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THE METHOD OF LINES IN THREE-DIMENSIONAL FRACTURE MECHANICS

John Gyekenyesi and Laszlo Berke
National Aeronautics ana Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT. A review is presented of recent developments in the calcula-
tion of design parameterrs for fracture mechanics by the method of lines
(MOL). Three-dimensional elastic and elasto-plastic formulations are exam-
ined and results are reported from previous and current research activi-
ties. The application of MOL to the appropriate partial agifferential equa-
tions of equilibrium leads to coupled sets of simultaneous orainary differ-
ential equations. Solutions of these equations are obtained by the Peano-
Baker and by the recurrance relations methods. The advantages and limita-
tions of both solution methods from the computational standpoint are sum-
marized.

INTRODUCTION. The main goal of fracture mechanics is the prediction of
the load at which a structure weakened by a crack will fail. Knowledge of
the stress and displacement fields near the crack tip is of fundamental im-
portance in evaluating this load at failure. Because of the geometric sin-
gularity associated with any crack type problem, there is almost no possi-
bility of a simple closed form type of solution. For this reason, three-
dimensional elastic solutions have been obtained only for a restricted class
of problems. Furthermore, the calculation of stress and strain distribu-
tions in elasto-plastic/work hardening materials containing inherent crack-
like flaws is a non-linear and three-dimensional problem. Uue to the finite
boundary effect and the nonlinearity of the material response, solutions in
existence are obtained almost exclusively through numerical computer methods
of continuum mechanics. Notable among these are the finite element method
L1,2], the finite difference method | 3], and the boundary integral equation
method (4]. These methods are useful in solving either elastic or elasto-
plastic fracture iechanics problems; it is known, however that practical
problems usually require a very large amount of data storage and computation
time.

An alternate semi-analytical method suitable for the solution of crack
problems is the line method of analysis. Successful application of this
method to finite geometry solids containing cracks has been demonstrated
recently for both elastic { 5] and elasto-plastic [6] problems. Although the
concept of the line method for solving partial differentiai equations is not
new | 7,8, its application in structural analysis has been limited to simple
examples {9]. By far the most common approach to fracture problems nas been
the finite elenent method, and it is the purpose of this paper to review a
simple, systematic, aliernate method, the method of lines (MuL) for these
problems.

The line method 1ies midway between completely analytical and dis-
cretized numerical methods. The basis of this technique is the substitution
of finite diffarences for the derivatives with respect to all the inaepencg-
ent variables except one for which the derivatives are retained. This ap-
proach replaces a given partial differential equation with a system of ordi-
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nary differential equations whose solutions can then be obtained, at least
in some cases, by analytic methods. These equations desctribe the dependent
variavle along lines which are parallel to the coordinate in whose direction
the derivatives were retained. Application of the line methoa is most use-
ful when the resulting ordinary differential equations are linear and have
constant coefficients [10].

Ai nherent advantage of the line method over other numerical methods
is that good results are obtained from the use of relatively coarse grias.
This use of a coarse grid is permissible because parts of the solutions are
obtained in terms of continuous functions. It is known that MOL methoas
tend to keep the advantages ana discard the disaavantages of both the ana-
lytical and grid methods, thereby leading to accurate solutions with minimur
computation times. The cisaavantage of MUL, on the other hana, is that i.
tenas to pecome numerically unstable as the number of diviaing lines in-
creases and the finite difference strip size becomes too small |&,11,1¢].
To realize a very fine space discretization with this method would requiru
word length with much larger number of bits, leading to excessive requi e-
ments on computer resources. Current research emphasis in MUL solution
methods is to overcome this problen in engineering applications [13.

GOVERNING EQUATJUNS AND MOL FURMULATION. It is assumed, for simplicity
of tins presentation, that the material 1s howogrneous, isotropic ang that
the ceforuations are quasi-static and small. The structure is assumed to be
elastic first and the elastic solution is taken to be known pbefore the in-
cipient loaaing is applied. As loaging gradually increases, the structure
becomes elasto-plastic and the governing equations are written in terms ~7
displacement increments. Using the standard summation convention, the

Navier equations for the elastic problem in terms of aisplacements, uj, are

1 ) . . \
* | ———— = =
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and for the elasto-plastic regime, the aisplacement increments, auj, can
be obtained from
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where the body forces are assumed to be zero, dep 1is the effective plas-
tic strain increment, Sy, 1is the stress deviator tensor anu o is the
equivalent stress. In tge plastic region the von Mises yield conaition and
the associated Prandtl-keuss flow rule is taken to prevail. The incremertc!
stress-strain relations are obtained as (6],

do . . de ¢
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where v, 6, E are the conventional elastic properties, §ij is the
Kronecker gelta and oj; are the stresses.

In ocger to solve equations (1) or (2), we apply MOL and reduce these
equations to systems of simultaneous ordinary aifferential equations. For
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problems in Cartesian coordinates, the region is discretized by x, y and
2-directional lines as shown in figure 1. The displacements along the
x-directional lines are defined as wuj, vy, . . ., uy. The deriva-

tives of the y-directional displacements on these lines with respect to y
are defined as v'[], v'|2, . . ., v'|g, anu the derivatives of the
z-directional displacements with respect to z are defined as w'|,,
w'lo, v o oy w'|g. When these definitions are useg the ordinary di%fer-
ential equation along a generic line 1) (a double subscript is used here
for simplicity of writing and the subscripts obviously are not relatea to
those in the equations) in figure 1, using central differences with trunca-
tion errors of 0(hZ), may be written as

2
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Similar differential equations are obtained along the other x~directional
lines. The set of ¢ second order aifferential equations represented by
(4) can be reduced to a set of 2¢ first order aifferentiail equations by
treating the derivatives of the u's as an aduitional set of ¢ unknowns,
The resulting equations can now be written as a single first order matrix
differential equation

du :
rrih AlU + Rix) (b)
where U and R are column matrices of 2¢ elements each and A} is
2¢ x 2¢ matrix of coefficients., In a similar manner to solve the other two
Navier equations for the eiastic proolem, we construct orcinary cifferentiai
equations along the y- and z-directional lines, respectively. These equations
are also expressed in an analogous form to equation (6); they are

dv

ay AN+ S(y) (7)

dw

= AW+ T(2) (8)

a2 3
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Equations (6) to (8) are linear, first-order, ordinary differential equa-
tions. They are, however, not indepengent, but are coupled through the vec-
tors R, S and T.

Noting that a second order ordinary aifferential equation can satisfy
only a total of two boundary conditions and since three-dimensional elastic-
ity problems have three conditions at every point of the bounding surface,
the shear stress boundary data must be incorporated into the differential
equations of the surface lines. The appiication of the specified snear
conditions permits the use of a single layer of pounaary image lines when
surface line dgifferential equations are constructea.

For an elasto-plastic solid the governing differential equations for
displacement increments and the incremental stress-displacement relations
are found in |6]. The x-directional displacement increments, in an anaio-
gous manner to equation (6), can be obtained from

g-; (dU) = A0U * GR(x) )

where the coupling vector dﬁ(x) contains mixed derivative terms for elastic
and plastic regions in agdition to terms involving the ratio of dep/oe.

The system of orainary differential equation (6) can be solved by any
of a numper of standard techniques. The methoc employeu in {5,6,Y) 1s the
Peano-Baker method of integration. The solution can pe written as

Alx Alx X —Aln
U(x) = e U(0) +e e R(n) dn (10)
0

where U(0) is the initial value vector determined from the boundary conai-
tions and the matrizant eA1* s generally evaluateg by its matrix

series. For larger values of x, when corvergence becomes slow, adaitive
formulas may be used. In addition, simile~ity transformations can be vsed
to diagonalize the coefficient matrix Aj;. It shouio pe noted that, in
general, the matrix A} 1is a function of Poisson's ratio ana tne coorci-
nate finite aifference increments. Uniform line spacing in the three cocr-
dinate directions makes closed form diagonalization of A} possiule.
However, refinement of the mesh witt uniform line spacing rapidiy increases
the required computer time and storije as well as raises the provavility of
numerical ditfficulties in the matrix exponential power series computations,
Consequently, variable mesh spacing is recommenaed as one metnhoa of obtain-
ing improved answers without an increase in problem size.

Most of the recently obtained MOL solutions in fracture mechanics in-
volved the use of finite aitference formulas with truncation errors of
0(h2). Current work by Mendelson ana Alam [13], uses higher order finite
difference approximations as an alternate method of obtaining more acCurc.:
results. These five point finite difference approximations tor tne first
and[sacond y~cerivatives of a function f(x,y,z) at {(x,y,z) carn .. written
as (8],
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fx,y * fle) - f(x,y - hy.Z)

21) 24
Wiy 3 2h,
) 3 f(x,y + 2hy,2’4; fix,y - Zhy,Z) .0 (hz)
y (11)
(335) - % flx,y +h,2)* f(x;y - h2) - 2 (x,y,2)
W x,y,2 hy
) 1 f(x,y * Zhy,z) + f(x,y - thjz) - 2f(x,y,2) . 0(h4)
3 anl y
y

Since the evaluation of the matrix exponential power series becomes increas-
ingly difficult with the coefficients obtained through the use of equations
(11), a recurrence relations method is usea to solve the resulting systems
of ordinary differential equations. An error analysis in | 8] indicates that
approximately six times as many dividing lines must be usea with 0(hZ)
approximations to get equiva'ent accuracy to that obtained when equations
(11) are used. h

The solution of equation (6) by recurrance relations can be obtained by
taking N equal intervals along the x-axis, each having a length of hp,.
Then by using finite differences for (du/dx)y and average values of
(Aju *+ R)n, the following linear recurrance formula will be obtained
[15]. expressing Uy in terms of up_1:

U u +M (1¢)

m = taln-1 M
where Ly 1is a known function of hy and A} while My will ae-
pend on R in addition to hy and A)]. We can also express Uy in
terms of U; by repeated application of equation (12), leading to

Un = 0¥y * Fry (13)
where 0Oy and Fpy are known functions of Ly and Mp. By suit-
able partitioning of the D and F matrices at the boundaries, we can use
given boundary data at the last station, U,, to calculate unknown elements
of Uj, where n = N+ 1. The advantage of using equation (13) to calcu-
late Uy, m=1,2, ..., n, is that the coefficient matrix A} has no
limitation on its format or on the arrangement of its elements. The inter-
val hp can be decreased to any fraction of hy, the initially estabp-
lished finite difference increment obtained from the application of MUL.
Results of test problems indicate that two or three subintervals are ade-
quate for the solution of a typical problem.

A1l of the MOL work in three-dimensional fracture mechanics has been
done using double precision arithmetic. With larger word sizes, 128 bits or
greater, improved results can be obtained or more lines can be used.

Typical problems on third generation computers can usuaily be handled with
100 to 200 1ines in each direction using Cartesian coordinates, and up to 20
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lines in each direction using cylindrical coordinates. Corresponding CPV
times are of the order of 3 minutes for the elastic solution ana 25 minutes
for the entire elasto-plastic problem [6]. Most of the computer time is
spent in decoupling the three systems of simultaneous ordinary difrerential
equations which arise in a general problem. Decoupling is done by a succes-
sive approximation procedure. With cyclic resubstitution of the obtainec
solutions into tne coupling vectors and the boundary conditions good numer-
ical convergence behavior was observed.

Elastic solutions have been obtained for typical fracture test speciien
geometries such as the central crack, single edge crack, double edge crack
and rectangular surface crack problems, all with uniform tensile loadings
normal to the crack plane. In cylindrical coorainates, the problem of an
embedded penny-shaped crack and the externally cracked circular cylinder -
tension have been treated. Although shear and torsionally loaded specimcns
have not peen analyzed previously by MOL, the necessary boundary conditions
for these problems can be imposed without difficuities. Presently, the
thumbnail-crack problem is being investigated in connection with applying
MOL to curved crack boundaries. In addition, it seems that the common
three-point bend specimen could also be analyzed in a systematic manner
using this method.

Elasto-plastic solutions of certain crack problems have also been ob-
tained using the incremental gisplacement formulation in connection with
MOL. The nonlinear response of finite length cylingers with external annu-
lar cracks and a finite thickness rectangular plate containing a through-
thickness central crack under uniaxial tension were studied in detail. In
addition to the stresses and displacements, fracture mechanics parameters
such as the stress intensity factor, the J-integral and the loaa versus load
point displacement plots were determinea.

STRESS INTENSITY AND STRAIN ENERGY DENSITY FACTURS. Since the applica-
tion of boundary congitions for MUL alliows the crack tip to remain between
two successive node points, the exact location of crack tip together with
the determination of K values tor the elastic case is done by the first
two terms in the Williams eigenfunction expansion. The crack face aisplace-
ment and maximum normal stress near tne crack front are used to find the
coefficients in the two-term expansion. Assuming that y = U is the crack
plane and that the crack is under normal tensile loading, we have

L
Ve oK ’/52.:_& + .é (R +r) (14)
L N
oy'Kl ——-—L——*R—I-VR—Y' (1o
v?:ZR - T’ 1 .

where o 1is a function of Poisson's ratio, the stress singularity is
assumed to be ~1/2, r is the crack eage position correction, v ¢ tne
crack opening displacement, oy 1is the maximum normal stress anad .]

and L1 are the mode I Williams expansion coefficients. Using ¢:splace-
ment data from three agjacent nodes to the crack edage in equation (14), v.:-




e AR e i aﬁi‘.‘—mmmmw,_m1 S R - vy »‘ -

7

ues of oKj, Lj/K; and r are calculated for each value of 2z, with

R also measured *rom the halfway point between nodes specifying boundary

stresses and displacements, respectively. Substituting values of

L lKg and r .nto equation (15), we can calculate Kj as a function
the corrected crack edge distance, p = R = r. Note that o would be

equal to 3.56 for the plane strain case and 4.0 for the plane stress case

with v = 1/3. Another approach to calculate K] {s to first determine

the Jj integral and then use the linear elastic J] - K] relation

of the form (6]
‘/ 1
Kl = -1—--—-2 (16)
-V

Linear fracture mechanics technology assumes then that the crack will
propagate if K| reaches its critical value Kie, usually called its
fracture toughness. It should be noted that the K—concept is restricted to
symmetric systems with the applied loaas perpendicular to the crack plane
and the crack propagating in a self-similar manner. In general, a complete
description of the crack border stress field requires three stress intensity
factors, and a mixed mode fracture criterion is needed to predict failure.
To this end Sih [14] has defined a strain energy density factor, S, as

2 2 2
S =3y kg * 28)0kky * 30k, * aggky (17)

where the coefficients a4 (i, j = 1, 2) depend on the material constants
and the angles @ and w.” Consistent with equation (17), the local
stresses near the crack tip are of the form [14,

K

o -——l——cos%(l - sin%sin%’i)
p COS w
K 9 ) 3o
- sin » (2 + CO$ 7 Cos 7—) + 0(1) (18,
VZD CosS w

Note that ki = Ki/4/x and the coefficients 3jj are then given by
equations of the form

166 cos w 3 - (3 -4y - cos @)(1 + cos o) (19)

As can be seen from equation (17), the stress intensity factors kj still
play an important role in the fracture process. Hence, the correct deter-
mination of these factors is a necessary step in the safe design of any
structure. In the strain energy gensity failure criterion, it is assumed
that the minimum value of S yielas the direction of crack initiation ana
that the critical value of b5pip, Sc, determines incipient fracture and

is an intrinsic material property independent of the loading conditions and
crack configurations.

Other multi-mode failure criteria have been proposed previously in the
literature and a brief description of each fracture theory along with
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linitea experimental cata can be tound in | i5,16). In general, littie qif-
ference exists petween theories predicting moue 1, wooe ]I interaction anu
combined oanage crack propayation virection.

NUMERICAL RESULTS. A great amount of experimental work has been gone
in fracture mechanics using cracked specimens, Selected results for soie
common specimen geometries are shown in figures 2 to 12, Figure 2 shows a
rectangular bar under normal tensile loaaing containing a traction free,
through-thickness, central crack. Tne crack opening aisplacement at tne
midale and at the surface of the bar is plottea in figure 3, along witn
Raju's finite element results. Stress intensity factor variations as a
function of bar thickness are shown in figure 4. Variation of the con-
straint parameter g, definea as the quantity o,/ v(ox * oyl s alony
the plate thickness is snown in figure 5, Note that for plane strain g - 1
ang for plane stress case it vanishes. Figure 6 shows a oar with unitori
tension containing a rectangular surface crack. Surface crack openiny
aisplacement as a function of crack depth is snown in tigure 7 while the
variation of the maximum normal stress oy 1{s shown in figure & for a
selected crack geometry. For the same rectangular surface crack probien, a
plot of Kj along the crack periphery i< shown in figure Y. Tne ais-
cretization of an externally cracked cylindrical fracture specimen is shown
in figure 10. Crack face displacements for various crack lengths are
plotted in figure 11 while the variation of K| witnh crack length is
shown 1n figure l¢. 1t is oovious from tnese results that a variety ot
plots familiar to the fracture mechanics coumunity can be constructeu, since
MOL metnuas give complete fielu solutions,

-

CONCLUDING RErAKNS. Tne line methou 0t analysis is a practical ap-
proach for tne solution of three-cimensional crack problems, at least tor
bodies with reasonably regular boundaries., Both elastic anu inelastic solu-
tions can be obtainea. Just how efficient the methoa is or can be made is
not fully established. It is known, however, that good results are obtaineo
from the use of relatively coarse grias. Interestingly, gisplacements anc
normal stresses are getermined with equal accuracy since numerical citter-
entiation of the aisplacements is not requirea. Applications to curved
boundaries, bending or shear mcdes Ot loaging ana variadble mesh spacing are
some of the current areas that need additional investigations. Furthemore,
it seems that MOL could also be usea to Stuuy the stable Crack yrowth De-
havior uvf enyireering materials.
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Fiqure 2. - Rectangular bar with through - thickness central
crack under uniform tension.
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distribution in the crack plane for a bar under uniform
tens.on containing a rectangular surface crack.
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Figure 11. - Crack face displacements
for various crack lengths.
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Figure 12. - Variation of K; with crack

length,
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