constant total pressure.

The sample calculations presented in Appendix A.5.2 showed the possibility for bubble formation upon (1) depressurization by reduction in heat pipe loading and reservoir chilling and (2) condenser chilldown. Depressurization showed greater potential, for approximately 500,000 bubbles $/ \mathrm{cm}^{3}$ were found possible, compared to only one of equal size resulting from condenser chilldown. The above calculations, based on two hypothetical cases, were followed by a number of calculations for various anomaly conditions. The predicted number of bubbles of varying critical size was found substantial for all anomaly conditions considered in the analysis.

In order to verify quà?itatively the above analytical results, a series of simple experiments were formulated which are described in Appendix A.5.3. Tests were performed with a glass vessel half filled with liquid methanol containing a short section of mesh screen artery laying on its bottom. The vessel was instrumented to permit continuous monitoring of temperature and pressure. The liguid methanol was saturated with either helium or nitrogen at room temperature subsequent to which three series of tests were performed. In the first two series of tests the saturated methanol was suibjected to various rates of temperature and/or pressure reduction. During the tests bubble nucleation in the bulk of the liquid
or on the surface of the artery mesh screen was never observed. These results suggested that temperature and pressure reduction are not potential mechanisms for bubble generations in CTS-type heat pipes. In the list series of tests with the glass vessel, the saturated methanol was subjected to several freeze/thaw cycles. Large numbers of bubbles were observed streaming from the ice surface.

Bubble Generation Due to Freezing (Column II of Figure 1-4). The results of the glass vessel tests were of paramount importance, for they identified freezing and thawing of gas-saturated methanol in the arteries as a potential mechanism for bubble formation in the arteries. The fact that freezing occurred preceding three of the four anomalies and sometime during the 24 hours before all of them, the involvement of ice-generated bubbles in the four thermal anomalies was shown to be a distinct possibility.

To explore this bubble nucleation mechanism in a realistic heat pipe environment, a series of tests were performed with an existing glass heat pipe. The pipe contains a slab wick with a CTS-type artery attached to one side and permits observations on the behavior of the artery in an operational heat pipe. For the tests the heat pine was gas loaded with a 90 percent $\mathrm{N}_{2} / 10$ percent He gas mixture at a pressure equivalent to that in the CTS heat pipes. The experiments performed on the glass heat pipe are documented in Appendix A.5.4.

The results of bubble nucleation experiments showed that each time the artery in the condenser section underwent freezing and thawing bubbles were observed inside the arteries although the number of bubbles, their size and location along the artery varied from test to test. The time required for the bubbles to disappear by diffusion was found to vary enormously depending on their size. Small spherical bubbles dissolved within hours, while elongated bubbles required up to several weeks.

Additional experiments were conducted with this heat pipe during which the gas/vapor front was forced to move into the previously frozen condenser section in attempts to incorporate ice-generated bubbles into the active condenser and cause depriming. A number of deprimings were observed, but they were sporadic, probabilistic in nature. These results
conclusively demonstrated that: 1) Control gas is liberated from saturated methanol every time the heat pipe goes through a freeze/thaw cycle, 2) the number, size, and durability of gas bubbles geñerated within the arteries have a statistical variation and are influenced by bubble coalescence, and 3) arterial bubbles can lead to depriming if they migrate or are convected into the active region of the pipe under normal load conditions. Thus, it is clear that freezing and thawing of the condenser can, but does not necessarily, lead to artery depriming, depending on subsequent history.

Attempts to induce arterial failure in the SNOO9 heat pipe due to the ice-generated-bubble mechanism were partially successful. Depriming was not observed in several tests when the heat pipe was brought under a heat load immediately after the condenser had gone through a freeze/thaw cycle. However, depriming was discovered on two occasions after the SN009 heat pipe had been left unattended under hydrostatic load for several hours during which time the condenser froze following the termination of a normal freeze/thaw cycle.

The results of tests with the SNOO9 and glass heat pipes clearly indicated that in order to establish the statistics of this artery failure mode, repeated experiments would be required.

SUMMARY

In the course of Phase I of this program, numerous depriming mechanisms were postulated and subjected to analytical and experimental investigation. Several mechanisms were convincingly rendered highly improbable causes of artery failure on CTS. Four mechanisms, however, were identified as potential candidates to explain the anomalies and are listed in decreasing likelihood in Table 1.

It was argued during this Phase of the study that potential depriming mechanisms must be consistent with three key observations about the anomalies:

1) The anomalies occur only during the radiator eclipse season when condenser freezing may be realized.
2) The anomalies are sporadic. Similar conditions on successive days can yield an anomaly on one day and not on any of several similar days.

Table 1. Summary of Potential Depriming Mechanisms from Phase I.

ARTERY DEPRIMING RESULTS FROM:	ANALYTICALLY	EXPERIMENTALLY		
		FLASK	GLASS H.P	SN-009 H.P
I. BUBBLE NUCLEATION DUE TO: a) FREEZE/THAW b) PRESSURE REDUCTION a) TEMP REDUCTION	$\overline{\mathrm{YES}}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \\ & \text { NO } \end{aligned}$	$?$
I!. FREEZING BLOW-BY	YES	--	-	YES
III. RADIATOR/RESERVOIR RAPIDCOOLING	YES	-	--	YES
IV. SUCTION FREEZE-OUT	YES	-	--	NO (?)

3) On day 253 condenser freezing did not occur immediately prior to the onset of the anomaly.

In light of the above observation, the following comments can be made on the mechanisms listed on Table 1.

Suction freezeout is not a statistical depriming mechanism and cannot account for the anomaly on day 253. Artery depriming due to suction freezeout was not demonstrated with the SNOO9 heat pipe which seems to indicate that none of the other anomalies could have been caused by this mechanism alone. This mechanism can only be considered a potential contributing factor to some of the anomalies.

The sudden cooling inechanisms could account in principle for all the anomalies, however, they are not statistical in nature. Furthermore, tests with the SNOO9 heat pipe showed that the cooling rates required to fail the arteries far exceed those indicated by flight data. Thus, this artery failure mode can be assigned a low probability of success and only be considered a contributing factor to some of the anomalies.

Artery depriming due to freezing blowby was verified in repeated experiments with SNOO9 heat pipe, establishing freezing blowby as a bonafide potential depriming mechanism. Analyses of the CTS thermal model
for day 82 predicted the formation of ice plugs in the CTS heat pipes and calculated pressure differential accooss the barrier (pressure higher on evaporator side) which were sustained until the ice plugs thawed. These predicted results tend to indicate that conditions for blowby may be present on some of the anomaly days. Although freezing blowby is not a statistical mechanism and can not be the cause of the anomaly on day 253 , it can not be totally discounted.

In view of the results of glass flask and glass heat pipe experiments, the ice-generated bubble mechanism appears to be a prime candidate for explaining all four CTS anomalies. It is consistent with (1) their seasoned occurrence (eclipse conditions are necessary to cause condenser freezing), (2) their sporadic occurrence (due to the statistical nature of bubble population and behavior), and (3) the lack of freezing on day 253 (bubbles were generated by a freeze/thaw process during day 252).

1.4 OBJECTIVES OF PHASE II STUDIES

The Phase I studies demonstrated that bubbles are generated each time liquid methanol containing dissolved gas undergoes freezing and thawing, and that these bubbles may result in artery depriming if inducted into the active portion of the heat pipe. This depriming mechanism was demonstrated on the glass heat pipe. However, depriming due to ice-generated bubbles was not conclusively demonstrated on the SNOOS heat pipe. Because the SN009 heat pipe is similar in overall dimensions and performance characteristics to heat pipe number 1 onboard CTS, the need to demonstrate depriming on the SNOO9 due to bubbles became apparent in order to demonstrate beyond a reasonable doubt that the postulated bubble mechanism is the cause of the thermal anomalies.

The Phase I studies also warranted further study of the behavior of bubbles inside arteries, particularly their lifetimes, owing to the fact that the probability of arterial failure due to bubbles induction into high stress regions is positively correlated to longer bubbles lifetimes.

As a result a second phase of this program was continued. The second phase was necessary to bring the CTS-anomaly studies to the satisfactory conclusion envisioned at the outset.

The objectives of Phase II were:

1. To analyze the diffusion process for non-condensibile control gases in arteries and to determine lifetimes of bubbles of various sizes at various temperature levels and rates of change of temperature level and for various selected control gases.
2. To run continuous cyclic freeze/thaw tests on the SNOO9 heat pipe for five consecutive days in an effort to produce artery depriming by freeze-thaw bubble formation. The successful triggering of a failure would establish that freeze-thaw bubble formation id the logical cause of the CTS thermal anomalies.
3. To propose concepts to avert artery depriming.

2.0 ANALYSIS OF BUBBLE LIFETIMES IN HEAT PIPE ARTERIES

2.1 THE SPHERICAL BUBBLE MODEL

Consistent with Phase II objectives 1 and 3, it is desired to calculate how fast vapor bubbles in heat pipe arteries might grow or collapse and how the kind of gas used affects the growth/collapse rates. The first model selected for such calculations is the one-dimensional spherical annulus, the domain $R_{1}<r<R_{2}$ as shown in Figure 2-1.

Figure 2-1. Spherical Eubble Model
The vapor-and-gas-filled bubble ($r<R_{1}$) has uniform composition, because gas-phase diffusivities exceed liquid phase diffusivities by several orders of magnitude. The external gas $r>R_{2}$ has known pressure and composition. The interface at R_{2} is considered to be a screen like the wall of an artery so that the pressure difference across the interface is uncoupled from that otherwise dictated by surface tension and R_{2}. At $r=R_{1}$ no screen exists, so the vapor-to-liquid pressure difference is $2 \sigma / R_{1}$ where σ is surface tension.

The following heat pipe scenario is postulated: The heat pipe pictured in Figure 2-2 operates with an active section at 300 K and a gasblocked condenser at 250 K long enough for the artery liquid to saturate with the gas. Then as pictured in Figure 2-3 the condenser is briefly frozen and then thawed to 180 K . Upon thawing of the gas-blocked condenser, there are, as has been observed experimentally, large numbers of minute bubbles released from the ice, but most diffuse back into solution. A few are postulated to condense to form the bubble of prescribed size $R_{1,0}$. The noncondensible gas compositions in the bubble and in the liquid were taken to be the same, the same as that in the saturated liquid at 250 K . The condenser then warms up at a prescribed rate as pictured in Figure 2-3, affecting the vapor composition in the external gas. Because thermal diffusion proceeds at a much higher rate than mass diffusion (Prandtl number is much smaller than Schmidt number), the artery liquid is assumed to be in thermal equilibrium with the condenser temperature, and the vapor composition of the internal gas is also affected.

Figure 2-2. Axial Temperature Profile

Figure 2-3. Postulated Gas-Blocked Condenser Temperature History

2.2 GOVERNING EQUATIONS FOR THE SPHERICAL BUBBLE

Within the liquid, conservation of mass species i takes the form.

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial t}+v \frac{\partial x_{i}}{\partial r}=D_{i}\left(\frac{\partial^{2} x_{i}}{\partial r^{2}}+\frac{2}{r} \frac{\partial x_{i}}{\partial r}\right) \tag{2-1}
\end{equation*}
$$

where $\mathbf{i}=2$ to \mathbf{n} ($\mathbf{i = 1}$ is reserved for the liquid). The quantity x_{i} is the mole fraction of species i, and r is the radius. The assumption has been made that the solution is dilute and isothermal, so the molar concentration c is constant at that of the liquid, and the diffusivity D_{i} for species \mathbf{i} in the liquid is unaffected by the other dilute species present. The radial velocity v is caused entirely by growth or collapse of the central bubble, because the diffusion mass transfer rates are so low, conservation of mass dictates

$$
\begin{equation*}
v=\left(\frac{R_{1}}{r}\right)^{2} \frac{\mathrm{dR}_{1}}{\mathrm{dt}} \tag{2-2}
\end{equation*}
$$

Within the central bubble the gas is assumed to be uniform in composition and pressure, because the gas-phase diffusivities are high compared to the liquid-phase values, and inertia forces are negligible for the small changes in bubble growth or collapse rate. Accordingly the gasphase species equations equivalent to Eq. (2-1) are not used explicitly. Rather, they are replaced by the simple expression

$$
\begin{equation*}
\frac{d w_{i}}{d t}=-4 \pi R_{1}^{2} N_{i, 1} \tag{2-3}
\end{equation*}
$$

where w_{i} is the molar content of species i within the bubble and $N_{i, 1}$ is the molar flux for species i at $r=R_{1}$, given by Fick's Law on the liquid side of the bubble meniscus as

$$
\begin{equation*}
N_{i, 1}=\left.c \quad D_{i} \frac{\partial x_{i}}{\partial r}\right|_{r=R_{1}} \quad i=2, n \tag{2-4}
\end{equation*}
$$

where c is liquid molar concentration ($\mathrm{g}-\mathrm{moles} / \mathrm{cm}^{3}$).
The molar content of the bubble is given by

$$
\begin{equation*}
w_{i}=\frac{4}{3} \pi R_{1}^{3} P_{i} / R T_{c} \quad i=2, n \tag{2-5}
\end{equation*}
$$

where T_{c} is the condenser temperature, and R is the universal gas constant. Similarly the conservation of momentum equation is replaced by a quasihydrostatic balance equation

$$
\begin{equation*}
\sum_{i=1}^{n} P_{i}=P_{1 i q}+2 \sigma / R_{1} \tag{2-6}
\end{equation*}
$$

The partial pressures within the bubble are given by Raoult's and Henry's Laws. Since x_{1} is nearly unity, Raoult's Law gives simply

$$
\begin{equation*}
P_{1}=P_{v}\left(T_{c}\right) \tag{2-7}
\end{equation*}
$$

while Henry's Law is

$$
\begin{equation*}
P_{i}=C_{i}\left(T_{c}\right) x_{i} \quad i=2, n \tag{2-8}
\end{equation*}
$$

Outside the liquid at $r=R_{2}$ the total pressure of the vapor and gas is $P_{v}\left(T_{e v}\right)$ where $T_{e v}$ is the evaporator temperature. The gas pressure in the
gas-blocked condenser is

$$
\begin{equation*}
P_{g}=P_{v}\left(T_{e v}\right)-P_{v}\left(T_{c}\right) \tag{2-9}
\end{equation*}
$$

The gas composition is specified by $Y_{i}, i=2$ to n, where Y_{i} is the mole fraction of species \boldsymbol{i} in the noncondensible. For example, if 2 is helium and 3 is nitrogen, Y_{2} might be 0.10 and $Y_{3} 0.90$ for a 10 percent helium, 90 percent nitrogen gas mixture. The saturation values of x_{i} at $r=R_{2}$ are

$$
\begin{equation*}
x_{i}=Y_{i} P_{g} / G_{i}\left(T_{c}\right) \tag{2-10}
\end{equation*}
$$

The initial conditions at $t=0$ are specified by a uniform set of x_{i}, $i=2$ to n, for the initial liquid composition, a set of Y_{i} in the gas bubble and the initial radius R_{1} of the bubble. From these there can be derived the set of $w_{i}, i=2$ to n. First, from Eqs. (2-6) and (2-7)

$$
\begin{equation*}
P_{g}=P_{1 i q}+2 \sigma\left(T_{c}\right) / R_{1}-P_{v}\left(T_{c}\right) \tag{2-11}
\end{equation*}
$$

Then from the gas law

$$
\begin{equation*}
W_{g}=\frac{4}{3} \pi R_{1}^{3} P_{g} / R T_{c} \tag{2-12a}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{g}=\sum_{i=2}^{n} w_{i} \tag{2-12b}
\end{equation*}
$$

Finally

$$
\begin{equation*}
w_{i}=Y_{i} w_{g} \tag{2-13}
\end{equation*}
$$

2.3 TRANSFORMATION AND NUMERICAL SOLUTION

It is convenient to anchor the spatial coordinate to the bubble interface and make the coordinate dimensionless with respect to $R_{2}-R_{1}$.

$$
\begin{equation*}
n=\frac{r-R_{1}(t)}{R_{2}(t)-R_{1}(t)} \tag{2-14}
\end{equation*}
$$

where $R_{2}(t)$ is given by

$$
\begin{equation*}
\frac{4}{3} \pi R_{2}^{3}-\frac{4}{3} \pi R_{1}^{3}=\frac{4}{3} \pi R_{2,0}^{3}-\frac{4}{3} \pi R_{1,0}^{3} \tag{2-15}
\end{equation*}
$$

Velocity v given by Equation (2-2) becomes

$$
\begin{equation*}
v=\left(\frac{R_{1}}{R_{1}+n \Delta R}\right)^{2} \dot{R}_{1} \tag{2-16}
\end{equation*}
$$

Partial derivatives with respect to r at constant t (and thus at constant R_{1} and $\Delta R=R_{2}-R_{1}$) are given by

$$
\begin{equation*}
\frac{\partial x_{\mathbf{i}}}{\partial r}=\frac{\partial x_{\mathbf{i}}}{\partial \eta} \frac{1}{\Delta R} \tag{2-17}
\end{equation*}
$$

The partial derivative with respect to t at constant r must be transformed to one with respect to t at constant n

$$
\begin{align*}
& \left.\frac{\partial x_{i}^{i}}{}\right|_{r}=\left.\frac{\partial x_{i}}{\partial t}\right|_{\eta}+\left.\left.\frac{\partial x_{i}}{\partial n}\right|_{t} \frac{\partial \eta}{\partial t}\right|_{r} \tag{2-18}\\
& \left.\frac{\partial \eta}{\partial t}\right|_{r}=-\frac{1}{\Delta R} \dot{R}_{1}-\frac{\left(r-R_{1}\right)}{\Delta R^{2}} \Delta \dot{R} \tag{2-19}
\end{align*}
$$

Hence Equation (2-1) becomes

$$
\begin{aligned}
& \left.\frac{\partial x_{i}}{\partial t}\right|_{\eta}+\left.\frac{\partial x_{i}}{\partial \eta}\right|_{t}\left(-\frac{1}{\Delta R} \dot{R}_{1}-\frac{\eta}{\Delta R} \Delta \dot{R}\right)+\left(\frac{R_{1}}{R_{1}+\eta \Delta R}\right)^{2} \frac{\dot{R}_{1}}{\Delta R} \frac{\partial x_{i}}{\partial \eta} \\
& \quad=D_{i}\left(\frac{1}{\Delta R^{2}} \frac{\partial^{2} x_{i}}{\partial \eta^{2}}+\frac{2}{R_{1}+\eta \Delta R} \frac{1}{\Delta R} \frac{\partial x_{i}}{\partial \eta}\right)
\end{aligned}
$$

Collecting terms gives
$\frac{\partial x_{i}}{\partial t}+\left(\frac{R_{1}{ }^{2} \dot{R}_{1}}{\left(R_{1}+\eta \Delta R\right)^{2} \Delta R}-\frac{(1+\eta) \dot{R}_{1}}{\Delta R}-\frac{2 D_{i}}{\left(R_{1}+\eta \Delta R\right) \Delta R}\right) \frac{\partial x_{i}}{\partial \eta}-\frac{D_{i}}{\Delta R^{2}} \frac{\partial^{2} x_{i}}{\partial \eta^{2}}=0$
Since large values of $\partial x_{i} / \partial \eta$ are expected near $\eta=0$, computational efficiency is improved by transforming the n coordinate to z so as to expand the region near $n=0$ relative to the region near $n=1$. A negative
value of the parameter γ in the following coordinate transformation achieves the desired result.

$$
\begin{equation*}
z=\frac{1-\mathrm{e}^{\gamma \eta}}{1-\mathrm{e}^{\gamma}} \tag{2-21}
\end{equation*}
$$

After transformation Equation (2-20) is in he form of

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial t}+F \frac{\partial x_{i}}{\partial z}+G \frac{\partial^{2} x_{i}}{\partial z^{2}}=0 \tag{2-22}
\end{equation*}
$$

where F and G are functions of $z, R_{1}, \dot{R}_{1}, D_{i}$, and γ (recall that R_{2} and hence ΔR is given by Equation (2-15)).

Equation (2-22) is solved numerically in finite difference form. Let subscript j denote z location and superscript o and $o o$ denote values at $t-\Delta t$ and $t-2 \Delta t$ respectively. The species subscript i is dropped to avoid confusion. The temporal derivative is approximated as

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial t}=\frac{1}{\Delta t}\left[a_{1} x_{j}+a_{2} x_{j}^{o}+a_{3} x_{j}^{00}\right] \tag{2-23}
\end{equation*}
$$

where for constant time increment $\Delta t, a_{1}=3 / 2, a_{2}=-2$, and $a_{3}=1 / 2$. The spatial derivatives are

$$
\begin{align*}
& \frac{\partial x_{\mathbf{i}}}{\partial z}=\frac{x_{j+1}-x_{j-1}}{2 \Delta z} \tag{2-24}\\
& \frac{\partial^{2} x_{j}}{\partial z^{2}}=\frac{x_{j+1}+x_{j-1}-2 x_{j}}{(\Delta z)^{2}} \tag{2-25}
\end{align*}
$$

Equation (2-22) takes the form

$$
\begin{equation*}
x_{j}=A_{j} x_{j+1}+B_{j} x_{j-1}+C_{j}, j=2, N \tag{2-26}
\end{equation*}
$$

where $z_{2}=0$ and $z_{N}=1$. The coefficients A_{j}, B_{j}, and C_{j} may be calculated at any time step in terms of the previous known sets x_{j}^{0} and $x_{j}{ }^{00}$ and the known values of $R_{1}, R_{1}, D_{i}, \gamma$, and z_{j}. The new set of x_{j} values is computed by means of Gaussian elimination in which

$$
\begin{equation*}
x_{j}=A_{j}^{*} x_{j+1}+B_{j}^{*} \tag{2-27}
\end{equation*}
$$

Equations (2-26) and (2-27) combine to permit the forward ($j=2,3, \ldots$) calculation of $A_{j}{ }^{*}$ and $B_{j}{ }^{*}$.

$$
\begin{align*}
& A_{2}^{*}=0, B_{2}^{*}=B_{2} x_{1}+C_{2} \tag{2-28a,b}\\
& A_{j}^{*}=A_{j} /\left(1-B_{j} A_{j-1}^{*}\right) \tag{2-28c}\\
& B_{j}^{*}=\left(B_{j} B_{j-1}^{*}+C_{j}\right) /\left(1-B_{j} A_{j-1}^{*}\right) \tag{2-28d}
\end{align*}
$$

Then Equation (2-27) allows the backward ($\mathrm{j}=\mathrm{N}-1, \mathrm{~N}-2, \ldots$) calculation of x_{j} starting with the prescribed boundary value x_{n}.

Appendix B. 1 contains the listing of the program used to calculate $x\left(z_{j}, t\right)$ and $R_{1}(t)$.

2.4 THE ELONGATED BUBBLE MODEL

When a bubble grows so that its radius (R_{1}) reaches the artery radius, further growth occurs through elongation of the bubble within the artery. In the absence of a priming foil, the artery wall prevents meniscus coalescence, and a sheath of liquid is retained about the elongated bubble. Mass transfer of species $\mathbf{i}(i=2$ to n) can occur through the sheath and into or out of the end-cap liquid. Equations (2-5) and (2-12) become

$$
\begin{align*}
& w_{i}=\left(\frac{4}{3} \pi R_{a}^{3}+\pi R_{a}^{2} L\right) P_{i} / R T_{c} \tag{2-29}\\
& w_{g}=\left(\frac{4}{3} \pi R_{a}^{3}+\pi R_{a}^{2} L\right) P_{g^{\prime}} / R T_{c} \tag{2-30}
\end{align*}
$$

while Equations (2-6) through (2-11) and (2-13) remain unchanged.
Equation (2-3) and (2-4) are well approximated by

$$
\begin{equation*}
\frac{d w_{\mathbf{i}}}{d t}=c D_{i}\left[\left(2 \pi R_{a} L \varepsilon / \tau \Delta R\right)+\left(F / R_{a}\right)\right] \Delta x_{i} \tag{2-31}
\end{equation*}
$$

where Δx_{i} is the difference in mole fraction between that of the inside liquid at the bubble-liquid interface and that of the outside liquid at the condenser-gas-liquid interface. The quantity ε is the artery screen
void fraction, τ is its tortuosity, and F is the conduction shape factor for a hemispherial bubble of radius R_{a} in a semi-infinite cylinder of radius $R_{a}+\Delta R$. For the CTS heat pipe arteries $R_{a} \doteq 0.0127 \mathrm{~cm}, \varepsilon \doteq 0.37$, $R_{a} / \Delta R \doteq 8$, and $F \doteq 8$.

Equation (2-31) was integrated numerically with Equation (2-30) used to find L in a Runge-kutta type algorithm.

2.5 PROPERTIES USED IN CALCULATIONS

Figures 2-4 (Ref. 3) shows the solubility data used for the calcuiations. Shown versus temperature is the mole fraction in the liquid for a partial pressure of 1 atm , that is the reciprocal of Henry's constant in atm^{-1}. The variation with temperature will be shown to be quite significant. For now, merely note that methane and argon become less soluble in methanol with increasing temperature (as does air in water) while helium becomes less soluble with decreasing temperature. The solubility of nitrogen in methanol is nearly independent of temperature. Helium is seen to be only sparingly soluble while methane is quite soluble in methanol.

Figure 2-5 (Ref. 4) shows the diffusivity of argon and helium in liquid methanol versus reciprocal temperature. The theory shown in the figure agreed poorly with experimental data, and it was decided to fit the experimental data with an Arrhenius relation. Since data were lacking and theory seemed dubious, it was decided to use the experimental helium fit for helium diffusivity and the experimental argon fit for the diffusivity of argon, nitrogen, and methane. Thus the calculated results for the latter two gases should be regarded as only qualitatively correct. When reliable data for these latter two gases become available, a minor timescale expansion or contraction wili be necessary to adjust for the approximate values of diffusivity used.

2.6 RESULTS FOR THE SPHERICAL BUBBLE

Figures 2-6 through 2-9 show the calculated results for the spherical bubbles. Each of the four figures is for a different gas: helium, argon, methane, and 10 percent He 90 percent N_{2}, respectively. For a given condenser warmup rate and initial bubble size, helium bubbles are seen to persist for very much longer times than argon bubbles. Methane bubbles disappear much faster than even argon bubbles. The explanation is simply

Figure 2-4. Solubility of Various Gases in Methanol as Function of Temperature (from Reference 3)

Figure 2-5. Diffusivity of Helium and Argon in Methanol as Function of Temperature (from Reference 4)

Figure 2-6. Spherical Bubble Radius History, Helium Gas

Figure 2-8. Spherical Bubble Radius History, Methane Gas

that, despite its higher diffusivity, the solubility of helium in methanol is low; hence the values of $\epsilon_{i} \Delta x_{i}$ are low for helium. Because of the helium component, the $90 \% \mathrm{~N}_{2}-10 \% \mathrm{He}$ noncondensible gas mixture displiays long bubble lifetimes.

For a given gas and condenser warmup rate, small bubbles disappear much faster than large bubbles. In the small bubble the gas pressure is larger due to surface tension, so the values of x_{i} are larger. The mass transfer coefficient area product decreases with size as R_{1}, but the volume of gas remaining decreases as $R_{1}{ }^{3}$.

With helium gas in a bubble of a certain initial size, increasing the condenser warmup rate increases the solubility and diffusivity of the helium and hastens the reabsorption of the bubble, despite a decreased surface tension, and an increased pressure of methanol vapor which tends to swell the bubble.

With argon the increase in diffusivity with increasing temperature causes the same type of behavior as in the case of helium but to a lesser degree. With methane, however, the increase in diffusivity offsets the decrease in solubility and lessened surface tension, so that the time to reabsorb small bubbles is nearly independent of condenser warmup rate. A complex behavior is seen for the large bubble and high condenser warmup rate. In that case, the fall in solubility of methane and the increase in methanol vapor pressure combine to cause the methane gas and methanol vapor bubble to swell before ultimately collapsing.

Table 2-1 summarizes the bubble lifetime results. Note the much longer times necessary for helium-containing bubbles to be reabsorbed.

2.7 RESULTS FOR THE ELONGATED BUBBLE

Figures 2-10 through 2-13 show calculated results for the elongated bubbles. Again each figure is for a different gas or gas mixture. Again helium-containing bubbles are seen to persist to a much longer time, while methane bubbles are most readily reabsorbed. Again an increase in condenser warmup rate strongly hastens the reabsorption of helium bubbles and weakly hastens the reabsorption of argon and methane bubbles. Bubble swelling, elongation in this case, is seen in all cases, because reabsorption is initially slower than for small spherical bubbles. A final

Table 2-1. Calculated Spherical Bubbles Lifetimes

Gas/Gas Mixture	Initial Radius (cm)	Condenser Warm-up Rate (Kisec)$\begin{array}{l\|l\|l} 0.0 & 0.01 & 0.05 \end{array}$		
		Time, in seconds, at which bubble radius reaches $1 / 10$ of initial radius.		
MethaneCH_{4}	0.01	15	15	15
	0.02	68	68	68
	0.04	3775	4362	3712
Helium He	0.01	10717	4055	1658
	0.02	64411	9998	6782
	0.04	371408	38651	35409
Argon Ar	0.01	208	204	194
	0.02	3614	2790	1884
	0.04	27890	10740	8460
CTS Mixture $90 \% \mathrm{~N}_{2} / 10 \% \mathrm{He}$	0.01	1514	1216	782
	0.02	10777	4950	2823
	0.04	67520	16038	14150

-44-

observation is that the helium in the helium-nitrogen gas mixture becomes the residual gas in the bubble at long times and low condenser warmup rates and requires a long time to diffuse out of the bubble.

Tajle 2-2 summarizes the calculations of the elongated bubble lifetimes.

Table 2-2. Calculated Elongated Bubbles Lifetimes

Gas/Gas Mixture	Initial Length CM	Condenser Warm-up Rate (K/sec)			Time, in seconds, at which bubble length reaches $1 / 10$ of initial length.
	2.5	110,070	42,655	40,555	
Kelium He	2.5	$5,069,500$	436,000	432,300	
Argon Ar	2.5	406,600	101,600	99,000	
CTS Mixture $90 \% ~ N_{2} / 10 \% ~ H e ~$	2.5	998,800	182,560	186,440	

2.8 SIGNIFICANCE OF THE ANALYTICAL/NUMERICAL RESULTS

The CTS heat pipes contained $90 \% \mathrm{~N}_{2}-10 \% \mathrm{He}$ control gas. The helium was added to facilitate leak detection. In retrospect, that decision appears to have been unfortunate. For should gas bubbles be created by freezing in the gas-blocked condenser and should they coalesce into bubbles approaching. 0.8 mm in diameter, their lifetimes are seen to be on the order of 20 hours when the condenser warmup rate is slow. Larger sausage bubbles are seen to persist hundreds of hours, that is, some ten days or more. Such bubbles, if present through cyclic freezing and thawing may be enlarged through a fractionation process reminiscent of the making of New England applejac'. With each freezing episode dissolved gas is forced out
of the ice into the bubble. A large bubble can persist many days even after freezing no longer occurs provided it is in the gas-blocked region. When the heat pipe is powered up, and the gas front approaches the bubble, Marangoni Flow brings the bubble into the active condenser, and condensate flow sweeps it up the pipe toward the evaporator to a location where the local vapor-liquid pressure difference exceeds the capillary pressure of the artery, and the artery deprimes.

The results suggest that methane would make a good control gas, because methane bubbles up to 0.8 mm in diameter are reabsorbed in approximately one hour. Thus there is little likelihood that a 24 hour periodic freezing and thawing could create a large bubble, and the small bubbles released from thawing ice would be reabsorbed before the approach of the gas front.

3.0 CYCLIC FREEZE/THAW TESTS ON SN009 HEAT PIPE

3.1 TEST OBJECTIVES

Phase II objective 2 was to simulate an anomaly with the SNOO9 heat pipe by cyclic freezing and thawing of the condenser during a 5-day extended continuous test period. The goals of the tests were (a) to demonstrate the generation and collection of bubbles in the arteries and their migration or induction into the active section of the heat pipe where their presence could result in depriming of at least a single artery, and (b) to establish by test data analysis that freezing blowby or suction freezeout rather than bubble formation was not the cause of the observed heat pipe failure.

3.2 APPARATUS AND TEST PROCEDURE

The test assembly described in Figure 3-1 is similar to the one used for tests on the SNOO9 heat pipe during Phase I of this program. As shown, the heat load is applied on the heat pipe over a 0.305 meter long section by means of an attached 4.0 kg heated aluminum block.

The heat pipe condenser, 0.91 meter long, is mounted on an aluminum plate whose area and thermal mass corresponds approximately to the effective portion of the CTS radiator. This plate is coupled to the sink through 0.32 centimeters of cork over a 0.1045 square meter area. Tape heaters attached along the plate allow changing the condenser temperatures even with a constant temperature sink.

A cooling coil with tape heaters is attached to the gas reservoir for purposes of controlling its temperature independently from the rest of the heat pipe assembly.

The heat pipe test assembly is instrumented with seventeen temperature sensors, the location of which are shown in Figure 3-2. The sensors are connected to a 24 -channel strip chart recorder which allows monitoring these temperatures at 1.5 minute intervals.

The test procedure in Table 3-1 outlines the basic steps for conducting the cyclic freeze/thaw tests on the SNOO9 heat pipe. Steps 1 through 5 represent the original procedure for repriming the heat pipe and adjusting the operating parameters in preparation for the commencement of a new cycle. As indicated in the procedure, the selected evaporator elevation and heat

[1] EVAPORATOR MEATER STRIPS G PL
CONDENSER HEATER STRIPS YPL CONDENSER CLAMP SADDLE
$[\pi]$
田回

Figure 3-1. Engineering Sketch of SNOO9 Heat Pipe Test Assembiy

SK SOOU					
	LTR	REVISIONS			

Figure 3-2. Locations of Thermocouples on SNOO9 Test Assembly

Table 3-1. SN009 Heat Pipe Freeze/Thaw Cyclic Test Procedure Outline

Using the test assembly described in SK80010 and SK80011, perform the cyclic tests for a period of 120 continuous hours in accordance with the following procedure:

1. Leve 1 heat pipe to within 1.0 mm .
2. Isothermalize heat pipe to within $1^{\circ} \mathrm{C}$ and wait 30 minutes.
3. Elevate evaporator end 1.2 cm above condenser.
4. Apply 130 watts to evaporator heater and verify artery priming. If arteries are primed, proceed with Step 5, otherwise, repeat Steps 1 through 4.
5. Reduce sink plate, inactive condenser and gas reservoir temperatures to the following levels:
a) Sink plate: lower than $-145^{\circ} \mathrm{C}\left(-229^{\circ} \mathrm{F}\right)$
b) Inactive condenser: $-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
c) Gas reservoir: $-95^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(-139^{\circ} \mathrm{F}\right)$

Reservoir temperature reduction rates should not exceed $-2^{\circ} \mathrm{C} / \mathrm{min}$ ($-3.6^{\circ} \mathrm{F} / \mathrm{min}$).
6. Simultaneously, reduce temperatures in inactive condenser section below $-102^{\circ} \mathrm{C}\left(-152^{\circ} \mathrm{F}\right)$ and increase gas reservoir temperature to $-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ over a period of approximately 25 minutes. Maintain subfreezing condenser temperatures for at least 12 minutes. If heat pipe fails, repeat Steps 1 through 6.
7. Increase inactive condenser temperatures to $-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ over a period of approximately 20 minutes and simultaneousily start reducing gas reservoir temperature to $-95^{\circ} \mathrm{C}$ over a period of 180 to 200 minutes. At no time should the reservoir cooling rate exceed $-2^{\circ} \mathrm{C} / \mathrm{min}$. If heat pipe fails, repeat Steps 1 through 7.
8. Repeat Steps 6 through 8.
load on the heat pipe for the tests are 1.25 centimeters and 130 watts, respertively.

The tilt on the pipe is meant to minimize the contribution of excess fluid inventory to the pumping capacity of the pipe and to compensate to a certain extent for that component of the buoyancy force vector tending to keep the bubbles against the upper walls of the arteries.

Although heat loads over 90 watts are known to be in excess of the heat pipe one-artery capacity, the higher heat load of 130 watts is chosen in order to enhance the migration of bubbles toward the evaporator by virtue of higher fluid flow rates inside the arteries.

Steps 6 through 8 of an idealized freezing/thawing test cycle are shown graphically in Figure 3-3 where segments ($B-C$), ($B-D$), and ($B-E$) represent different condenser warmup rates. These steps are described in conjunction with the figure in what follows.

Figure 3-3. Idealized Freezing/Thawing Cycle "A"

By turning off the heaters on the condenser plate, the inactive condenser section is allowed to cool from $-40^{\circ} \mathrm{C}$ (Point A) to below the freezing point of methanol (B) at a rate of approximately $-4^{\circ} \mathrm{C} / \mathrm{min}$. Simultaneousiy, heat is applied to the gas reservoir to raise its temperature from about $-95^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ in approximately 25 minutes. During this period of the test cycle, the advancement of the gas front toward the evaporator resulting from reduced condenser temperatures is furtier enhanced by the increasing temperature of the gas reservoir, the net effect of the above being to inactivate temporarily a portion of the condenser to allow the liquid in the arteries to freeze. Subfreezing temperatures in the inactive condenser are maintained for ten minutes to ensure complete freezing inside the arteries.

Failure of the heat pipe during condenser freezing could be attributed to be the result of either suction freezeout or the bubbles mechanism. If this event is repeatable in every cycle, then artery depriming will be, with a high degree of certainty, due to suction freezeout. On the other hand, sporadic failure of the heat pipe during condenser freezing will be consistent with the recognized statistical nature of the bubbles mechanism. If no evidence of heat pipe burnout is observed through the end of the freezing process, the test cycle continues with Step 7, otherwise, Steps 1 through 6 are repeated.

During Step 7, (e.g., B-C) power is applied to heaters on the condenser plate to thaw the inactive condenser and raise its temperature in approximately 25 minutes to $-40^{\circ} \mathrm{C}$ where it is held within $\pm 5^{\circ} \mathrm{C}$ for the remainder of the 240 -minute test cycle. About the time the inactive condenser starts to thaw $(B+)$, cooling of the gas reservoir is initiated and allowed to continue through the end of the cycle (F) at an average rate of $0.3^{\circ} \mathrm{C} / \mathrm{min}$. Reservoir cooling rates are not permitted to exceed $2^{\circ} \mathrm{C} / \mathrm{min}$ to preclude the sudden cooling mechanism from taking place.

During this period of the test cycle, (e.g., B-C) rising condenser temperatures will cause the gas/vapor front to advance toward the reservoir end of the condenser, thawing the previously inactive section of the pipe and presumably engulfing into the active section bubbles that were generated during the freeze/thaw process. The simultaneous and continuous reduction of the gas reservoir temperature will have t'o significant effects
on the bubbles mechanism. First, it will cause a continuous movement of the gas front toward the reservoir during which additional bubbles will be induced into the active portion of the heat pipe where their migration toward the evaporator is enhanced. Second, reservoir cooling will tend to diminish the pressurization of the heat pipe resulting from increasing condenser temperatures and will cause subsequently, after the condenser reaches a steady state, (e.g., C) a continuous decrease of the total pressure in the heat pipe.

Exploratory analyses using the spherical bubble model indicate that pressure reduction in the heat pipe environment can significantly increase bubbles lifetimes. Longer bubble lifetimes are certainly a factor enhancing the potential of the bubble mechanism to deprime the arteries.

A heat pipe failure observed about the time the inactive condenser undergoes thawing ($B+$) could be attributed to either the postulated freezing blowby or the bubbles mechanism. The fact that artery depriming due to freezing blowby is not statistical in nature requires in order to consider the freezing blowby mechanism the culprit, that failures during the thawing process ($B+$) occur at every cycle. Sporadic heat pipe failures during the thawing process or at any other time during the test cycles will be considered to be the result of bubble migration and growth in the arteries. If no evidence of heat pipe burnout is observed by the end of the 240 -minute test cycle, (F) Steps 6 and 7 are repeated for the remainder of the 120 -hour continuous test period.

3.3 TEST RESULTS

The cyclic tests on the SNOO9 heat pipe were performed from April 14 to April 19, 1980. A total of twenty seven partial and complete cycles were achieved during which seventeen burnouts or heat pipe failures were observed. A summary of the test results is presented in Figure 3-4. It shows the temperatures at nine different locations along the heat pipe at the end of the cooling period (Condition ' A ') and those observed near the time of burnout or at the end of a cycle (Condition ' B ').

The tests commenced at 0600 hours when the heat pipe was tilted 1.25 cm and 130 watts were applied to the evaporator block. After having esiablished that both arteries were primed, cooling of the condenser was
Summary of SNOO9 Heat Pipe Freeze/Thaw Cyclic Tests
*C.W.R.: Condenser Warm-up Rate ($\mathrm{dT}_{11} / \mathrm{dt}$)

	comoition 'A' TEMPERATURES AT END OF COOLING PERIOD SENSOR TEMPERATURE (C)									CONDITION 'B' TEMPERATURES AT BURNOUT OR AT END OF CYCLE SENSOR TEMPERATURE (C)											COMENT/OBSERVATION
RUN	(1)	(13)	(1)	(19)	(9)	(8)	(7)	(5)	(1)	(13)	(13)	(1)	(1)	(9)	(8)	(7)	(5)	(1)			
1	-40	$\therefore 7$	-132	-121	-65	6	31	32	34	-46	-	-79	-43	-	-	32	-	38	11	5.0	Burnout
2	-46	-125	-146	-140	-96	19	29	31	33	-96	-59	-43	4	27	29	31	31	34	190	5.0	Mormal cycle
3	-48	-103	-127	-121	-73	10	29	31	33	-44	-71	-71	-44	21	31	34	35	38	12	4.7	Burnout
4	-40	-101	-119	-111	-59	21	31	32	34	-36	-59	-51	-3	31	35	36	37	39	12.5	5.3	Burnout.
5	-33	-	-136	-131	-88	21	31	32	34	-39	-	-87	-72	8	31	34	34	36	10	5.3	Burnout
6	-37	-123	-124	-122	-75	9	29	32	33	-91	-40	-41	2	27	29	31	31	34	180	2.2	Nomal Cycle
7	-47	-133	-136	-132	-99	-9	28	31	32	-94	-41	-42	8	27	29	31	32	39	180	2.5	Normal Cycle
8	-42	-126	-127	-121	-75	9	29	31	33	-42	-101	-102	-90	-37	27	31	34	36	10	3.6	Burnout
9	-51	-126	-128	-122	-75	11	28	31	32	-57	-68	-69	-41	23	30	33	34	36	45	2.2	Burnout
10	-56	-123	-125	-114	-68	6	28	31	32	-53	-101	-102	-86	-26	25	31	32	34	15	2.2	Burnout
11	-46	-140	-142	-137	-93	-1	26	31	32	-43.	-107	-108	-99	-49	24	31	32	36	12	3.3	Burnout
12	-49	-132	-133	-126.	-82	-6	28	31	32	-51	-103	-106	-91.	-29	23	31	32	35	22	1.4	Burnout
13	-53	-126	-128	-117	-71	2	28	31	32	-51	-109	-111	-97	-43	21	29	31	-37	32	0.9	Burnout
14	-48	-126	-127	-121	-74	11	28	31	32	-41	-117	-118	-111	-68	18	29	32	36	12	0.8	Burnout
15	-54	-107	-121	-108	-60	23	29	31	33	-53	-72	-69	-38	${ }^{23}$	31	33	34	36	70	0.8	Burnout
16	-56	-107	-122	-111	-66	23	28	31	32	-58	-107	-112	-98	-42	21	29	31	34	15	0.8	Burnout
17	-48	-114	-136	-127	-94	-11	28	31	32	-52	-108	-118	-107	-56	13	28	31	${ }^{36}$	15	1.7	Burnout
18	-48	-105	-124	-113	-71	13	28	31	32	-94	-57	-39	16	27	29	31	31	33	275	0.4	Normal Cycle
19	-93	-99	-96	-74	-26	26	27	28	30	+112	-56	-36	19	27	29	30	31	32	215	1.7	Normal Non-freez
20	-101	-98	-96	-75	-32	24	27	28	29	-96	-57	-39	14	26	29	30	${ }^{31}$	33	180	6.7	
21	-100	-97	-94	-71	-10	21	26	28	29	-62	-51	-39	12	${ }^{28}$	31	33	34	36	230	6.7	$\overline{\text { Normal }}$
22	-80	-126	-128	-108	-58	22	26	28	29	-68	-54	-42.	2	28	31	32	33	35	190**	Rapid	Hormal
23	-79	-131	-134	-118	-73	21	26	${ }^{28}$	30	-71	-47	-34	3	29	32	33	34	36	15**		Burnout $\left\{\begin{array}{l}\text { Power off after } \\ \text { Freez ing/P Power on } \\ \text { after }\end{array}\right.$
24	-68	-147	-154	-147	-107	-26	21	28	30	-64	-51	-39	8	27	31	33	34	36	183**		Mormal after mamin
25	-46	-99	-118	-105	-54	18	29	31	33	-80	-73	-65	-34	23	29	30	31	33	180	0.4	Normal Cycle
126	-40	-100	-120	-113	-69	12	29	32	34	-71.	-124	-126	-113	-66	21	28	29	31	30	0.2	Burnout
27	-69	-121	-124	-111	-63	3	27	29	31	-84	-73	-63	-31	24	29	31	32	34	165	-	Burnout when CWR increased from 0.19 to $5 \mathrm{C} / \mathrm{Min}$.

initiated by turning the radiator heaters off. This process continued until subfreezing temperatures in the inactive condenser section, as indicated by temperature sensors 10,11 and 12 , were realized. These sensors showed minimum temperatures of $-120 C,-132 C$ and $-114 C$ respectively prior to the initiation of the condenser warm-up period. Approximately eleven minutes after the radiator heaters were turned on, the heat pipe failed. About the time of the failure, the condenser warm-up rate (CWR) was about $9 F / m i n$ and the minimum temperature in the condenser section, shown by sensor 11, was -79C which is 19C above the freezing point of methanol, thus well past point B^{+}in Figure 3-3.

Subsequent to burnout, the heat pipe was leveled and allowed to reach close to isothermal conditions over a period of two hours. The pipe was then tilted 1.25 cm and 130 watts were applied to the evaporator, but the heat pipe failed to sustain the load. The above priming procedure was repeated with similar results.

The inability of the heat pipe to hold the load after two priming attempts was postulated to be the result of the presence of residual bubbles in the arteries. It was decided then to modify the procedure to prime the pipe, by requiring that the evaporator end be raised 61 cm for one minute before leveling the pipe. The high tilt would presumably eject all the liquid and residual bubbles from the arteries. After the pipe was leveled for thirty minutes, 130 watts were applied to the evaporator raised 1.25 cm . This time priming of the arteries was verified and the second cycle was started. The latter procedure for priming the heat pipe was followed through the rest of the test period with successful results.

Cycle number 2 was the first complete normal cycle and was followed by three burnouts observed during the condenser warm-up periods of cycles 3 , 4 and 5, at which times the CWR was, approximately $5 \mathrm{C} / \mathrm{min}$ ($9 \mathrm{~F} / \mathrm{min}$).

The partial history of selected temperatures along the heat pipe during normal cycle 2 is shown in Figure 3-5. It can be seen that prior to condenser warmup the ice front almost reaches the locations of sensor 9, i.e., approximately 18 inches of the condenser end were frozen. During the warmup period of the cycle the figure shows the gas front moved close to sensor 10 which indicates that a portion of the previously frozen condenser became part of the active condenser section.

The large proportion of failures, four out of five, was attributed to rapid thawing and warming of the inactive condenser, events which were originally postulated to result in the formation of bubbles inside the arteries and in their rapid induction into the active portion of the condenser before the bubbles could vent by diffusion. Once in the active portion of the pipe, these bubbles would grow and deprime the artery.

A typical temperature history of the four cycles during which depriming was observed is that of cycle 4 shown in Figure 3-6. As shown, the ice front was located somewhere between sensors 9 and 10 at the end of the cooling period of the test cycle. During the warmup period depriming is observed apparently at the time the gas front reachied the previous location of the ice front. The fact that depriming occurred approximately 9 minutes after the inactive condenser completely thawed, the possible involvement of freezing blowby in these heat pipe failures can be discounted, therefore it can be argued that depriming can only be the result of bubbles.

In order to determine the effect of condenser warm-up rates on the frequency of heat pipe failures, the CWR during the next six cycles was reduced an average of fifty percent. The results were that the heat pipe performed normally during two consecutive complete cycles, cycles 6 and 7, at the reduced CWR of about $2.2 \mathrm{C} / \mathrm{min}$. The following four cycle;, however, resulted in burnouts during condenser warmup at rates varying from $2.2 \mathrm{C} / \mathrm{min}$ to $3.6 \mathrm{C} / \mathrm{min}$. The variation in these CWRs was not intentional but rather the result of the limited heater control capability of the test assembly.

The typical partial temperature history of normal cycles 6 and 7 is that of cycle 6 shown in Figure 3-7. The temperature history of cycle 11 shown in Figure 3-8 is similar to that of cycles 8 and 10 . As in most previous cycles, the ice front can be seen located between sensor 9 and 10 at the end of the cooling period. Figure 3-8 shows however, that depriming occurred under significantly different condenser conditions in most cycles at the lower co: denser warmup rate: 1) the inactive condenser was still partially frozen (last 12 inches) and 2) temperatures of sensors 8 and 9 indicate the gas/vapor front never reached the previously frozen region.

Because the condenser was not completing the thawing process at the time of burnout, freezing blowby can be discounted as the cause of pipe

failure which, then can be attributed only to be the result of bubbles. However, the fact that portions of the previously frozen condenser section were never incorporated into the active heat pipe section, a condition that was postulated to be necessary to induce bubbles into the evaporator, seems to indicate that other mechanisms such as Marangoni Flow were involved to move bubbles into the active portion of the condenser where further growth or movement would be expected.

It was postulated that depriming due to bubbles released in the inactive section occurred as follows. During the cooling period the freezing front moves toward the evaporator expelling bubbles which are then locked inside the ice and building stress on the arteries due to suction freezeout. This process continues until the end of the cooling period when the imposed stress on the arteries due to freezeout reaches a maximum level. This increase in stress is accompanied by a reduction of the hydrodynamic stress which results from shrinkage of the effective length due to advance-ment. of the gas/vapor front toward the evaporator.

This imposed stress on the arteries due to suction freezeout is either overcompensated by the reduced hydrodynamic stress or the unused pumping capacity of the artery, for no heat pipe failures were observed during the cooling periods of the test cycles. During the warmup period, the advancement of the gas/vapor front toward the reservoir end results in increased hydrodynamic stress as the effective length expands, and in the propagation of a conduction heat wave which causes the ice front to recede and release liquid and bubbles upon thawing. Although the release of the liquid reduces the stress that came from suction freezeout, there remains sufficient back stress on the arteries in the gas-blocked region to induce growth of the released bubbles. These bubbles agglomerate and then reach the active section due to continuing growth and/or Marangoni Flow.

Whereas depriming during cycles 8,10 , and 11 occurred 10 to 12 min utes into the warmup period before the gas/vapor front reached previously frozen sections, depriming in cycle 9, as shown in Figure 3-9, occurred approximately 45 minutes into the warmup period, 25 minutes after the condenser completely thawed. An interpretation of the data seems to indicate that bubbles first released about the previous location of the ice front somewhere between sensors 9 and 10 were subsequently incorporated into the

active portion and caused depriming when the gas/vapor front reached that location 45 minutes later.

During test cycles 12 through 18, the heat pipe inactive condenser was warmed up at even lower rates ranging from $0.4 \mathrm{C} / \mathrm{min}$ to $1.7 \mathrm{C} / \mathrm{min}$. Burnouts were observed in all these cycles, except in cycle 18 which had the lowest CWR of $0.4 \mathrm{C} / \mathrm{min}$.

The temperature history of cycle 13 is shown in Figure 3-10. It can be seen that depriming occurred before the gas/vapor reached previously frozen sections and while the last 12 inches of the condenser were below the freezing point. Similar observations can be made of deprimings observed during cycles $12,14,16$ and 17.

Depriming during cycle 15, as shown in Figure 3-11, occurred under different conditions. It can be seen that when the gas/front apparently reached previously frozen areas a burnout was triggered. At this time the condenser had been completely thawed for approximately 40 minutes.

Normal freezing cycle 18, was followed by three cycles during which the inactive condenser was rapidly cooled to temperatures just above the freezing point and then warmed at rates as high as $6.7 \mathrm{C} / \mathrm{min}$. The idealized nonfreezing cycle is described graphically in Figure 3-12. These nonfreezing test cycies were performed to support the hypothesis that the frequency of failures due to bubbles could be greatly diminished if freezing and thawing did not occur in every cycle. The fact that the heat pipe evidenced normal operation during these cycles tends to support the above. The typical temperature history of a nonfreezing test cycle is that for cycle 19 shown in Figure 3-13.

During test cycles 22 through 24, the inactive condenser was rapidly cooled below the freezing point with the heat pipe operating under 130 watts. Subfreezing condenser temperatures were maintained for at least ten minutes subsequent to which the evaporator heaters were turned off and the inactive condenser was rapidly warmed. When the inactive condenser temperatures reached about $-40 C$ the evaporator heaters were turned on again. The idea?ized cycle is described graphically in Figure 3-14. A burnout was observed during the second cycle, cycle 23, 15 minutes after the heat load

Figure 3-14. Idialized Freezing/Thawing Cycle "C"
was reestablished. This can be seen in Figure 3-15 which shows that depriming occurred apparently when the gas/vapor front reached the previously frozen condenser section.

In the last three cycles of the test program, the heat pipe, under a continuous load of 130 watts, was subjected to condenser warmup rates ranging from $0.2 \mathrm{C} / \mathrm{min}$ to $0.4 \mathrm{C} / \mathrm{min}$. Cycie 25 with the higher CWR of $0.4 \mathrm{C} /$ \min was normal. Burnouts were observed in the next two cycles. The last heat pipe failure during cycle 27, however, is worth noting since it occurred 165 minutes into the warmup period when the CWR was increased from $0.2 \mathrm{C} / \mathrm{min}$ to $5 \mathrm{C} / \mathrm{min}$. The temperature history of this cycle is shown in Figure 3-16. Although the cooling period of the cycle is not shown in this figure, Figure 3-2 indicates the ice front prior to warmup was located somewhere between sensor 9 and 10 . Figure 3-16 shows the gas/vapor front at the end of the slow warmup period was located between sensors 8 and 9. As the warmup rate was increased, it can be seen that the gas front rapidly moved between sensors 9 and 10 seemingly reaching the previously frozen section and triggering a burnout.

Following this final burnout, the heat pipe was leveled and left undisturbed over the weekend. Fifty-five hours later, when 130 watts were applied to the evaporator, the heat pipe failed to hold the load, an event seemingly pointing to the survival of bubbles from the last freeze/thaw cycle as the probable cause of artery depriming. The temperature histories of cycles not shown in this section can be found in Appendix B.2.

3.4 SIGNIFICANCE OF TESTS RESULTS

The results of the cyclic tests on the SNOO9 heat pipe clearly established that thawing the frozen condenser of an arterial heat pipe under high load is an operating mode that results in arterial failure with significant frequency. Out of twenty one freezing and thawing cycles under high load, sixteen cycles resulted in heat pipe failures. Although thawing the condenser under high load enhances the probability of artery depriming, it is not a necessary condition. This proposition is supported by the fact that out of three cycles in which the condenser was thawed under no heat load one cycle (number 23) resulted in artery failure subsequent to thawing when the heat load was reestablished on the pipe.

In twenty four freezing and thawing cycles no heat pipe failures occurred during condenser freezing. The lack of failures during freezing when the suction freezeout mechanism has its greatest potential to deprime the arteries seems to indicate that none of the observed failures during the test cycles can be solely attributed to this mechanism. Even though bubbles are known to be released during freezing they are immobilized inside the ice structure rendering a failure during freezing due to bubbles an unlikely event.

All the observed anomalies occurred during or following condenser warmup periods. The fact that the inactive condenser was either completely thawed or still frozen along a considerable length when deprimings occurred, it can be argued that the freezing blowby mechanism could not account for any of the heat pipe failures observed during the cyclic tests.

Since neither suction freezeout nor freezing blowby were the sole cause of any of the observed heat pipe failures, it can be concluded only that all the anomalies during the cyclic tests on the SNOO9 heat pipe were the result of the freezing/thawing bubble mechanism.

The freezing and thawing process is required for bubbles to form inside the arteries. Periodic freezing and thawing replenishes the bubble population which enhances the probability of artery depriming due to bubbles. The results of three normal successive cycles without freezing supports the above.

The presence of bubbles in the arteries is necessary for depriming to occur. However, depriming does not necessarily occur when bubbles are present. This statement is supported by the fact that out of 24 freeze/ thaw test cycles seven were normal (i.e., no failure occurred). These test results indicate that the occurrence of the obsarved heat pipe failures is random, which is consistent with the demonstrated statistical nature of the bubble mechanism.

During the freeze/thaw process bubbles are generated in the gasblocked condenser section. It was postulated at the outset of the cyclic tests that the active condenser length had to expand into the previously frozen section. However, in roughly half the failures the active condenser length had not yet reached the previously frozen section.

The results of the tests seem to indicate that there exists some correlation between the condenser warm-up rate and the incidence of heat pipe failures. The reduction of the condenser warm-up rate used in the first five cycles by approximately 50 percent was followed by the only two consecutive normal cycles observed during the tests. In addition, during cycle 27 depriming occurred almost two hours into the warm-up period following a rapid and large increase in the condenser warm-up rate.

Deprimings observed during cycles with high warm up rates occurred after the condenser had completely thawed and soon after the active condenser length reached the previously frozen section. On the other hand, most heat pipe failures during cycles with low warm up rates occurred while portions of the condenser were still frozen and before the active condenser length ever reached the previously frozen section. The latter failures are attributed to movement of bubbles into the active condenser helped by suction freezeout and/or Marangoni flow.

The results of several unsuccessful attempts to reprime the heat pipe after the first freeze/thaw cycle indicate that a depriming does not clear
out all the bubbles. Consequently bubbles form during a single freeze/ thaw process can result in repeated successive failures due to residual bubbles.

Numerous deprimings observed during the tests occurred 10 to 30 min utes after freezing conditions in the condenser ceased to exist. Following the last freezing and thawing test cycle, the SNOO9 heat pipe deprimed 52 hours later when the normal heat load was reestablished. This heat pipe failure can only be attributed to be the result of bubbles generated during the last freeze/thaw cycle of the test program.

These results indicate that ice-generated bubbles can last a long time, and therefore freezing at the very time of the CTS anomalies was not necessary. Thus the anomaly on day 253 can be attributed to ice-generated bubbles from day 252 or earlier.

4.0 CONCEPTS TO AVERT ARTERY DEPRIMING

4.1 NONCONDENSIBLE CONTROL GAS SELECTION

Unquestionably the simpiest and most effective concept to avert arterial depriming is the selection of a control gas that would preclude the formation of bubbles when the liquid methanol undergoes freezing and thawing. This concept is unfortunately unrealizable, for the freeze/thaw process, being a degasifying process, will result always in the formation of bubbles regardless of the noncondensible control gas selected.

Nucleation experiments performed during Phase I, showed that a large number of minute bubbles are initially released during freezing and thawing. Most of them rapidly disappear owing to their size, but others coalesce forming fewer but larger bubbles whose lifetimes strongly depend on their sizes. Larger bubbles have longer lifetimes which enhance the probability of further coalescence which results in bubbles of even longer lifetimes which can then survive until the gas/vapor front moves into previously frozen sections or until suction freezeout and/or Marangoni flow succeed in making them grow and transporting them into the active section of the heat pipe.

The above observations indicate that reducing bubble lifetimes by proper selection of a control gas can decrease to a certain extent the probability of bubble coalescence and of their induction into the active section of the heat pipe. The results of the bubble liretime analysis in Section 2.0, show, for example, that a spherical CTS control gas bubble ($90 \% \mathrm{~N}_{2} / 10 \% \mathrm{He}$) of 0.8 mm in diameter (i.e., half the CTS artery diameter) under some assumed conditions has a lifetime of about 19 hours compared to a lifetime of less than one hour for a methane bubble of the same size. The rapid dissolution of methane bubbles suggests the selection of methane for the control gas.

Although the selection of a new control gas, such as methane, will result in bubble lifetimes significantly shorter than in the CTS heat pipes which will diminish to a certain extent the probability of depriming, this concept cannot guarantee that depriming will be averted. Hewever, the use of methane in conjunction with other steps to avoid depriming should enhance the effectiveness of those steps.

4.2 OPERATIONAL PROCEDURE FOR START-UP OF A FROZEN CONDENSER

Since the bubbles leading to arterial depriming are formed by a freeze/thaw process, the avoidance of freezing will avert artery depriming. Selection of sun angle and radiator radiation properties or the use of heaters could prevent freezing in many missions. However, in missions to outer planets, avoidance of freezing may be costly or even impossible. Even when the condenser has been frozen, it is possible to thaw the heat pipe and restore it to a primed and serviceable state, provided proper procedure is followed.

The key to successful restoration of a previously frozen heat pipe is dissolution or venting of the freeze/thaw generated bubbles. Venting is discussed in Section 4.3. Dissolution requires leaving the condenser in a quiescent state somewhat above the freezing point for a time long enough to allow the bubbles to collapse. This time depends upon the control gas, the size of the largest bubble, and the pressure and temperature in the gas-blocked condenser. The advantage of methane as a control gas has been discussed. It has a high solubility-diffusivity product leading to more rapid bubble dissolution. Since the bubble aggiomeration mechanism appears to be statistical, and it is not clear that a laboratory test at $1-\mathrm{g}$ is a good indicator of agglomeration at zero-g, it is presently difficult to predict with certainty the size of the largest bubble and thus the time required for it to collapse. However, start-up can be attempted earlier than necessary merely to test whether a sufficiently long time has been allowed to elapse. If depriming occurs, the heat pipe is returned to a quiescent state for more time to pass. In the attempt at operation, at least one bubble was vented. Thus successive attempts at start up contribute to the bubble clearing process.

High pressure during the bubble collapse period hastens it. With an actively controlled heat pipe, the gas reservoir and evaporator could both be heated somewhat to raise the gas-blocked condenser pressure. It should be noted that the restart procedure would have to be used each time a segment of the gas-blocked condenser freezes and is thawed.

4.3 MECHANICAL MODIFICATIONS

In a gas-controlled arterial heat pipe it has been found that a priming foil at the end of the evaporator is necessary for successful priming [5]. Without it, gas in the pipe can be trapped inside the artery during priming. With the priming foil and with a gentle heating of the evaporator bubbles trapped in the evaporator are transported to the foil and vented.

The priming foil shown in Figure $4-1$ consists of a very thin metallic membrane with one or more holes no larger than the effective pumping pore diameter needed for the capillary flow in the active pipe. The size of the vent hole and the thickness of the foil must be such that the meniscus of a bubble of arterial size contacts the meniscus attached to the outer corners of the vent hole. Meniscus coalescence then ruptures the liquid

Fiugre 4-1. Segment of an Artery with a Priming or Venting Foil
film bridging the vent hole and allows the gas to be vented. It should be noted that the heat load during venting must be less than the open-artery capacity of the heat pipe.

The same principle can be applied to the condenser region or even to the entire pipe [5] as long as the local stress does not exceed the capillary pumping capability of the artery at that point and time. Thus a location in the condenser (or perhaps even in the adiabatic section) can be identified where under restart heat load the local stress is below this limit. At that location a screen across the artery can be placed to filter out and collect small bubbies tending to move toward the evaporator. On the condenser side of the screen a priming foil would be placed (venting holes located one artery radius from the screen) to allow venting of the collected gas should the gas volume reach arterial size.

The bubble-filter/venting-foil concept should allow a normal start up from a frozen condenser state and permit continuous normal operation of the heat pipe even though the gas-blocked condenser is undergoing periodic freezing and thawing.

5.0 CONCLUSIONS

Evidence strongly suggests that bubbles generated through freezing and thawing of methanol in the gas-blocked condenser arteries were responsible for the CTS thermal anomalies. Out of the 24 freeze/thaw cyclic tests with the SNOO9 heat pipe, 17 deprimings were observed. While some of the tests were conducted under conditions wiere probability of depriming was high, others were conducted where the prubability was low, thus emphasizing a statistical variation in the freeze-thaw bubble mechanism.

Most often depriming occurred while the gas-blocked condenser was still frozen along a portion of its length but some occurred 10 to 30 min utes after thawing was completed. In one test depriming occurred 52 hours after thawing.

Analytical-numerical studies of bubble collapse show bubble lifetimes to be strongly dependent upon bubble size and control gas composition. The helium in the CTS control gas mixture causes long bubble lifetimes when the bubbles are of arterial size. Selection of methane as a control gas would significantly shorten bubble lifetime for equal sized bubbles:

At the present level of understanding, selection of methane for control gas cannot ensure avoidance of bubble depriming. Prevention of freezing in the gas-blocked condenser by active or passive control should avert depriming. Should avoidance of freezing be inconvenient or not feasible, either installation of a bubble-filter/priming foil element at the condenseradiabatic section interface or adoption of an appropriate thawing and bubble clearing procedure would probably allow successful heat pipe operation.

6.0 REFERENCES

1. R.E. Alexovich and A.N. Curren, "Thermal Amomalies of the Transmitter Experiment Package on the Communication Technology Satellite:" NASA Technical Paper 1410, April, 1979.
2. B.D. Marcus, "CTS TEP Thermal Anomalies'- Heät Pipe System Performance," NASA Contract NAS3-21012, November 30, 1977.
3. E.W. Saaski, "Heat Pipe Temperature Control Utilizing a Soluble Gas Absorption Reservoir," NASA Report CR 137,792, February 1976.
4. E.W. Saaski, "Investigation of Bubbles in Arterial Heat Pipes," NASA Report CR 114,531, December 1972.
5. J.E. Eninger, "Menisci Coalescence as a Mechanism for Venting Gas from Heat-Pipe Arteries," AIAA Paper No. 74-748, July 1974.

APPENDIX A. 1

EXCESS SKEW IN LOAD PARTITIONING

The three heat pipes of the CTS VCHP system are designed to turn on sequentially so as to balance the load between them at full-on design conditions. However, a build up of tolerances on gas inventory during manufacture, and very low sink temperature during equinox conditions may result in the load on heat pipe No. 1 exceeding its capacity before Nos. 2 and 3 take up a significant share. Failure of No. 1 by the above mechanism or by any other could then result in a rapid transfer of load to No. 2, etc., perhaps yielding a "domino effect" failure of the whole system.

The first step in investigating this was to further review the flight data to search for regularity in the depriming sequence associated with the anomalies. Toward this end, NASA LeRC personnel provided computer plots of pertinent flight data for subsequent review.

Experimentally, attempts were made to deprime the SNOO9 heat pipe with rapid load increases, simulating rapid sequential load transfer as pipes deprime.

The tasks performed in this investigatiun are summarized below.
Flight Data Analysis to Determine Depriming Sequence
Computer plots and tabulations of CTS telemetered data were provided for days $75,82,89,101$ and 253 of 1977. Day 39 was a so-cal?ed "normal" day whereas the others were the four anomaly days.

Flight data had already been examined in a previous study effort. However, the new data included overlay plots of all pertinent data on single pages, and value; of ΔT_{3-2} and ΔT_{2-1} in addition to ΔT_{3-1} provided earlier. It was hoped that this data format might shed additional light on the system behavior, particularly the sequence in which the heat pipes deprimed on the anomaly days.

Unfortunately, the telemetry increment in the temperatures was 1.8C to 1.9C, which is of the same magnitude as the normal values of ΔT between pipes as well as the changes in temperature which accompany depriming. Consequently, it is very difficult to distinguish between
actual physical phenomena and telemetry noise. In view of this limitation, the data tentatively suggests the following:

Day 75: It appears that heat pipe No. 1 deprimed first, yielding increased values for $\Delta \mathrm{T}_{2-1}$ and $\Delta \mathrm{T}_{3-1}$. Several hours later heat pipe No. 2 deprimed, followed almost. immediately by heat pipe No. 3 and the sudden rise in body temperature.

Day 82: The data is particularly unclear this day, but as with day 75, it appears that heat pipe No. 1 failed first, followed by Nos. 2 and 3.

Day 89: No anomaly occurred on this day. However, the data suggests that heat pipe No. 2 was deprimed, causing No. 3 to carry a greater load.

Day 101: The data indicates the failure sequence was 1:2:3, as with day 75.

Day 253: In this case, heat pipe No. 3 did not even "turn-on" unti] the anomaly began, and apparently could not prevent it. Thus, it had to be deprimed from the start. In fact, the data suggests that heat pipes 2 and 3 deprimed first, with the anomalous increase in body temperature corresponding to the depriming of No. 1.

Specific interpretation of the deprining sequences is covered in the SNOO9 heat pipe test discussion that follows. However, one item of note bears discussion. If bubble nucleation within the arteries is a cause of the anomalies, then the statistical nature of the mechanism should yield one heat pipe failed occurrences far more often than two or three heat pipe failed occurrences. Day 89, in which No. 2 appears deprimed, while Nos. 1 and 3 are primed, may be such a day.

Rapid Increases in Load Tests on SNOO9 Heat Pipe
Extersive testing was performed wita the SNOOG heat pipe. The first series of tests were to determine whether there exists significant inertial effects on heat pipe capacity which could contribute to a "domino eテ̃fect" failure of ail three CTS "pipes. That is, if heat pipe No. 1
deprimed, most of the load it had carried would be suddenly transferred to No. 2, etc. If the capacity of a heat pipe were substantially lower for the sudden application of load than for gradual application (due to fluid inertia), the probability of a sequential failure of all three pipes would be enhanced.

In order to maximize the rate of load transfer into the heat pipe evaporator, attached heater blocks normally used to simulate the thermal mass of a heat source were removed and tape heaters were placed on the heat pipe saddle over a $30-\mathrm{cm}$ long section of the pipe which was then properly insulated. Testing was done for both high (-18C) and low (-95C) sink temperatures with the heat pipe evaporator elevated 2.5 cm . Heat loads ranging from 100 to 150 watts were rapidly applied resulting in no heat pipe failures. The results indicated essentially no rate effect attributable to fluid inertia. This argued against the postulated "domino effect" failure of the whole VCHP system.

APPENDIX A.2.1

INSTANTANEOUS HEAT FLOW AFTER HEAT PIPE RESERVOIR ECLIPSE

7 ma
 arencr ano serct sistime anou

INTEROFFICE CORRESPONDENCE

то: E. E. Luedke
ce: Distribution
DATE. 18 October 1978
sumbect: Instantaneous Heat Flow After Heat
 Pipe Reservoir Eclipse

INTRODUCTION
When a gas-controlled heat pipe's reservoir experiences an eciipse, the gas partial density within the reservoir rises, and the gas front retreats until the evaporator temperature drops sufficiently to establish a new equilibrium. During the transient, the evaporation from the warm end may exceed the capacity of the axial wicking, and arterial depriming may occur. It is desired to estimate the instantaneous heat flow during such a transient for comparison to the burnout heat flow capacity.

RESERVOIR COOLING RATE
The reservoir temperature versus time may be known from measurement. It is set by a heat balance between the surrounds and the thermal capacity. Let the mass of the reservoir be M and its specific heat c. Conductive coupling to the radiator is $K A / L$, and insulation is modelled with massless radiation shielding.

$$
\begin{equation*}
-m c \quad \frac{d T}{d t}=A_{R} F\left[\sigma T^{4}-\frac{\alpha}{\varepsilon} q^{-}\right]-\frac{K A}{L}\left[T-T_{c}\right] \tag{1}
\end{equation*}
$$

Before eclipse q^{-}is high, and the quasi-equilitrium temperature is given by setting the left-hand side to zero. After q^{-}is reduced, T, \&oois at the rate given by Eq. (1).

FLOW VELOCITY INTO RESERVOIR

When a wicked reservoir of volume V cools at a rate of -dT/dt, the vapor partial pressure inside the reservoir falls. Since the total pressure is fixed at the evaporator end (neglecting vapor flow pressure drop), the partial pressure of the gas rises. Furthermore, the gas temperature falls (assuming thermal equilibrium). These two effects increase the gas partial density. The rate at which the partial density times the volume rises must come from the flow of gas from the heat pipe radiator into the reservoir.

$$
\begin{align*}
& \frac{d}{d t}\left(\rho_{g} V\right)=\rho_{g c} \vee A_{c} \tag{2}\\
& \rho_{g}=\frac{P-P_{v}(T)}{R_{g}^{T}} \tag{3}
\end{align*}
$$

Differentiating Eq.(3) gives

$$
\frac{d \rho_{g}}{d t}=\frac{P-P v}{R_{g} T} \frac{1}{T}\left(-\frac{d T}{d t}\right)+\frac{1}{R_{g} T} \frac{d P v}{d T}\left(-\frac{d T}{d t}\right)+\frac{1}{R_{g} T} \frac{d P}{d t}
$$

Substituting into Eq. (2) then gives

$$
v=\frac{v}{P_{g c} A_{c}}\left(\frac{1}{R_{g} T}\right)\left\{\left[\frac{P-P v}{T}+\frac{d P v}{d T}\right]\left(-\frac{d T}{d t}\right)+\frac{d P}{d t}\right\}(4)
$$

Let dPv/dT be approximated from the Clausius - Clapeyron equation

$$
\begin{aligned}
& P_{v}=P_{0} e^{-\left(\Delta h / R T_{0}\right)}\left(T_{0} / T-1\right) \\
& \frac{d P_{v}}{d T}=P_{v}\left(\frac{\Delta h}{R T^{2}}\right)
\end{aligned}
$$

Then Eq. (4) becomes

$$
\begin{equation*}
\left.v=\frac{v}{A_{c}}\left(\frac{T c / T}{P-P}\right)\left\{\left[\frac{P}{T}+\frac{P v}{T} \frac{(\Delta h}{R T}-1\right)\right]\left(-\frac{d T}{d t}\right)+\frac{d P}{d t}\right\} \tag{5}
\end{equation*}
$$

The total pressure P is the vapor pressure at the evaporator temperature T_{v}.

$$
\begin{equation*}
\frac{d P}{d t}=\frac{d P v}{d T v}\left(\frac{d T v}{d t}\right)=-\frac{d P v}{d T v}\left(-\frac{d T v}{d t}\right) \tag{6}
\end{equation*}
$$

The evaporator temperature in turn is set by a heat balance upon it. The worst case occurs when the evaporator is well-coupled thermally to a large thermal mass. In this worst case dP/dt may fall only very slowly compared to the other terms. Measured data may be used to evaluate dTv/dt. A crude model is a one-capacity model.

$$
\begin{equation*}
M_{e v} C_{e v} \frac{d T v}{d t}=\dot{Q}_{\text {elec. }} \quad \dot{Q}_{\text {elec. }} \quad-\dot{Q}_{h p}-A \mathcal{F}\left(\sigma T_{v}^{4}-\sigma T_{s}^{4}\right) \tag{7}
\end{equation*}
$$

The last term in the equation models heat leak to surrounds at temperature T_{s}

HEAT FLOW
The instantaneous heat flow through the pipe $\dot{Q}_{h p}$ is fixed by the length of active condenser and the rate of advancement of the gas front.

$$
\begin{equation*}
\dot{Q}_{h p}=\dot{Q}_{\text {static }}+\dot{Q}_{\text {dynamic }} \tag{8}
\end{equation*}
$$

The static load is that caused by condensation on the gas-free condenser wall

$$
\begin{equation*}
\dot{Q}_{\text {static }}=\varepsilon P L_{c} \eta\left(\sigma T_{v}^{4}-\frac{\alpha}{\varepsilon} g_{c}^{-}\right) \tag{9}
\end{equation*}
$$

where the length L_{c} is fixed by a gas inventory m_{g}

$$
\begin{equation*}
m_{g}=p_{g} v+f_{g c} A_{c}\left(L-L_{c}\right) \tag{10}
\end{equation*}
$$

The dynamic load is proportional to the velocity v at which the front advances

$$
\begin{equation*}
\dot{Q}_{\text {dynamic }}=\rho_{f} c_{f} A_{f} v n\left(T_{v}-T_{c}\right) \tag{11}
\end{equation*}
$$

where ρ_{f} is the condenser fin density, c_{f} its specific heat, A_{f} its area (volume per unit length), and η is not the radiating fin effectiveness, because of the fourth power dependence of the black body radiosity. The appropriate value of η is between the radiating fin effectiveness and the fourth root of that value, depending upon the ratio of $\left(T_{c} / T_{v}\right)^{4}$.

EXAMPLE

For example consider the CTS heat pipe 1 on Day 75. The following data are available

Time Vapor Temp. Gas-Blocked Temp. Gas Reservoir Temp.

t	T_{v}	$\mathrm{~T}_{\mathrm{c}}$	T
\min	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
460	27.5	-93	-68
470	28	-94	-71
480	29	-95.5	-74

From these data one can estimate $-d T / d t=18 \mathrm{~K} / \mathrm{hr}$ and $d T_{v} / d t=4.5 \mathrm{~K} / \mathrm{hr}$. The following vapor pressure data pertain

	Temperature	Pressure	Latent Heat
	K	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{~J} / \mathrm{k}_{\mathrm{g}}$
Tv	300	19500	1.15×10^{6}
T	205	~ 13	1.2×10^{6}
$\mathrm{~T}_{\mathbf{c}}$	180	~ 1.5	1.2×10^{6}

For a $90 \% \mathrm{~N}_{2}$ 10\% He mixture the mean molecular weight is 25.6 and $\mathrm{Rg}=$ $8314.3 / 25.6=325 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. The density of the gas in the gas-blocked condenser is

$$
\rho_{g c}=\frac{\bar{P}_{g c}}{R T}=\frac{19500}{(325)(180)}=0.333 \mathrm{~kg} / \mathrm{m}^{3}
$$

Other parameters needed are

$$
\begin{aligned}
& \left.\frac{\Delta h}{R T}\right|_{T=205}-\frac{1.2 \times 10^{6}}{(206)(205)}=22.51 \\
& \left.\frac{\Delta h}{R T}\right|_{T=300}=\frac{1.15 \times 10^{6}}{(260)(300)}=14.74
\end{aligned}
$$

The pertinent parameters of the pipe itself are understood to be as follows:

Reservoir Volume
v 8.70 inch 3
$1.426 \times 10^{-4} \mathrm{~m}^{3}$
Pipe Vapor Area $A_{c} 0.1245 \mathrm{in}^{2}$
8.03×10^{-5}

Equation (5) then gives

$$
\begin{align*}
& v=\frac{1.426 \times 10^{-4}}{8.03 \times 10^{-5}} \quad \frac{(180 / 205)}{19500-1.5}\left\{\left[\frac{19500}{205}+\frac{13}{205}(22.5-1)\right]\right. \tag{18}\\
& \left.+\frac{19500}{300}(14.74)(4.5)\right\} \\
& v=(1.78)\left(4.50 \times 10^{-5}\right)\{[95.1+1.36](18)+(958)(4.5)\} \\
& v=8 \times 10^{-5}\{1736+4311\}=0.484 \mathrm{~m} / \mathrm{hr}=1.59 \mathrm{feet} / \mathrm{hr}
\end{align*}
$$

Note that, in this example, the fall of the vapor pressure in the reservoir was a negligible consideration but the rise of vapor pressure in the evaporator was quite significant.

For purposes of an estimate $n A_{F}$ is taken to be 0.04 inches by 12 inches. Thus Equation (11) gives

$$
\begin{aligned}
& \dot{Q}_{\text {dynamic }}=(174)(0.21)(.04 / 12)(12 / 12)(1.59)(300-180)(1.8) \\
& \dot{Q}_{\text {dynamic }}=41.8 \frac{B T U}{\mathrm{hr}}=12.25 \text { Watts }
\end{aligned}
$$

DISCUSSION

While a rapid decrease in reservoir temperature has the potential of adding a significant dynamic heat flow to the static load, the example worked here indicates that the decrease must be rapid, much greater than the $18 \mathrm{~K} / \mathrm{hr}$ value used in the example.

APPENDIX A.2.2

Instantaneous heat flow after heat pipe radiator eclipse

INTEROFFICEE CORFESPONDENCE
8715.10.2-78-9

to. E. E. Luedke

ce: D. Antoniuk
oate. 28 November 1978
J. E. Eninger
B. D. Marcus
D. J. Wanous
suesect: Instantaneous Heat Flow After

Heat Pipe Radiator Eclipse

Introduction

When a gas-controlled heat pipe's radiator experiences an eclipse, the heat flow in the pipe increases until the evaporator cools to a new equilibrium operating condition. During the transient, the evaporation from the warm end may exceed the capacity of the axial wicking, and arterial depriming may occur. It is desired to estimate the instantaneous heat flow during this transient for comparison to the burnout heat flow capacity. This memo is a companion to one that explored the instantaneous heat flcw after heat pipe reservoir eclipse.

A Simplified Thermal Model.

To explore the magnitude of the expected effect and to show the effect of the major parameters, a simplified model is proposed. In this model the heat loss out of the radiator is taken to be

$$
\begin{equation*}
\dot{Q}_{r}=F_{S c r} W L\left(\sigma T_{v}^{4}-\sigma T_{e}^{4}\right) e_{f} \tag{1}
\end{equation*}
$$

where $F_{\text {scr }}$ is the so-called script - F radiant transfer factor (equal to emissivity for an isolated radiator) W is the width or perimeter of the parel per pipe (including both sides if both sides radiate), L is the active length of the vapor in the radiator, T_{v} is the vapor temperature, T_{e} is the environmental temperature

$$
\begin{equation*}
T_{e}=\left[\frac{\varepsilon_{q^{-}}}{F_{S C r}^{0}} \cdot\right]^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

and e_{f} is the fin efficiency. The vapor filled length is assumed to be given by

$$
\begin{equation*}
L=L_{\text {tot }} \frac{T_{v}-T_{0}}{\Delta T} \tag{3}
\end{equation*}
$$

where $L_{\text {tot }}$ is the total length, T_{0} is the turn-on point, and ΔT is the control $A-12$
band width. Equation (1) may be factored into the form

$$
\dot{Q}=e_{f} F_{s c r}{ }^{W L D}\left(T_{v}{ }^{2}+T_{e}{ }^{2}\right)\left(T_{v}+T_{e}\right)\left(T_{v}-T_{e}\right)
$$

and Eq. (3) may be introduced to write

$$
\begin{equation*}
\stackrel{Q}{Q}=\frac{1}{R_{r}}\left(\frac{T_{v}-T_{0}}{\Delta T}\right)\left(T_{v} \times T_{e}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{r}=\frac{1}{e_{f} F_{s c r} L_{t o t} \sigma\left(T_{v}{ }^{2}+T_{e}^{2}\right)\left(T_{v}+T_{e}\right)} \tag{5}
\end{equation*}
$$

This latter parameter is insensitive to mild excursions in T_{v} and T_{e} since the absolute temeratures appear. In contrast Eq. (4) varies rapidly with T_{v}, because ($T_{v}-T_{0}$) and ($T_{v}-T_{e}$) change significantly when T_{v} changes, particularly the former quantity, and ($\mathrm{T}_{\mathrm{v}}-\mathrm{T}_{\mathrm{e}}$) changes when T_{e} changes.

Note that this simplified model neglects the thermal capacity of the radiator on the grounds that it is small compared to that of the heat source. This neglect leads to an overprediction of themal shock on the heat pipe from sudden changes in environmental temperature T_{e}.

The heat source is modelled as a single lumped capacity of mass mand specific heat c.

$$
\begin{equation*}
m c \frac{d T_{h}}{d t}=Q_{e}-\frac{1}{R_{e}}\left(T_{h}-T_{v}\right) \tag{6}
\end{equation*}
$$

where T_{H} is the heat source temperature, Q_{e} is the net electrical power dissipation, and R_{e} is the thermal resistance into the heat pipe evaporator. It is the heat flow into the evaporator that concerns us

$$
\begin{equation*}
\dot{Q}=\frac{1}{R_{e}}\left(T_{h}-T_{v}\right) \tag{7}
\end{equation*}
$$

The heat source thermal capacity mc is assumed to be sufficiently large
that T_{h} remains constant during the time that the radiator and gas front readjust. In this respect the heat transfer through the heat pipe is assumed quasi-steady.

Analysis Based Upon the Simplified ModeI

The model in its bare essentials consists only o.f Eqs. (4) and (7). The heat pipe behavior is determined by the evaporator resistance R_{e}, the radiator resistance R_{r}, the turn-on point T_{0}, and the control band width ΔT. The parameters R_{e} and R_{r} may be inferred fram observed termperatures at, say, the full-on operating pojnt. Equation (4) shows that

$$
\begin{equation*}
R_{I}=\frac{T_{v, \text { full }}-T_{e}}{Q_{f u l l}}=\frac{T_{0}-T_{e}+\Delta T}{Q_{f u l l}} \tag{8}
\end{equation*}
$$

and from Eq. (7)

$$
\begin{equation*}
R_{e}=\frac{T_{h, f u 11}-T_{v, f u 11}}{Q_{f u 11}} \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{R_{e}}{R_{I}}=\frac{T_{i, \text { full }}-T_{v, \text { full }}}{T_{v, \text { full }}-T_{e}}=r \tag{10}
\end{equation*}
$$

Equating Eqs. (4) and (7) and rearranging gives

$$
\Delta T\left(T_{h}-T_{v}\right)=T\left(T_{v}-T_{0}\right)\left(T_{v}-T_{e}\right)
$$

This quadratic equation may be solved for T_{v}, and the result put into Eq. (7). Equations (8) and (9) are also introduced fur convenience

$$
\begin{equation*}
\dot{Q}=\dot{Q}_{f u l l} \frac{\Delta T_{0}+\Delta T / r-\sqrt{\left(T_{0}-T_{e}\right)^{2}+2(\Delta T / r) \Delta T_{0} *(\Delta T / r)^{2}}}{2 r\left(T_{0}-T_{e}+\Delta T\right)} \tag{11}
\end{equation*}
$$

where, to shorten notation,

$$
\begin{equation*}
\Delta T_{0}=2\left(T_{h}-T_{e}\right)-\left(T_{0}-T_{e}\right) \tag{12}
\end{equation*}
$$

Note that in the form of Eq. (11) neither R_{e} nor R_{r} appear explicitly, but only their ratio r.

Sample Parametric Calculations

To show the importance of the parameter r we show three sample calculations, one with $r=1$, one with $r=\frac{1}{4}$, and another $r=1 / 8$. We choose the jollowing nominal values:

$$
\begin{array}{ll}
T_{0}=20^{\circ} \mathrm{C} & T_{e, \max }=-20^{\circ} \mathrm{C} \\
\Delta T=5^{\circ} \mathrm{C} & T_{e, \min }=-110^{\circ} \mathrm{C} \\
T_{h}=30^{\circ} \mathrm{C} & I=1, \frac{1}{4}, 1 / 8
\end{array}
$$

In order to keep the same nominal value of R_{r} as T_{e} is changed, one multiplies by the ratio of $\left(T_{0}-T_{e}+\Delta T\right) /\left(T_{0}-T_{e}+\Delta T\right)_{n o m}$. The following results are obtained:

TABLE 1
EFFECT OF EVAPORATOR-TO-RADIATOR RESISTANCE RATIO ON HEAT PIPE OIERLOAD UPON RADIATOR ECLIPSE

Nonlinear Effect

In the preceeding the effect of radiator eclipse was explored in the linearized limit. When the sink temperature changes greatly, the heat flow is affected by the nonlinear variation of T^{4} in the radiation terms. A nunerical calculation is easily made despite the nonlinearity.

We had

$$
\begin{equation*}
\dot{Q}=F_{S C R} e_{f} W L_{t o t} \frac{T_{v}-T_{o}}{\Delta T}\left(\sigma T_{v}^{4}-\sigma T_{e}^{3}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{1}{k_{e}}\left(\dot{T}_{h}-T_{v}\right) \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
r=R_{e} F_{S C R} e_{f} W L_{t o t} \sigma\left(T_{v}^{2}+T_{e}^{2}\right)\left(T_{v}+T_{e}\right) \tag{15}
\end{equation*}
$$

Equating (13) and (14) and introducing (15) gives

$$
\begin{equation*}
\left(T_{h}-T_{v}\right)=r \frac{T_{v}-T_{0}}{\Delta T} \frac{T_{v}^{4}-T_{e}^{4}}{\left(T_{v, 1}^{2}+T_{e, 1}^{2}\right)\left(T_{v, 1}+T_{e, 1)}\right.} \tag{16}
\end{equation*}
$$

Equation (15) is understood to apply to both the original condition before eclipse when $T_{v}=T_{v, 1}$ and $T_{e}=T_{e, 1}$ and to the conditions after eclipse when T_{v} and T_{e} are colder.

Given the value of T_{h}, the original sink condition $T_{e, 1}$, the turnon point T_{0}, the band width ΔT, and the value of r based upon the original conditions, Eq. (16) is used to find $T_{v, 1}$ and \dot{Q}_{1} from Eq. (14).
 and \dot{Q}_{2} is found from Eq. (14).

Consider the example used before:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{O}}=20^{\circ} \mathrm{C} \quad \mathrm{~T}_{\mathrm{e}, 1}=-20^{\circ} \mathrm{C} \quad \Delta \mathrm{~T}=5^{\circ} \mathrm{C} \quad \mathrm{~T}_{\mathrm{h}}=30^{\circ} \mathrm{C} \\
& \mathrm{r}=1 / 4, \mathrm{~T}_{\mathrm{e}, 2}=-210^{\circ} \mathrm{C}
\end{aligned}
$$

In the linearized linit we obtained $\dot{Q}_{2} / \dot{Q}_{1}=1.28$. Allowing for the nonlinearity gives the following values:

Condition 1, By Binary Search		
T_{v}	LHS	RHS
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{K}$	${ }^{\circ} \mathrm{C}$
30	0	25
20	10	0
25	5	11.25
22.5	7.5	5.31
23.75	6.25	8.20
23.125	6.875	6.738
23.4375	6.5625	7.4658
23.2813	6.7188	7.1008
23.2031	6.7969	6.9193
23.1641	6.8359	6.8287
23.1836	6.8164	6.8739
23.1738	6.8262	6.8513
23,1690	5.8310	6.8401
23.1665	6.8335	6.8344

Condition 2, By Binary Search

T_{v}	LHS	RHS
${ }^{\circ} \mathrm{C}$		

30	0	46.35
20	10	0.00
25	5	21.55
22.5	7.5	10.38
21.25	8.75	5.095
21.875	8.125	7.714
22.1875	7.8125	9.0422
22.0313	7.9688	8.3767
21.9532	8.0469	8.0455

Ratio of $\dot{Q}_{2} / \dot{Q}_{1}=8.046 / 6.834=1.18$

This ratio differs appreciably from unity, but somewhat less so than the value obtained with the linearized equation.

Conclusion.

The importance of the ratio of the thermal resistance between the equipment and the evaporator to the thermal resistance between the radiator and the evironment is illustrated. When the ratio is large (near one), the transient load is only a few percent of the base load. When the ratio is small, the transient load is a significant fraction of the base load.

APPENDIX A.2.3
CONDENSER AND/OR RESERVOIR SHADOWING TESTS ON SNOO9 HEAT PIPE

SNOO9 heat pipe tests were directed toward examining two potential artery depriming modes: 1) rapid chilldown of the "ndenser, and 2) rapid chilldown of the reservoir. A large evaporator mass was a requisite contributor during these hypothesized depriming modes and, accordingly, four kilograms of aluminum were attached to the SNOO9 evaporator.

Two series of rapid condenser chilldown tests were run. In the first, the heat in the condenser sink was cooled to -73C (-100F), while the condenser was heated to maintain-18C (OF). The sink and condenser were coupled thrr,ugh 0.30 centimeters of cork over a $162 \mathrm{in}^{2}\left(0.1045 \mathrm{~m}^{2}\right)$ area. With the heat pipe operating at 100 watts (well above open artery capacity), the condenser heater was turned off allowing the condenser temperature to fall approximately $2.8 \mathrm{C} / \mathrm{min}(5 \mathrm{~F} / \mathrm{min})$. When no depriming occurred, the tests were repeated with 100 and 150 watts. Depriming at 160 watts under steady state was verified. Thus, cooling the condenser at approximately $2.8 \mathrm{C} / \mathrm{min}(5 \mathrm{~F} / \mathrm{min})$ produced no depriming.

In the second series, the sink was -129C (-200F). When the condenser heater was turned off, a cooling rate of approximately $3.9 \mathrm{C} / \mathrm{min}$ ($7 \mathrm{~F} / \mathrm{min}$) was achieved. When no depriming occurred, the test was repeated with 125 watts, and again no depriming was observed. However, when an attempt was made to raise the power level to 1.50 watts, depriming occurred (at the steady condenser temperature of -18C (0F). The pipe was reprimed, held 100 watts, but failed to retain prime at 125 watts. A third attempt resulted in failure to reprime. It is thought that icegenerated bubbles may have been formed in the earlier transient cooling tests, and these bubbles caused the repeated deprimings. Depriming due to rapid chilldown of the condenser was not demonstrated.

Rapid chilldown of the reservoir was achieved by blowing vapors from boiling liquid nitrogen through a cooling coil block attached to the reservoir. With 100 watts power at the evaporator and the condenser at $-180(0 F)$, the reservoir was cooled repeatedly at successively higher
rates. Depriming did occur at a rate of $-3.2 \mathrm{C} / \mathrm{min}(-5.6 \mathrm{~F} / \mathrm{min})$. Depriming did not occur at rates of $-0.8,-1.2,-1.6$ and $-2.5 \mathrm{C} / \mathrm{min}(-1.5,-2.1$, -2.8 and $-4.5 \mathrm{~F} / \mathrm{min}$, respectively).

Although depriming due to reservoir chilldown was demonstrated, the rates required were substantially higher than those indicated by flight data. This argues against reservoir and/or condenser shadowing as the cause of the CTS anomalies.

APPENDIX A. 3
FREEZING BLOWBY TESTS ON SNOO9 HEAT PIPE

Freezing blow-by was hypothesized as a possible depriming mechanism. This requires the formation of an incompletely frozen slug bridging the vapor core during a transient in which the pressure on the evaporator side of the slug is increasing with respect to the reservoir side. The resulting pressure difference across the slug can blow liquid from the evaporator to the reservoir side and deplete the evaporator inventory.

To explore this mechanism, it was first necessary to determine how to perform a meaningful $1-g$ test in the absence of the natural slugging of excess liquid which occurs in 0-g. A successful technique to form an ice plug in heat pipe SNOO9 was developed. The procedure is as follows:
a) Instrument the heat pipe with temperature sensors along its length to :able monitoring the location of the gas front.
b) Apply sufficient power to turn the heat pipe on i.e., to move gas front into the condenser section. Maintain the sink temperature a few degrees above the methanol freezing point.
c) Midway along the inactive portion of the condenser, locally code a short ($\sim 2.5 \mathrm{~cm}$) section of the pipe to subfreezing temperatures. Periodically raise the reservoir-end of pipe to force excess liquid to pass over the frozen pipe section in order to enhance ice build-up.
d) Apply periodically, a power pulse to gas reservoir to induce a transient temperature/pressure increase in the reservoir while monitoring the temperature profile about the location of the gas front. Formations of all ice plug will decouple the reservoir from the evaporator side of the heat pipe. The presence of an ice barrier blocking the arteries and vapor spaces can then be determined from the temperature profile along the evaporator side of the plug which should not respond to an induced temperature change in the gas reservoir.

Experiments were then directed toward investigating the hypothesized freezing blow-by depriming mechanism. The SNOO9 heat pipe test was modified such that a small, independently chilled, ice plug heat sink was attached
to the condenser midway along its length. The basic test approach was as follows:
a) The ice plug heat sink was employed to generate a solid plug midway along the condenser.
b) The evaporator power was raised to a value in excess of the open artery heat pipe capacity, raising the temperature and pressure on the upstream side of the ice plug.
c) The ice plug was thawed, allowing the pressure differential to relieve itself by blowing liquid and gas through the thawed region.

If there is liquid communication between the region to thaw first and the arteries, the above sequence of events was hypothesized to lead to depriming of the arteries by pumping them dry. The experiment was run so that this liquid communication condition existed and, in fact, the arteries did deprime. The experiment was run three times, always with the same result. Thus, it has been clearly established that freezing blow-by is a bonafide depriming mechanism and a candidate to explain at least some of the observed anomalies.

To enable modelling the blow-by mechanism, the variable conductance heat pipe subroutine was expanded to include the effects of an ice plug forming in the condenser section of the heat pipe and open or deprimed artery performance. Such a plug decoupies the reservoir from the active portion of the heat pipe and alters its control characteristics. It also provides the basis for the freezing blow-by depriming hypothesis; i.e., a pressure difference is established across the ice plug which blows the liquid through as the plug begins to thaw resulting in artery depriming which causes the heat pipe to continue operating with reduced or open artery capacity.

In Appendix A.4. 2 a transient thermal analysis of a simple VCHP/ radiator system model is described which shows the effects of an ice plug formed in the heat pipe condenser and subsequent blow-by depriming of the arteries on the performanco of the sample VCHP system.

APPENDIX A. 4.1
bRIEF REVIEW OF LeRC THERMAL STUDIES

In support of Contract NAS3-21740 (Study of Liquid Dynamics in CTSType Heat Pipes), NASA LeRC performed thermal analyses on a 'lump' parameter thermal model of the Transmitter Experiment Package. These efforts were conducted by Louis Gedeon of LeRC and are described in two NASA documents entitled "Comparison of Predicted Versus Measured Temperatures for CTS Thermal Anomalies," dated October 1, 1979, and "Modifications to CTS Thermal Model for TRW Contract NAS3-21740," dated January 9, 1980. A review of this analytical task is presented in the sequel.

The CTS model includes the VCHP system, the traveling wave tube, a power processing system baseplate, the spacecraft forward and part of the south panels, the antenna covers and skirts, and the solar array pailet. TRW's Systems Improved Numerical Differential Analyzer (SINDA) computer program and a Variable Conductance Heat Pipe model subroutine (VCHP2) were utilized to solve the CTS model.

During the first transient calculations with a modified VCHP system model, it was found that the heat pipe model subroutine (VCHP2) was not suitable for transient calculations. An analysis at TRW of the solution algorithm in VCHP2 revealed that the solution scheme, in view of the nonlinear nature of the model, was inadequate since it was susceptible to becoming numerically unstable. As a result of this analysis, a new solution method was formulated which proved to be successful in circumventing numerical instabilities.

This solution approach was incorporated into a new version f the variable zonductance heat pipe model subroutine renamed VCHPDA. In addition, two new features were introduced into this version which permit simulating the effects of an ice plug formation in the heat pipes and open or deprimed heat pipe capacity on the performance of the whole VCHP system. The description of the ice plug and open artery analytical models and the solution scheme, as well as, a listing of VCHPDA written in FORTRAN IV computer language are presented in Appendix A.4.2.

Subsequent transient runs of the CTS model using whew subroutine VCHPDA were normal, except that the predicted temperatures wero lower than flight temperature data. In order to improve the temperature predictions, additional modifications of input parameters were introduced into the CTS mode1. Among the changes made were:

1) The solar absorptance and total hemispherical emissivity on the VCHP system radiator were increased and devreased respectively.
2) The reflected sun heat load on the VCHPs radiator was assumed diffuse and was multiplied by a factor varying with time.
3) The south panel emissivity was increased.
4) Numerous view factors and shadowing parameters were modified.

Although some of the above chinges are deemed somewhat physically unrealistic, they resulted in general, in temperature predictions remarkably close to flight data. Transient runs were made for normal day 89 and for periods preceeding and including the anomaly of days $75,82,101$, and 253. The initial conditions were those obtained from steady state calculiations using the conditions prevailing prior to the start of a spacecraft eclipse.

For each anomaly day a minimum of iwo transient runs were made, one assuming normal heat pipe operation prior and during the period of the anomaly, with considerations for ice plug formation, the other run assuming open artery capacity conditions prior and during the anomaly. Addi.. tional calculations were made for day 75 and day 253 . For day 75 , lower open artery capacity values were assumed, and for day 253 a third run was performed in which normal heat pipe operation was assumed from eclipse until the observed time of the anomaly at which time the heat pipes were set for open artery or deprimed capacity operation.

Some significant results from these transient analyses were:

1) On day 253 freezing was not predicted at the time of the anomaly.
2) The maximum calculated heat pipe loads never exceeded 80 watts.
3) The coldest calculated temperature for heat pipe number 1 always occuced near the reservoir end of the conder,ser where temperature sensor HPT5 is located (see Figure 1-3 in text). Temperatures for heat pipes HP2 and HP3 at similar condenser locations were predicted to be a frw degrees colder.
4) Formation of ice plugs in the three heat pipes were calculated on day 82 prior to the anomaly.
5) The profile of the tube body temperature excursion is closely matched on day 253 when the heat pipes were set from normal to cpen artery capacity operation at the observed time of the anomaly.

APPENDIX A. 4.2

generalized variable conductance heat pipe modeling

This appendix presents analytical models, sample problem solution, and listing of subroutine VCHPDA.

INTEROFFICE CORRESPONDENCE

ce: J. T. Bevans
D. K. Edwards
J. E. Eninger
E. E. Luedke

subject:

to: Bruce Marcus to. Bruce Marcus

Generalized Variable Conductance Heat Pipe Modeling
3715.10.1-79-03

Date: $6 / 11 / 79$

from: David Antoniuk
BLDG MAIL STA. EXT
$01 \quad 1230 \quad 52850$

As the result of efforts carried out under the 1973 IR\&D Advanced Thermal Control program, a method to analytically simulate a gas loaded, variable conductance heat pipe (VCHP) was developed and is documented in Reference 1.

A FOP: ${ }^{\prime} A A N$ IV computer code was implemented to numerically solve the analytical model. This code which is suitable to interface with general thermal models involving heat pipes, has been used successfully in steady state thermal simulation of systems, egg., the transmitter experiment package (TEP) variable conductance heat pipe system (VCHP) in the Canadian Technology Satellite (CTS). Subsequent attempts, however, to utilize the VCHP2 subroutine for transient thermal analyses yielded unsure, cessful results due to numerical instabilities arising during the gas -vapor front location/vapor temperature calculations.

Recently, as part of the efforts to investigate the thermal anomalies in the CTS spacecraft, the solution scheme in VCHP2 was analyzed in order to uncover the source of the numerical problems. The analysis revealed that the iterative approach of the subroutine to obtain a converged solution starting from an initial guessed gas length/vapor temperature, was inadequate in view of the nonlinear natureof the model.

As the result of this analysis, a new analytical method was formulated which under most physically realizable operating modes, unconditionally circumvents numerical instabilities.

In addition, two new features were introduced into the VCHP model which permits simulating the effects of an ice plug formation and open artery capacity on the performance of a VCHP system. The appropriate FORTRAN IV logic to solve the analytical model was incorporated into a revised version of the VCHP2 subroutine, now identified as VCHPDA. A logic flow chart and listing of the computer program are attached.

Basic Analysical Model:

Referring to the configuration of a typical, wicked-reservoir, VCHP in Figure 1, and invoking the ideal gas law and the "flat front" gas theory, the cumulative distribution of the number of moles of non-condensible gas along the length of a VCHP can be written as:

$$
\begin{equation*}
N g(z)=\left(P_{T}(z)-P_{V, R}\right) \frac{V_{R}}{R \cdot T_{R}}+\int_{0}^{z} \frac{P_{T}(z)-P_{V}(z)}{R \cdot T(z)} A(z) d z \tag{1}
\end{equation*}
$$

for $z \leq \operatorname{Lg}$
where

> Lg - location of gas-vapor front or "gas length"
> $V_{R}-r e s e r v o i r ~ v o l u m e ~$
> T_{R} and $T(z)$ - temperatures at vapor-liquid
> interface in reservoir and along pipe, respectively.
> R - universal gas constant
> $A(z)-g a s / v a p o r ~ s p a c e ~ c r o s s ~ s e c t i o n a l ~ a r e a ~$
> $P_{V, R}$ and $P_{y}(z)$ - partial vapor pressure of working
> $\quad f l u i d a t T_{R}$ and T respectively.
> $P_{T}(z)-$ total pressure in the VCHP defined in Eq. (2).

$$
\begin{equation*}
P_{T}(z)=P_{V}\left(T_{v}(z)\right) \tag{2}
\end{equation*}
$$

where $T_{v}(z)$ is the vapor temperature in the active section of the pipe.

Figure 1. Configuration of Typical VCHP

$$
\begin{equation*}
T_{v}(z)=\int_{z}^{L_{T}} h\left(z^{\prime}\right) T\left(z^{\prime}\right) P\left(z^{\prime}\right) d z^{\prime} / \int_{z}^{L_{T}} h\left(z^{\prime}\right) P\left(z^{\prime}\right) d z^{\prime} \tag{3}
\end{equation*}
$$

where $h(z)$ is the local heat transfer coefficient and $P(z)$, the wetted perimeter. Equations 1,2 and 3 form a complete non-linear coupled set of equations which enable the calculation of the length of the gas-blocked region and the vapor temperature in the active portion given the temperature distribution along the wall of a VCHP whose configuration conforms to the one sketched in Figure 1.

Solution Scheme:

In order to illustrate the solution procedure incorporated into the current version of subroutine VCHPDA, it is convenient to rearrange Equation (1) as follows:

$$
\begin{equation*}
N g(z)=P_{T}(z) F(z)-N_{V}(z) \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
F(z) & =\frac{V_{R}}{R \cdot T_{R}}+\int_{0}^{z} \frac{A\left(z^{\prime}\right)}{R \cdot T\left(z^{\prime}\right)} \cdot d z^{\prime} \tag{5}\\
N V(z) & =\frac{P_{V, R} \cdot V_{R}}{R \cdot T_{R}}+\int_{0}^{z} \frac{P_{V}\left(z^{\prime}\right) \cdot A\left(z^{\prime}\right)}{R \cdot T\left(z^{\prime}\right)} \cdot d z^{\prime} \tag{6}
\end{align*}
$$

Resorting to a numerical method to evaluate the integrals $F(z)$, $N v(z)$ and $P_{T}(z)$ are calculated stepping out from the reservoir in Δz increments. At each step, $\mathrm{Ng}(z)$ is evaluated and compared to the total gas inventory, N_{T}. The above procedure is continued until $\mathrm{Ng}(z) \geq N_{T}$ at which point a quadratic binary search scheme is applied to find the root of the transcendental equation

$$
\begin{equation*}
N g(z)-N_{T}=0 \tag{7}
\end{equation*}
$$

which is satisfied when $z=$ Lg.
To initiate this iterative process, a gas length is approximated by linear interpolation, i.e.,

$$
L g=z+\frac{N g(z+\Delta z)-N_{T}}{\operatorname{Ng}(z+\Delta z)-N g(z)} \cdot \Delta z
$$

The search is terminated when a prescribed convergence criterion is met, which in the current VCHPDA version is defaulted to

$$
\left|\frac{\mathrm{Ng}(z)-N_{T}}{N_{T}}\right| \leq 10^{-4}
$$

Solution to Equation (7) allows the performance of the partially gas-blocked VCHP to be quantified.

The thermal conductance between the vapor and the pipe walls, $G(z)$, can be calculated,

$$
\begin{equation*}
G(z)=U(z-L g) h(z) P(z) \tag{8}
\end{equation*}
$$

where U is a Heavyside-type function defined as

$$
U=\left\{\begin{array}{llll}
0.0 & \text { for } & (z-L g) & 0.0 \\
1.0 & \text { for } & (z-L g) \geq 0.0
\end{array}\right.
$$

and the heat load on the VCHP

$$
\begin{equation*}
Q=\left|\int_{L g}^{L} G\left(z^{\prime}\right) \cdot\left(T_{V}(L g)-T\left(z^{\prime}\right)\right) \cdot H\left(T_{V}(L g)-T\left(z^{\prime}\right)\right) \cdot d z^{\prime}\right| \tag{9}
\end{equation*}
$$

where H is similarly defined as

$$
H= \begin{cases}0.0 & \text { for }\left\{T_{V}(L g)-T(z)\right\}<0.0 \\ 1.0 & \text { for }\left\{T_{V}(L g)-T(z)\right\} \geq 0.0\end{cases}
$$

The heat load on the heat pipe in terms of power-length can readily be calculated

$$
\begin{equation*}
Q L=Q \cdot L_{e f f} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{e f f}=\frac{\left(L_{c}-L_{g}\right)}{2}+L_{a}+\frac{L_{e}}{2} \tag{11}
\end{equation*}
$$

The above solution scheme holds provided the VCHP is under load. In the event that $N g(z)<N_{T}$ for $z \geq L_{T}$, the gas length $L g=L_{T}$ and the total pressure in the VCHP is calculated by either Equation (1) or (4). Using the latter Equation, the pressure P_{T} is given by

$$
\begin{equation*}
P_{T}=\left\{N_{T}{ }_{T}-N_{V}\left(L_{T}\right)\right\} / F\left(L_{T}\right) \tag{12}
\end{equation*}
$$

Ice Plug Modelling

Owing to excess fluid inventory, usually present in a VCHP, operation of the heat pipe under subfreezing sink condictions can result in the formation of an ice barrier in the condenser section effectively decoupling the active portion of the pipe from the gas reservoir. Formation of such an "ice plug" can have a significant effect on the performance characteristics of a VCHP. Furthermore, it can, under certain operating conditions, lead to depriming of the arteries by what is referred to as the "freezing blow-by" mechanism. In order to enable to simulate the consequences of such an event, the ice plug model has been developed and is incorporated as an optional operating VCHP mode in subroutine.

It is assumed that in zero-gravity the bulk of the excess fluid resides as a liquid mass in the gas reservoir and as a slug blocking the vapor spaces in the pipe section at and near the coupling between pipe and reservoir. During a transient
analysis, formation of an ice plug in the condenser is subject to the following constraints: a) the gas reservoir temperature must be above freezing conditions, b) the history of the VCHP must show a net decrease of the gas inventory in the reservoir, i.e., gas front and, presumably liquid slug, movement toward the evaporator, and c) subfreezing temperatures at some point along the condenser and/or adiabatic sections.

These conditions for ice plug formation can be stated mathematically,

$$
\begin{equation*}
T_{R}>T_{F . P .} \quad \text { (Freezing temperature of working fluid) } \tag{14}
\end{equation*}
$$

$$
\begin{align*}
& \partial \mathrm{Ng}_{\mathrm{R}} / \partial \mathrm{t}<0 \tag{15}\\
& T(z)<T_{\text {F.P. }} . \tag{16}
\end{align*}
$$

Provided conditions given by Equations (14) and (15) are met, the solution procedure subsequently involves stepping out from the reservoir end of the pipe in Δz increments in the search of subfreezing temperatures. The point at which conditions, Equation (16), is first satisfied establishes the location of the ice plug which is currently modelled as a barrier of negligible thickness. The location of the ice plug, L_{p}, is defined by

$$
\begin{equation*}
L_{p}=z \text { where } T(z) \leq T_{F . P .} \text { and } T(z-d z)>T_{F . P .} \tag{17}
\end{equation*}
$$

Concurrent calculation of the cummulative gas inventory up to $z=L_{p}$ (Equation (1)) enables to deterinine the distribution of the gas on the reservoir and evaporator side of the ice plug which respectively are:

$$
\begin{gather*}
N g_{R}=N g\left(L_{p}\right) \tag{18}\\
N g_{E}=N N_{T}-N g_{R} \tag{19}
\end{gather*}
$$

These parameters are stored and used at subsequent times to analyze the characteristics of the two decoupled regions in the VCHP. The solution procedure is then as follows:
I. Calculate total pressure on reservoir side of the plug using Equation (12)

$$
\begin{equation*}
P_{T, R}=\left\{N g_{R}-N v\left(L_{p}\right)\right\} / F\left(L_{p}\right) \tag{20}
\end{equation*}
$$

II. Perform analysis on the evaporator side of the ice plug resorting to Equations (1) through (12) and appropriately changing the limits of integration and reservoir volume in order to account for the decoupling of the two regions, i.e., set $V_{R}=0$ and evaluate the integrals from L_{p} to $z \leq L_{T}$.
In addition, calculation of the effective length by Equation (11) requires the condenser length, L_{c}, be reduced by L_{p}.

$$
\begin{equation*}
L_{c}^{\prime}=L_{c}-L_{p} \tag{21}
\end{equation*}
$$

The above procedure yields an estimate of a significant new parameter: the pressure differential across the ice plug, which can result in depriming of an arterial VCHP when liquid contact is established between the two regions.

Open-Artery Capacity Modelling

If a mechanism such as the one described above leads to depriming of an arterial VCHP, the designed capacity of the heat pipe will deminish to what is usually referred to as "openartery" capacity. In such an operating mode, capillary pumping pressure is substantially reduced and continuous operation of a VCHP at high loads after depriming will generally result in partial evaporator dry-out.

In order to simulate the performance of a VCHP with
open-artery capacity, a model was developed and is currently incorporated in subroutine VCHPDA as an operational operating mode. To exercise this option, a new constraint is introduced into the overall VCHP model. The power-length capacity of the heat pipe, defined in Equation (10), cannot now exceed a prescribed capacity (QL), i.e.,

$$
\begin{equation*}
Q L(z) \leq(Q L)_{0} \tag{22}
\end{equation*}
$$

The effective length, $L_{e f f}$, is caiculated by

$$
\begin{equation*}
L_{e f f}=\frac{L^{\prime} c}{2}+L_{a}+L_{e}^{\prime} \tag{23}
\end{equation*}
$$

where, L^{\prime} e, is the evaporator length reduced by the length of the dry section of the pipe, L_{d}.

$$
\begin{align*}
L_{e}^{\prime} & =L_{e}-L_{d} \tag{24}\\
L_{d} & =L_{T}-L_{W} \tag{25}
\end{align*}
$$

where, L_{W}, is the length of the wet portion of the pipe measured from the reservoir end.

Rearranging Equation (22) as

$$
\begin{equation*}
Q L(z)-(Q L)_{0}=0.0 \tag{26}
\end{equation*}
$$

the solution procedure involves finding the root of the above Equation which establishes the length of the wet section of the pipe and hence, the dry portion of the evaporator.

The general procedure which requires a double-iterative scheme is as follows:
I. Initialize $L_{W}=L_{T}\left(i . e ., L_{d}=0.0\right.$) and $L g=L_{T}$
II. Calculate gas length, Lg, and vapor temperature, T_{V}, such that Equation (7) is satisfied
III. Calculate $Q L(z)$ for $z=L_{w}$ and check whether constraint (Equation (22)) is met. Wf the cneck is positive, the solution to the model has been attained and the procedure is terminated; otherwise, perform step IV.
IV. Holding Lg fixed, and stepping out from the evaporator end of the pipe in $(-\Delta z)$ increments, recalculate the vapor temperature using

$$
\begin{equation*}
T_{v}(z)=\int_{L g}^{z} h\left(z^{\prime}\right) T\left(z^{\prime}\right) P\left(z^{\prime}\right) d z^{\prime} / \int_{L g}^{z} h\left(z^{\prime}\right) P\left(z^{\prime}\right) d z^{\prime} \tag{27}
\end{equation*}
$$

and subsequently calculate $Q L(z)$.
Repeat steps III and IV until $Q L(z) \leq(Q L)_{0}$ at which point a quadratic binary search is performed to find the root of Equation (26). To initiate the iterative process, the wet length, L_{W}, is approximated by linear interpolations as follows:

$$
\begin{equation*}
L_{W}=z+\left\{\frac{(Q L)_{0}-Q L(z)}{Q L(z+\Delta z)-Q L(z)}\right\} \cdot \Delta z \tag{28}
\end{equation*}
$$

The search is terminated when a prescribed convergence criterion is satisfied which is defaulted in VCHPDA to

$$
\left|\frac{Q L(z)-(Q L)_{0}}{(Q L)_{0}}\right| \leq 10^{-4}
$$

With the wet length, $L_{W}=z$, held fixed a new gas length and vapor temperature are calculated confining the calculations to the wet section of the pipe. Steps II through IV are repeated until

$$
\left|\frac{W^{k+1}-W^{k}}{W^{K+1}}\right| \leq 10^{-4}
$$

where W^{k} is either the gas length, $L g$, or wet length, L_{w}, and superscript ' k ' is the iteration number.

Having established the domain of the active section of the pipe, i.e., $L g \leq z \leq L_{W}$, the local thermal conductance, $G(z)$, between the vapor and adjacent pipe walls can now be redefined to reflect the reduction of effective heat transfer area resulting from gas blockage and wall dry-out.

$$
\begin{equation*}
G(z)=H(z) h(z) P(z) \tag{29}
\end{equation*}
$$

where $H(z)$ is defined as

$$
H= \begin{cases}0.0 & \text { for }(z-L g)<0.0 \text { or }\left(L_{W}-z\right)<0.0 \tag{30}\\ 1.0 & \text { for }(z-L g) \geq 0 \text { and }\left(L_{W}-z\right) \geq 0.0\end{cases}
$$

VCHPDA: Computer Program Subroutine Usage

This subroutine solves numerically the analytical VCHP model described in preceeding sections of this report. Its solution logic is written in FORTRAN IV language which is compatible with current Control Data Corporation (CDC) compilers. As a program subroutine, VCHPDA is meant to interact with general lumped parameter thermal systems. In its present form, however, VCHPDA is only suitable for usage in conjunction with TRW's Systems Improved Numerical Differencing Analyzer (SINDA).

The subroutine must be called in VARIABLES 1. In the process of generating a thermal model which involves a VCHP subsystem, the following convention must be followed.
a) Heat pipe wall nodes are numbered and input sequentially stepping out from reservoir end.
b) Wall to vapor conductors are numbered and input sequentially as in a).
c) The vapor of each heat pipe must be declared a boundary node.

Figure 2. VCHPDA Solution Flowchart

The calling sequence is:
VCHPDA (A1, TN, A3, GN, A2, TJ, TK, QN, K1, K.2, TL, A4) where:

Al $=$ Working fluid saturation pressure vs temperature array
$T N=F i r s t$ node in wall temperature array
A3 = Array of vapor to wall conductors values with no gas input in order starting from the reservoir end (Btu/hr- ${ }^{\circ} \mathrm{F}$)
$G N=$ First conductor in vapor to wall conductor array
A2 = Heat pipe characteristics array (see below)
TJ = Reservoir temperature node
TK = Control temperature node (for a heated reservoir system)

QN = Reservoir heat input identification (for a heated reservoir system).
K1 = Constant set to zero, fixed point
K2 = Usage flag; $1=$ normal calculation usage
-1 = printout of heat pipe data only, used in output calls

TL = Vapor temperature node
A4 $=$ Array of node lengths starting from reservoir end (inches)

Inputs for the heat pipe characteristics array are:
A2(1) = Total heat pipe length (inches)
it2 $(2)=\begin{aligned} & \text { Number of heat pipe wall nodes (Floating } \\ & \text { Point Number) }\end{aligned}$
$A 2(3)=$ Heat pipe free volume to length ratio (in ${ }^{3} / i n$).
$\mathrm{A} 2(4)=$ Reservoir volume (in ${ }^{3}$)
A2(5) = Gas NR value (Ft-1b/ ${ }^{\circ} R$)
A2(6) = Reservior wick flag: 1.0 wicked reservoir -1.0 un-wicked reservoir
$\mathrm{A} 2(7)=1.0$
A2 (8) = Reservoir heater power (Btu/Hr), -1.0 if unheated
A2 (9) $=$ Upper temperature setting (${ }^{\circ}$ F), (Heated reservoir system)
A2(10) = Lower temperature setting (${ }^{\circ}$ F), (Heated reservoir system)

```
A2(11) = 0.0
A2(12) = Heat pipe identification number (Floating
    Point Number)
A2(13) = A flag, 0.0 for steady state, 1.0 for
    transient solutions
A2(14) = Working fluid freezing temperature
A2(15) = A flag, 1.0 to activate ice plug option,
    0.0 otherwise
A2(16) = Length of adiabatic section between evaporator
    and condenser
A2(17) = Specified open artery (deprimed) power-length
    capacity
A2(18) = A flag, 1.0 to consider deprimed capacity,
    0.0 for unrestricted capacity
A2(19) = Length of evaporator section.
```


Sample Problem

To illustrate the usage of subroutine VCHPDA, the steps involved in solving a simple problem are described in what follows. Consider the heat pipe radiator system sketched in Figure 3. The heat source is a 0.32 Kg aluminum block in which power is uniformly generated. The block is mounted on a 2.5 cm wide saddle that is attached to the heat pipe over a $30 \mathrm{~cm}-10 n g$ section. The VCHP is a $1.25 \mathrm{~cm} 0 . \mathrm{D} ., 1.0$ meter long aluminum/ ammonia heat pipe with a 0.1 litter gas reservoir. Short Al/SS/Al and Al/SS transition sections minimize the coupling by conduction between evaporator and condenser and between reservoir and condenser respectively. Power generated in the heater block is transported by the heat pipe to a radiator panel from which is radiated to a sink.

The system is nodalized as shown in Figure 4. A listing of this model is shown in pages 45 through 47. The FORTRAN version of subroutine VCHPDA is 1 isted in pages 48 through 67.

Steady state, followed by transiant solutions were obtained using SINDA. Seiected solution outputs are shown in pages 68 through 79. The results are summarized in Figure 5.

Figure 3. Sample Problem Configuration

Figure 4. Sample Problem Nodalization

FIGURE 5 VCHP Model Transient Response

For the first hour after steady state conditions were reached, the VCHP system is shown to transfer 40 watts from the heat source to a sink at $190^{\circ} \mathrm{K}$. The vapor temperature remains constant at $296^{\circ} \mathrm{K}$ and the gas blocks about $3 / 5$ of the condenser section. When the power is turned off, the vapor temperature can be seen to drop resulting in increase gas blockage of the pipe. At 1.5 hours the entire length of the pipe is gas blocked. Although the rate of heat leak from the evaporator is of only one percent of peak power (i.e., 0.40 watt), the vapor, and consequently, the source temperatures undergo a substantial drop during the off period. This is the result of the rather small mass (0.32 Kg) of the source modelled in this problem.

Continuous operation at low sink conditions, causes the inactive condenser to reach subfreezing temperatures and, as shown on the bottom of Figure 5; an ice plug forms at 2 hours, 0.10 meters from the reservoir end of the pipe. The center sketch on the figure shows that a pressure differential develops across the ice plug. This barrier effectively decouples the evaporator from the gas reservoir and causes a large temperature overshoot when the power is turned on at 4.0 hours. Between this time and 5.0 hours, a large pressure differential is sustained across the ice plug. Followirg a step increase in sink temperature (5.0 hours) simulating a change in solar view factor, the ice plug thaws giving rise to the freezing blow by mechanism which is postulated to cause wicking failure. Continuous operation of the VCHP at 40 watts and deprimed capacity (7.5 watt-meter) is seen to result in partial evaporator dry-out as the heatpipe adjusts its effective length to satisfy the imposed capacity constraint.

References:

Wanous, D. J., "Variable Conductance Heat Pipe Analysis Subroutine, 1973 IR\&D Project; Advanced Thermal Control",
TRW IOC 8263.135-73-04.

$\stackrel{0}{0}$

$$
\begin{aligned}
& \text { CAL }-49,34,35, C .5, .64, .1714 \mathrm{E}-9,1 . \\
& \text { GEN } 50,2 \mathrm{C}, 1,1,1.36,0,5 ., 1.91 ., 1 . \\
& \text { FAD }
\end{aligned}
$$

ECD 3 EXECUTIDN
STFSES（5．，20，A3）
STFSQS（2．，20，A4）
STFSES $(5 ., 20, A 3)$
STFSQS $2 ., 20, A 4)$
INOSL
TIMEND＝8．
RLTPLT＝． 2

$\Delta(2+14)=1$ ．
CNFPCL

END

4．$ル$
ル レ ェ
． 10

IF（TIME日．GT•5．0）I35＝－50．

PHASE TIME＝
2．94，PHASE TIME $=$

ELAPSED TIME＝
KCD 3VAPIAPLFS 2
BCD 3CUTPUT CALLS
TOPLIN
TPRINT
CONTINUE
$\operatorname{VCHPDA}(\Delta 1, T 1, \Delta 3,650, A 2, T 34,1,1 \ldots, 0,-1 \ldots, T 36, \Delta 4$, TIMER）
ELAPSED TIME＝
.08
$=$
SUBRDUTINE VCHFDA(A1,TW, $\left.A_{3}, G 1, \triangle 2, T 2, T 3, Q, N A, N B, T 1, A 4, F T I M\right)$
THIS SURRDUTINE IS A NEW VERSION OF THE PREVIOUS VCHPZ SUBRCUTINE. THIS SUPROUTINE CONSIDERS THE FQRMATION DF AN ICE PLUG WHICH EFFECTIVELY DECGUPLES THE RESFRYIIR FROM THE REST EF THE HEAT PIPE. IL DPQEF TO CTNSIDFR THE FFFFCT OF AN ICE PLUG DN THF TPANSTEYT KESPENSE TF A VARIAQLE CONCUCTANCE HFAT PIPE SYSTFM, CR AT THE END CF ARRAYS $\equiv 51 \equiv, \equiv 52 \equiv A N D \equiv 53 \equiv I N T H E C T S$ MODEL. THESE DATA APE:
$\Delta ?(14)=$ FRFEZING POINT TE THE WDRKIND FLUIT
$A 2(15)=A$ FLAG $(=1$. FQR $\triangle N D$ ICE TD BE ALLOWED TO FEPM,
$=0$. FOR AM ICE PLUG NOT TO BE CONSIDERED)
IN $A D C I T I O N$ THIS SLZROUTINE CTNSIDERS A VARIABLE CONDUCTANCE
IN CRDER TO DETERMIVE THE STEADY STATE SOLUTION DF THE THERMAL PFSPONSF QF A HEAT PIPE SYSTEM WITH THE HEAT PIPES OPERATING WITH TPEN AETFFY UF REDUCFD CAPACITY SEVERAL NEW DATA NFED TO EE INCLUDEC AT THE END OF THE ABDVE MENTIONED ARRAYS.
A $2(16)=$ LENGTH OF THE ADIABATIC SECTION RETHEEN THE EVAPORATDR AND THE CONDENSER
(18) 1 COULC BE IJSEC FOR STEAOY $A S$ WELL AS FOR TRANSIENT
RUNS. IN ACLITION AZ (15) $=1$. AND A2 (18)=1. COULD BE USED
SIMLLITANEOUSLY FOR TRANSIENT PUNS.

0

$$
\begin{aligned}
& 1 \\
& C \\
& C \\
& C \\
& C
\end{aligned}
$$

UU

THE PARAMETFR ENA WHICH WAS USFE TE SPECIFY THF NUMBER DF ITEFATINY CESIRED in the lomp to calculate the gas front LOCATION, THE AFW VAPOR-TN-WALL NJDE CDNDUCTORS AND THE

VAPGR TEMPFPATL.RE, IS NOT USE IN THIS NEW VERSION AND
HENCE IT CAN BF TREATED AS A DUMMY PARAMETER. THF USER WILL MTICF THAT THFFE ARE TWD DIFFERENT CUTPUTS
CEPENDING WHETHFR AV ICE PLUG HAS FORMED OR WHETHER AN ICE PLUG
HAS NOT BEEN CCNSICERED QR HAS THAWED.

AS BEFQRF THE PARAMETER $\equiv N B \equiv I S ~ T H E ~ P R I N T I N G ~ F L A G . ~$

$A 1=F L U I D P V S T$ TRFAY, TW=WALL TEMP $A R R A Y$, $A 3=W A L L-V A P O R$ CONDUCTORS $C 1=4 A L L-V A P G P$ CGNLLCTORS CALCULATED, $\triangle 2=H E A T$ PIPE CHARACTERISTICS
$T 2=R E S E R V I P$ TEMP, T3=CUNTROL TEMPERATURE, Q=RESERVDIR HEATER O

[^1]unuuuvuuucuuvunuvunum uvuncuud

IF $\triangle 2(6)$.GT.O.) GO TO 102

CA 13101
F(I.GT. 4) SUM610 5 SUM610+FN(I+1)
$56 M 610=0$,
$0070 \mathrm{~J}=1$,
$F N(I+I)=F N(I)$
IF(A2(13).LT.1.) GE TG 500
IF(IFREZE.EO.1) GE TO 71
SIMM15=0.
PVTK=PVR*VR/(TR+46C.)/12.
$V T R=V R /(T R+460) / 12.$.
$V T R=V R /(T R+460) / 12.$.
NGAS $=A$? SUM15=SUM15+FN(I+I)
$\stackrel{a}{2}$

$\begin{array}{ll}\text { IF(SUM } 15 . G T . S U R E I C) ~ G O ~ T H ~ & 500 \\ \text { F(T2.LT.AZ(14)) GC TG } 500\end{array}$
FIT2.LT
\sim
\sim
$0-1$
옹
$\underset{\sim}{\sim} \stackrel{n}{\sim}$
\circ
${ }_{i}^{-1}$

$S U H G=0$,
$C 7+1$
$j=A: 3+i$
$C A L L \quad D 1$

$-\underset{-1}{-1}$
$\underset{-1}{2}$
๙

$F(I)=X N D * A /(T *(I)+460) /$.12 . SURTT $=$ SUMCT $+T$ TH SUMG $=$ SUNG $+G 1(T)$
$T S A T=S U N G T / S J M C$
CALL DINEG1.(TSAT,A1,PSAT)
$C \Delta L L$ DlnEGI. (TSAT, Al,PSAT)
$2(I)=P C A T \neq F(I)-N 1(I)$

ว $=7$) $=1 C E V+L G R F$
IF(IFULL.EQ.2) GO T? 1607
IF (A2(18).LT.1.) EC TO 500
CALL OMETER(TI, TW, G1, X5, X6,N3)
$C L C=O L(L P, \Delta 7(1 \in), A 2(7), L C \cap N D, X G, L E F F)$ F(ID.EA, -2) fre Tf 5002
$F(G L C . L T .2(17)) \in T$ TD 1353
$1 \mathrm{C}=0 \mathrm{~L}$
OLC $3=0 L G$
$L C 3=0 L G$
$D=L(N O)+L G R E$
$1=\lfloor P$
EL(N3) $=0$.
$0=+\square-1$

$3=N 3-1$
$F U L L=1$
IF 100.10
IF(I00.E O.OI for Tr 1704
$=-$?
$=1 \%$
$=1 ?$
$F=?$
$L P=: L(y O)+E X+L G F E$
$L D=1 P$
m
n
m
m
\sim
$\stackrel{\circ}{\circ}$
in

FRACI=FRACI-SIGN*DFI
EU TO 927
$I F(N 2(I+1) \cdot L T \cdot N P E V)$ GD TS 94
CALL GMETER(T1,TW,GL,X5,X6,N3)
$C L C=Q L(L P, A Z(16), A 2(7), L C O N D, X G, L E F F)$ IF (IQ.EQ.-?) GC TD 5001
IF (QLC.LT.AZ(17)) ED TO 1453 $T O=-1$
$C L G=O L C$
$C L C 3=0 L G$
$G L C 3=0 L E$
$L P=1(N O)+L G F E$
$N O=N O+1$
$L P=L(N 3)+L G F E$
FFJLE 999
CINTINUF
$\Delta Z(7)=L G R E+L$ GEV
GU TJ 927
$N 23=N 2(I+1)-N P E V$
SIGN =N23/ARS(IT2
$F R \triangle C 2=F R A C 2-S I G N * O F 2$
$F P A C=F R A C 2$
$L(I+1!=L(I)+X N D$
$L G E V=(I+1)$
$\mathrm{K}_{4}=\mathrm{N} 2(\mathrm{~T}+1$
$\mathrm{K}=\mathrm{N} 2(\mathrm{~T}+1)$
$\mathrm{JF}(A 2(18) . \operatorname{LT.1.)} \mathrm{GQ} \mathrm{TG} 500$
IF(IFULL.EO.I) GO TO 3606
GOTS 16 C 8
0
0
0
1607
$\stackrel{\circ}{8}$
1608
1453

IF(IFREZE.EO.1) GO TO 501
 EC $110 I \times 1, N 3$
CALL DIDEGI(TW(I), A1,PW(I))
SUM $1=\operatorname{SUM} 1+P W(I) * A 4(I) * A /(T H(I)+460) / 12.$. N1 (I) =PVTR+SUMI
$U^{\mu} 2=5 U^{*} 2+A 4(I) * \Delta /(T W(I)+460) /$.12 .
$F(I)=V T P+S U^{*} 2$
$S U N 3=\operatorname{SUM} 3+A 4(I)$

品
$\sin T=\operatorname{SUNT}+T W(J+1) * A 3(J+1)$
$J=N 3-1$
$\operatorname{sun} T=S U$
SURG=SH
$T(J+1)=$ SLMT/SUNG
$T(J+1)=$ SUMT / SUNG
 CONTINUE
PTCT = (NG
 CALL D1DFE1(TW(N3), A1, P(N3))
$N 2(N 3)=P(N 3) * F(N 3)-N 1(N 3)$

 $I=N 3-J$

\circ $\stackrel{\circ}{\alpha}$

$\stackrel{\infty}{\infty}$
0
$\underset{7}{-}$
111

IF(IFULL.EQ.1) GOTO 606 GT T? 608
$3=\mathrm{N} \cdot 3+1$
$0=\mathrm{NO}+1$
T7 888
COATINDE TEP (T1,TW, $(1, X 5, \times 6, N 3)$
$C A L L$ QMETER(T1,TH, $(1, \times 5, \times 6, N 3)$
$Q L C=Q L(L P, \Delta Z(16), A 2(7), L C \cap N O, X 6, L E F F)$ IF(CLC.LT.AZ(17)) GD TO 453
$10=-1$
$C L G=Q L C$
GLC $3=\dot{\omega} L G$
$P=L(N O)$
$1=1(N O)$
$1(N 3)=0$
$\mathrm{NO}=\mathrm{NO}-1$
$3=N 3-1$
IF(TO.E2.0)
$N O=N O+1$
$\begin{aligned} & 3=N B+1 \\ & 4\end{aligned}$
$4+3=A 4(N 3)$
$G 1 \cdot N 3=A 3(N 3)$
GLL OL
$C L C 1=0 L L$
$P=1$ (N3)
$L P=L 3-L 1$
$L P=L 3-L 1$
IF (INO.EQ.O) GC TR 800
GI(T3) $=.5 * G I N 3$
$X=.5 * \Delta 4 N 3$
IF(IQ2.FG.-3) (r TC
TERM=ABS((QLC-A2(17))/AZ(17))
IF (TFKM. LT.1.E-3) GO Tr. 805
0
0
0
∞
0
0
$\underset{n}{m}$
-1
0
0
0
0
0

 $O X=(P-L(N O)$
$G 1(N 3)=i) X / D L P * G I N 3$
$A 3(N 3)=G 1(N 3)$
$4(13)=0 x$
0
0
0
9
(ij) TR R\&\&
$A 4(N 3)=44 N 3$
$A 3(N 3)=G 1 N 3$
$P G K=P S A T-P V R$
$\angle P D=A$? (I) $-L P$
$R N P=P G F * \& 2(4) /(T 2+450) /$.12 . $X_{4}=\mathrm{F}$? $(\mathrm{I}+1)-\mathrm{END}$
To
N
"1
0
0
$K N R=P G R * A 2(4) /(T 2+460) /$.12 .
FNTINGEZE.EO.2) GE TO 8\&9
IF (A) (11).GT.0.001) GOTD 90
CALCULATE EFSFFVOIP HEATEP INP(B)
$I F(T 3 \cdot G E \cdot A Z(9)) A 2(11)=0.0$
$Q=A 2(11)$

IF(AR.GT.OI GO TO 220
CALL METER TL, Th, GI, X
$O L C=Q L(L P, A Z(16), A 2(7), L C O N D, X 6, L E F F)$
IF (IFREZE.EQ.1) GD TD 219
FIPNAT(1HO,15X,17HHEAT PIPF NUMRER,F2.0,17H CHARACTERISTICS)
HPITE 6,222$)$ AZ(1),AZ(3),AZ(4)
FIPMAT(I4FOTOTAL LFNGTH=,FG.2, THIN,11H GAS V/L=,F5.3,8HIN**3/IN,
$\begin{array}{lll}J & \text { in } & \text { n } \\ 0 & 0 & 0 \\ \infty & 0 & 0\end{array}$

IF(A)(6).GT.0.0) GE TO 224 WFITFIE, 225

$n+\infty$	n
$N N N$	N

 GO TO 420
CONTINUE

123 H PISITIGN EF GAS FRONT=,FG. $2,3 \mathrm{H}$ IN,2X,15HDRY EVAP LGTH=, 2FG. 2 , 3 H
FES $=$ NPEV $-X 4$
WRITE (6,206) NPRE, X4,RES
FTRMAT(18H GAS IN FES SIDE $=$,F9.6.19H GAS IN EVAP SIDE=,F9.6, F.JRMA GAS FESIPUAL=,FQ.6) FIFMAT 228 H TITAL PFESSURE IA PES SIDE=,F7.2.5H PSIA, $130 H$ TOTAL PRESSURE ON EVAP SIDE $=, F 7.2,5 \mathrm{H}$ PSIA, 2 X,
? 8HPFV-PFE=,F7. $2,5 \mathrm{H}$ PSIA)
228
0
m
n
$\begin{array}{ll} & 0 \\ 0 & 0 \\ N & N\end{array}$
-1
0
N
N
0
n
204
203
n
0
0
0
0
n
N
O
N

THIS SUBRGUTINE CALCULATE THE HEÀt FLOW RATE into and dut of
THF VAPOR NTDE

THIS FUNCTION CALCULATES THE O*LEFFECTIVE(PDUER-LENGTH) CAPACITY, E.G., BTL/HR-INCH QR WATT-METER FUNCTION $Q L(A, F, C, D, F, Z)$
$A I=C-C$
$A Z=D+Q$
$A 3=A-B-D$
$I F(C \cdot G E \cdot C \cdot A N D \cdot C \cdot L T, A)$ GO TO 100
$I F(C . G F \cdot A) G O T C I C I$
$Z=A I / 2 \cdot+P+A B / 2$.
$G O T O I O 2$
$Z=(A-C) / 2$.
∞
0
N
$\begin{array}{ll}0 & 0 \\ 0 & N \\ N & 4 N\end{array}$
ソையை

0
0

0
0
-

102
 -10 0 0

$N m$ t
$\begin{array}{ll}n & 0 \\ m & 0 \\ m\end{array}$
믄다당
뭉앙

F4＝CLC3－CLCT

N
0
m
$+\underset{\sim}{3}$

$\stackrel{N}{n}$
$\sim \stackrel{2}{\alpha} \underset{\sim}{\alpha}$

n	m	$土$	0	$0 \rightarrow$
0	0	0	0	00
m	m	m	n	$m m$

G	$-5=$	$3.46000 E-10$
G	$-10=$	$8.22000 E-11$
G	$15=2.00000 E+00$	
G	$20=$	$2.00000 E+00$
G	$25=2.56000 E+00$	
G	$30=$	$2.52000 E-02$
G	$35=2.52000 E-01$	
G	$40=7.77000 E-02$	
G	$45=2.52000 E-01$	
G	$50=0.00000$	
G	$55=$	$5.26717 E-01$
G	$60=$	$2.00000 E+00$
G	$65=5.00000 E+00$	

\qquad $69=5.00000 \mathrm{E}+00$

$-2=3.46000 E-10$
$12=5.00000 E-01$
$17=2.00000 E+00$
$22=5.00000 E-01$
$27=2.56000 E+00$
$32=2.52000 E-01$
$37=2.52000 E-01$
n
0
\vdots
4
0
0
0
N
n
0
N
n
n
w
0
0
1
0
0
0
N
w
n
n
m

$\begin{array}{ll}0 & 0 \\ + & 4 \\ 4 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \\ 10 & 4 \\ 1 & m \\ 0 & 0\end{array}$

$\begin{aligned} & 23=-7.71369 E+01 \\ & 28=6.02895 E+01 \\ & 34=-9.76865 E+01 \\ & 5=-3.19624 E+01 \\ & 10=7.07528 E+01 \\ & 15=7.94214 E+01 \\ & 20=7.94478 E+01\end{aligned}$
$-1=3.46 O C O E-10$

total heat exchange to boundaries -1.35907e+02
TRW SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER

********** TIME = 1.00000E+00 DTIMEU $=7.2365$ EE-03 CSGMIN(

 24$\begin{aligned} 26 & =1.92357 E+01 \\ 31 & =6.04695 E+01 \\ 3 & =-7.51467 E+01 \\ 8 & =7 \cdot 07206 E+01 \\ 13 & =7 \\ 18 & =7 \\ 35 & =-1.25557 E+01\end{aligned}$
$-4=3.46000 E-10$
$\begin{aligned} &-9=3 \cdot 46000 E-1 \\ & 14= 2 \cdot 00000 E+00 \\ & 19= 2 \cdot 00000 E+00 \\ & 24=2.56000 E+00 \\ & 29=5.05000 E-02 \\ & 34=2.52000 E-01 \\ & 39=2.52000 E-01 \\ & 44=2.52000 E-01 \\ &-49=5.48480 E-11 \\ & 54=0.00000 \\ & 59=5.00000 E+00 \\ & 64=5.00000 E+00 \\ & 69=5.00000 E+00\end{aligned}$
 $25=-3.41951 E+01 T$
$30=6.04312 E+01 T$
$2=-8.46063 E+01 T$
$7=6.88196 E+01 T$
$12=7.39015 E+01 T$
$17=7.95083 E+01 T$
$32=6.37296 E+01 T$
$\begin{array}{ll}0 \\ -1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 4 & \\ m & \\ m & \\ m & \\ m\end{array}$ 0
\sim
1
ω
0
0
0
0
\vdots
m
n
n
1 $3=2.00000 E+00$
$8=2.00000 E+00$
 $28=2.56000 E+00$
$33=2.52000 E-01$ $43=4.58000 E=02$ TO-30002 $5^{\circ} 2=8$ 0
0
4
00
00
00
00
0
0
11
n
n $63=5.00000 E+00$ HEAT PIPE NUMBER 1 CHARACTERISTICS
 -$-2=3 \cdot 46000 E-10$ $7=3.46000 E-10$
$2=5.00000 E-01$ $7=2.00000 E+00$ $2=5.00000 E-01$ $7=2.56000 E+00$
$2=2.52000 E-01$ $10-30002 G^{\circ} 2=2 \varepsilon$ $\tau 0-30002 G^{\circ} 工=L ね$
$20-30002 G^{\circ} 2=27$ 0
0
0
0
0
0
0
n
n $\begin{array}{ll}00+300000^{\circ} G & =29 \\ 00+300000^{\circ} G & =29 \\ C 0+300000^{\circ} G & =L G\end{array}$? TOTAL LENGTH= 40. COIN GAS V/L* $115 I N * * 3 / I N$ RES VOLUME* 6.710 INR 3
GAS INVENTDRY $=\quad .2530$ FT-IB/R RESERVOIR IS WICKED $11 \cdot 86 \mathrm{IN}$

$$
16 \cdot 32
$$

36707 RESIDUAL $=-.000000$

$$
-.000000
$$

$27=-3.61980 E+01$
$33=6.93290 E+01$
$4=-7.23265 E+01$
$9=-1.73171 E+01$
$14=6.90124 E+01$
$19=6.91190 E+01$
$36=6.90115 E+01$

$$
\begin{aligned}
& -\vdash \vdash+1 \\
& -0 \\
& 0 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& H \\
& H \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& m \\
& m \\
& m
\end{aligned}
$$

$$
\begin{array}{lll}
0 & 0 & 0 \\
t & 4 & 4 \\
w & 4 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & n \\
= & = \\
n & \cdots & n \\
m & m & m \\
m & m & h
\end{array}
$$

$$
\begin{aligned}
& 18=2.50000 E+00 \\
& 28=2.56000 E+00 \\
& 28=200+00
\end{aligned}
$$

$$
\begin{aligned}
& 00+300000^{\circ} \mathrm{G}=89 \\
& 00+300000^{\circ} \mathrm{G}=89
\end{aligned}
$$

$$
\begin{array}{r}
00000^{\circ} 0=E G \\
10-700025^{\circ} 2=84 \\
20-3 n 000 \%
\end{array}
$$

$$
\text { HEAT PIPE NUMBER } 1 \text { CHARACTERISTICS }
$$

TOTA. LENGTH= 40.00IN GASV/L= . $115 I N * * 3 / I N$ RES VOLUME $=6.710$ IN-3
GAS INVENTORY = . 2530 FT-1B/R RESERVOIR IS
TOTAL HEAT EXCHANGE TO BQUNDARIES $-6.65372 E+01$

$$
\begin{aligned}
& T \\
& T
\end{aligned}
$$

********** TIME $=1.80000 E+00$ DTIMEU业 7.2265CE-03 CSGMIN1

 $-2=3.46000 E-10$
$-7=3.46000 E-10$
$12=5.00000 E-01$
$17=2.00000 E+00$
$22=5.00000 E-01$
$27=2.56000 E+00$
$32=2.52000 E-01$
$37=2.52000 E-01$
$42=2.52000 E-02$
$47=2.52000 E-01$
$52=0.00000$
$57=0.00000$
$62=0.00000$
$67=5.00000 E+00$

$$
\begin{array}{r}
23=-1 \cdot 06576 E+02 \\
28=-9 \cdot 94056 E+01 \\
34=-1 \cdot 00556 E+02 \\
5=-1 \cdot 04720 E+02 \\
10=-9 \cdot 59483 E+01 \\
15=6 \cdot 22303 E+01 \\
20=6 \cdot 25827 E+01
\end{array}
$$

HEAT PIPE NUMBER

CHARACFERISTICS

$$
1151 N * * 3 / I N \text { PES VULON }
$$

PES VOLUME
PSIA

$$
\begin{aligned}
& \text { CKED } \\
& \text { GAS }
\end{aligned}
$$

0.00 IN

צH/HONI-N18 2° I

$$
\begin{array}{r}
34 \text { BTU/HR LEFF }= \\
.078148 \text { RESIDUAL }=
\end{array}
$$

$$
\begin{aligned}
& 5.20 \text { INCHES QLEFF }= \\
& .000001
\end{aligned}
$$

TOTAL HEAT EXCHANGE TO BQUNDARIES $-1.10248 \mathrm{E}+01$
QB $35=-1.10248 \mathrm{E}+01 \mathrm{QB} \quad 36=-1.80425 \mathrm{E}-11$

$\begin{array}{ll}64= & 0.000000 \\ 69= & 0.00000\end{array}$

＊＊＊＊＊＊＊＊＊＊ TIME $=2.00000 E+00$ DTIMEU 7． $22656 E-03$ CSGMIN（

TOTAL HEAT EXCHANGE TO BDUNDARIES－ $2.33479 E+00$
$Q B \quad 35=-7.33479 E+00$ QB $36=0.00000$

0006000000000

$$
0 \quad 0<\theta \in \sin t+\sin \text { in } 00
$$

.500000

8
0
0
0
0
0
0
0
0
0

$$
\begin{aligned}
& T \\
& T
\end{aligned}
$$

NNNNNMN
$E+02$
$E+02$
$E+02$
$E+02$
$E+02$
$E+01$
$E+01$
 TOTAL LENGTH＝ $40.00 I N$ GAS V／L＊ $115 I N \neq 3 / I N$ RES VOLUME $=$
GAS INVENTORY＝ GAS INVENTORY天 •2．530 FT－LB／RRESERVGIR IS FIUG GICKED

1
T
7
7 $24=-1.10423 E+02$
$29=-1.05645 E+02$
$1=-1.04727 E+02$
$6=-1.09060 E+02$
$11=-1.01152 E+02$
$16=6.08954 E+0 \Sigma$
$22=-1.10416 E+02$
 $32=20520008 \therefore ⿱ 亠 䒑 𧰨$

$$
6.710 \text { IN**3 }
$$

$$
\text { HEAT PTPE NUMBER } 1 \text { CHARACTERISTICS }
$$

4 L $\forall \exists H$ LDCATION OF ICE GAS IN RES SIDE： 186676 GAS IN EVAP SIDE： 066324 GAS RESIDUALE TOTAL PRESSURE IN RES SIDE＝ 112.87 PSIA TOTAL PRESSURE DN EVAP SIDE RES TEMPERATURE $=102.04$ F EVAP SIDE YAPAR TEMP＝ 60.94 F SUM QIN＝O．OO BTU／HR，SUM QUUT＝

＝ปヨヨ70 SヨHJNI

 $\begin{array}{ll}00+30009 G^{\circ} z & =52 \\ 00+300000^{\circ} z & =02\end{array}$ $20-700025^{\circ} Z=0 E$
$00+300095^{\circ} Z=5 Z$ $20-70002 L^{\circ} L=0 \%$
$10-\exists 00025^{\circ} \tau=G E$
$20-700025^{\circ} \tau=0 E$ $10-300025^{\circ} 2=5 \xi$ $\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6 & M & n \\ 0 & n & n \\ n & 0 & 0\end{array}$ GAS FRINT: 40.00 IN DRY EVAP LGTH=
 $\begin{array}{cc}0 & 0 \\ -1 & 1 \\ 1 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 5 & 5 \\ m & m \\ m & \\ n & 0 \\ 1 & 1\end{array}$ $00+300000^{\circ} 2=8$
$00+300000^{\circ} z=E$ $18=2.00000 E+00$
$23=2.56000 E+00$ $\begin{array}{ll}10-300025^{\circ} & =E \varepsilon \\ 00+300095^{\circ} & =82\end{array}$

$-2=3 \cdot 46000 E-10$
$-7=3.46000 E-10$
$12=5.00000 E-01$
$17=2.00000 E+00$
17: 2.00000E +00
$27=2.56000 E+00$
$32=2.52000 E-01$
$37=2.52000 E-01$
$42=2.52000 E-02$
$47=2.52000 E-01$
$52=0.00000$
$62=0.00000$

$\begin{array}{ll}G & -1=3.46000 E-10 \\ G & -6=3.46000 E-10 \\ G & -11=8.22000 E-11 \\ G & 16=2.00000 E+00 \\ G & 21=2.00 G O O E+00 \\ G & 26=2.56 C 00 E+00 \\ G & 31=7.770 C O E-02 \\ G & 36=2.52000 E-01 \\ G & 41=2.520 C O E-02 \\ G & 46=2.520 C O E-01 \\ G & 51=0.0 C O C O \\ G & 56=0.00 C O O \\ G & 61=0.00000 \\ G & 66=0.00 C O O\end{array}$
TE
LEFF= 0.00 INCHES

$$
\text { ACNOILISOd NI } 00^{\circ} \downarrow
$$

$$
\begin{aligned}
& \text { TOTAL HEAT EXCHANGE TO BQUNDARIES }-1.65910 E+00 \\
& Q B \quad 35=-1.65910 E+00 \text { QB } 36=0.00000
\end{aligned}
$$

ON EVAP SIDE

$$
L E F F=0.00
$$

EMP 0.00 BTU/HR

> EMP= 42.81

$$
0.00 \text { BTU/HR, SUM QUUT }=
$$

LOCATION OF ICE PLUG
GAS IN RES SIDE TOTAL PRESSURE IN RES SIDE $=108.90$ PSIA RES TEMPERATURE $=-113.43$ F EVAF SIDE VAPOR SUM QIN=

$24=-1.19121 E+02$
$29=-1.16824 E+02 T$
$1=-1.15018 E+02 T$
$6=-1.18872 E+02 T$
$11=-1.12278 E+02$
$16=4.27708 E+01$
$22=-1.18252 E+02 T$

$\begin{array}{cc}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 5 & 4 \\ 0 & 0 \\ m & n \\ 4 & 0 \\ 1 & 1\end{array}$
$-9=2.40000 E+00$
$14=2.00000 E+00$
$19=2.000$
$24=2.5=5.05 J 0 O E-02$

＊＊＊＊＊＊＊＊＊＊TIME＝4．20000E＋00 DTIMEU：7．22656E－03 CSGMINI

$-3=3.46000 E-10$ $00+300000 \cdot \varepsilon=8$
$0 \tau-70009+\varepsilon=8$ $13=2.00000 E+00$
$18=2.00000 E+00$ $23=2.56000 E+00$
$28=2.56000 E+00$ $28=2 \cdot 52000 E-01$
$38=2.52000 E-01$ $43=4 \cdot 58000 E-02$ $53=0.00000$

00 +04 140 00 80 00 10 $=89$ $=89$ $=85$

 HEAT PIPE NUMEER 1 CHARACTERISTICS

[^2]PAGE 28
$27=-3 \cdot 20878 E+01$
$33=1 \cdot 21813 E+02$
$4=-1 \cdot 03110 E+02$
$9=1 \cdot 00685 E+02$
$14=1 \cdot 08677 E+02$
$19=1 \cdot 13099 E+02$
$36=1 \cdot 08637 E+02$

- $-1+1-ト$

 $25=-9 \cdot 23761 E+01$
$30=8 \cdot 94233 E+01$
$2=-1 \cdot 11401 E+02$ $20+\exists 2 c 2 L 0^{\circ} \mathrm{T}=2 \mathrm{I}$
$\mathrm{T} 0+\exists G L \angle L L^{\circ} \mathrm{Z}=2$
$20+\exists \mathrm{T}=2 \mathrm{~T}=2$

 DTIMEU= $7.22656 E-03$ CSGMIN

$\rightarrow 1+1+1$

$0+3$
$0+3$
$0+3$
$0+3$
$0+3$
$0+3$
$1+3$
766
$\exists \varepsilon L$
$3 L 7$
788
$3 \varepsilon \varepsilon$
$7 \varepsilon G$
$70 t$

$=-1.0$
$=$
3.7
-1.1
-9.1
1.0
1.1
1.1

 FT-LB/RRESERVAIR IS
4.00 IN PN 46 GAS IN EVAP SIDE EE $=108.35 \mathrm{PSI}$ F EVAP SIDE
SUM OOUT HR, CEE PLUG× LEFF: $14 \cdot 33$

[^3]| 27 | $=5 \cdot 28458 E+01$ |
| ---: | :--- |
| 33 | $=1 \cdot 43798 E+02$ |
| 4 | $=-4 \cdot 22482 E+01$ |
| 9 | $=6 \cdot 99232 E+01$ |
| 14 | $=7 \cdot 34602 E+01$ |
| 19 | $=1 \cdot 43797 E+02$ |
| 36 | $=7.31560 E+01$ |

| $-4=3.46000 E-10$ | G | $-5=3.40000 E-10$ |
| ---: | :--- | ---: | :--- |
| $-9=3.46000 E-10$ | G | $-10=8.22000 E-11$ |
| $14=2.00000 E+00$ | G | $15=2.00000 E+00$ |
| $19=2.00000 E+00$ | G | $20=2.00000 E+00$ |
| $24=2.56000 E+00$ | G | $25=2.56000 E+00$ |
| $29=5.05000 E-02$ | G | $30=2.52000 E-02$ |
| $34=2.52000 E-01$ | G | $35=2.52000 E-01$ |
| $39=2.52000 E-01$ | G | $40=7.77000 E-02$ |
| $44=2.52000 E-01$ | G | $45=2.52000 E-01$ |
| $-49=5.48480 E-11$ | G | $50=0.00000$ |
| $54=0.00000$ | G | $55=0.00000$ |
| $59=5.00000 E+00$ | G | $60=5.00000 E+00$ |
| $64=2.87321 E+0 Q$ | G | $65=0.00000$ |
| $69=0.00000$ | | |

ペーローローローロナーロー

 $23=-5.563 t 3 E+01 \mathrm{~T}$ $\begin{array}{rr}T & 23=-5.50343 E+01 \\ T & 28=6.15088 E+01 \\ T & 34=-1.09175 E+02 T \\ T & 5=-2.22415 E+01 \\ T & 10=6.99433 E+01 \\ T & 15=1.06835 E+02 T \\ T & 20=1.43798 E+02 T\end{array}$

$$
\begin{aligned}
-1 & =3.460 C O E-10 \\
-6 & =3.4600 O E-10 \\
-11 & =6.22000 E-11 \\
16 & =2.00000 E+00 \\
21 & =2.000 C O E+00 \\
26 & =2.560 C O E+00 \\
31 & =7.77000 E-02 \\
36 & =2.52000 E-01 \\
41 & =2.52000 E-02 \\
46 & =2.52000 E-C 1 \\
51 & =0.0 C C C O \\
56 & =1.963 G 6 E+00 \\
61 & =5.00000 E+00 \\
66 & =0.00000
\end{aligned}
$$

HEAT PIPE NUMBER 1 CHARACTERISTICS

OTAL LENGTH＝ $40.00 I N$ GAS V／L＝ $115 I N * * 3 / I N$ RES VOLUME＝ 6.10 IN－3
 $$
\text { © } 2530 \text { FT-1B/R RESERVDIR IS NICKED }
$$

LGTH
LEFF $=10.22$ INCHES QLEFF $=1000.0$ BTU－INCH／HR
DUAL $=-.000002$

[^4]
 $-3 \% \quad 3.40000 E-10$ $8=3.46000 E-10$
$13=2.00000 E+00$ $18=2.00000 E+00$
$23=2.56000 E+00$ $8=2.56000 E+00$
$3=2.52000 E-01$ 400
0
4
0
0
0
4
n
n
n
n 10-700025:2 $700000^{\circ} 5$
$00000^{\circ} 0$ $53=5.00 .00000 E+00$
$63=5.00000 E+00$

 $-2=3.4600 E-10$ $12 * 5.00000 E-01$ $7=2.00000 E+00$ $7=2.56000 E+00$ $32=2.52000 E-01$ $37=2.52000 E-01$
$42=2.52000 E-02$ 10-30002G* $=2$ $300000^{\circ} G=\angle G$
$00000 \cdot 0=2 G$ $57=5.00000 E+00$
$62=5.00000 E+00$ $67=0.00000$

$26=7.90362 E+00 T$
$31=6.60584 E+01$
$3=-3.85016 E+01$
$8=7.40897 E+01$
$13=7.78084 E+01$
$18=3.22330 E+02 T$
$35=-5.00000 E+01$
\[

$$
\begin{array}{r}
25=-1.84603 E+01 \\
30=6.60271 E+01 \\
2=-4.71243 E+01 \\
7=6.65825 E+01 \\
12=7.69487 E+01 \\
17
\end{array}
$$=3 . T
\]

 $\begin{array}{lrl}G & -1=3.4 C O O O E-10 \\ G & -6=3.46000 E-10 \\ G & -11=8.22000 E-11 \\ G & 16=2.00000 E+00 \\ G & 21=2.00000 E+00 \\ G & 26=2.560 C O E+00 \\ G & 31=7.77000 E-02 \\ G & 36=2.52000 E-01 \\ G & 41=2.52000 E-C 2 \\ G & 46=2.52000 E-01 \\ G & 51=0.00000 \\ G & 56=2.449 C 3 E+00 \\ G & 61=5.00000 E+00 \\ G & 66=0.00000\end{array}$

HEAT PIPE NUMBER 1 CHARACTERISTICS

TOTAL HEAT EXCHANGE TO BOUNDARIES $\mathbf{- 9 . 8 8 9 9 0 E + 0 1}$

ソ00000000000
$24=-3.14735 E+01$
$29=6.89668 E+01$
$1=-5.69965 E+01$
$6=1 \cdot 17374 E+01$
$11=7.77078 E+01$
$16=5.38294 E+02 T$
$22=-4 \cdot 38235 E+01$

$$
\begin{aligned}
& -2=3.46000 E-10 \\
& -7=3.46000 E-10 \\
& 12=5.00000 E-01 \\
& 17=2.00000 E+00 \\
& 22=5.00000 E-01 \\
& 27=2.56000 E+00 \\
& 32=2.52000 E-01 \\
& 37=2.52000 E-01 \\
& 42=2.52000 E-02 \\
& 47=2.52000 E=01 \\
& 52=0.00000 \\
& 57=5.00000 E+00 \\
& 62=5.00000 E+00 \\
& 67=0.00000
\end{aligned}
$$

T	$23=-3.79085 E+01$
T	$28=6.85544 E+01$
T	$34=-6.37102 E+01$
T	$5=-1 \cdot 62161 E+01$
T	$10=7 \cdot 76719 E+01$
T	$15=5.04140 E+02$
T	$20=5.41379 E+02$
G	$-1=3.46000 E-10$
G	$-6=3.46 C C O E-10$
G	$-11=8.220 C O E-11$.
G	$16=2.00000 E+00$
G	$21=2.00000 E+00$
G	26=2.56000E+00
G	$31=7.77000 E-02$
G	$36=2.52000 E-01$
G	$41=2.52000 E-02$
G	$46=2.52000 E-01$
G	$51=0.00000$
G	$56=1.87813 E+00$
G	$61=5,000 C O E+00$
G	$66=0.00000$

$27=5.89250 E+01$
$33=7.55141 E+02$
$4=-3.03071 E+01$
$9=7.92950 E+01$
$14=8.85845 E+01$
$19=7.55139 E+02$
$36=8.28510 E+01$

ज00000000000

$-4=3.46000 E-10$

$$
\begin{aligned}
& -4=3.46000 E-10 \\
& -9=3.46000 E-10 \\
& 14=2.00000 E+00
\end{aligned}
$$

$$
\begin{aligned}
& 19=2.00000 E+00 \\
& 24=2.56000 E+00 \\
& 20=
\end{aligned}
$$

ט000000000000
トートトートトゥ

$$
\begin{array}{r}
25=-1.78904 E+01 \\
30=7 \cdot 04930 E+01 \\
2=-4.18365 E+01 \\
7=6.65850 E+01 \\
12=8.19501 E+01 \\
17=7.54883 E+02 \\
32=7.32978 E+01
\end{array}
$$

 $-8=3.46000 E-10$
$13=2.00000 E+00$ $13=2.00000 E+00$
$18=2.00000 E+00$ $23=2.56000 \mathrm{E}+00$

$$
\begin{aligned}
& 14=2.00000 E+00 \\
& 19=2.00000 E+00
\end{aligned}
$$

$$
\begin{aligned}
& 34=2.52000 E-01 \\
& 39=2.52000 E-01 \\
& 44=2.52000 E-01
\end{aligned}
$$

$$
\begin{aligned}
& -1 \\
& \hline
\end{aligned} \mathbf{0}-1
$$

$$
\begin{aligned}
00000^{\circ} 0 & =わ G \\
I T-308+\%^{\circ} G & =6 \hbar-
\end{aligned}
$$

$$
\begin{array}{cc}
0 & 0 \\
-1 & 1 \\
4 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
i & 0 \\
m & \\
m \\
m & n \\
m & 0
\end{array}
$$

 $43=4.58000 E-02$
$48=2.52000 E-01$
$\begin{aligned} 00+300000^{\circ} G & =8 G \\ 00000^{\circ} 0 & =\varepsilon G\end{aligned}$ $68=0.00000$

-1	$=3.460 C O E-10$
-6	$=3.460 C O E-10$
-11	$=8.22000 E-11$
16	$=2.00000 E+00$
21	$=2.00 C O O E+00$
26	$=2.560 C O E+00$
31	$=7.77000 E-02$
36	$=2.52000 E-01$
41	$=2.52000 E-02$
46	$=2.52000 E-01$
51	$=0.000 C 0$
56	$=1.6 C 444 E+00$
61	$=5.00000 E+00$
66	$=0.000 C 0$

$$
\begin{aligned}
& 5.00000 E+00 \\
& 1.18962 E-01
\end{aligned}
$$

NI
 11.95

[^5]\[

$$
\begin{aligned}
& 24=5.2000 U E+00 \\
& 29=5.0500 E-02 \\
& 34 x 2.52000 E-01
\end{aligned}
$$
\]

$$
0.00000
$$

APPENDIX A. 5.1

POTENTIAL FOR BUBBLE FORMATION IN CTS HEAT PIPES:
FUNDAMENTALS

INTEROFFICE CORRESPONDENCE

to. E. E. Luedke
ce. D. Antoniuk
J. E. Eninger
B. D. Marcus
$\begin{array}{ll}\text { subject } & \text { Potential for Bubble Formation } \\ & \text { in CTS Heat Pipes: Fundamentals }\end{array}$

DATE: 27 October 1978

INTRODUCTION

In the Anomalies Review and Program Plan of 19 October 1978, there is promised the following analysis: "Calculate number of critical size bubbles which can be generated due to supersaturation in rapid chill down. Consider both temperature and pressure effects". In what follows the basis for making such a calculation is reviewed.

gAS SATURATION

For dilute solutions of gas in liquid, Henry's Law can be invoked: The partial pressure gas i in the vapor phase P_{i} and the mote fraction X_{j} or concentration c_{j} of gas i in the liquid phase are linearly related
$P_{i}=C_{i}(T) x_{i}=\left[C_{i}(T) / C\right] c_{i}, i>2$
In the vapor phase the total pressure P is given by Dalton's Law for an ideal gas mixture
$p=\sum_{i=1}^{n} P_{i}$
where the vapor pressure of the solute species is given by

Raoult's Law

$$
\begin{equation*}
P_{1}=P_{\text {sat }}(T) X_{1}=C_{1}(T) X_{1} \tag{3}
\end{equation*}
$$

Often Henry's constant $C_{i}(T)$ is so large that all X_{i} 's other than X_{1} are very small, and $X_{1}=1$. The mole fractions in the liquid sum to unity, of course.
$r=\sum_{i=1}^{n} x_{i}$
$c=\sum_{i=1}^{n} c_{i}$

If the liquid contacts a gas mixture of specified total pressure P and specified ratios of noncondensible gas mole fraction,

$$
\begin{equation*}
V_{i}=P_{i} / \sum_{i=2}^{n} P_{i}=P_{i} / P_{g} \tag{5}
\end{equation*}
$$

First, one finds tie mole fraction of noncondensibles in the liquid
$x_{g}=\frac{\sum_{i=2}^{n}\left(Y_{i} / C_{i}\right)\left(P-C_{1}\right)}{1-\sum_{i=2}^{n}\left(Y_{i} / C_{i}\right) c_{1}}$

The partial pressures in the vapor phase are

$$
\begin{equation*}
P_{i}=Y_{i}\left[P-c_{1}\left(1-X_{g}\right)\right] \tag{7}
\end{equation*}
$$

The mole fractions in the liquid phase are
$x_{i}=\left(Y_{i} / C_{i}\right)\left[P-C_{1}\left(1-X_{g}\right)\right]$

CRITICAL BUBBLE SIZE

The preceeding relations are assumed to apply to gas at equilibrium within a critically-sized bubble when the total pressure in the bubble exceeds that in the surrounding liquid by an amount related to the surface tension σ and bubble size r

$$
\begin{equation*}
P-P_{\ell}=\frac{2 \sigma(T)}{r} \tag{9}
\end{equation*}
$$

Given a value of $P_{\ell}, \sigma(T)$, and r one can find P from Eq. (9) and then proceed as before to establish the set of x_{i} mole fractions in the liquid immediately surrounding the bubble (the effect of X_{i} on σ is neglected). Conversely given a set of X_{i}, one can use Eqs. (1), (2), and (3) to find P and Eq. (9) to find r.

PREVIOUS AND PRESENT STATE VARIABLES

For convenience we choose to set the composition of a (bubbly) liquid by its "Previous state variables" T_{e} and $T_{c}{ }_{c}$ plus the Y_{i} ratios. The quantity $T^{\prime} e$ is the "Previous evaporator temperature". It sets the previous total pressure P^{\prime}
$P^{\prime}=P_{s a t}\left(T^{\prime}{ }_{\mathrm{e}}\right)$
The "Previous (gas-blocked) condenser temperature is T" c ". It sets the previous vapor pressure according to Eq. (3) and, as explained below Eq. (4) in Eqs. (5) - (8), with P^{\prime} and P^{\prime}, one can find the previous liquid composition $X_{i}{ }_{i}$.

Present state variables are T_{e} and T_{c}. The quantity T_{e} is understood to fix pressure P_{ℓ} by the relation
$P_{\ell}=P_{\text {sat }}\left(T_{e}\right)$
The quantity T_{c} fixes σ and P_{1}.
CRITICAL BUBBLE SIZE IN AN INFINITE LIQUID
Specification of the previous state variabies, present state variables, and nonisothermal gas composition leads immediately to the critical size of a single bubble in contact with an infinite liquid. Variables $\mathrm{T}_{\mathrm{e}}{ }^{\prime}, \mathrm{T}_{\mathrm{c}}{ }^{\prime}$, and $\mathrm{Y}^{\prime}{ }_{i}$ leads to a set of X_{i} which, in an infinite liquid, are identical to X_{i}. Then, as explained below Eq. (9), one can find P and r using the set of X_{i} and P_{ℓ} (from T_{e}) and σ and P_{1} (from T_{c}).
$r_{c r}=\frac{2 \sigma\left(T_{c}\right)}{P-P_{\ell}}$

Where P_{ℓ} comes from Eq. (11) and P from Eq. (2) with P_{i} from Eqs. (1) and (3).

NuMber of bubbles of a specified size in a finite liquid
Let the mole fractions in one mole of liquid mixture be specified by the previous state variables. Imagine that the liquid is supersaturated, that is, there exists a finite $r_{c r}$. Now choose a value or r greater than $r_{c r}$. Then Eq. (9), with P_{ℓ} fixed by T_{e} and σ by T_{c}, fixes total pressure P. Unfortunately the gas composition in the bubble is unknown so that Eq. (7) cannot be directly applied. However, one can write that the moles of species i remaining in the liquid plus
those in the gas sum to the original amount of species \mathbf{i}.
$X_{i}(1-N)+N Y_{i}=X_{i}{ }^{\prime}$
where N is the number of moles in the vapor phase. Introducing Eqs. (1), (2), and (3) gives
$x_{i}+N P_{i} / P=x_{i}{ }^{\prime}$
$x_{i}+(N / P) c_{i} x_{i}=x_{i}$
where C_{1} is understood to be $P_{\text {sat }}\left(T_{c}\right)$. Solving for x_{i} gives
$x_{i}=\frac{x_{i}}{1+(N / P) c_{i}}$

Multiplying both sides by $C_{i}\left(T_{c}\right) / P$ and summing over i gives a single equation which fixes the unknown N.
$1=\sum_{i=1}^{n} \frac{c_{i} x_{i}}{p+N c_{i}}$
For a single-species noncondensible gas Eq. (16) may be solved explicity via the quadratic equiation. For a binary noncondensible gas mixture, one can employ a computer-aided binary search for the normalizing value of N. Once N is determined the number of bubbles follows immediately
$N_{b}=\frac{N R_{u}{ }^{\top} c}{P\left(\frac{4}{3} \pi r^{3}\right)} \quad \frac{\text { Bubbles }}{\text { Mole }}$
where R_{u} is the universal gas constant.

APPENDIX A.5.2

POTENTIAL FOR BUBBLE FORMATION IN CTS HEAT PIPES:
SAMPLE CALCULATIONS

то. E. E. Luedke

cc: D. Antoniuk
J. E. Eninger
B. D. Marcus
subject: Potential for Bubble Formation in CTS Heat Pipes: Sample Calculations

INTRODUCTION

It is desired to calculate the number and size of critical size bubbles which can be generated due to supersaturation. In Part I the fundamentals were developed. Here sample calculations are made for two test cases (1) a condenser depressurization case where evaporator temperature is dropped at constant gas-blocked condense: . temperature and (2) a condenser chilldown where the gas-blocked condenser is cooled at constant total pressure.

HENRY'S CONSTANTS

Henry's constants are calculated from extrapolations of a solubility curve from Saaski. Saaski plots mole fraction of the gas in the liquid versus temperature on a log-log scale. Presumably the gas pressure is one atmosphere. Thus one has X_{i} for $P_{i}=1$, and since $P_{i}=C_{i} X_{i}, C_{i}=P_{i} / X_{i}=1 / X_{i}$.

As a check, an Ostwald coefficient reported by Saaski for helium in methanol at $25^{\circ} \mathrm{C}$ is compared to the graphed value. Ostwald coefficient a at $25^{\circ} \mathrm{C}$ is reported to be 0.036 . The graph shows $X_{i}=6 \times 10^{-5}$. Hence we expect from the graph that $C_{i}=1 / 6 \times 10^{-5}=16670 \mathrm{~atm}$. Ostwald coefficient and Henry number are related by

$$
\begin{gathered}
C_{i}=\frac{c_{l} R_{u}{ }^{T}}{a}=\frac{\rho_{l} R_{u} T}{M a} \\
C_{i}=\frac{(0.785)(82.05)(298.1 .5)}{(32)(0.036)}=16670 \mathrm{~atm}
\end{gathered}
$$

The check is very satisfactory.
Table 1 gives Henry constant for belium and nitrogen at $-100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$. The values are hypothetical and extrapoluted, hypothetical in that liquid is
freezes at a temperature of $-98^{\circ} \mathrm{C}$, and extrapoluted in that Saaski's curves are extrapoluted. The values are chosen merely to exemplify trends.

TEST CASES

Table 2 shows the test-case conditions selected. Table 3 shows the property values needed for the test cases.

PREVIOUS STATE COMPOSITIONS
As detailed in Part I the calculation commences with Eq. (I-6) and proceeds to Eq. (I-8).

$$
\begin{aligned}
& x_{g}=\frac{\left[\left(y_{2} / C_{2}\right)+\left(y_{3} / C_{3}\right]\left[P-C_{1}\right]\right.}{1-\left[\left(y_{2} / C_{2}\right)+\left(y_{3} / C_{3}\right)\right] C_{1}} \\
& x_{i}=\left(y_{i} / C_{i}\right)\left[P-C_{1}\left(1-x_{g}\right)\right.
\end{aligned}
$$

Table 4 gives the values.

TABLE 1
†

> Extraction of Henry's Constants From A Solubility Curve $$
C=1 / x_{i} \text { atm }
$$

Gas	Temperature	Solubility in Methanol	Henry's Constant C
Helium	-100C	1×10^{-5}	100000
	(Hypothetical)		
	-40C	2.6×10^{-5}	38500
	(Extrapolated)		
Nitrogen	-100C	2.82×10^{-4}	3550
	(Hypothetical)		
	-40C	2.69×10^{-4}	3720
	(Extrapolated)		

Hypothetical Test Cases

Test Case 1 Depressurization from Drop in Evaporator TemperaturePrevious State Variables
Evaporator Temperature, $\mathrm{T}_{\mathrm{e}}{ }^{\prime}$ 49C(120F)
Gas Blocked Condenser Temperature, $\mathrm{T}_{\mathrm{C}}{ }^{\prime}$ $-40 C(-40 F)$
Noncondensible Gas Composition, $y_{n, i}$ $90 \% \mathrm{~N}_{2}-10 \% \mathrm{He}$
Present State Variables
Evaporator Temperature, T_{e} 21C(70F)
Gas Blocked Condenser Temperature, T_{c} -40C(-40F)
Test Case 2 Chilldown in Gas-Blocked Condenser
Previous State VariablesEvaporator Temperature, $\mathrm{T}_{\mathrm{e}}{ }^{\prime}$21C(70F)
Gas Blocked Condenser Temperature, $\mathrm{T}_{\mathrm{c}}{ }^{\prime}$ $-40 C(-40 F)$
Noncondensible Gas Composition, $y_{n, i}$ $90 \% \mathrm{~N}_{2}-10 \% \mathrm{He}$
Present State Variables
Evaporator Temperature, T_{e} 21C(70F)
Gas Blocked Condenser Temperature, T_{c} $-100 C(-148 \mathrm{~F})$

TABL'E 3

Vapor Pressure and Surface Tension

T	$\mathrm{P}_{\text {sat }}=\mathrm{C}_{1}$	T	C
C	psia	$\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}$	
49	7.62	-40	2.1×10^{-3}
21	1.96	-100	2.4×10^{-3}
-40	0.02870		
-100	0.00012		

v푸 두N

$\cdots \stackrel{?}{\square}$

1.251×10^{-4}
1.000
1.000

앙
m

氙豆	ج.
	$\begin{gathered} 7 \\ y_{0} \\ x \\ x \end{gathered}$
	ro
会号	$\underset{\sim}{\stackrel{m}{0}}$

M惑
\sim_{i}^{0}
$\sim \underset{\sim}{5}$
$\stackrel{8}{N}$
$\stackrel{i}{i n}$
Critical Bubble Size in an Infinite Liquid
心品

x $\begin{array}{r}8 \\ \hline\end{array}$
1.000

Critical Bubble Size in an Infinite Liquid

As explained in Part I, to conpute the ciritical bubble size, one computes

$$
P=\sum_{i=1}^{n} x_{i}^{\prime} \quad c_{i}\left(T_{c}\right)
$$

and then

$$
r_{c r}=\frac{2 \sigma\left(\mathrm{~T}_{\mathrm{e}}\right)}{\mathrm{P-r}_{s a t}\left(\mathrm{~T}_{\mathrm{e}}\right)}
$$

Table 5 shown the results. For depressurization (case 1) the critical bubble is small, $1.6 \mu \mathrm{~m}$ in radius, the size of nuclei expected to be active in nucleate surface boiling. However, the gas composition near the surface exposed to the gas would be more nearly in equilibrium. That is contact with the wick might be close to the composition assumed. For chilldown (case 2) the increase in Henry's constant for helium results in supersaturation, but the potential for nucleation is mach less. A fifty-micron-radius nucleus would be required for bubble formation.

Number of Bubbles of a Specified Size

From Part I the equation which governs the anount of gas N within bubbles is

$$
1=\frac{C_{1} x_{1}^{\prime}}{P+N C_{1}}+\frac{C_{2} x_{2}^{\prime}}{P+N C_{2}}+\frac{C_{3} x_{3}^{\prime}}{P+N C_{3}}
$$

where the total pressure within the bubble is

$$
P=P_{s a t}\left(T_{e}\right)+\frac{2 \sigma}{r}
$$

For case 1 and $r=50.8 \mu \mathrm{~m}$ the following values pertain:

$$
\begin{aligned}
& P=1.96+\frac{2\left(2.1 \times 10^{-3} / 12\right.}{50.8 / 25400}=2.135 \mathrm{psia}=0.1453 \mathrm{~atm} \\
& C_{1} x_{1}^{\prime}=(0.001963)(1.000)=0.001953 \mathrm{~atm} \\
& C_{2} x_{2}^{\prime}=(3720)\left(1.251 \times 10^{-4}\right)=0.465 \mathrm{~atm} \\
& C_{3} x_{3}^{\prime}=(38500)\left(1.34 \times 10^{-6}\right)=0.052 \mathrm{~atm} \\
& N=8.96 \times 10^{-5} \text { moles of bubbles/mole of original liquid }
\end{aligned}
$$

The number of bubbles per mole is then

$$
N_{b}=\frac{N R_{u} T_{c}}{P\left(\frac{4}{3} \pi T^{3}\right)}=\frac{\left(8.96 \times 10^{-5}\right)(82.05)(233.15)}{(0.1453)\left(\frac{4}{3} \pi\right)\left(50.8 \times 10^{-4}\right)^{3}}
$$

$$
N_{b}=2.15 \times 10^{7} \text { Bubbles } / \mathrm{g} \text {-mole of liquid }
$$

Taking c_{ℓ} to be approximately $0.8\left[\mathrm{~g} / \mathrm{cm}^{3}\right] / 32[\mathrm{~g} / \mathrm{g}-\mathrm{mole}]$ gives

$$
N_{b} c_{\ell}=537000 \mathrm{Bubbles} / \mathrm{cm}^{3} \text { of liquid }
$$

Conclusions

The sample calculations show the possibility for bubble formation upon (1) depressurization by reduction in heat pipe loading and reservoir chilling and (2) condenser chilldown. Depressurization shows greater potential, for 537000 bubbles/cm ${ }^{3}$ are found possible, compared to only one of equal size from condenser chilldown.

APPENDIX A.5.3

BUBBLE NUCLEATION EXPERIMENTS

INTEROFFICE CORRESPCINDENCE
ro: B. Marcus
subject: Bubblc Nucleation

Experiments
subject:
cc: D. K. Edwards
J. Eninger
E. E. Luedke
date: 8 Deceniber 1978

4

M	D. Antoniuk	
aldg	mail sta.	ExT.
01	1230	52850

As part of the experimental program to investigate the potential of various mechanisms to cause artery depriming, a series of experiments have been conducted to examine bubble nucleation in methanol. The experiments were to detemine whether gas bubbles could be generated in the bulk of liquid methanol saturated with either helium or nitrogen gas as it undergoes temperature and/or pressure reduction.

Prior to the experiments, a theoretical analysis of the potential for bubble formation in Cl'S heat pipes had shom that large numbers of bubbles could be generated in metinanol due to supersaturation resulting from temperature and pressure reduction under conditions similar to those prevailing prior to the anomalies. An objective of these experiments was to verify, at least qualitatively, the theoretical results.

In addition the experiments considered the potential of a mesh screen artery to provide buible rucleating sites.

The experimental set-up consisted of a glass flask half filled with 50 cc of spectral grade methanol and instrumented to allow continuous monitoring of temperature and pressure. A sketch of the apparatus is attached. A needle raive located betwoen the flask and a vacuun pump was used to control the pressure levei or the rate of pressure reduction of the liquid. Cooling of the liquid was attained by inmersion of the test flask in liquid nitrogen. This technique, however, did not allow for arbitrary control of the cooling rate. The liquid was saturated by bulbling either nitrogen or heliun gas through the liquid using a frit glass tube. This process was allowed to be continued for at least two hours.

A typical pressure roduction exporimental sequence was as follows:

1. Saturate methanol with either nitrogen or helium at ambient conditions.
2. Reduce temperature at atmospheric pressure. Two temperature levels, $21^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$, were used.
3. Drop into the diquid a dry section of mosh screen artery.
4. Rexuce pressure from 14.7 psia to 4 psia. In some cases this pressure drop was accomplished in 10 seconds and in others in 5 minutes.

A typical tenperature reduction experimental sequence was as follows:

1. Saturate methanol at ambient conditions.
2. Drop into the liquid a diry section of mesh screen artery.
3. Reduce pressure at ambient temperature. Pressure levels of $14 . ? \mathrm{psia}, 10 \mathrm{psia}$, and 4 psia were used.
4. Reduce temperature. In some cases the temperature was reduced from $21^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ in approximately 20 minutes. This was accomplished by placing the flask near the liquid nitrogen surface contained in a Dewar flask where cooling of the methanol occurred by natural convection. In other cases, the liquid was rapidly chilled by inmersing the flask in liquid nitregen for approximately 10 seconds at which point the liquid on the bottom of the test flask and inside the artery froze.

The experiments were repeated several times and the results were found reproducible. No bubbles were observed as the liquid, originally at a set temperature level, underwent pressure reduction. Similar results were obtained from temperature reduction experiments provided the liquid temperature did not drop below the freczing point $\left(-98^{\circ} \mathrm{C}\right)$.

Experiments in which the liquid partially froze however, yielded significantly different results. A large number of small bubbles were observed streaming from the surface of the thaving ice. As the melting process went to competion the bubbles were reduced to a fow criginating from the bottom surface of the flask and from the outter surface of the mesh screen artery. About a dozen small bubbles were observed trapped inside the arteries after the ice melted. These bubbles were observed later to coalesce forming feiver but larger bubbles which continue to grow. The ultinate size of these bubbles depended on the pressure of the system. For example, at 4 psia the remaining bubbles inside the artery continue to grow for approxirately 10 minutes as the liquid temperature rose from $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, at which point the size of the bubbles was such that essentially all the liquid in the artery was displaced.

As the result of these experiments, freezing of supersaturated methanol in the arteries has been identificd as a potential mechanism for bubble formation in the arterics owing to the fact that the ice surface is an excellent source of nucleating sites.

APPENDIX A.5.4
 gLASS HEAT PIPE BUBBLE NUCLEATION/MIGRATION EXPERIMENTS

A series of experiments were performed with an existing 1.07 meter long glass heat pipe. A cross section of this heat pipe is shown in Figure 1. The pipe contains a slab wick with a CTS-type artery attached to one side. A heater and cooling loop are attached to the other side of the wick in the evaporator and condenser sections, respectively. This arrangement permits observations on the behavior of the artery in an operational heat pipe.

The heat pipe was gas loaded with a 90% nitrogen - 10% helium mixture at a pressure equivalent to the conditions in the CTS pipes. The experim ments simply involved visually observing the artery behavior as a result of freezing the methanol within it by passing liquid nitrogen through the cooling loop, and subsequently thawing the methanol by terminating the LN_{2} flow.

The experiment was repeated several times with the following results:

- The methanol froze to an opaque white solid (frost), indicating it was full of gas bubbles.
- As the methanol thawed and warmed, numerous (up to 33) gas bubbles of varying size were obseryed along a 12 rinch length of the artery.
- The bubbles slowly shrank and ultimately disappeared as the gas within them redissolved into the liquid and diffused through the artery wall into the surrounding vapor core under the pressure gradient established by their curvature and surface tension.
- The time required for the bubbles to disappear varied enormously, depending on their size. Very small bubbles (d $21 / 4$ artery dia) dissolved within a few hours, while a large sausage-shaped bubble which filled the artery (2 artery diameters long) required several weeks.

It was believed that incorporation of these ice-generated bubbles into the active condenser could cause artery derriming. Accordingly, additional tests' were conducted and a number of deprimings were observed, but they were sporadic (probabilistic in nature). On some occasions, as the active

Figure 1. Cross Section of the Glass Heat Pipe in the Condenser and Evaporator Regions
condensation front was brought into the previously gas-blocked condenser, no depriming occurred. On two occasions, freezing generated a bubble in the adiabatic section; on both these occasions, advancement of the front to the bubble caused depriming. On another occasion, a rather large bubble formed in the center of the condenser, and advancement of the front to this bubble caused depriming.

These results conclusively demonstrated that: 1) control gas is liberated from saturated methanol every time the heat pipe goes through a freeze-thaw cycle, and 2) the number, size, and durability of gas bubbles generated within the arteries is a statistical phenomena influenced by bubble coalescence. Arterial bubbles are known to lead to depriming if they are convected into the active region of the pipe under high load conditions. Thus, it is clear that freezing and thawing of the condenser can, but does not necessarily, lead to artery depriming, depending on subsequent history. That is, do the bubbles dissolve and diffuse away before they are convected into a high stress region where they would deprime the artery?

This mechanism appears to be a prime candidate for explaining the CTS anomalies. It is consistent with their seasonal occurrence (eclipse seasons may be necessary to experience condenser freezing), sporadic occurrence (statistical nature of bubble population) and the lack of freezing prior to the anomaly on day 253 (bubbles were generated during day 252).

APPENDIX B. 1

SPHERICAL BUBBLE MODEL COMPUTER PROGRAM LISTING

This appendix contains the main program and sample input.

PROGRAM SMLBUBPINPUT, CUTPUT,TAPE5=INPUT,TAPEG=QUTPUT,TAPE9) ------> FILE:SMLBLB INPUT FILE:SBUBDAT<------
DIMENSION A (100), B (100), C(100), ASTR(100), BSTR(100), A22(3), 1B22(3),C22(3),XBBC(3),XEBC(3),FG1(100),FG2(100),

COMMON/MAIN/X(100,3), XSTR $(100,3), X S T R 2(100,3), R(100), Y(100)$, $1 Z(100), R 1, R 2, N, T I M E, T C, T E, P V C, P V E, W G 1, W G 2, Y E 1, Y E 2, P B, T C N O T$,
$2 X B 1, X B 2, X E 1, X E 2, Y B 1, Y B 2, I P R I N T, K P L O T, Y B D, I P L D T, I D P L D T, T E N O T, R A T E ~$ COMMON/SUBOAT/CMOLE, RHOL, RHCV, RU, EHW

COMMON/DATPLO/FTIME (1000), FTE (1000), FTC (1000), FPVE (1000),
FPVC(1000), FYBC(1000), FYB1(1000), FYBC(1000),
FR1(1000), FPBUELE(1000)
FR1(1000), FPBUELE(1000)

calculate constant coefficients

INITIALIZE SPECIES AND BUBBLE RADIUS
CALL TENSICN(TC,SIGMA)
\checkmark
usu
uu

 PLIQ=PVE-2.*SIGMA/RFILLET $P L I Q=P V E-2 \cdot * S I G M A / R F I L L E T$
$P G=P L I Q+2 . * S I G M A / R I-P V C$
WGT=PG*PI43*R1**3/RU/TC
$W G 1=W G T * F B Y 1$
$W G 2=W G T * F B Y 2$
calculate constant geometric funtionals
000 I $202, N$
$Z(I)=Z(I-1)+D Z$
GII（I）＝BIGGAM＊Z（I）＋1．0 $F G 2(I)=A L O G(F G 1(I))$
$Y(I)=F G 2(I) / G A M A$
CONTINUE
ENTER TIME LOOP

SET COEFFICIENTS FOR TEMPORAL DERIVATIVES APPROXIMATION
200
ヘリー
$\omega \omega$

9999
$\omega 0$
300
400
$\omega \omega \omega$

 $\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$
YE2 $=(1 .-Y E O) * F E Y 2$
CALL OSWALT (TC, HENRY1,HENRY2) XE $1=Y E 1$ *PVE/HENRYI

SET B.G.FS AT EXTERNAL INTERFACE

Calculate b.Cofs at bubble interface

CALCULATE NEW BUBBLE RADIUS
SOLVE $A * X * * 3+B * X+C=0$ BY QUASILINIEARIZATION $C A B 1=R U * T C *(W G 1+W G 2) / P I 43$ CAB2 $=-2$ * SIGMA
$C A B 3=-(P L I Q-P V C)$
ZR=1./R1
CO 500
$Z R U=Z R$
$Z R 2=Z R * Z R$
ZR3=ZR2*ZR
$F A C T O R=C A B 3+C A B 2 * Z R+C A B 1 * Z R 3$
FACTOR $=-F A C T O R /(3, * C A B 1 * Z R 2+C A B 2)$ $Z R=Z R+F A C T O R$
$E R R O R=A B S(3,0-Z R / Z R U)$
IF (ERROR.LT.1.E-4) GO TO 501
CONTINUE
R1=1.1 GO TO 51
IF (RI.LE.0.)
$P G 1=W G 1 * R U * T C / V O L$
$P G 2=W G 2 * R U * T C / V O L$
$P B=P \vee C+P G 1+P G 2$
$Y B C=P \vee C / P B$
$Y B 1=P G 1 / F B$
$Y B 2=P G 2 / P B$

\circ 80 0

DOOOU0000000000000002000000000000100000000

$X B 1=P G 1 /$ HENRY1
$X B 2=P G 2 / H E N R Y 2$
SET B.C.FS AT BUBBLE INTERFACE
CALCULATE BUBBLE RADIUS TEMPDRAL DERIVATIVES

CALCULATE COEFFICIENTS FGR PARTIAL DIFFERENTIAL SPECIES EQUATIONS

上の -

FOR NQDES 3 THRU iv
DO $1000 \quad I=3, N$
CENCM $=1 . C-B(I) * A S T R(I-1)$
ASTR(I) $=A(I) / D E N O M$
$B S T R(I)=(B(I) * B S T R(I-1)+C(I)) / D E N O M$
eliminaticn algorithm to calculate new species profile $D 0 I 100 \quad J=2, N$
$I=N+2-J$
$X(I, K)=A S T R(I) * X(I+1, K)+B S T R(I)$
CONTINUE
CALCULATE IMAGE MQLAR FRACTICN $X(I, K)$
$X(1, K)=(X(2, K)-A 22(K) * X(3, K)-C 22(K)) / B 22(K)$
CONTINUE
CALCULATE MOLAR FLUXES AT BURBLE INTERFACE
DXIDZ $=(X(3 ; 1)-X(1,1)) / O Z 2$
DX2DZ $=(X(3,2)-X(1,2)) / D Z 2$
FACTOR=4.*PI*RISQ*GAMA/BIGGAM/DR
DWGIDT FACTOR*CMOLE*DIFF(1)*DXIDZ
OWGZDT F FACTOR*CMOLE*DIFF 2$) * D X 2 D Z$

> ADVANCE TIME BY OT IF(RI.LE.RIMIN) GO TO 50 IF(NSTEP.EQ.IPLOT) CALL SETPLOT NSTEP=NSTEP+I
RESET RISTR AND RISTR2
IF(IPRINT.EQ.IDPRNT) CALL PRINT IF (NSTEP.GT.NSTPMX) GO TC 50
IF (CT.GT. DTMAX) DT =DTMAX
600
$\omega \omega$
uu
uU
uu

GO TC 9999 (FTIME,FTE,KPLOT,1.0) RACE FTIME,FTC,KPLOT,2.0)

CALL	TRACE(FTIME,FTE,KPLOT, 1.0)
CALL	TRACE(FTIME,FTC,KPLOT, 2.0)
CALL	ENDPLT(9HTE AND TC, 9HTIME (SEC), 7HTEMP (K), 5HPARAM)
CALL	TRACE(FTIME,FPVE,KPLOT, 3.0)
CALL	TRACE(FTIME,FPVC,KPLOT, 4.0)
CALL	TRACE(FTIME,FPBUBLE,KPLCT,5.0)
CALL	ENDPLT (10HPE, PC, PBUB, 9HTIME (SEC), 9HPRES(ATM), 5HPARAM)
CALL	TRACE(FTIME,FRI,KPLCT, 6.0)
CALL	ENDPLT(10HBUBLE SIZE, 9HTIME (SEC), 10 HR ADIUS(CM),
15 HPAR	
CALL	TRACE(FTIME,FYBO,KPLOT, 7.0)
CALL	TRACE (FTIME,FYB1,KPLOT, 8.0)
CALL	TRACE(FIIME,FYB2,KPLOT,9.0)
CALL	ENDPLT (8HXC, X1, X2,9HTIME (SEC), 10HMULE FRCTN,5HPARAM)
CALL	ENDALL
CALL	PRINT
STOP	
END	
SUBRO	OUTINE SETPLDT

$\mathrm{OH}_{\mathrm{H}}^{\mathrm{H}}$
 м

RETURN
SUBRDUTINE OSWALT (XT, $\mathrm{CH}, \mathrm{CH} 2)$
subroutine to calcilate gas sulubility in a liquid
COMMON/SUBDAT/CMOLE, RHOL, RHOV,RU,EMW
COMMON/SCLDIF/DF11,DF21,DF22,DF22,COS INGI,NG2
COEFFICIENTS FOR SCLUBILITY EQUATION
WHERE T=TEMPERATURE IN DEGREES KELVIN
$\mathrm{CHI}=\operatorname{COS} 11 * X T * * \operatorname{COS} 21$
CH2 $=\operatorname{COS1} 2 * X T * * \operatorname{COS} 22$
$C H 2=C O S 12 *$
$C H 2=1 . / C H 2$
RETURN

END SUBR
 SUBROUTINE TPCCNDI

UPDATE EXTERNAL PRESSURE AND TEMPERATURE COMMON/MAIN/X(100,3),XSTR(100,3),XSTR2(100,3),R(100),Y(100),
$1 Z(1 C O), R 1, R 2, N, T I M E, T C, T E, P V C, P V E, W G 1, W G 2, Y E 1, Y E 2, P B, T C N O T$,
$2 X B 1, X B 2, X E 1, X E 2, Y B 1, Y B 2, I P R I N T, K P L O T, Y B D, I P L O T, I D P L D T, T E N C T, R A T E$ TC=180.+RATE*TIME
$T E=300 ., G T .0 . O, A N D . T C . G E \cdot T C N O T I T C x T C N O T$
TC = TCNCT
TE =TENOT
CONTINUE

> COEFFICIENTS FOR METHANOL VAPOR PRESSURE
> CATA CP1,CP2,CP3,CP4,CP5
$1 \quad / 15.05411,-9.24063,3.366136,-1.9692,3.389658 \mathrm{E}-1 /$
TRC $=1000.11 .8 / \mathrm{TC}$
い い
\circ
-
-
-1
in
00

$\operatorname{TRC} 4=1 \mathrm{TCC} 3 * T R C$
$P V C=C P 1+C P 2 * T R C+C P 3 * T R C 2+C P 4 * T R C 3+C P 5 * T R C 4$ $P \vee C=E \times P(P \vee C) / 14.696$ TRE $=1000 . / 1.8 / T E$

TRE2 $=$ TRE $* T R E$
TRE 3*TRE2*TRE
TRE4~TRE3*TRE
$P V E=C P I+C P 2 * T R E$
PVE =EXP(FVE)/14.696 RETURN

SUBROUTINE DIFFCOIISPICE,TEMP,DIFCDI
 COMMON/SCLDIF/DF11,DF21,DF12,DF22,COS11,COS12,COS21,COS22,

N
0
2
2
0
2
Z
COEFFICIENTS FQR DIFFUSIVITY EQUATION OF GASES IN METHANOL D(T) $\triangle D F 1 * E X P(D F 2 / T)$ IN SCCM/SEC

WHERE T×TEMPERATURE IN DEGREES KELVIN
IF (ISPICE.GT.I) GO TO 10
OIFCO = DF $11 * E X P(D F 21 / T E M P)$
GO TO 10 C
Di COEDF12*EXP(DF22/TEMP)
RETLRN
COEFFICIENT FOR SURFACE TENSION EQN FOR METHANQL
DATA CTI,CT2,CT3,CT4,CT5
$\quad 15.79025 \mathrm{E}-3,-1.404494 \mathrm{E}-5,1.20562 \mathrm{Em}-3,3.516629 \mathrm{E}-12$, $15.79025 \mathrm{E}-3,-1.404494 \mathrm{E}-5,1.20562 \mathrm{E}-8,3.516629 \mathrm{E}-12$,
$-8.67029 \mathrm{E}-15$ /
$T R=T E M P * 1.8$

$$
T R 2=T R * T R
$$

$R 3=T R 2 * T R$
TR4 $=T R 3 * T R$ FTEMP=FTEMP*1.44E-2 RETURN

른
SUBRDUTINE PRINT
COMMON/MAIN/X(100,3),XSTR(100,3),XSTR2(100,3),R(100),Y(100), $1 Z(1001, R 1, R 2, N, T I M E, T C, T E, P V C, P V E, W C 1, W G 2, Y E 1, Y E 2, P B, T C N D T$, $2 \times B 1, X B 2, X E 1, X E 2, Y B I, Y B 2, I P R I N T, K P L D T, Y B O, I P L O T, I D P L O T, T E N D T, R A T E$

IF(TIME.GT.0.) 60 TO 51
WRITE $(6,50)$
FORMAT (1X,5H(SEC), $7 \mathrm{X}, 4 \mathrm{H}(C M), 8 X, 5 H(A T M), 7 X$,
I 8 (KELVIN), $4 X, 8 H(K E L V I N), 4 X, 5 H(A T M) / 1)$
FORMAT(IHI,4HTIME, $8 X, 1$ OHBUBBLE RAD, $2 X, 11$ HBUBBLE PRES, $1 X$,
1 3HTC $0,9 X, 3$ HTEV, $9 X, 3 H P E V, 9 X, 7 H X H E L I U M, 5 X, 9 H X N I T R O G E N$) WRITE 6,100$)$ TIME,RI,PB,TC,TE,PVE,YBI,YB? FORMAT (IX,8(EII.4,IX))

$$
\begin{aligned}
& \text { NP1 }=N+1 \\
& \text { IF (T:ME.LT.1.E20) GO TO } 509
\end{aligned}
$$

 $00300 I=1, N P 1$
WRITE $(a ; 71) R(I), X(I, 1), X(I, 2)$
WRITE $(a, 71) R(I), X(I, 1), X(I, 2)$
FORMAT $(i X, 3(E I I, 4,1 X))$
END
SUBROUTINE SUBRHO (XY,YL,YV)
CALCULATE LIQUID AND VAPGR MASS DENSITY
COEFFICIENTS FER LIQUIO DENSITY RHO(LBJCUFT)
T(KELVIN), RHO $=C I+C 2 * T+\ldots .$.
 COEFFICIENTS FQR VAPOR DENSITY RHO(LB/EUFT)
COEFFICIENTS FOR VAPOR DENSITY RHO(LB/EUFT)
T(KELVIN), $R=E X P(C I+C Z / T+\ldots . .$.

> DATA CRV1,CRV2,CRV3,CRV4,CRV5
> $T R=X T^{/ 15.93164,-1.17172 E 4,3.53187 E 6,-7.33649 E 8,5.53411 E 101}$
> TK3 = TK 2* TR
> $Y L * C R L 1+C R L 2 * T R+C R L 3 * T R 2+C R L 4 * T R 3+C R L 5 * T R 4$ $Y L=Y L * 1.6 F-2$
ひuలuvuలu

$Y V=C R V 1+C R V 2 / T K+C R V 3 / T R 2+C R V 4 / T R 3+C R V 5 / T R 4$
$Y V=1.6 E-2 * E X P(Y V)$
RETURN

AFTER INC, LOCHED(NPLTS)=RECERD NUMBER TO STORE THIS TRACE
 $\underset{-1}{0}$

[^6]ω
$\omega 0$
0
$\cup \quad \omega$
ω

FMIN $=$ AMINI (FMIN, Y)
FMAX $=A$ MAXI (FMAX, Y)
$B L K(I+N V)=Y$
$(V), I=I, N V),(F)$
HRITE (VII),I=L,NV), RETURN

END
BLK(I)NV(I) I
WRITE (V(I), $I=1, N V),(F\{I), I=1, N V)$
HRITE WRTTMS19, BLK, 2*NV, IDCHED (NP SUEROUTINE ENDPLT(TI, VA, FN, PN)
TERMINATE CURRENT PLOT, SET UP FOR NEXT
COMMDN /PLOTC/ TITLE,VNAME, FNAME, PNAME,VMIN,FMIN,PMIN 1, VMAX,FMAX,PMAX,NP,NPLTS,LOCHED(63),PA(256),NA(256) EQUIVALENCE (IPA,PA) OIMENSION IPA(1)

\cdots
ω
$\omega \omega \omega \circlearrowleft \omega \circlearrowleft$
$\omega \omega$
$\omega \omega$

$-B I G$
$-B I G$
$=$
$=$
0
RN
OUT
U
VM
PLOTCI TIL
VMAX,FMAX,PMAX,NP,NPLTS,LOCHED(63),PA(256),NA(256)
NRITS NUMBER OF PLOTS ON FILE AND REC NUMBER OF HEADER FOR EACH NPLTS, 64, 1)
CALL CLOSEMS(9)
RETURN
END

Sample Input

```
GBUBDAT
COS11=2.5091E-12
COS21=2.9665
COS12=2.6367E-4
COS22=0.0
Lf11=5.92E-3
Ur,\mp@code{#=410こ4.2}
0F12゙=2,09E-3
DF22=-1070.5
NG1=1
NG2:2
NSTPMX=8000
IDPLOT=30
R10=0.02
R20=0.08
NOIV=90
GAMA=-2.0
DT=5.
IDPRNT=200
RFILLET=10.
FBYI=1.0
FBY2=0.
FEYI=0.1
FEYZ=0.9
EMW=32.0
TCNOT=250.
TENOT=300.
RATE=0.0
$END
```


APPENDIX B. 2

SNOO9 HEAT PIPE CYCLIC TEST DATA

This appendix presents plots of temperatures along the SNOO9 heat pipe versus time for selected freeze/thaw test cycles not shown in Section 3.3.

Figure B.2-9 Temperature Histories During SNOO9 Heat Pipe Cyclic Test No. 17

Figure B.2-12 Temperature Histories During SNOO9 Heat. Pipe r.vclic. Test, Nn. 2h

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]: CIMENSIDN TW(1), $43(1), G 1(1), L 2(1), A 4(1), N 1(80), N 2(80), F(80)$,
 L(EO).P(80), PW(80), T(80), FN(10)
 REAL L,N1,N2,NGAS,ITOT,LGRE,LGFV,
 REAL L,N1,N2,NGAS,LTOT,LGRE,LGEV,NPEV,NPRE,N23,LP,LPD,LEFF,
 LI,L2,L3,14,LCOND
 CATA IFRETE/OI
 TF(FTIM.GT.4.5.AND.IFREZF.EO.0) $42(18)=1$.
 CALL FIX(A2(2),N)
 $\mathrm{AP} 1=\mathrm{N}+1$

[^2]: TOTAL HEAT EXCHANGE TD BOUNDARIES－2．86253E＋01

[^3]: TOTAL HEAT EXCHANGE TO BOUNDARIES $-1.17181 E+O 2$

[^4]: TOTAL HEAT EXCHANGE TG BIUNDARIES $-8.98458 E+01$
 $Q B \quad 35 *-8.9845 E E+01$ QB $36=-5.86624 E-11$

[^5]: TOTAL HEAT EXCHANGE TO BUUNDARIES $-1.03615 E+02$
 $Q B \quad 35=-1.03615 E+02$ QB $\quad 36 x-2.50111 E=11$

[^6]: U

