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SUMMARY

A method for the reduction of the cost of solution of large nonlinear
structural equations was developed. Verification was made using the MARC-STRUC
structure finite element program with test cases involving single and multiple
degrees-of-freedom for static geometric nonlinearities. The method developed
was designed to exist within the envelope of accuracy and convergence charac-
teristic of the particular finite element methodology used.

INTRODUCTION

At present the finite element codes in conjunction with the large, high-
speed computers available are capable of producing reasonable solutions to
practically all static problems conceivable in structural analysis. In addi-
tion, well-behaved problems such as those involving small elastic deformations
are solved relatively inexpensively and accurately. Computational difficulties
do not arise until the stiffness of the structure becomes a function of dis-
placement and/or displacement history. An opinion widely held is that when
this does occur an implicit solution scheme is necessary for accuracy. All
implicit schemes require an iterative solution where there is an attempt to
reduce some error term to zero at each iteration. Therefore, a nonlinear
problem is more expensive to solve and can become astronomically so depending
upon the degree of nonlinearity and the convergence criteria used.

In the solution of nonlinear structural equations the reformulation of
the stiffness matrix is a first order contribution to the cost. The first
logical step in attempting to reduce the cost would be to seek a less expen-
sive way to update the stiffness matrix. This of course has been done with
some success and is apparently still being researched. Looking at only the
most recent developments or evaluations we see that Mondkar and Powell [1]
have used the constant alpha technique to try updating the stiffness matrix
for the modified Newton-Raphson approach. Matthies and Strang [2,3]
have taken similar approaches born from a paper by Dennis and Moré [4] on
Quasi-Newton methods. The basic premise was that the stiffness matrix could
be updated without going through the full process of reformulation and de-
composition or inversion. The most popular approach was to update the stiff-

129


https://core.ac.uk/display/42863392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ness matrix by a matrix of rank two. This is known as the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) update. Crisfield [5] used a method similar to a
BFGS update of rank one. All of these papers show conclusive evidence of cost
reduction for certain problems. The last by Crisfield is closest in form to

the method developed here.

A second logical step is to reduce the number of iteratioms required to
satisfy the convergence criteria. This can be done by determining an estimated
displacement as accurately as possible. The development which follows shows
how to do this. All forces and loads are of an incremental nature.

DEVELOPMENT

In general, the iterative methods of solution using the stiffness formula-
tion will by some logical means calculate a generalized displacement for a
given generalized load. Returning then to the elemental level, the elemental
stiffness matrices are altered to reflect this change in shape and the total
resistance of the structure to the applied load is determined. If the struc-
ture is to be considered in equilibrium, the applied load must be exactly
balanced by the resulting resistance of the structure. Any imbalance is termed
a residual force and must be considered as an error. An attempt is made to
reduce this error by altering the estimated displacement. The rate of conver-
gence depends on the manner of estimated displacement selection.

The vast majority of implicit schemes available utilize only the most
recent residual and thereby ignore any possible trend determination. Felippa
[6] recognized this and proposed a viable method for determining the displace-
ment that would yield the least residual within specified limitations. This
approach required the determination of a weighting matrix that was dependent
upon the elements chosen and the applied loads. The development in this paper
is independent of the physical characteristics of the elements.

A key element in the success of the approach developed is the finite
element method used. As mentioned before the MARC-STRUC structure program was
used but the variational formulation of the structural equations was performed
according to the method of Jones [7]}. It is most important to have the most
accurate method possible for the determination of the residuals.

Considering the solution form, in Figure 1 a graph of force versus dis-
placement is shown. The curve represents the calculated resistance of the
structure. The original stiffness matrix, Ko, assumes linearly elastic defor-
mation_and yields the displacement, ug, and the residual, Ry, for the applied
load, F. The displacement, u,, and residual, R are then used in a Quasi- _
Newton fashion to update the stiffness matrix to Kl and a new displacement, uq,
and consequently a new residual, Rl, are calculated. Highly accurate answers
may result, but they are clearly expensive to obtain.

The extrapolation method presented in this paper is clearly exemplified
by the triangle, ACE, shown in Figure 2. The method used was identical to the
direct iteration method (shown in Figure 1 earlier) up to and through the
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calculation of Go, ﬁQ and Gl’ il' It was the determination of the new esti-
mated displacement, EZ’ that was performed differently. 1In_a one dimensional
sense the residuals R, R; and the distance between them, d, were used to
calculate a scalar, w, that predicted the displacement at which equilibrium
supposedly existed under the load, F. Of course, this was not the equilibrium
position and a new residual,_ﬁz,_was determined. The residuals, Rj, Ry, and
the distance between them, wd - d, were then used to predict a new equilibrium
position. The process continued until convergence was satisfied.

A major difficulty encountered was the determination of the scalar, w.
In a one dimensional case it was easy enough to see that
Ro
w = —=—"—--""" (l)
Ro = Ry

However, since in general the vectors Ry, ﬁl and d are heterogeneous in their
components' units, a division as mentioned above is impossible even when using
vector lengths. The solution to this difficulty came about by considering the
units of work. 1In fact, this extrapolation process may be symbolically thought
of as minimizing the work done by the residuals. In this light it was then
decided that equating the area of the trapezoid, ABDE, plus the area of the
triangle, BCD, to the area of the triangle, ACE, would result in an equation
with only one unknown. Simplifying and rearranging, the following was
obtained.
R, * d
w = ° - (2)
(Ro-Ry) =+ d

At this point it was decided to implement the theory and test for a one degree-
of-freedom case and follow that with a more complex case.

VERIFICATION

In an attempt to determine the validity of the aforementioned extrapola-~
tion method it was determined that a one dimensional buckling problem would be
appropriate as a first test case. The bar-spring problem of Jones was
selected.

Bar-Spring Problem

In Figure 3 the dimensions used on the problem may clearly be seen. The
length of the spring was unimportant as long as nonlinear effects did not enter
the calculations for the spring's deflection. The bar was modeled so as to
allow only a change in length and no bending deformation, hence the absence of
an EI term. A load was applied at the end of the bar and spring in the direc-
tion of deformation to render the problem one of a purely single dimensional

31



case. The buckling load was at 2.7 kg. (6 1b.) with the results tabularized
in Table I. The exact deformation was calculated and plotted in Figure 4 to
show the high degree of nonlinearity of the problem.

In analyzing the results (see Table I) it was decided that a comparison of
the values calculated against the exact values as well as a comparison of the
number of iterations required for each method would be of use. The raised
numbers beside the calculated displacements in Table I represent the number of
iterations required above the original estimate to reduce the quotient of the
calculated displacement and the estimated displacement to the tolerance indi-
cated at the column heading.

It should be noted that at the buckling load the tolerance required to
obtain two significant digits accuracy, 1.001, led to a 5 vs. 26 advantage in
iterations for the new method. However, the new method was edged by the old
in the post-buckled region by a consistent 4 vs. 7 margin. The reason for this
was apparently that the linear extrapolation did not follow the changing stiff-
ness of the structure very well. If so, a better approximation would be
obtained with a parabolic extrapolation.

On the whole this extrapolation showed promise in this case but not of a
clearly decisive nature. Therefore, the motivation for a more complex example
was established.

Ring Buckling Problem

This problem was to determine the deflection of a ring under a uniformly
loaded external pressure of varying values. The ring was modeled through 90
degrees as shown in Figure 5. The 90 degree arch was broken into two substruc-
ture. The degrees of freedom per node were

1. 2
2. R
3. dz/ds
4. dR/ds

with the rotations positive as shown by O in Figure 5. The ring was modeled
with a modulus of elasticity of 2.1 x 106 kg/cm?2 (30 x 106 psi) and a radius
of 51 em (20 in.). Finally, a kicker force was applied at node 1 of substruc-
ture 1 in the negative R direction with a magnitude of 1.5 x 1076 kg. (3.4 x
10-6 1b). Obviously, this was simply to force the ring into a buckled mode
without altering the deflections due to the pressure loading.

As there was no exact solution other than the known collapse load, the
tolerance chosen, 1.001, was that which gave two significant digits accuracy
for the bar-spring problem. The results obtained are shown in Table II. The
point at which the structure would "collapse" was 4.22 kg/cm? (60 psi). As can
be seen, the results were quite remarkable as the structure became softer. At
4.18 kg/cm2 (59.5 psi) the number of iterations reached by the old method were
not enough yet to satisfy the tolerance requirement of 1.001l. The authors
suspect that another 50 to 100 iterations would have been required.
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CONCLUDING REMARKS

The problem discussed in this paper was the cost of solution of large
nonlinear structural equations. This difficulty has been and is being
researched; however, the direction of most present research is apparently con-
cerned with the second partial of the strain energy expression (stiffness
matrix). This paper implies and subsequent research by the authors supports
the supposition that the first partial of the strain energy expression (resist-
ing force) is not being fully utilized in the determination of the new esti-
mated displacement needed for implicit methods. It may well be determined that
updating and/or reformulation of the stiffness matrix is occurring far too
often in present solution techniques.
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TABLE 1

BAR-SPRING PROBLEM

Load

kg Exact

(Ib)  Method (cm) 1.1 1.01 1.001 1.0001 1.00001
1.4 0ld 0.59781  0.59151 0.5964§ 0.59782 0.59782 0.5978;
(3.0 New 0.5915 0.5964 0.5978 0.5978 0.5978
2.7 01d 2.5400 2.01773 2.454523 2.5320§6 2.539229 2.540021
(6.0) New 2.2329 2.5018 2.5373 2.5400 2.5400
4.1 01d 4.4821 4.49331 4.48061 4.4821} 4.48211 4.4821%
(9.0)  New 4.4788 4.4816 4.4821 4.4821 4.4821°
5.4 01d 5.0800 5.0792§ s.osoog 5.0800? 5.08002 5.08003
(12.0)  New 5.0828 5.0803 5.0800 5.0800 5.0800
6.8 0ld 5.4907 5.4943} 5.49072 5.4907? 5.49078 5'49°7§o
(15.0)  New 5.4948 5.4910 5. 4907 5.4907 5.4907
8.2 01d 5.8143 5.8176i 5.81463 5.8143? 5.81438 5.814311
(18.0)  New 5.8176 5.8148 5.8146 5.8143 5.8143

#Buckling Load

Note: When the number of iterations is less than (2), there is NO difference between the new
and old methods.
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TABLE TII

RING PROBLEM (1.001)

Load Substructure 1 (cm) Substructure 2 (cm)
kg/cm2 Node 1 Node 1
(psi) Method Tterations D.0.F. 2 D.0.F. 2
) 01d 2 -.78547 E-03 -.41397 E-03
(7 New 4 -.78555 E-03 -.41397 E-03
1.5 01d 5 -.25537 E-02 -.10468 E-02
(21) New 4 -.25545 E-02 -.10459 E-02
2.5 01d 9 -.49439 E-02 -.10607 E-02
(35) New 4 -.49472 E-02 -.10576 E-02
3.5 01d 23 -.10230 E-01 .18172 E-02
(49) New 3 -.10237 E-01 .18243 E-G2
3.9 01d 54 -.22451 E-01 .12827 E-01
(56) New 3 -.22597 E-01 .12972 E-01
4.2 01d 149% -.88354 E-0Q1% .77978 E-01%
(59.5) New 4 -.95669 E-01 .85268 E-01

*Maximum number of iterations allowed.
Convergence not yet satisfied.



aexact
DISPLACEMENT

Figure 1l.- Direct iteration method.
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Figure 2.- Direct iteration method
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Kg =1.07 kg/cm §
(6 Ib/in.)
N 254 cm
(100 in.)
Figure 3.- Bar-spring problem.
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Figure 4.~ Exact solution to bar-spring problem,
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Figure 5.- Ring problem.
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