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Preface

A continuously operating streak tube with 10 picosecond

temporal resolution is the design goal of this development,

An annular array of silicon diodes continuously scanned by

an electron beam was the basic design investigated. Initial

tubes having directly bombarded arrays had both reliability

and resolution difficulties. A modular design in which the

scanning beam information was converted to an optical signal

by a phosphor, and this signal fed to the array by fiber optic

couplers was shown to be free of array degradation problems,

and to have useful resolution. The electron gain of the

original bombarded array design was obtained by use of a

microchannel plate in the CRT section of the modular design.

Circular scan streak tubes having single microchannel

plates and fiber optic coupled arrays had measured time re-

soutions of 35 ps FWHM. The 200 MHz deflection power was 5

watts.

Higher electron optical resolution of the scanning beam

and additional microchannel plate gain to achieve single

photoelectron detection capability are recommended.
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1.0 Introduction

For several. applications NASA has identified a need for a
detector system that will allow measurements of baselines

megameters i.ii length with an accuracy of 10-20mm. 	 For base-

lines this long and present laser pulse energy capabilities

in the visible wavelength range, the prime detector of the
return pulse must be sensitive enough to detect single photons.
Furthermore, since laser ranging with a length accuracy of less

than At requires the measurement of optical pulsewidths of
duration

At =2 o2/c,
where c is the velocity of light, the prime detector'must

resolve 67 ps pulses for a 10 mm accuracy. The time-resolution
goal of this prime detector development effort is 10 ps accuracy,

so that the overall. system performance will not be compromised

by the prime detector itself.

Solid state detectors and photomultiplier tubes cannot now achieve

this time resolution. In fact, only so-called "streak tubes"

can be considered for use as the prime detector for this type

of laser ranging system. The straightforward approach of

this project is to develop a photon-counting video-signal out-

put streak-tube which is synchronously scanned at 200 MHz rate

so that the total number of cycles is counted, with an electronic

counter, to determine the gross range, while the laser pulse-
width centroids (probe and return) allow vernier measurement

of the pulse separation with an accurance of * 10 ps. A streak-

tube of this type has not, to our knowledge, been built or

described in the literature.
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The key functional elements of the circular-scan streak tube
are shown schematically in Figure 1.1. The principle-of-
operation is as follows

Light pulse strikes the cathode in a small spot,

Electrons are released from the cathode in all directions

from the spot,

Electrons are rapidly accelerated to high velocity,

Electron lens focuses the electrons onto a mirrochannel

plate (MCP) ,

Two sets of deflection plates deflect the electron

beam in a circular path,

The MCP produces a gain of 1E3,

Electrons from the MCP are accelerated to high velocity

and impinge on the self-scanned array (SSA),

A gain of ti500 is achieved in the SSA before storage

and readout,

Sequential readout of the individual SSA elements,

and

Time-of-flight of reflected light pulse determined for

range calibration.

* (The computer notation xEy = x•10y is used here)

ELECTRO-OPTICAL PRODUCTS DIVISION ITT
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In one possible mode of operation of the CSST in a laser

ranging system, Figure 1.2, a 200 MHz deflection circuit

will produce a continuous circular-scan of signal electrons

across the output face of the CSST. A small portion of the

emitted laser pulse is used to gate the counter circuit on

and is also reflected into the CSST, causing registration

of the output laser pulse waveform on the readout array.

During the time between probe-pulse emission and return-

pulse receipt the total integral number of S ns time periods

is counted. Then the return-pulse optical signal is registered

on the readout array. Finally, the total laser pulse transit

time is determined by addlag the time difference between

the output pulse and the first full 5 ns period counted to

the time Given py 5 ns times the number of counted periods,

and then adding to this the time between the last full 5 ns

period counted and the return pulse. The range is then found

from this transit time measurement. Thus, the CSST acts, as

a vernier detector for achieving a range measurement

accuracy of about 3 mm. The CSST also provides an optical

waveform digitization capability for more complex receiver

tasks at frequencies in excess of 10 GHz.
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The Circular-Scan streak -Tube Development, Interim Report of
November, 1978, discussed tho CSST electron optics, the 720
element array (Figure 1.8). and the deflection circuits.

The Type RO-720 arrays gave variable results, sometimes siAr
viving high temperature vacuum bakes and sometimes failing.
No array was operational after the vacuum bake and photocathode
processing cycle. Consequently, only phosphor output tubes
were obtained as testable devices.

The array problems were probably .inherent in the materials
subjected to high temperature, long time bakes. The thin
protective oxide and the handling required during tube assembly
undoubtedly also contributsd to the ;Failure of some arrays.

A design that eliminates baking the array, or subjecting it
to alkali vapors, is to fiber optically couple the array to
the phosphor of a modular type of CSST as shown in Figure 1.4.

A question that arises is theresoluti,on of this design. The

modulation transfer function (NITF) of discrete array devices,
such as m crochannel plates, fiber optics, or solid State
arrays, is not as ,cleanly handled by mathematical analysis

as it is for "continuous" devices such as Lenses and film.

Discrete device NITFs are not single valued, and large variations
in the measured MTF data of a fiber optic plate are reported
in the literature l ;Figure 1.5 might be considered typical.

But Drougard 2 tha:s shown that the measurements using

a Tong (compared to the fiber optic channel diameter) spit

gives an unambiguous MTF that is useful for many imaging

applications. This situation probably applies to the CSST

whose detector array elements are about 16 channel diameters
in length.

ELECTRO.OPTICAL PRODUCTS DIVISION ITT
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Drougard's equation for this long; slit MTF is

'M 	 = [2J1 (7rfD)/,rfD] 2 	(1)

where J l (,rfD) is the Bessel function of the first kind of
argument ,rfD.

Eberhardt has shown (ITT Technical Note 126) that Drougard's

equation is closely approximated by the Gaussian

M (f) G = exp (-lOf 2 D 2 /3)	 (2)

The Gaussian approximation is somewhat more conservative

(lower amplitude) than the Bessel function expression. The

Gaussian MTF gives the associated lino spread and point

spread functions

L (x) G = L (0) exp (-3x 2 /D 2 )	 (3)

P (r) G = P(0) exp (-3r2/D2) 	
(4)

where L (0) and P ( 0) are the peak image intensities at the

center of the line and point images respectively, and r is

the radial displacement from the center of the point image.

A further advantage of the Gaussian formulation is that it

gives a cascaded resolution of devices that is described

by the simple equation

fc	 [f12 + f 2 2 + f 3 2 + ..,,^-
	

(S)

where fn is the resolution of the n th device and fc is the

resulting resolution of the cascaded assembly.

Note that all the resolution values must be at the same modu-

lation ration (e.g, 4%).
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One can predict the tube resolution as follows. The test

tubes having the electron gun (cathode thru deflection.

plates) impinging on a phosphor had a measured resolution
(Table 2.2, Interim Report)of 18 1p/mm. Measured resolution
of a conventional proximity focuserl,m,%:xochannel plate tube

is 22 1p/mm. Combining the 18 1p/'r,sz? ;. kd 22 1p/mm using

equation(S), gives 13.9 1p/mm as the projected resolution

delivered to the Reticon array. The combined tube and
array resolution (30 um spacing, 33 1p/mm resolution)

predicted is 12.8 1p/mm.

This resolution borders on the minimum acceptable, but the

practical aspects of this modular approach led to some tests

at ITT after the inital contract was completed, made by
coupling a 720 array to an existing phosphor-on-fiber-optic

output test CSST.

)sing a fiber optic attached to a Reticon 720 array, the

line spread of a 25 um diameter spot imaged onto this

assembly was measured, Figure 1.6. Then a similar measurement
was made when the fi beroptic/array.was coupled to an early

CSST test tube (that had only 5 1p/mm resolution). The

resulting line spread function, Figure 1.7 was encouraging.

A calculation of the assembly's transfer characteristic

showed that 10 electrons from the photocathode might develop

a charge packet of lESe per pixel, about 1/300 the array's

dynamic range.

Based on the data above, NASA authorized a contract extension

and modification to build and evaluate a modular CSST. The

following sections discuss the phosphor output Circular Scan

Streak Tubesf"iber optically coupled to a circular array,

their assembly and evaluation.	
Tmm

ELECTRO-OPTICAL PRODUCTS DIVISION 111..
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Figure 1 . 6 MQa^ured Line SI.read Fu:.,-: _L.n of 25um ^.Lameter
Optical Spot imaged Onto Fiber Optic (6um c/c)
Coupled to PO-720 Array

Figure 1.7 Measured Line Spread Function of 25um Diameter
Optical Spot Imaged Ontc CSST 4077701 Having
Fiber Optic RO-720 Array Readout
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2.0 Design Considerations

The .-Appendix reviews the design criteria that established the
720 array elements on a 7.125 mm diameter circle. Therein

the overall electron-optical resolution was assumed to be

40 1p/mm, an optimistic value. Measured microchannel plate

image tubes (proximity focused from photocathode to MCP and

from MCP to phosphor) are typically 22 1p/mm. The CSST's

electron gun (CRT type) resolution (without b1CP) was measured

as 18 1p/mm (Interim Report, Table 2.3). The combined sections

can be calculated to have 13.9 1p/mm resolution.

Using the equations of the Appendix	 one calculates the limiting

temporal, resolution (Reticon 720 array, 200 h1Hz sweep fre-

quency, 50 um input spot) as tabulated below.

Table 2.1

Temporal Resolution vs E.O. Resolution for 304m Array Pixels

Electron Optical Resolution (f Q),	 1p/mm 10	 15	 20	 30

Limiting Temporal Resolution (T),	
p 

29	 22	 19	 17

One can see that it is desirable to hold the electron Optical

resolution at or above 20 1p/mm, and that at 10 1p/mm there

is a 50 ,1̂  decrease in temporal resolution.

The modular assembly, of course, loses the 500x gain obtained

in the electron bombarded array. A fiber optic.coupled assembly

has about 55x gain from the phosphor bombardment, but subsequent

coupling losses reduce this to 15x, perhaps only lOx depending

on the matching factor between the phosphors spectral output

and the Reticon array's spectral sensitivity. (Fiber optic

transmission and coupling losses are included in these figures.)

The 500 gain of the electron bombarded array can be made up

by the lOx gain of the optically coupled array, and 50x

ELECTRO-OPTICAL PRODUCTS DIVISION ITT
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additional gain from MCP. Thus a total MCP gain of 50,000

is needed.

Three MCP options were considered:

(1) a cascade of standard plates--such as a V-MCP

plate assembly,

(2) a "saturable microchannel plate", SMCP, built

by Galileo Electro-Optics Corp.,

(3) a single MCP

Because the existing V-plate assemblies and the Galileo SMCP

seemed to be of low resolution, the single MCP was chosen to

demonstrate the design concept validity.

2.1 Modular CSST

2.1.1 Tube Design

The proposed tube design was to build the fiber- optic/phosphor

output version CSST (4725139-1), replacing the 40 mm diameter

conventional microchAnnel plate with a 25 mm diamter micro-
channel plate. The spacing between MCP output surface and
phosphor would be that of a standard MCP image tube, -05011,

rather than the approximately 5 mm used in the earlier array

output tubes.

The actual resolution obtained for the 5 mm MCP-to-phosphor

tube (#077701 of the earlier program) was 5 1p/mm, versus a

projected value of 10.5 1p/mm. The close spaced, low voltage

(6 kV) image section of the modular CSST was projected to

have a resolution (into the array) of 15.6 1p/mm, a considerable

improvement.

2.1.2 Mechanical Improvements Incorporated '

The earlier glass envelope CSST (4725130-1), Figure 2.1, had

poor internal alignment and was difficult to assemble. A.

ELECTRO-OPTICAL PRODUCTS DIVISION ITT
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review of t?,e tube assembly costs and yields lead to the

conclusion that it would be wise to redesign the tube

assembly, particularly since 25 mm diameter parts could be

used throu4hout rather than 44 mm diameter parts.

Accordingly, a mostly ceramic and metal body with a gun

that could be fixtured from the envelope was designed.

Tooling and parts, Figures 2.2,, 2.3, and 2.4, were made.

The image section was a 25 mm MCP image tube with its input

ring modified so attachment could be made to the gun envelope.

The design dimensions are shown in Figures 2.5 and 2.6.

ELECTRO.OPTICAL PRODUCTS DIVISION ITT
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3.0 Tubes Assembled and Tested

A summary of the tubes (Figure 2.5) assembled is shown below.

TABLE 3.1

Tube No.	 Status

127801	 Leak at braze

017901 Good tube

027901 Heliarc weld leak

027901A Good tube

027902 Broken

037901 Leaker

037902 Broken fiber optic

Notes

Mechanical sample to
NASA 2/14/79
Potted - to NASA 3/15/79

Rewelded, reprocessed

Potted - to NASA 4/17/79

Broken when sealing

Leak at frit seal

Optic cracked at heliarc

Despite the use of conventional 25 .mm Gen II image tube parts,

there were numerous difficulties with welds, leaks, and
seals, n,ot atypical of new tube designs at birthing. Overall,

the design was a considerable improvement over the original

CSSTs built, the assembly was well aligned, easily assembled,

and rugged. In quantity it could be built in production at

reasonable cost.

Static test data from tubes #017901 and #027901A are

summarized in Table 3.2.

The Reticon RO-270 array was attached to a fiber optic coupler,
Figure 3.1 using type M62 Lens bond (Summers Laboratories),

to make the assembly of Figure 3.2.

="'T..GTNAL PAGE IS
P;_ 
POOR QUALITY
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TABLE 3.2

CIRCULAR SCAN STREAK TUBE MEASURED CHARACTERISTICS

TUBE 91:RIAL NUMBER

INPUT WINDOW

Cathode Type

Sensitivity

Absolute Sens. (0 530 nm)

Quantum Eff c. (Q 530 rim)

3. MESH (Gl)

6- ELECTRON LENS-

Design (Dwg No.)

V(G1)/V(G3)

V(G2)/V(G3)

Magnification

5. BEAM DEFLECTION ASSEMBLY-

Design (Dwg No.)

Deflection Sensitivity
Entrance Plates (Cath)

Exit Plates (Phos)

6. MICROCHANNEL PLATE-

Serial Number

Channel. Length-to-Diameter
Ratio

Channel Diameter

Channel Spacing

Bias

017901

Corning 7056

S20

290 pA/l

45 mA/W

10.5%

750 LPI
(55% transmission)

S-4725028

0.37 (Cathode to
G1 = 1070V)

0,27 (Cathode to
G1 - 1070V)

0.82

S-472.5028

20.2V/nun/kV

17.8V/mm/kV

1652-21

40

12.2 pm

1.4.6 pm

8 0 30'

027901x\

Coming 7056

S20

250 pA/l

45 mA/W

10.5%

750 LPI
(55% transmission)

S-4725028 ,

0,38 (Cathode to
G1 = 1020V)

0,27 (Cathode to
G1 _ 1020V)

0.69

S-4725028

14.8V/mm/kV

16.2V/mm/kV

1720.36

40

12.2 pm

14.6 pm

8 Q 30'

n ,

- 23



F'

1.

7, GAIN

Applied
Voltage

500
570
600
640
700
760
800

8. SCREEN

Serial Number

Type

Active Diameter

9. TUBE

Resolution*

Resolution Measurement

Operating Conditions

TABLE 3.2 Continued

Gain,017901

79-06

P-20

25 mm

12 line pairs/mm

Cath -2.78 kV

G1 -1.71 kV

G2 -2,04 kV

G3,4,5 - OkV

G6 +0.2kV

Phos +4.07 kV

MAG. 0.82

Gain,027901A

100

200
300
400
500

79-OS

P-20

25 mm

9 line pairs/mm

Cath -3.17 kV

G1 -1.97 kV

G2 -2.35 kV

G3,4,5 - OkV

G6 +0.5 kV

Phos +4.5 kV

MAG. 0.69

10. DEFLECTION PLATE CAPACITY

Plate #1 to plate #2

Plate #3 to plate #4

Any plate to all others

11. PHOTOCATHOIE TO MESH CAPACITY

2.7pF
	

2.lpF

3.0
	

2.0	 [ 3

4.2
	

3.0

G2 guarded	 13.Opr, 	 -

*Resolution for 017901 was measured with the 3 bar test chart at 10:1 optical
demagnification and the optical input bandwidth restricted with a wratten #74
filter. For 027901A the optical input bandwith was unrestricted and the test
chart projected at 1:1 magnification.
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The deflection circuits originally supplied to NASA/GSFC

(Interim Report, Figure 2.5) were replaced by more efficient

and easily used units of the design shown in Figure 3.3. The

beam centering circuit is shown in Figure 3.4 and the coupling

circuit in Figure 3.5.

The CSST with fiber optic coupled array, Figure 3.6, was

tested dynamically at ITT using a Power Technology, Inc.

pulse=r driving a ILCL diode. The array used for testing was

a Reticon RA-32x32 array and associated camera unit. This

array's pixels are on .004" centers.

Light from the pulser was focused onto the photocathode in

a spot small enough so all the resulting charge was delivered

to only one pixel of the array (static setup). With the CSST

operating at 200 N1Hz and the resulting 5 ns circular scan

distributed around 69 pixels, the camera displayed modulation

of the light pulse. The pulse was estimated to be 5 pixels,

or 362 ps in duration.

The CSSTs were encapsulated as shown in Figure 3.7. The RF

coax type connections to the deflection plates were needed,

as was the isolation plate between the deflection plates.

Subsequently NASA tested•3 the assemblies using a Nd:YAGlaser

system. Four pulses from this laser are shown in Figure 3.8.

Most interesting is the "pre-pulse". From the rate of rise

one can estimate a minimum response time of 30 to 40 ps.
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Another test at NASA/GSFC is shown in Figure 3.9, wherein
the ling spread function of the scanning CSST was measured
using a HeNe CW laser. The 33 ps FWHM is in agreement with
the estimate from Figure 3.8 and the prediction of Table 2.1
for the measured 12 1p/mm electron optical resolutions.
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4.0 Conclusion' s and Recommendations

The CSST fiber optically coupled to a circular readout array

has been demonstrated to have a time resolution of about

33 ps, twice as good as the system goal value of 67 ps but

not as good as the detector goal. The threshold detection

level of devices built so far has been 100 photoelectrons,

not the desired single photoelectron detection. To achieve

this capability CSSTs with cascaded microchannel plates

to provide the needed vain are proposed. The resolution

loss due to cascaded microchannel plates is a subject of

considerable debate, but the best experimental data indicates

that it can be less than 10%. A Circular Scan Streak Tube

with single photoelectron detection capability should be

built.
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APPENDIX

TIME DISPERSION AND ARRAY DESIGN

The overall time resolution (T) of the CSST is governed by the

time dispersions which unavoidably arise due to the finite

diameter of the optical input beam, the photoelectron velocity

spread, the image transfer properties of the electron-lens/

deflectioni-assembly/MCP/proximity focused section, and the

dimensio;ls of the pixels in the self-scanned array. The time,

dispersions resulting from each of these factors are given by

T 	
. {V/v s 	 (A-1)

Tc M Av/(uE )	 r	 (A-1")

Tt a l /(v s f ^) 	, and	 (A - a)

Ta = D/v s 	(A-4)

The dispersion (T 
b )caused by the beam diameter (W) is inversely

proportional, to the electron beam scan velocity (v s ) across the

output ISSA. Chromatic time dispersion (Tc ) caused by a phot,ti)-

electron velocity spread (Av), which is seen to be inversely

proportional to the product of the electron charge/mass ratio (u)

and the electric field strength (E) at the cathode. The limiting

spatial, resolution ( f t ) of the electron-lens/deflection-assembly/

MCP/proximity focused section gives rise to the technical time
dispersion (Tt ) given by Eq (A-3). Finally, Eq A-4 shows that

the pixel width (D) induced time dispersion (T a) is similar to

the optical beamwidth dispersion equation. Adding all these

dispersions in quadrature gives the overall time dispersion (T)

of an ISSA readout CSST, including the component arising from

the finite diameter of the optical input image;

T - (Tb 2 + T c 2 + T t 2 + Ta ` 1	 (A-5)

Iaet us consider some of the design-performance tradeoffs of the

ISSA by assuming that the scan frequency (F) is 200 MH z., and that

the input optical beam diameter is IV ; 50 um (Z mils). Also, let
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N be the number of pixels in the circular array. The streak

velocity across the circular ISSA is given by

v s	NDF,	 (A-6)

if the simplifying assumtpion is made that the pixel width is

equal to the pixel/pixel center/center spacing. Thus,

T  = 50x5Ti3/(ND) = 2.5E5/(ND), and T  = M/N, where the units

of Tb and Ta are picoseconds for D expressed in microns. The

optical beam/pixel resultant time dispersion (T') can be expressed

in terms the maximum ISSA circumference (C=ND) which can be

accomodated by the size of the chip and the ISIA pixel center,/

center spacing:

TI = (Tb 2 + Ta 2 ) h.	 (A-7)
Substituting Eqs ,(A-1 and A-4)	 into Eq .(A-7), it is found

that

T' = 2.41E-1 (2.5E3 + D 	 (A-8)

and the calculated time resolutions within the design range

corresponding number of pixels are given in Table A-1.

Table A-1 - Time Dispersion of the Beamwidth and A.rra

Components versus Number of Pixels for W = 50 um

D (um)	 55	 50	 45	 40	 35	 30	 25	 0

T' (ps)	 17.9 17.1 16.2	 15.4 14.7 14.1	 13.5 12.1

N	 377	 415	 461	 518	 592	 691	 829	 co

Substitution of Eqs (A-1 - A-4)into Eq (A-5) yields

T = ((mIV) 2 + D2 + (m/fZ) 2 + v s 2 ( AV / ( uE )) 2 ) /v s , or (A-9)

T = ((mW) 2 + D 2 + ( m/f R ) 2 + (CF) 2 (4v/ ( uE )) 2 ) I* / ( CF ) . (A-10)

Using the nominal values for the optical input beam diameter and

tube parameters; magnification, m + 1, IV = 50 um, f, = 40 1p/mm,

C = 20.7 mm, F = 200 MHz, av = 6ES m/s, E 1 kV/mm, we see that
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En (A-10) can be rewritten as

T = ((2.5E-3) + D 2 + (5.3E-4) + (1.7E19) (1.2E-)3)1w/4.1E9,

T = (3.3E-3 + D 2 )
 
./4.1E9.

Under these conditions we find that the total time resolution

depends upon the pixel/pixel separation of the SSA as follows;

D(Vm):	 80	 70	 60	 50	 40	 30	 20	 10	 (0)

T(ps):	 24	 22	 20	 19	 17	 16	 15	 14 (14).

Our chosen pixel/pixel spacing of 30 µm (and 720 pixels) is

therefore a reasonable compromise between the difficulty of

making a die with close-spaced pixels and wider spacing (with

fewer elements).

r{
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