NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA Technical Memorandum 81593
(NASA-TH-81593) THE HETHOD OF LINBS IN
THREE DIMENSIOHAL FRACTORE HECHANICS (NASA) N80-32753 THREE DIMENSIONAL FRACTORE HECHANICS (NASA)
19 p HC AO2/aF AO

Unclas
G3/39 28839

The Method of Lines in Three-Dimensional Fracture Mechanics

John Gyekenyesi and Laszlo Berke
Lewis Research Center
Cleveland, Ohio

Prepared for the
International Symposium on Absorbed Specific Energy: and/or Strain Energy Density Criterion
 sponsored by Lehigh University and the Hungarian Academy of Sciences
Budapest, Hungary, September 17-19, 1980

NMSN

ABSTRACT. A review is presented of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL). Three-dimensional elastic and elasto-plastic formulations are examined and results are reported from previous and current research activities. The application of MOL to the appropriate partial oifferential equations of equilibrium leads to coupled sets of simultaneous oroinary differential equations. Solutions of these equations are obtained by the PeanoBaker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.

INTRODUCTION. The main goal of fracture mechanics is the prediction of the load at which a structure weakened by a crack will fail. Knowledge of the stress and displacement fields near the crack tip is of fundamental importance in evaluating this load at failure. Because of the geometric singularity associated with any crack type problem, there is almost no possibility of a simple closed form type of solution. For this reason, threedimensional elastic solutions have been obtained only for a restricted class of problems. Furthermore, the calculation of stress and strain distributions in elasto-plastic/work hardening materials containing inherent cracklike flaws is a non-linear and three-dimensional problem. Wue to the finite boundary effect and the nonlinearity of the material response, solutions in existence are obtained almost exclusively through numerical computer methods of continuum mechanics. Notable among these are the finite element method $[1,2]$, the finite difference method [3], and the boundary integral equation method [4]. These methods are useful in solving either elastic or elastoplastic fracture mechanics problems; it is known, however that practical problems usually require a very large amount of data storage and computation time.

An alternate semi-analytical method suitable for the solution of crack problems is the line metnod of analysis. Successful application of this method to finite geometry solids containing cracks has been demonstrated recently for Doth elastic [5] and elasto-plastic [6] problems. Although the concept of the line method for solving partial differential equations is not new $[7,8 j$, its application in structural analysis has been limited to simple examples [9]. By far the most common approach to fracture problems has been the finite element method, and it is the purpose of this paper to review a simple, systematic, aliernate method, the method of lines (MUL) for these prodlems.

The line method lies midway between completely analytical and discretized numerical methods. The basis of this technique is the substitution of finite differences for the derivatives with respect to all the independent variables except one for which the derivatives are retained. This approach replaces a given partial differential equation with a system of ordi-
nary differential equations whose solutions can then be obtained, at least in some cases, by andytic methods. These equations deserive the dependent variable along lines which are parallel to the coordinate in whose direction the derivatives were retained. Application of the line method is most useful when the resulting ordinary differential equations are linear and have constant coefficients [10].

Al inherent advantage of the line methoo over other numerical metnoos is that good resuits are obtained from the use of relatively coarse grias. This use of a coarse grid is permissidle because parts of the solutions are obtained in terms of continuous functions. It is known that MOL methoos tend to keep the advantages and discard the disaovantages of both the anolytical and grid methods, thereby leading to accurate solutions with minifiur. computation times. The cisadvantage of MOL, on the other hana, is that i. tenas to decome numerically unstable as the number of diviaing lines increases and the finite difference strip size becomes too smalil $18,11,12 \mathrm{j}$. To realize a very fine space discretization with this method woulo requir.: word length with much larger number of bits, leading to excessive requitements on computer resources. Current research emphasis in MUL solution methods is to overcome this problen in engineering applications [13J.

GOVERNING EQUATIUNS ANU MOL FURMULATION. It is assumed, for simplicity of tins presentation, that the material is nowog?neous, isotropic and that the deformations are quasi-static and small. The structure is assumed to be elastic first and the elastic solution is taken to be known defore the incipient loading is applied. As loading gradually increases, the structure becomes elasto-plastic and the governing equations are written in terms ri_{i} displacement increments. Using the standard summation convention, the Navier equations for the elastic prodem in terms of displacements, u_{i}, are

$$
\begin{equation*}
u_{i, j j}+\left(\frac{1}{1-2 v}\right) u_{j, j i}=0 \quad i, j=1,2,3 \tag{1}
\end{equation*}
$$

and for the elasto-plastic regime, the oisplacement increments, $u u_{j}$, can be obtäined from

$$
\begin{equation*}
d u_{i, j J}+\left(\frac{1}{1-\langle v}\right) d u_{j, j i}=\left(\frac{1}{1-2 v}\right)\left(\frac{d \varepsilon_{p}}{\sigma_{e}}\right) E u_{j, j 1}+3 s_{i j}\left(\frac{d \varepsilon_{p}}{\sigma_{e}}\right), j \tag{c}
\end{equation*}
$$

where the body forces are assumed to be zero, $0 \varepsilon_{p}$ is the effective plastic strain increment, $S_{i j}$ is the stress deviator tensor and σ_{e} is the equivalent stress. In the plastic region the von Mises yield conaition and the associated Prandtl-keuss flow rule is taken to prevail. The incremerital stress-strain relations are ootained as [6],
$\frac{d \sigma_{i j}}{2 G}=\sigma \varepsilon_{i j}+\left(\frac{v}{I-2 v}\right) d \varepsilon_{k k} \delta_{i j}+\frac{3}{2}\left(\frac{\partial \varepsilon_{p}}{\sigma_{e}}\right)\left[\frac{E}{3(1-2 v)}\right] \varepsilon_{k k} \delta_{i j}-\frac{3}{2}\left(\frac{\partial \varepsilon_{p}}{\sigma_{e}}\right) \sigma_{i j}$
where v, G, E are the conventional elastic properties, $\delta_{i j}$ is the Kronecker delta and oij are the stresses.

In o.oer to solve equations (1) or (2), we apply MOL and reduce thest equations to systems of simultaneous ordinary oifferential equations. For

$$
\begin{aligned}
& \text { ars in IS } \\
& \text { whall }
\end{aligned}
$$

problems in Cartesian coordinates, the reyion is discretized by x, y and 2-directional lines as shown in figure 1 . The displacements along the x-directional lines are defined as $u_{1}, u_{2}, . . ., u_{l}$. The derivatives of the y-directional displacements on these lines with respect to y are defined as $v^{\prime} / 1, v^{\prime} / 2, \ldots, v^{\prime} / \ell$, anu the derivatives of the z-directional displacements with respect to z are defined as w^{\prime} |f, $W^{\prime} / 2, \ldots, w^{\prime} / \ell$. When these definitions are used the ordinary difterential equation along a generic line ij (a double subscript is used here for simplicity of writing and the subscripts odviously are not relateo to those in the equations) in figure l, using central differences with truncation errors of $0\left(h^{2}\right)$, may be written as
$\frac{d^{2} u_{i j}}{d x^{2}}+\frac{(1-2 v)}{2(1-v)}\left[-\left(\frac{2}{n_{y}^{2}}+\frac{2}{n_{z}^{2}}\right)+\frac{1}{n_{y}^{2}}\left(u_{i+1, j}-u_{i-1, j}\right)\right.$

$$
\begin{equation*}
\left.+\frac{1}{n_{z}^{2}}\left(u_{i, j+1}+u_{i, j-1}\right)\right]+\frac{f_{i j}(x)}{2(1-v)}=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{i j}(x)=\left.\frac{d v^{\prime}}{d x}\right|_{i j}+\left.\frac{d w^{\prime}}{d x}\right|_{i j} \tag{b}
\end{equation*}
$$

and

$$
v^{\prime}=\frac{d v}{d y} ; w^{\prime}=\frac{d w}{d z}
$$

Similar differential equations are obtained along the other x-directional lines. The set of ℓ second order aifferential equations represented by (4) can be reduced to a set of 2ℓ first order aifferential equations by treating the derivatives of the u's as an additional set of ℓ unknowris. The resulting equations can now de written as a single first order matrix differential equation

$$
\begin{equation*}
\frac{d U}{d x}=A_{1} U+R(x) \tag{0}
\end{equation*}
$$

where U and R are column matrices of 2ℓ elements each and A_{1} is $2 \ell \times 2 \ell$ matrix of coefficients. In a similar manner to solve the other two Navier equations for the elastic prodem, we construct oroinary aifferentiai equations along the y - and z-directional lines, respectively. These equations are also expressed in an analogous form to equation (6); they are

$$
\begin{align*}
& \frac{d V}{d y}=A_{2} V+S(y) \tag{7}\\
& \frac{d W}{d z}=A_{3} W+T(z) \tag{‘}
\end{align*}
$$

Equations (6) to (8) are linear, first-order, ordinary differential equations. They are, however, not independent, but are coupled through the vectors R, S and T.

Noting that a second order ordinary differential equation can satisfy only a total of two Doundary conditions and since three-dimensional elasticity problems have three conditions at every point of the bounding surface, the shear stress boundary data must be incorporated into the differential equations of the surface lines. The appitcation of the specified shear conditions permits the use of a single layer of doundary image lines when surface line differential equations are constructed.

For an elasto-plastic solid the governing differential equations for displacement increments and the incremental stress-displacement relations are found in [6]. The x-directional displacement increments, in an ana:igous manner to equation (6), can be obtained from

$$
\begin{equation*}
\frac{d}{d x}(d U)=A_{1} \sigma U+\sigma \bar{R}(x) \tag{y}
\end{equation*}
$$

where the coupling vector $\bar{d}(x)$ contains mixed derivative terms for elastic and plastic regions in adition to terms involving the ratio of $d \varepsilon_{p} / \sigma_{e}$.

The system of ordinary differential equation (6) can be solved by any of a number of standard techniques. The nethod employed in $[5,0, y\rfloor$ is the Peano-Baker method of integration. The solution can de written as

$$
\begin{equation*}
u(x)=e^{A_{1} x} u(0)+e^{A_{1} x} \int_{0}^{x} e^{-A_{1} n} K(n) d n \tag{10}
\end{equation*}
$$

where $U(0)$ is the initial value vector determined from the boundary conditions and the matrizant $e^{A} l^{x}$ is generally evaluateo by its matrix series. For larger values of x, when corvergence becomes slow, adoitive formulas may be used. In addition, similirity transformations can de used to diagonalize the coefficient matrix A_{1}. It shouio de noted that, in general, the matrix A_{1} is a function of Poisson's ratio and the coorcinate finite difference increments. Uniform line spacing in the three coordinate directions makes closed form diagonalization of A_{1} possiole. However, refinement of the mesh with uniform line spacing rapidiy increases the required computer time and storize as well as raises the provasility of numerical difficulties in the matrix exponential power series computations. Consequentily, variable mesh spacing is recommenaed as one method of ootaining improved answers without an increase in problem size.

Most of the recently obtained MOL solutions in fracture mechanics involved the use of finite aitference formulas with truncation errors of $0\left(h^{2}\right)$. Current work by Mendelson ano Alam 113 j, uses nigher order finite difference approximations as alternate method of obtaining more accurc.. results. These five point finite difference approximations tor the first and second y-derivatives of a function $f(x, y, z)$ at (x, y, z) car ... written as [8],

$$
\begin{align*}
\left(\frac{\partial f}{\partial y}\right)_{x, y, z}= & \frac{4}{3}\left[\frac{f\left(x, y+h_{y}, z\right)-f\left(x, y-h_{y}, z\right)}{2 h_{y}}\right] \\
& -\frac{1}{3}\left[\frac{f\left(x, y+2 h_{y^{\prime}}, z\right)-f\left(x, y-2 h_{y}, z\right)}{4 h_{y}}\right]+0\left(n_{y}^{4}\right) \\
& \left(\frac{\partial^{2} f}{\partial y^{2}}\right)_{x, y, z}=\frac{4}{3}\left[\frac{f\left(x, y+n_{y}, z\right)+f\left(x, y-h_{y}, z\right)-2 f(x, y, z)}{h_{y}^{2}}\right] \tag{11}\\
& -\frac{1}{3}\left[\frac{f\left(x, y+2 h_{y}, z\right)+f\left(x, y-2 h_{y}, z\right)-2 f(x, y, z)}{4 n_{y}^{2}}\right]+0\left(h_{y}^{4}\right)
\end{align*}
$$

Since the evaluation of the matrix exponential power series becomes increasingly difficult with the coefficients obtained through the use of equations (11), a recurrence relations method is used to solve the resulting systems of ordinary differential equations. An error analysis in [8] indicates that approximately six times as many dividing lines must be useo with $0\left(\mathrm{~h}^{2}\right)$ approximations to get equivalent accuracy to that obtained when equations (11) are used.

The solution of equation (6) by recurrance relations can be obtained by taking N equal intervals along the x-axis, each having a length of h_{m}. Then by using finite differences for ($d U / d x)_{m}$ and average values of $\left(A_{1} U+R\right)_{m}$, the following linear recurrance formula will be obtained [13], expressing u_{m} in terms of u_{m-1} :

$$
\begin{equation*}
U_{m}=L_{m} U_{m-1}+M_{m} \tag{1c}
\end{equation*}
$$

where L_{m} is a known function of n_{m} and A_{1} while M_{m} will depend on R in addition to h_{m} and A_{1}. We can also express u_{m} in terms of u_{1} by repeated application of equation (12), leading to

$$
\begin{equation*}
U_{m}=D_{m} U_{1}+F_{m} \tag{13}
\end{equation*}
$$

where D_{m} and F_{m} are known functions of L_{m} and M_{m}. By suitable partitioning of the D and F matrices at the boundaries, we can use given boundary data at the last station, u_{n}, to calculate unknown elements of U_{1}, where $n=N+1$. The advantage of using equation (13) to calculate $U_{m}, m=1,2, \ldots, n$, is that the coefficient matrix A_{1} has no limitation on its format or on the arrangement of its elements. The interval h_{m} can be decreased to any fraction of h_{x}, the initially established finite difference increment odtained from the application of MUL. Results of test problems indicate that two or three subintervals are adequate for the solution of a typical problem.

All of the MOL work in three-dimensional fracture mechanics has been done using double precision arithnetic. With larger word sizes, 128 bits or greater, improved results can be obtained or more lines can be used. Typical problems on third generation computers can usually be handed with 100 to 200 lines in each direction using Cartesian coordinates, and up to 20
lines in each direction using cylinarical coordinates. Corresponding CPU times are of the order of 3 minutes for the elastic solution and 25 minutes for the entire elasto-plastic problem [6]. Most of the computer time is spent in decoupling the three systems of simultaneous ordinary difterential equations which arise in a general problen. Decoupling is done by a successive approximation procedure. With cyclic resubstitution of the obtained solutions into the coupling vectors and the boundary conditions good numerical convergence behavior was observed.

Elastic solutions have been obtained for typical fracture test spec inen geometries such as the central crack, single edge crack, double edge crack and rectangular surface crack problems, all with uniform tensile loadings normal to the crack plane. In cylindrical coorainates, the problem of ar embedded penny-shaped crack and the externally cracked circular cylinder tension have been treated. Although shear and torsionally loaded specimens have not deen analyzed previously by MOL, the necessary boundary conditions for these problems can be imposed without aifficuities. Presently, the thumbnail-crack problem is being investigated in connection with applying MOL to curved crack boundaries. In addition, it seems that the common three-point bend specimen could also be analyzed in a systematic manner using this method.

Elasto-plastic solutions of certain crack urodems have also been obtained using the incremental displacement formulation in connection with MOL. The nonlinear response of finite length cylinaers with external annular cracks and a finite thickness rectangular plate containing a throughthickness central crack under uniaxial tension were studied in detail. In addition to the stresses and displacements, fracture mechanics parameters such as the stress intensity factor, the J-integral and the load versus load point aisplacement plots were determined.

STRESS INTENSITY AND STRAIN ENERGY UENSITY FACTUKS. Since the application of boundary conoitions for MUL allows the crack tip to remain between two successive node points, the exact location of crack tip together with the determination of K values for the elastic case is done oy the first two terms in the williams eigenfunction expansion. The crack face displacement and maximum normal stress near the crack iront are used to find the coefficients in the two-term expansion. Assuming that $y=U$ is the crack plane and that the crack is under normal tensile loading, we have

$$
\begin{align*}
& v=a K_{1}\left[\sqrt{\frac{R+r}{2 \pi}}+\frac{L_{1}}{R_{1}} \sqrt{(R+r)^{3}}\right] \tag{14}\\
& o_{y}=K_{1}\left[\frac{1}{\sqrt{2 \pi(R-r)}}+\frac{L_{1}}{K_{1}} \sqrt{R-r}\right] \tag{10}
\end{align*}
$$

where a is a function of Poisson's ratio, the stress singularity is assumed to be -1/̌, r is the crack eoge position correction, v is the crack opening displacement, oy is the maximum nomal stress ano al and L_{1} are the mode I williams expansion coefficients. Using displacement oata from three adjacent nooes to the crack eage in equation (14), , ...
ues of aK $\left.{ }_{1}, L_{I} / K\right]_{1}$ and r are calculated for each value of 2 , with R also measured from the halfway point between nodes specifying boundary stresses and displacements, respectively. Substituting values of $L_{I} K_{1}$ and r into equation (15), we can calculate K_{1} as a function of the corrected crack edge distance, $\rho=R-r$. Note that a would be equal to 3.56 for the plane strain case and 4.0 for the plane stress case with $v=1 / 3$. Another approach to calculate K_{1} is to first determine the J_{l} integral and then use the linear elastic $J_{1}-K_{l}$ relation of the form [6]

$$
\begin{equation*}
K_{1}=\sqrt{\frac{E J_{1}}{1-v^{2}}} \tag{16}
\end{equation*}
$$

Linear fracture mechanics technology assumes then that the crack will propagate if K_{l} reaches its critical value K_{1}; usually called its fracture tougnness. It shoula be noted that the k-concept is restricted to symmetric systems with the applied loads perpendicular to the crack plane and the crack propagating in a self-similar manner. In general, a complete description of the crack border stress field requires three stress intensity factors, and a mixed mode fracture criterion is needed to predict failure. To this end Sih [14] has defined a strain energy density factor, S, as

$$
\begin{equation*}
S=a_{11} k_{1}^{2}+2 a_{12} k_{1}^{k} 2+a_{22} k_{2}^{2}+a_{33} k_{3}^{2} \tag{17}
\end{equation*}
$$

where the coefficients $a_{i j}(i, j=1,2)$ depend on the material constants and the angles θ and w. Consistent with equation (17), the local stresses near the crack tip are of the form [14],

$$
\begin{align*}
& \sigma_{x}=\frac{k_{1}}{\sqrt{2 \theta \cos \omega}} \cos \frac{\theta}{2}\left(1-\sin \frac{\theta}{2} \sin \frac{3 \theta}{2}\right) \\
&-\frac{k_{2}}{\sqrt{2 \theta \cos \omega}} \sin \frac{\theta}{2}\left(2+\cos \frac{\theta}{2} \cos \frac{3 \theta}{2}\right)+u(1) \tag{18}
\end{align*}
$$

Note that $k_{i}=k_{i} / \sqrt{ }$ and the coefficients $a_{i j}$ are then given by equations of the form

$$
\begin{equation*}
16 G \cos \omega a_{11}=(3-4 v-\cos \theta)(1+\cos \theta) \tag{19}
\end{equation*}
$$

As can be seen from equation (17), the stress intensity factors k_{i} still play an important role in the fracture process. Hence, the correct determination of these factors is a necessary step in the safe design of any structure. In the strain energy aensity failure criterion, it is assumed that the minimum value of S yielas the direction of crack initiation and that the critical value of $S_{m i n}$, S_{c}, determines incipient fracture and is an intrinsic material property independent of the loading conditions and crack configurations.

Other multi-mode failure criteria have been proposed previously in the literature and orief description of each fracture theory along with
limited experimental data can be found in $[15,10]$. In general, little difference exists detween theories predictiny move 1 , mooe 11 interaction anc combined oamage crack propayation oirection.

NUMERICAL RESULTS. A great amount of experimental work has been oone in fracture mechanicsusing cracked specimens. Selected results for sollt common specimen geometries are shown in figures 2 to 12. Figure \angle shows a rectangular oar under normal tensile loaaing containing a traction free, through-thickness, central crack. The crack opening aisplacenent at the midale and at the surface of the bar is plotted in figure 3, along with Raju's finite element results. Stress intensity factor variations as a function of oar thickness are shown in figure 4. Variation of the constraint parameter 8 , defineo as the quantity $o_{2} / \mathfrak{l}\left(o_{x}+o_{y}\right) j$, alony the plote thickness is snown in figure 5 . Note that for plane strain $6-1$ anc for plane stress case it vanishes. Figure o shows a oar with unitoria tension containing a rectangular surface crack. Surface crack opening aisplacement as a function of crack depth is snown in tigure 7 while the variation of the maximum normal stress oy is shown in figure 8 for a selected crack geometry. For the same rectangular surface crack prodiem, a plot of K_{1} along the crack periphery is shown in figure y. The oiscretization of an externally cracked cylindrical fracture suecinen is snown in figure 10. Crack face displacements for various crack lengths are plotted in figure 11 while the variation of K_{1} with crack length is snown in figure 1\%. It is oovious from these results that a variety of plots familiar to the fracture mechanics community can de constructeu, since MOL metnoos give complete fiela solutions.

CUNCLUOING REMAKKS. The line methoo ot analysis is a practical approach for the solution of three-aimensional crack probleus, at least for booies with reasonably regular boundaries. both elastic ano inelastic solutions can de odtaineo. Just now efficient the methoo is or can de mace is not fully established. it is known, however, that good results are odtaineo from the use of relatively coarse grios. Interestingly, oisplacements ano normal stresses are oetermined with equal accuracy since nullerical oitterentiation of the oisplacements is not requireo. Applications to curveo boundaries, dending or shear mcdes ot loaoing ano variadie mesth spacing are some of the current areas that need additional investigations. Furthemore, it seems that MOL could also be used to stucy the stable crack yrowth behavior of enyineering materiais.

KEFERENCES

[1] Gallagher, R. H. . "A Review of Finite Element Tecnniques in $\begin{gathered}\text { racture }\end{gathered}$ Mecnanics," Nunerical Methoas in Fracture Mechanics, universit, cullege Swansea, up. 1-25, 1978.
[L] Levy. N. and Marcal, P. V., "Thret-ilmensional Elastic-Plastic Stress and Strain Analysis for fracture mechanics, Phase 1: Simple flawed Specimens, Phase 11: AOvanced Flawe Juecimens," USAEC Keport HSST-TK-12, 1y7U.
[j] Ayres, D. J., "A Numerical Procedure tor Calculating Stress ano Ueformation near a Slit in a Three-Uimensional Elastic-Piastic Jollo." NASA TM X-52440, 1968.
[4] Cruse, \therefore A. and wilson, R. B., "Boundary Integral Equation Method for Elastic Fracture Mechanics Analysis," Air Force Office of Scientific Research, AFOSR-TR-78-0355, 1978.
[5] Gyekenyesi, J. P. and Mendelson, A., "Three-Dimensional Elastic Stress and Displacement Analysis of Finite Geometry Solids Containing Cracks," Int. Journ. of frac., 11, 2, PD. 409-429, 1975.
[6] Malik, S. N., "Elasto-Plastic Analysis for Finite Geometry Cracked Members by the Method of Lines," Ph. D. Dissertation, Onio State University, 1979.
[7] Liskovets, 0. A. "The Method of Lines (Review)," Differential Equations 1, pp. 1308-1323, 1965.
[8] Jones, D. J., South, J. C. and Klunker, E. B., "On the Numerical soiution of Elliptic Partial Differential Equations by the Method of Lines," Journ. of Comp. Phys., 9, pp. 496-527, 1972.
[9] Irode, M., "Method of mumerical Analysis for Three-Dimensional Elastic Problems," Japan National Congress of Applied Mechanics Proceedings, Central Scientific Publ., pp. 1-7, 1968.
[10] Faddeva, V. N., "The Method of Lines Applied to Some Boundary Problems," Trudy Mat. Inst. Steklov., 28, pp. 73-103, 1949.
[11] Loed, A. M. and Schiesser, W. E., "Stiffness and Accuracy in the Method of Lines Integration of Partial Differential Equations," Stiff Differential Systems, Edited by R. A. Willoughby, Plenum Press. New York and London, pp. 229-243.
[12] Janac, K., "Adaptive CSOT Algorithms for Multiaimensional Equations," Advances in Computer Metnods for Partial Differential Equations - 11 , Edited by R. Vichnevetsky, Fudl. IMACS, 1977.
[13] Mendelson, A. and Alam, J., "Method of Lines Applied to Curved Crack Fronts," NASA Grant to Case Western Reserve University, 1980.
[14] Sin, G. C., "Mechanics of fracture: Linear Response," Nunierical Metnods in Fracture Mechanics, University College Swansea, pp. 155-192, 1978.
[15] Feldman, A., Smith, F. W., and Holston, A., Jr., "Characterization of Crack Growth under Combined Loading," NASA CR-135197, 1977.
[16] Shah, R. C., "Effects of Proof Loads and Comoined Mode Loadings on Fracture and Flaw Growth Characteristics of Aerospace Alloys," NASA CR-134611, 1974.

(a) THREE SETS OF LMES PARALLEL TO $\mathrm{n} \cdot \mathrm{v}$. AND 2COORDINAIES AND PERPENDICULAR TO CJRRES PONDNG COORDINATE PIANES

© SET OF NTERIOR LINES PARALLLL TO E-COORONATE.
Figure!. Sets of lines parallel to Curtesion coordinates

(1) RECTANGUUR BAR WITH IHROUGH-IHICKNESS CENTRAL CRACK.

(b) DISCREFIZED REGION OF RECTANGULAR EAR WITH THRCUGH-THICKNESS CENTRAL CRACK.

Figure 2. Rectangular bar with in rough - thickness central crack under uniform tension.

 undar - Tenvir.

Figure 5. - Variation of $\beta=\sigma_{z}\left[v\left(\sigma_{x}+\sigma_{y}\right)\right]$ on crack plane, $y=0$, across plate thickness. $(\mathbb{C} / W)=0.5174$. For ideal plane strain case: $\beta=1$, and for plane stress: $\beta=0$.

(a) DIMENSIONLESS Y-DIRECTIONAL NORMAI STRESS VAR IATION ALONG BAF WIDTH.

(b) DIMENSIONLESS y-DIRECTIONAL NORMAL STRESS VARIATION ACROSS BAR THICKNESS

Figure 8. - Dimensionless y-directional nori,ia! stress distribution in the crack plane for a bar under uniform tension containing a rectangular surface crack.

Figure 9. - Varıation of stress-intensity factor k_{1} aiong the crack periphery for a bar under tension contaning a rectangular surface crack.

Figure 10. Discretization of an externally cracked cylindrical specimen.

Figure 11. - Crack face displacements for various crack lengths.

Figure 12. - Vuriation of K_{\perp} with crack length.

