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RESPONSE OF NONLINEAR PANELS TO RANDOM LOADS*

Chuh Mei
01d Dominion University

SUMMARY

Lightweight aircraft structures exposed to a high intensity noise environ-
ment can fatigue fail prematurely if adeqguate consideration is not given to the
problem. Design methods and design criteria for sonic fatigue prevention have
been developed based on analytical and experimental techniques. Most of the
analytical work was based upon small deflection or linear structural theory
which did not agree with the experimental results. A large deflection geomet-
rical nonlinearity was incorporated into the analysis methods for determining
the structural response to high intensity noise. The Karman-Herrmann large
deflection equations with a single-mode Galerkin approximation, and the method
of equivalent linearization were used to predict mean-square amplitude, mean-
square stresses, and nonlinear frequency at various acoustic loadings for
rectangular panels. Both simply supported and clamped support conditions with
immovable or movable inplane edges are considered. Comparisons with experimen-
tal results are presented.

INTRODUCTION

Vibrations caused by acoustic pressure can frequently disturb the operating

conditions of various instruments and systems, and sonic fatigue failures which
occurred in aircraft structural components cause large maintenance and inspec-
tion burdens. The development of sonic fatigue data and design techniques were
initiated to prevent sonic fatigue failures. Design methods and design criteria
for many types of aircraft structures have been developed under Air Force
sponsorship and by the industry in the past twenty vears. Reference 1 has a
complete list of the reports describing these efforts. This research led to
sonic fatigue design criteria and design charts which are widely used during
the design of an aircraft. Although current analytical sonic fatigue design
methods are essentially based on small deflection or linear structural theory
{(see ref. 1, page 209), many documented tests (refs. 2 - 6) on various aircraft
panels have indicated that high noise levels in excess of 110 decibels (dB)
produce nonlinear behavior with large amplitudes of one to two times the
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panel thickness in such structural panels. The neglect of such large dJdeflec-
tion geometrical nonlinearity in analysis and design formulations has been
identified as one of the major causes for poor agreement between experimental
data and analytical results. The evidence of those researchers was summarized
in reference 7, where a comprehensive review of existing analytical methods on
random excitations of nonlinear systems was also given.

In this paper, the Karman-Herrmann large deflection equations for rectan-
gular plates (ref. 8) are employed. Using a single-mode Galerkin's approxima-
tion, the dynamic equations reduce to a nonlinear differential equation with
time as the independent variable. The method of equivalent linearization
(refs. 9 - 11) is then applied to reduce the nonlinear equation to an equivalent
linear one. Mean-square displacements, mean-square stresses, and nonlinear
frequencies at various acoustic loadings are obtained for rectangular panels of
different aspect ratios and damping factors. Both simply supported and clamped
boundary conditions with immovable or movable inplane edges are considered.
Comparisons with experimental results are also presented.

SYMBOLS
a,b Panel length and width
A,B Panel dimension parameters, 2m/a and 27/b
C1,Co Constants
D Bending rigidity
err Error of linearization

Young's modulus
Equivalent linear frequency in Hz
Stress function
Panel thickness
Frequency response function
Spectrum level
Mass coefficient
Membrane stress resultant
Constant
Pressure loading
Generalized or modal displacement
Aspect ratio, a/b
(W) Spectral density function of excitation pressure p(t)
Time
'V Displacement of midplane
Transverse deflection
' V2 Coordinates
Nonlinearity coefficient
* Nondimensional nonlinearity coefficient
Ratio of damping to critical damping
Nondimensional frequency parameter
Poisson's ratio
Panel mass density
Normal and shear stresses
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® Radian frequency

Q Equivalent linear or nonlinear radian frequency
Subscripts:

b Bending

c Complementary solution or critical

m Membrane

max Maximum

o] Linear

P Particular solution

FORMULATION AND SOLUTION PROCEDURE

Governing Equations

Assuming that the effect of both the inplane and rotatory inertia forces
can be neglected, the dynamic von Karman equations of a rectangular isotropic
plate undergoing moderately large deflections are (refs. 8, 12):

L(w,F) = DV4w + phw, . =~ h (F, + F

2% W g rx¥ W'yy

- L) - = 1
2F’xy w Xy) p(t) 0 (1)

4 _ 2 -
VF = E (w "xy Wik w'yy) (2)

where w is the transverse deflection of the plate, h is the panel thickness, P
is the mass density of the panel material, D = FEh3/12(1-v2) is the flexural
rigidity, E is Young's modulus, Vv is Poisson's ratio, p(t) is the exciting
pressure, and a comma preceding a subscript(s) indicates partial differentia-
tion (s). The stress function F is defined by

o =F,
X vy
o =F, (3)
y XX
T = -F,
Xy Xy
where O, Oy, and Txy are membrane stresses.

Simply Supported Panels. For a rectangular plate simply supported along
all four edges as shown in Figure 1, Chu and Herrmann (ref. 8), and Lin (ref.
13) have considered that if the fundamental mode is predominant, the motion of
the panel can be represented adequately as

w = g(t) h cos (Tx/a) cos (my/b) (4)

where g(t) is a function of time only. The maximum value of q(t) coincides with
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the maximum deflection wyy, divided by panei thickness h. The expression w
satisfies the boundary conditions for simple supports

= + — +
A w,xx A% w,yy 0, on x a/2

(5)

w + b/2

Il

. + -
w,yy v w,xx 0, ony

Substituting the expression for w in Egq. (2) and solving for a particular
solution Fp yields

) (6)

where r = a/b. The complementary solution to equation (2) is taken in the form

— 2 — 2
F =N L +8 % (7)
c X 2 y 2
where the constants ﬁ% and ﬁ? contribute to the membrane stresses Oy and Oy and
are to be determined from the inplane boundary, immovable or movable,
conditions.

For the immovable edges case, the conditions of zero inplane normal dis-
placement at all four edges are satisfied in an averaged manner as

+* a/2

ou 1 _ 2
JJ s;-dxdy JJEE (F,yy - vF,xx) L w 'x] dxdy, on x

Il
14

j[ g% dydx = ff[%—(F, -VF, ) - % w2,y] dydx, on y b/2 (8)

XX Yy

where u and v are inplane displacements. For the movable edges case, the edges
are free to move as a rigid body with the average inplane stress equal to =zero.
The inplane boundary conditions are

Jb/Z
N = h F, dy = 0\, on x =1 a/2
u = constant (9)
a/2
N =nh J F, dx = 0}, ony = % b/2
Yy -a/2 Yy

v = constant

where Ny and Ny are membrane stress resultants per unit length in plate. By
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making use of these inplane edge boundary conditions, eguations (8) and (9), it
easily can be shown that for the immovable edges

— 212572
N = 9°h7ETE (1 + vr2)

8a2 (1-v2)

_ q2h2ETT2
Y 8a2(1-v2)

z]
[

(2 + V) (10)

and for the movable edges

N =N =0 (11)
X '

the complete stress function is then given by F = Fp + FC.
With the assumed w given by equation (4) and stress function given by
equations (6) and (7), equation (1) is satisfied by applying Galerkin's method
a/2 b/2
J J L(w,F) w dxdy = 0 (12)

~a/2 -b/2

from which yields the modal equation of the form

. 2 3 _ p(t)
q + w, q + Bg® = - (13)
and
w§=9\2 D4,>\§=n4 (1+i)2
phb r2
m = T2ph%/16 (14)
B=8_ +8 = (B +8) —=2
== + = +
o) c P c phb4
with
* 3W4 4 2
B == (L +r)1 - v
p 4
*
g = gﬂ;-(l + 2url + d
c 4
2r

where w, is linear radian frequency, m is mass coefficient, and B is nonlinear-
ity coefficient. The linear frequency Ay, nonlinearity coefficients Bp and
Bz, and aspect ratio r are all nondimensional parameters.
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Clamped Panels. Yamaki (ref. 14) considered the predominant mode

w = g_(_Z—)_h (1 + cos zgl) (1 + cos 2—12!) (15)

which satisfies the clamped support conditions

w=w,_=0, on X * a/2

x
(16)

I

w = w,y = 0, on y * b/2
By introducing equation (15) in equation (2) and solving it, the particular

stress function is

2
F = - —}—qzthr [cos ax + L cos By + L cos 2Ax

p 32 4 16

2 1
+ m—z cos Ax cos By + l6r4 cos 2 By

1 1
+ TZ—I~;7T7 cos2Ax cos By + (1 ¥+ 4c9) cos AxX cos 2 By] (17)

where A = 2T/a and B = 27M/b., The complementary stress function is assumed as
the form appearing in equation (7). Upon enforcing the inplane edge conditions,
equations (8) and (9), it can be shown that for the immovable edges
_ 2,22
32 a?(1-v?)
2y 2 2
= 3g“h“ET
Ny = L = (r2 + V) (18)
32 a2 (1-v?)

and for the movable edges

N, = Ny = 0 (19)

the complete stress function is given by F = Fp + Fc. Introducing these ex-
pressions for w and F in equation (1) and applying Galerkin's procedure yields

the equation

p(t)
- (13)

v 2
q+w,a+ Bg3 =
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where

4 .
mi = Kz [)4, Xi = 16ﬂ4 (3 + 2r2 + 3rd)
phb Or
m = 9 ph?/16 (20)
* * D
B=B_+B8.= (B, +B)
C
P P c phb4
and
* 4
B =31r4 (1-v?) [1+—lz+li6+ 2 > * 14
P r (1 + %) 16r
N - 22 - >3 (21)
2(4 + r) 2(1 + 4r")
4
*
B = 37 (1 + 2\)r2 + r4)
c 4
2r

Equation (13) represents the undamped, large-amplitude vibration of a rectan-
gular panel with simply supported or damped edges.

The methods commonly used for determining the damping coefficient are the
bandwidth method in which half-power widths are measured at modal resonances,
and the decay rate method in which the logarithmic decrement of decaying modal
response traces is measured. The values of damping ratio 7 range from
0.005 to 0.05 for the common type of panel construction used in aircraft
structures. Once the damping coefficient is determined from experiments or
from existing data of similar construction, the modal equation, equation (13),
now reads

" ) 2 3 _plt) (22)
q+2cwoq+woq+8q =7

The method of equivalent linearization is then employed to determine an
approximate root-mean-square (RMS) displacement from equation (22).
Method of Equivalent Linearization
The basic idea of the equivalent linearization (refs, 9 - 11) is to re-

place the original nonlinear equation, egquation (22), with an equation of the
form

p(t)
m

q + 2§woé + qu + err (q) =

(23)
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where 2 is an equivalent linear or nonlinear frequency, and err is the error
of linearization. An equivalent linear equation is obtained by omitting this
error term, then equation (23) is linear and it can be readily solved. The
error of linearization is

err = (wg - 9% q+ B (24)

which is the difference between equation (22) and equation (23). The smaller
that the error is, the smaller the error in neglecting it, and the better
approximate solution to equation (22) will be obtained. To this end, the
equivalent linear frequency square Q2 in the linearized equation is chosen in
such a way that the mean-square error err? is minimized, that is

B(errz)
3 (©2) =0 (25)

If the acoustic pressure excitation p(t) is stationary Gaussian and ergodic,
then the response g computed from the linearized equation, equation (23), must
also be Gaussian. Substituting equation (24) into equation (25) yields (refs.
9, 13)

0= o? 4 3B 26)

where g2 is the maximum mean-square deflection of the panel. Dividing both
sides of equation (26) by D/phb4 yields

A% = Ag + 3B*q2 (27)

2, . . . . .
where A° is a nondimensional equivalent linear or nonlinear frequency
parameter,

An approximate solution of equation (23) is obtained by dropping the error
term; the mean-square response of amplitude is

q° = fm s(w) [H(@ | av (28)
O

where S(w) is the spectral density function of the excitation pressure p(t),
and the frequency response function H(w) is given by

H(w) = = (29)

m(Q2 - wz + 2i;wow)

For lightly damped (T < 0.05) structures, the response curves will be highly
peaked at . The integration of equation (28) can be greatly simplified if the
forcing spectral density function S(®w) can be considered to be constant in the
frequency band surrounding the nonlinear resonance peak ), so that
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2 _ms()

(30)
4m2EwOQZ

Q

In practice, the spectral density function is generally given in terms of the
frequency f in Hertz. To convert the previous result one must substitute

Il

Q 2mf (31)

I

and S (§2) sS(f)/2m

into equation (30); the mean-square peak deflection is simply

32 Sf
5 ! for simply supported panels
2- AN (32)
[ 32 Sf
> ’ for clamped panels
SIQAOX

The pressure spectral density function S(f)/2m has the units (Pa)2/Hz or (_psi)2
/Hz, and S¢ is a nondimensional forcing excitation spectral density parameter
defined as '

s = S(£) (33)

£ p2h4(D/phb4)3/2

The linear frequency parameters XO in equations (32) are given in equation (14)
and equation (20) for simply supported and clamped panels, respectively, and
the equivalent fregquency parameters A2 can be determined through equation (27).

Solution Procedure

The mean-square response q2 in equation (30) (or equation 32) is determined
at the equivalent linear frequency ) (or A) which is in turn related to gZ
through equation (26) (or equation 27). To determine the mean-square deflec~-
tion, an iterative procedure is introduced. One can estimate the initial mean-
square deflection qg using linear frequency ws through equation (30) as

2 TS (wp)

o 4m2Cwo3

This initial estimate of.Eg is simply the mean-~square response based on linear
theory. This initial estimate of gZ can now be used to obtain refined estimate
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of §2 through equation (26), Qf = w2 + 3B q2, then q2 is obtained through
%. . o o 1
equation (30) as

2 mS(R1)
N e a? 9)
o1

As the iterative process converges on the n-th cycle, the relation

) 7S (§4,) -
94, T T3 2 = qr21 -1 (36)
4m QmOQ n

becomes satisfied. In the numerical results presented in the following section,
convergence is considered achieved whenever the difference of the RMS displace-

ments satisfied the relation

n-l < 1073 (37)

Stress Response

Once the RMS displacement is determined, the bending stresses on the sur-
face of the panel can be determined from

6D
= ea e— +
%xb h2 (w'xx vw'yy)
(38)
6D
= e ce— +
Oyb h2 (w,yy Vw,xx)

From equations (3) and (38), and using equations (4), (6), (7) and (10), the
expressions for the nondimensional stresses on the surface of a simply supported
panel with immovable edges are given by

0. b 2 2
X b T 1 X Y
( ) = [ > ( V)cos cos 5 1 g

Eh Eh2 2(1-v7) «

ﬂz(l + Vr2) 2
PN

ﬂ2 2 2
+ (——5-cos —EXOQ + [ >
8r 8r (1~-v7)
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ob 2 2
Y 7 = (o + 0 ) b2 = [ Ll 5 1+ l%ﬁ cos %?—cos %?ﬂ q
Eh yo o oym g, 2 (1-v°) e

i1 27X 2 1r2 (r2+\)) 2
+ (7;-cos —;—0 qg + P—jf———jfﬂ q
8r (1-v )

(39)

For movable inplane edges, the last term in equation (39) vanishes. Simi-

larly, from equations (3) and (38), and using equations (7), (15), (17), and
{(18), the expressions for the nondimensional tensile stresses on the surface
of a clamped panel with immovable edges are

05" 2 1
X = [ cos Ax(l+cos By) + v(l+cos Ax) cos By] g

2
Eh 2(1—V2) r

ﬁ2r2 1 2 1
[ cos By + ———=— cos AX cos By + — cos 2By
8 4 2.2 4
r (1+x ) 4r
1 4 2
+ ———5—5—-cos 2Ax cos By + ———— cos Ax cos 2Bylg
@+r) (1+4r™)

3ﬂ2(l+Vr2) 2

+ [ 1 g (40)
2
32r2(l—v )
o b2 1T2 v
y2 = [(1+cos Ax) cos By + —5 cos Ax(l+cos By)l g
Eh 2(x-v ) r
ﬂz 1 2
+ — [cos Ax + — cos 2AX + ——5—5 COs AX cos By
8 4 2.2
(1+xr )
4 2
+ ——5 5 cos 2Ax cos By + 5 5 COS Ax cos 2By] g
(4+xr ) (1+4r )
3n2(r2+v) 2
ML PR
32r  (1-v))

where A = 27/a and B = 27T/b. For movable edges, the last term in equation (40)
vanishes.

151



Examining equations (39) and (40), a general expression is obtained for
the stress at any point in the structure as.

2
o= Clq + C2q (41)

where C, and C, are constants. The constants can be determined from material
properties, dimensions of the panel, and the location and direction at which
the stress is to be measured. The mean-square stress is then related to the
mean-square modal amplitude in a general expression as

2 2 2 2 2.2
o=clq +3c2(q) (42)

2
Once the mean-square deflection q is determined, equations (36) and (37), the
mean-square stress can then be obtained from equation (42).

RESULTS AND DISCUSSION

Because of the complications in analysis of the many coupled modes, only
one-mode approximation is used in the formulation. The assumption for funda-
mental mode predominacy is admittedly overly simplified; the conditions under
which this is a valid approximation remain to be investigated. However, a
simple model sometimes helps to give basic understanding of the problem.

Using the present formulation, response of nonlinear rectangular panels
with all edges simply supported and all edges clamped subjected to broadband
random acoustic excitation are studied. Both immovable and movable inplane
edges are considered. In the results presented, the spectral density function
of the excitation pressure S(f) is considered flat within a certain region
near the equivalent linear frequency f and a value of Poisson's ratio of 0.3
is used in all computations, unless otherwise mentioned. Mean-square ampli-
tudes and mean-square nondimensional stresses for panels of various aspect
ratios and damping ratios are determined and presented in graphical form.

These graphs can be used as guides for preliminary design of aircraft panels.
The maximum mean-square deflection can be reasonably obtained from these
figures; however, multiple modes had to be considered for accurate determina-
tion of mean-square stresses. This has been demonstrated by Seide in

reference 15 for a simple beam subjected to uniform pressure excitation and in
reference 16 for large deflections of prestressed simply supported rectangular
plates under static uniform pressure. Comparison with experiment is also given.
It is demonstrated that the present formulation gives remarkable improvement in
predicating RMS responses as compared with using the linear theory.

Analytical Results
Figure 2 shows the maximum mean-square nondimensional deflection versus
nondimensional spectral density parameter of acoustic pressure excitation for

rectangular panels of aspect ratios r = 1, 2, and 4, and a damping ratio 0.02.
It is clear from the figure that an increase of r will "close" the curve.
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This occurs because as r increases, the panel becomes less stiff, and the
mean-square deflection has to be finite. It can also be seen from the figure
that the mean-square deflection of the movable inplane edges case is approxi-
mately twice as that of the immovable edges.

The maximum mean-square nondimensional stress (bending plus membrane
stress, at the center of the panel and in the y-direction) is given in Figure
3 as a function of excitation spectral density parameter for simply supported
rectangular panels of various aspect ratios and a damping factor 0.02.
Results showed that the difference of maximum mean-square stresses between
immovable and movable edges is small as compared with the difference of mean-
square deflections between the two edge conditions.

Figure 4 shows the mean-square deflection versus forcing spectral density
parameter for simply supported square panels of different damping ratios. The
corresponding maximum mean-square stress (bending plus membrane stress, at the
center of panel) is shown in Figure 5. As it can be seen from the figure that
the precise determination of damping ratio from experiment is important, e.g.,
stress increases by 25-30 percent as { is decreased from 0.015 to 0.01 (for
Sf between 5000 to 20000).

Plots of the equivalent linear or nonlinear frequency parameter Az
versus mean-square modal amplitude for simply supported rectangular panels of
aspect ratios r = 1, 2, and 4 are shown in Figure 6. The lowest value of A
corresponds to the linear case.

In Figure 7, the mean-square deflection is given as a function of excita-
tion spectral density parameter for rectangular panels of aspect ratios
r=1, 2, and 4 and a damping ratio 0.02. The maximum mean-square deflection
of the clamped panels is somewhat much less than that of the simply supported.
The corresponding maximum mean-sguare nondimensional stress (bending plus
membrane stress, in the y-~direction and at the center of the long edge) versus
spectral density parameter is shown in Figure 8.

Figure 9 shows the mean-square modal amplitude versus spectral density
parameter of excitation for a square panel of different damping ratios. 1In
Figure 10, the equivalent linear frequency parameter is given as a function
of mean-square deflection for clamped rectangular panels of aspect ratios
r =1, 2, and 4.

Comparison with Experimental Results

The experimental measurements on skin-stringer panels exposed to random
pressure loads reported in references 3 and 4 are used to demonstrate the
improvement in predicting panel responses by using the present formulation.
The structure was a skin-stringer, 3-bay panel as shown in Figure 11l. The
panels were constructed of 7075-T6 aluminum alloy. Details of the test
facility, noise sources, test fixture, and test results are given in
reference 3. The important properties of the panel are
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Length a = 68.58 cm (27 in.)

width between the rivet lines b = 16.84 cm (6.63 in.)

Thickness h = 0.81 mm (0.032 in.)

Damping ratio z = 0.0227

Poisson's ratio vV = 0.33

Young's modulus E = 66.19xlo3 MPa (9.6x106 psi)
Weight density p = 7.164 kg/m3 (0.1 1b/in.>)

The tests were conducted with an overall sound pressure level (SPL) of 157 4B,
with a range of + 1.5 dB which corresponds to an average spectrum level of
125.26 dB (see Table IV of ref. 3 or Table 8 of ref. 17). The central bay of
the 3-bay test panels is simulated by a flat rectangular plate. The linear
frequencies for both simply supported (equation (14)) and clamped (equation
(20)) support conditions are calculated and shown in Table 1. Test measure-
ments and finite element solution are also given for comparison. Table 1 also
shows the equivalent linear or nonlinear frequencies at overall SPL 157 dB.

Table 1. Frequency Comparison

Natural Equivalent linear
frequency fO frequency f157

Simply supported - Immovable edges 71 321
- Movable edges 71 240

Clamped - Immovable edges 159 311
- Movable edges 159 264

Finite element (ref. 4) 155 N/A
Experiment (ref. 3) 126, 129 N/A

Frequency at high intensity noise level was not reported in reference 3. From
the results shown in Table 1, it is clear that the central bay of the test
panels did not respond to the acoustic excitation as though it were fully
clamped on all four edges. This was also demonstrated in Figures 12 and 17 of
reference 3 in the sense that the highest measured RMS strains did not occur
at the center of the long edges. The central bay of the test panels actually
behaved somewhat between fully simply supported and fully clamped support
conditions.

The acoustic pressure spectral density S(f) is related to the spectrum
level L as
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lo(L/lO - 18)

8.41 x (psi)Z/Hz

s(f) = (47)

lO(L/10 - 8 (dynes/cmz)z/Hz

4 x
A spatially uniform white noise pressure loading with spectral density of
S(f) = 2.824 x lO'5 (psi)z/Hz (or nondimensional spectral density parameter
S. = 5100), which corresponds to an average spectrum level L = 125.26 dB, is
used in the computations. The RMS stresses (equation (42)) at the center of
the long edges for simply supported (equation (39)) and clamped (equation (40))
boundary conditions are calculated and given in Table 2.

Table 2. Stress Comparison

(RMS stress, kpsi at overall SPL 157 dB)

52 oz
X Y
Linear Nonlinear Linear Nonlinear
Theory Theory Theory Theory
Simply-Supported 0.0 0.58(Im.) 0.0 3.28(Im.)
0.17 (Movable) 2.74 (Movable)
Clamped 2.17 1.12 (Im.) 6.57 3.84 (Im.)
1.32 (Movable) 4.24 (Movable)
Finite Element (ref. 4) 2.4 NA 7.7 NA
Experiment (refs. 3, 4)
Panel A 0.63 2.2
Panel B 0.94 2.9
Panel C 0.78 2.5
Panel D 1.1 ' =
Panel E 0.84 2.2
Average A-E 0.87 2.5

Table 3 shows the RMS deflections using the present formulation. The
measured and finite element RMS stresses and RMS deflections in reference 4
are also given in the tables for comparison. It demonstrates that a better
correlation between theory and experiment can be achieved when large deflec-
tion geometrical nonlinearity effect is included in the formulation.
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Table 3. Deflection Comparison

2
h
(wmax/ )
Linear Theory Nonlinear Theory
Simply Supported 8.0 1.8 (Immovable)
2.4 (Movable)
Clamped 2.7 1.4 (Immovable)
1.6 (Movable)
Finite Element (ref. 4) 3.1 NA
Measured (refs. 3, 4) - 2.0

CONCLUDING REMARKS

An analytical method for predicating response of rectangular nonlinear
structural panels subjected to broadband random acoustic excitation is pre-
sented. The formulation is based on the Karman-Herrmann large deflection
plate equations, a single-mode Galerkin approximation, the equivalent linear-
ization method, and an iterative procedure. Both simply supported and clamped
support conditions with immovable or movable inplane edges are considered.
Panel mean-square deflection, maximum mean-square stress, and equivalent linear
frequency at given excitation pressure spectral density can be determined, and
they are presented in graphical form. These graphs can be used as guides for
preliminary design of aircraft panels under high noise environment. Results
obtained agree well with the experiment. It is suggested that further research
be carried out with special attention to employ multiple modes in the formula-
tion for accurate determination of mean-square stresses, and additional test
data on simple panels are needed for an adequate quantitative comparison.
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Figure 1. Geometry and coordinates.
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Figure 2. Mean-square deflection versus spectral density
parameter of excitation for simply supported
panels, Z = 0.02.
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Figure 3. Maximum mean-square stress versus spectral
density parameter of excitation for simply
supported panels, 7 = 0.02.
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Figure 4. Effect of damping on mean-square deflection for a

simply supported square panel.
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Figure 5. Effects of damping on maximum mean-square
stress for a simply supported square panel.
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Figure 6. Frequency parameter versus mean-square
deflection for simply supported panels.
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Figure 7. Mean-square deflection versus spectral density
parameter of excitation for clamped panels,
z = 0.02.
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Figure 8. Maximum mean-square stress versus spectral density

parameter of excitation for clamped panels,
;= 0.02.
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Figure 9. Effects of damping on mean-square deflection
for a clamped square panel.
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Figure 10. Frequency parameter versus mean-square
deflection for clamped panels.
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Figure 11. Skin-stringer panel (after Van der Heyde and
Smith, ref. 3).
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