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ABSTRACT. A review is presented of recent developments in the calcula-
tion of design parameters for fracture mechanics by the method of lines
(MOL). Three-dimensional elastic and elasto-plastic formulations are exam-
ined and results are reported from previous and current research activi-
ties. The application of MOL to the appropriate partial differential equa-
tions of equilibrium leads to coupled sets of simultaneous ordinary differ-
ential equations. Solutions of these equations are obtained by the Peano-

WBaker and by the recurrance relations methods. The advantages and limita-
tions of both solution methods from the computational standpoint are sum-
marized.

INTRODUCTION. The main goal of fracture mechanics is the prediction of
the load at whicK a structure weakened by a crack will fail. Knowledge of
the stress and displacement fields near the crack tip is of fundamental im-
portance in evaluating this load at failure. Because of the geometric sin-
gularity associated with any crack type problem, there is almost no possi-
bility of a simple closed form type of solution. For this reason, three-
dimensional elastic solutions have been obtained only for a restricted class
of problems. Furthermore, the calculation of stress and strain distribu-
tions in elasto-plastic/work hardening materials containing inherent crack-
like flaws is a non-linear and three-dimensional problem. Uue to the finite
boundary effect and the nonlinearity of the material response, solutions in
existence are obtained almost exclusively through numerical computer methods
of continuum mechanics. Notable among these are the finite element method
[1,2], the finite difference method 0], and the boundary integral equation
method [4]. These methods are useful in solving either elastic or elasto-
plastic fracture mechanics problems; it is known, however that practical
problems usually require a very large amount of data storage and computation
time.

An alternate semi-analytical method suitable for the solution of crack
problems is the line method of analysis. Successful application of this
method to finite geometry solids containing cracks has been demonstrated
recently for both elastic L5j and elasto-plastic [6] problems. Although the
concept of the line method for solving partial differential equations is not
new L1,8j, its application in structural analysis has been limited to simple
examples [9]. By far the most common approach to fracture problems has been
the finite element method, and it is the purpose of this paper to review a
simple, systematic, a l ternate method, the method of lines iMUL) for these
problems.

The line method lies midway between completely analytical and dis-
cretized numerical methods. The basis of this technique is the substitution
of finite differences for the derivatives with respect to all the independ-
ent variables except one for which the derivatives are retained. This ap-
proach replaces a given partial differential equation with a system of ordi-



1

aui,Jj + \1 - Lv/ duJ,Ji

1	 dE	 dE

= 11 - 2v^ oe Eu
j'Ji * 3SiJ 
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nary differential equations whose solutiuns can then be obtained, at least

in some cases, by analytic methods. These equations descriur the uepenoent
variable along lines which are parallel to the coordinate in whose dire cti on
the derivatives were retained. Application of the line method is most use-

ful when the resulting ordinary differential equations are linear and have

constant coefficients LIU].

Ai Inherent advantage of the line method over other numerical metnods

is that good results are obtained from the use of relatively coarse grids.
This use of a coarse grid is permissible because parts of the solutions are
obtained in terms of continuous functions. It is known that MOL methods

tend to keep the advantages ana discard the disadvantages of both the ana-
lytical and grid methods, thereby leading to accurate solutions with minifr;ur

computation times. The cisaavantage of MUL, on the other hana, is that
tenas to become numerically unstable as the number of dividing lines in-
creases and the finite difference strip size becomes too small L8,11,12j.
To realize a very fine space disere-tization with this method would requ

word length with much larger number of bits, leading to excessive requi^e-
ments on computer resources. Current research emphasis in MUL solution
methods is to overcome this problem in engineering applications L13J.

GOVERNING EQUATIUNS NNU MOL FURMULATION. It is assumed, for simplicity
of t,,is presentation, that the materialal is hoiaog-,neous, isotropic ano tnat
the deformations are quasi -static and small. The structure is assumed to be
elastic f irst and the elastic solution is taken to be known before the in-
cipient loading is applieo. As loaoing gradually increases, the structure
becomes elasto-plastic and the governing equations are written in terms
displacement increments. Using the standard summation convention, thr
Navier equations for the elastic problem in terms of displacement-, ui, are

(	 1
ui ,jj + \1 - 2v/ uj: ji = 0	 i. J = 1,2.3

and for the elasto-plastic regime, the displacement increments, dui, can

be obtained from

(1)

where the body forces are assumes to be zero, de l, is the effective plas-
tic strain increment, Si	 is the stress deviator tensor anu ae is the
equivalent stress. In t1ge plastic region the von Mises yield condition and
the associated Prandtl-keuss flow rule is taken to prevail. The incremental

stress-strain relations are obtained as 1.6j,

do ..	
(	
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where v, G, E are the conventional elastic, properties, oi J is the
Kronecker delta and oi J are the stresses.

In o. ,oer to solve equations (1) or (2), we apply MUL and reduce these
equations to systems of simultaneous ordinary oifferential equations. For
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problems in Cartesian coordinates, the region is discretized by x, y and

r-directional lines as shown in figure 1. The displacements along the
x-directional lines are defined as ul, u1, . . ., u t. The deriva-
tives of the y-directional displacements on these lines with respect to y
are defined as v'11, v'12, . . ., v I l k , anu the derivatives of the
z-directional displacements with respect to z are defined as w'I1,
w'I 2 , . . ., w 1 le. When these definitions are used the ordinary difter-
ential equation along a generic line ii (a double subscript is used here
for simplicity of writing and the subscripts obviously are not related to
those in the equations) in figure 1, using central differences with trunca-

tion errors of 0(h 2 ), may be written as

2
du ij + (1--2v	 2+2	 +1
dx	

v -(^	
ui

-1,j)(u i + 1,J -

	

y	 z	 y

1	 fi (x)

+ h2 (ui , j+ l + ui.j-l) + 
2(1^_ v) U	 (4)

z

where

dv'	 + dw'
f id ( x ) = ax  

I ij
	 dx

Iij
 (51

and

V,	 dv , w ,	 dw
Ty- 	 oz

Similar differential equations are obtained along the other x -directional
lines. The set of t second order differential equations represented by
(4) can be reduced to a set of 21 first order aitferential equations by
treating the derivatives of the u ' s as an additional set of a unK nowns.
The resulting equations can now be written as a single first order matrix
differential equation

du

dx s A
lU + R i x)

where U and R are column matrices of 2k elements each and Al is

2e x 2c matrix of coefficients. In a similar manner to solve the other two
havier equations for the elastic problem, we construct ordinary differential
equations along the y- and z-directional lines, respectively. These equations
are also expressed in an analogous form to equation (6); they are

dy	 A 2 V + S (,Y)	 (^)

dW
Z—
z = A 3 + T (z)	 (^)

(b)
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Equations ( 6) to (8) are linear, first-order, ordinary differential equa-
tions. They are, however, not independent, but are coupled through the vec-
tors R, S and T.

Noting that a second order ordinary differential equation can satisfy
only a total of two boundary conditions and since three-dimensional elastic-
ity problems have three conditions at every point of the bounding surface,
the shear stress boundary data must be incorporated into the differential
equations of the surface lines. The application of the specified shear
conditions permits the use of a single layer of boundary image lines when
surface line differential equations are constructed.

For an elasto-plastic solid the governing differential equations for
displacement increments and the incremental stress-displacement relation:.
are found in M. The x-directional displacement increments, in an anaio-
gous manner to equation (6), can be obtained from

ax— (dU) - A 1du + OR (x)
	

o)

where the coupling vector dR (x) contains mixed derivative terms for elastic
and plastic regions in addition to terms involving the ratio of dep/ce.

The system of ordinary differential equation ( 6) can be solved by any
of a number of standard techniques. The method employeu in L5,0,9j is the
Peano-Baker method of integration. The solution can be written as

Alx	 A1x	 x -Ali

U(x) ' e	 U(0) + e	
f 

e	 R(n) On (10)
0

where U(0) is the initial value vector determined from the boundary conai-
tions and the matrizant e A 1x is generally evaluated by its matrix
series. For larger values of x, when convergence becomes slow, adoitive
formulas may be used. In addition, simile^ity transformations can be used
to diagonalize the coefficient matrix A 1 . It should oe noted that, in

general, the matrix Al is a function of Poisson's ratio and the coorGi-
nate finite difference increments. Uniform line spacing in the three coor-
dinate directions makes closed form aiagonalization of Al posslule.
However, refinement of the mesh wit ► uniform line spacing rapidly increases
the required computer time and storege as well as raises the prouaDilit; of
numerical difficulties in the matrix exponential power series computations.
Consequently, variable mesh spacing is recommenced as one method of ootain-
ing improved answers without an increase in problem size.

Most of the recently obtained MOL solutions in fracture mechanics in-
volved the use of finite aifference formulas with truncation errors of

0(h2). Current work by Mendelson ano Alam L13j, uses higher order finite
difference approximations as an alternate method of obtaining more accur^.=
results. These five point finite difference approximations tor tr.e first
and second y-uerivatives of a function f(x,y,z) at (x,y,z) can 	 written
as [8],
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Since the evaluation of the matrix exponential power series becomes increas-
ingly difficult with the coefficients obtained through the use of equations
(11), a recurrence relations method is used to solve the resulting systems
of ordinary differential equations. An error analysis in L81 indicates that
approximately six times as many dividing lines must be useo with 0(h2)
approximations to get equivalent accuracy to that obtained when equations
(I1) are used.

The solution of equation (6) by recurrence relations can be obtained by
taking N equal intervals along the x-axis, each having a length of hm.
Then by using finite differences for (dU/dx)m and average values of
(A1U + R)m, the following linear recurrance formula will be obtained
[13], expressing Um in terms of um-1:

Um = L 0Um-1 + Mm	 (12)

where Lm is a known function of hm and Al while Ma l will de-
pend on R in addition to hm and Al. We can also express um in
terms of Ul by repeated application of equation (12), leading to

Um = DmU l + Fm	 (13)

where Din and Fm are known functions of Lm and Mm. By suit-
able partitioning of the D and F matrices at the boundaries, we can use
given boundary data at the last station, Un, to calculate unknown elements
Of ul, where n s N + 1. The advantage of using equation (13) to calcu-
late Um, m = 1, 2, . . ., n, is that the coefficient matrix Al has no
limitation on its format or on the arrangement of its elements. The inter-
val hm can be decreased to any fraction of hx, the initially estab-
lished finite difference increment obtained from the application of MUL.
Results of test problems indicate that two or three subintervals are ade-
quate for the solution of a typical problem.

All of the MUL work in three-dimensional fracture mechanics has been
done using double precision arithmetic. With larger word sizes, 128 bits or
greater, improved results can be obtained or more lines can be used.
Typical problems on third generation computers can usually be handled with
100 to 200 lines in each direction using Cartesian coordinates, and up to 20
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lines in each direction using cylindrical coordinates. Corresponding CPU
times are of the order of 3 minutes for the elastic solution and 25 minutes
for the entire elasto-plastic problem L6). Must of the computer time is
spent in decoupling the three systems of simultaneous ordinary differential
equations which arise in a general problem. Uecoupling is done by a succes-
sive approximation procedure. with cyclic resubstitution of the obtained
solutions into the coupling vectors and the boundary conditions good numer-
ical convergence behavior was observed.

Elastic solutions have been obtained for typical fracture test spec linen
geometries such as the central crack, single edge crack, double edge crack
and rectangular surface crack problems, all with uniform tensile loadings
normal to the crack plane. In cylindrical coordinates, the problem of ar
embedded penny-shaped crack and the externally cracked circular cylinder
tension have been treated. Although shear and torsionally loaded specia-L-os
have not been analyzed previously by MOL, the necessary boundary conditions
for these problems can be imposed without difficulties. Presently, the
thumbnail-crack problem is being investigated in connection with applying
MOL to curved crack boundaries. In addition, it seems that the common
three-point bend specimen could also be analyzed in a systematic manner
using this method.

Elasto-plastic solutions of certain crack problems have also been ob-
tained using the incremental displacement formulation in connection with
MOL. The nonlinear response of finite length cylinders with external annu-
lar cracks and a finite thickness rectangular plate containing a through-
thickness central crack under uniaxial tension were studied in detail. In
addition to the stresses and displacements, fracture mechanics parameters
such as the stress intensity factor, the J-integral and the load versus load
point displacement plots were determined.

STRESS INTENSITY AND STRAIN ENERGY DENSITY FACTORS. Since the applica-
tion of boundary conditions for MUL allows the crack tip to remain between
two successive node points, the exact location of crack tip together with
the determination of K values for the elastic case is done by the first
two terms in the Williams eigenfunction expansion. The crack face displace-
ment and maximum normal stress near the crack front are used to find the
coefficients in the two-term expansion. Assuming that y = U is the crack
plane and that the crack is under normal tensile loading, we have

V : aK R + r + LI	 (H + r)	 (14)
I

L

cy KI	1	 + Kl	 (15i

R	 -r	 I

where a is a function of Poisson's ratio, the stress singularity is
assumed to be -1/2, r is the crack edge position correction, v	 the
crack opening displacement, ay is the maximum normal stress and 	 1
and L I are the mode I Williams expansion coefficients. Using c-;splac,;-
ment data from three adjacent nodes to the crack edge in equation (14), v,,,--
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ues of aK I , L I /Kj and r are calculated for each value of z, with
R also measured from the halfway point between nodes specifying boundary
stresses and displacements, respectively. Substituting values of
LPK i and r into equation (15), we can calculate KI as a function
of tfie corrected crack edge distance, p = R - r. Note that a would be
equal to 3.56 for the plane strain case and 4.0 for the plane stress case
with v • 1/3. Another approach to calculate KI is to first determine

f	 the JI interal and then use the linear elastic JI - KI relation
of the form LI)

K  = iEl ;

	

(16)

Linear fracture mechanics technology assumes then that the crack will
propagate if K I reaches its critical value KIc, usually called its
fracture toughness. It should be noted that the K-concept is restricted to
symmetric systems with the applied loads perpendicular to the crack plane
and the crack propagating in a self-similar manner. In general, a complete
description of the crack border stress field requires three stress intensity
factors, and a mixed mode fracture criterion is needed to predict failure.
To this end Sih [14] has defined a strain energy density factor, S, as

	

S . 
aU 1 + 2a

12k 1k 2 + a22k2 + a33k3
	

(17)

where the coefficients a ij (i, j = 1, 2) depend on the material constants
and the angles a and W. Consistent with equation (17), the local
stresses near the crack tip are of the form [14j9

k 	 cos 
7 

(1 - sin 7 sin Y
°x	 l

p cos W

	

sin 
0 
(2 + cos 0cos	 ) + U(1)	 (ld ^

p cos W

Note that k i = Ki/%/-w and the coefficients aij are then given by
equations of the form

16G cos W all = (3 - 4v - cos o)(1 + cos s)	 (19)

As can be seen from equation (17), the stress intensity factors k i still
play an important role in the fracture process. hence, the correct deter-
mination of these factors is a necessary step in the safe design of any
structure. In the strain energy density failure criterion, it is assumea
that the minimum value of S yielas the direction of crack initiation ano
that the critical value of Smin, Sc, determines incipient fracture and
is an intrinsic material property independent of the loading conditions and
crack configurations.

Other multi-mode failure criteria have been proposed previously in the
literature and a brief description of each fracture theory along with
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limiteo experimental oats can be tound in Elb,la]. In general, little cif-
ference exists oetween theories predictiny mope 1, mooe 11 interaction anu
comuineo damage crack propagation airectiun.

NUMERICAL RESULTS. A great amount of experimental work has been cone
in fracture mechan cs using cracked specimens. selected results for swine
common specimen geometries are shown in figures 2 to 12. Figure 2 shows a
rectangular oar under normal tensile loaning containing a traction free,
through-thickness, central crack. The crack opening displacement at the 	 l
middle and at the surface of the bar is plottea in figure 3, along with
Raju's finite element results. Stress intensity factor variations as a
function of oar thickness are shown in figure 4. Variation of the con-
straint parameter s, defines as the quantity oz /lv(OX + oy)j, along
the plate thickness is shown in figure 5. Note that for plane strain s - 1
ana for plane stress case it vanishes. Figure b shows a oar with unitorrr
tension containing a rectangular surface crack. Surface crack opening
displacement as a function of crack depth is shown in figure 7 while the
variation of the maximum normal stress a	 is shown in figure b for a
selected crack geometry. For the same r2tangular surface crack prop zem, a

plot of KI along the crack periphery i_ shown in figure 9. The eis-
cretization of an externally cracked cylindrical fracture specimen is shown
in figure 10. Crack face displacements for various crack lengths are
plotted in figure 11 while the variation of KI with crack length is
shown in figure 12. It is oovious from these results that a variety of
plots familiar to the fracture mechanics community can be constructeu, since
MUL methods give complete field solutions.

COLLUDING REPtANKS. The line method of analysis is a practical ap-
proach for the solution of three-dimensional crack problems, at least for
bodies with reasonably regular boundaries. doth elastic anu inelastic solu-
tions can be obtained. Just how efficient the method is or can be made is
not fully established. It is known, however, that good results are obtaineo
from the use of relatively coarse grids. Interestingly, displacements ano
normal stresses are determined with equal accuracy since numerical oitter-
entiation of the oisplaceuents is not required. Applications to curveu
boundaries, pending or shear modes of loading and variaole mesh spacing are
some of the current areas that need additional investigations. Furthermore,
it seems that MOL could also be useo to stuuy the sta p le cracK urowtn bt-
havior of engineering materials.
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Figure 10. - Discretization of an externally cracked
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Figure 11. - Crack face displacements
for various crack lengths.
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