NASA Technical Memorandum 81221

Experimental Unsteady Aerodynamics of Conventional and Supercritical Airfoils

Sanford S. Davis and Gerald N. Malcolm

(NASA-TM-01221)EXPERIMENTAL UNSTEADYNOU-33345AERODYNAGICS OF CONVENTIONAL AND
SUPERCRITICAL AIRFUILS (NASA)100 pHC A04/MF A01CSCL)1AUnclasG3/J220772

August 1980

NASA Technical Memorandum 81221

ž

Experimental Unsteady Aerodynamics of Conventional and Supercritical Airfoils

Sanford S. Davis and Gerald N. Malcolm Ames Research Center, NASA, Moffett Field, California

Ames Research Center Moffett Field, California 94035

TABLE OF CONTENTS

٠

Щ.

Page

•

.

A MARKAN MANAGEMENT

I DIRE LIGHT ON LOOM IN A

·

18 2 Marine

NOM	ENCLATU	JRE	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
SUM	IARY	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•		•	•	1
1.	INTROI	DUCI	017	N	•																		1
2.	TEST H	IARI	WA	RE	•	•	•	•	•		•		•	•	•	٠	•	•	•		•	•	2
	11-	by	11	-Fo	ot :	Tra	nso	nic	Wi	nd	Tur	nel	•	•	•	•	•	•	•	•	•	•	3
	Spli	itt∈	er	Plat	tes	•	•	•	•	•	•	•	•	•	•	٠	•	-	•	•	•	•	3
	Wing	gs a	and	Pu	sh-l	Pu1	1 R	ods	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
	Moti	lon	Ge	nera	ato	rs	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	6
	Pret	est	t V	eri	fic	ati	on	of	Sys	ten	ı Co	mpo	nen	ts	•	•	•	•	•	•	•	•	7
3.	DATA A	COL	JIS	ITI	ON S	SYS	гем				-							-			-		7
-	Dyna	mic	: D	ata	Ac	aui	sit	ion	÷				-	-							-		8
	Stat	ic	Da	ta	Aca	uis	iti	on	-			-					-	-	-	_			9
			_		1				-	-	•	•	•	•	-	-	-	-	-	-	-	-	-
4.	TEST F	PROC	GRA	M	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
5.	DATA F	EDU	JCT	ION	AN	D P	RES	ENT	ATI	ON	•		•	•	•	•		•	•		•	•	10
	Stat	:ic-	-Pr	ess	ure	Co	eff	ici	ent	S			•	•	•	•	•	•	•	•	•	•	10
	Inte	egra	ate	d S	tat	ic 1	Pre	ssu	res	•	•		•		•	•	•	•	•	•	•		11
	Dyna	mic	: P	res	sur	e C	omp	lex	Am	pli	tud	les	•	•	•	•	•	•	•	•	•		11
	Inte	egra	ate	d D	ynai	mic	Pr	ess	ure	S	•	•	•	•	•	•	•	•	•	•	•	•	12
6.	SUMMAR	ay (OF	RES	ULT	s	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	12
	NDTV A		ме	muo		FOD	TM	TRO		TNC	עסי	DED	TMP	1.17T A	1 10	DEC	CIID	F					
APPI	LNDIX A	1:	me	DIC	ייבט דימיד		IN TON	LEC:	KA I	ING		PER	IME	NIA	ь г	KE 3	SUK	E					17
				DIS	IKL	DUI	ION	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
APPI	ENDIX E	3	•	•	•		•	•		•		•		•	•	•	•		•	•	•	•	16
		_																					
REFI	ERENCES	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	17
TAB	LES	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•		•	•	19
																							<i>, .</i>
FIG	URES	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	44

PRECEDING PAGE DE BOUT FLOST BULMER

NOMENCLATURE

- .--

1

A	<pre>complex amplitude of the unsteady airfoil motion: for pitching, A = oscillatory angle of attack in radians; for plunging, A = displacement normalized by half-chord. The physical motion is Re(Ae^{iωt})</pre>
ALPHA	mean angle of attack, deg
С	chord of airfoil, m
CL	mean lift coefficient, + up
CL,A	normalized unsteady lift coefficient, + up
CM	mean moment coefficient at leading edge, + nose up
CM,A	<pre>normalized unsteady moment coefficient at leading edge, + nose up</pre>
CPU,A(CPL,A)	complex amplitude of the unsteady upper (lower) surface
CPU(CPL)	<pre>mean value of upper (lower) surface pressure coefficient, <u>PU(PL) - PINF</u> QINF</pre>
exp(iwt)	cos wt + i sin wt
f,FREQ	frequency, Hz , $\frac{1}{T}$
IU,A(Q)(IL,A(Q))	Qth moment of the complex amplitude of the unsteady upper (lower) surface pressure coefficient
IU(Q)(IL(Q))	Qth moment of the mean value of upper (lower) surface pressure coefficient
k,K	reduced frequency, $\frac{\omega C}{2U}$
M _∞	free-stream Mach number
P	complex amplitude of the unsteady pressur; the physical pressure = Re(Pe ^{iωt})
PINF	free-stream static pressure, N/m ²
PL,PU	mean value of surface pressure, N/m ²
PTOT	total v essure, N/m ²
QINF	dynamic pressure, N/m ²

v

PRECEDING FAGE TO DETAIL

, **,**

1

.

; . .

£

•

•

.

ن بند

Re,RE	chord Reynolds number
Т	period of the motion, sec
t	time, sec
U	free-stream velocity, m/sec
X,x	distance along airfoil, m
α	complex amplitude of unsteady angle of attack, deg
а m	mean angle of attack, deg
a(t)	instantaneous angle of attack, deg
Complex notation:	
Im ^r }	<pre>imaginary part of []</pre>
Mag[]	magnitude of []
Ph[]	phase of [], deg
Re[]	real part of []

۲

4

.

. . . .

EXPERIMENTAL UNSTEADY AERODYNAMICS OF CONVENTIONAL

AND SUPERCRITICAL AIRFOILS

Sanford S. Davis and Gerald N. Malcolm

Ames Research Center

SUMMARY

Experimental data on the unsteady aerodynamics of oscillating airfoils in transonic flow are presented. Two 0.5-m-chord airfoil models — an NACA 64A010 and an NLR 7301 — were tested in the NASA-Ames 11- by 11-Foot Transonic Wind Tunnel at Mach numbers to 0.85, at chord Reynolds numbers to 12×10^6 , and at mean angles of attack to 4°. The airfoils were subjected to both pitching and plunging motions at reduced frequencies to 0.3 (physical frequencies to 53 Hz).

The new hardware and the extensive use of computer-experiment integration developed for this test are described. The geometrical configuration of the model and the test arrangement are described in detail. Mean and first harmonic data are presented in both tabular and graphical form to aid in comparisons with other data and with numerical computations.

1. INTRODUCTION

The unsteady aerodynamics of both fixed- and rotary-wing airfoil sections must be thoroughly understood in order to provide safe margins for flutter, buffett, and other undesirable aerodynamic phenomena. This need is most apparent in the critical transonic speed regime where these detrimental effects are most prevalent. Recent developments in numerical simulations of transonic unsteady aerodynamics have also highlighted the need for new experimental activity in this area. In response to these needs, an extensive test program was developed at Ames Research Center to measure the unsteady aerodynamics of both a conventional and a supercritical airfoil under a wide range of flow conditions. The objective of the test was to measure unsteady pressure distributions at higher Reynolds numbers over a more extensive range of test conditions than had heretofore been attempted. This report presents, in graphical and tabular form, the mean and fundamental frequency data from that test.

÷

~

,

The data were obtained in the 11- by 11-Foot Transonic Wind Tunnel at Ames Research Center. Over 200 data sets, representing various combinations of airfoil geometry, Mach number, Reynolds number, mean angle of attack, motion mode, motion amplitude, and frequency arc reported. For each data set both the mean and first harmonic loads are tabulated, and the pressure distributions are presented in both tabular and graphical form. Section 2 describes the important features of the test apparatus in detail, including the wind tunnel, model installation, motion generators, model construction, and model geometry. (Some of the hardware was also described in ref. 1.) A discussion of the computerized data system, developed especially for this test, is provided in section 3. The software was written such that on-line comparisons could be made between the current data set and theoretical predictions. The measuring system is also described in references 1 and 2. Section 4 outlines the test program and section 5 presents the data. The method used to integrate the chordwise pressure distribution is described in appendix A, and the tabulated first harmonic pressure data, enclosed in microfiche form, is designated appendix B.

Some of the data have already been analyzed and can be found in references 3-6. A small subset of the data has been selected by AGARD for inclusion in its "Standards for Aeroelastic Application "; it is cited in section 4.

2. TEST HARDWARE

The arrangement of the apparatus and the special two-dimensional flow channel installed in the 11- by 11-Foot Transonic Wind Tunnel were based on the choice of an acceptable ratio of wind-tunnel height to wing chord (greater than 6). A chord of 0.5 m was chosen, resulting in the ratio (height)/(chord) = 6.8. Lowest hardware cost and minimum overall tunnel blockage could be obtained with a model spanning the tunnel, but construction of a full-span 0.5-m-chord model was impractical because first priority was assigned to obtaining high frequencies with minimal aeroelastic effects. An acceptable span-to-chord ratio of approximately 3 (1.35-m span) dictated the use of the splitter-plate arrangement shown in figure 1. Although previous investigators have successfully used splitter plates, a pilot test of the concept was nonetheless conducted in the Ames 2- by 2-Foot Transonic Wind Tunnel (ref. 7). T is test demonstrated that good quality transonic flow could be obtained with the chosen splitter plate arrangement.

Figure 1 shows the general arrangement of the wing/splitter-plate/ actuator system as installed in the wind-tunnel test section. The normal $3.35 \text{ m} \times 3.35 \text{ m}$ test section was segmented with two steel splitter plates, 3.35 m high by 2.8 m long. To minimize blockage, the thickness was the minimum necessary to accommodate the push-pull drive rods. To prevent excessive deflections of the splitter plates, side struts were installed for lateral support. The splitters extended into the tunnel's plenum area at the top and bottom; there they were bolted to I-beam anchors. Access panels for instrumentation cables and clearance for the push-pull rods were included in the splitter plate design.

The wing model was instrumented near its midspan station and attached to independently controlled hydraulic actuators through the push-pull rods. Thus, the wing was free to pitch and plunge in response to the actuator's command signal. The wing was restrained in the fore-aft direction by a pair

of carbon-epoxy drag rods, and in the lateral, roll, and yaw directions by sliding cover plates, which moved with the wing on the inner surface of the splitter plates. The hydraulic actuators, located in the lower plenum area, were supported by flexures; they bore directly into a massive concrete foundation through the four support columns. With this design, the tunnel pressure shell does not have to support the oscillatory reaction loads induced by the actuator's motion.

The capabilities of the test apparatus include sinusoidal pitching oscillations over a frequency range of 0 to 60 Hz, with the maximum oscillation varying from $\pm 2^{\circ}$ at low frequencies to $\pm 0.8^{\circ}$ at 60 Hz about any chord-wise axis, and a vertical plunging motion up to ± 5 cm (2 in.).

The various components that make up the system will be described in more detail since the basic performance requirements dictated state-of-the-art designs in many cases. Many of the components are shown in the installation photograph in figure 2 and the pre-test setup in figure 3. In the following description it may be helpful to refer to these photographs to visualize the interrelationship among the various components.

11- by 11-Foot Transonic Wind Tunnel

The 11- by 11-Foot Transonic Wind Tunnel is a closed-return, variable density facility with a $3.35 \times 3.35 \times 6.7$ m (11 × 11 × 22 ft) test section enclosed in a 6-m (20-ft) diameter cylindrical pressure cell. The air is driven by a three-stage, axial-flow compressor powered by four induction motors with a maximum continuous combined output of 135 MW (180,000 hp). The Mach number can be varied continuously from 0.4 to 1.4 with the stagnation pressure variable from 50 kN/m² to 225 kN/m² (0.5 to 2.25 atm) resulting in Reynolds numbers for this test were 0.85 and 25×10^6 /m, respectively.

The ventilated wall of the 11-Foot Transonic Wind Tunnel has a baffled slot arrangement (fig. 4). Six slots -1.78 cm (0.7 in.) wide - between the splitter plates yield an effective open area ratio of approximately 8%. A resistive baffle fabricated from 0.16 cm (1/16 in.) sheet stock was inserted in each slot. The baffle is flush with the floor and ceiling, extends 5.72 cm (2.25 in.) into the slot, and has a "wavelength" of 3.43 cm (1.35 in.).

Splitter Plates

Vertical splitter plates with trailing-edge flaps and horizontal side struts form the support structure for the wing. They each have a sharp leading edge and a movable trailing-edge flap which is manually adjustable between ±2° from the plane of the splitter plate. All testing was done with the flaps set at 0°. Horizontal side struts attach to the outside of the splitter plates just below the horizontal plane of symmetry and protrude through the test section into the exterior structure. They provide stabilization and eliminate excessive lateral deflection from the aerodynamic loads. The splitter plates were installed with a 0.1° divergence angle from tunnel centerline to account for boundary-layer growth. The thickness of the splitter plates varies in the streamwise direction in the following manner: following the sharp leading edge the next immediate section is 3.2 cm (1.25 in.) thick; it is followed by a 5-cm (2-in.) thick section in the center to accommodate the push-pull rods. The trailing-edge section is 4.4 cm (1.75 in.) thick and tapers to a sharp trailing edge. The inside surface of the splitter plate is straight with all thickness variations taking place on the outer surface.

Openings in the splitter plate (figs. 5, 6) permit the wing to be attached to the top of the push-pull rods, which are centered in four channels cut into the lower portion of the splitter plates. When the wing is oscillating, sliding covers (figs. 7, 8) attached to the wing seal the openings. The covers are made of graphite epoxy to reduce weight and are Teflon-lined for free sliding.

The splitter plates contain a total of 125 static-pressure orifices distributed over the inside and outside surfaces of both plates. The inside orifices were utilized to select the proper channel Mach number and, in conjunction with the outer taps, were used to monitor the loading on the splitter plates. While testing, accelerometers on the trailing-edge flaps were used to sense any large or potentially destructive flutter motions such as might be produced from the oscillating flow behind the wing or naturally induced from the channel air flow.

Wings and Push-Pull Rods

Model geometry- Two airfoil sections were chosen for this test program -one a conventional airfoil (an NACA 64A010) and the other a supercritical airfoil (the NLR 7301). The two wing models - span 1.35 m (53.2 in.), chord 0.5 m (19.685 in.) - were designed to withstand accelerations of 2.3×10^3 m/sec² (230 g) and aerodynamic loads of 44,000 N (10,000 lb). Both airfoils were subsequently chosen for inclusion in the AGARD standard series of test cases for aeroelastic applications (refs. 8, 9). Photographs of the models installed in the wind tunnel are presented in figures 7 and 8. Due to expansion of the molds in fabricating the models, the actual airfoil sections were slightly thicker than their theoretical counterparts. To expedite numerical simulations, three sets of ordinates are presented - the measured ordinates, smoothed versions of the measured ordinates from Olsen's computations (ref. 8), and the theoretical ordinates. Because the measured ordinates contain large variations in the higher derivatives that adversely affected some trial solutions, it is recommended that either the smoothed or theoretical ordinates be used for computing. Computations using the theoretical ordinates were satisfactory for the flow conditions attempted.

The measured and theoretical airfoil sections are shown in figure 9. In each case the measurements correspond to the thicker section. Data for the NACA 64A010 and NLR 7301 airfoils are presented in tables 1 and 2, respectively.

Model instrumentation- The wing is instrumented with static pressure taps and dynamic pressure transducers, all of which are located at approximately midspan. The dynamic pressure transducers communicate to the wing surface via a small orifice with a small volume cavity. Locations of the static and dynamic orifices in both wings are shown in tables 3 and 4. It should be noted that dynamic transducers were not installed in the lower surface of the NLR 7301 airfoil. The lower surface unsteady pressures were sacrificed on that airfoil for the sake of increased resolution on the upper surface. Static pressure tubes are routed from the end of the wing through a cavity in the splitter plate to the tunnel plenum chamber below, and out an access port to scanivalve-transducer units exterior to the tunnel shell. Dynamic transducers are mounted in the wing by inserting the transducer (2.36 mm diameter) in the end of a long plastic sleeve, which is, in turn, inserted into a cylindrical channel molded into the interior of the wing. The sleeve terminates at the center of the wing at the orifice communicating to the wing surface. The lead wires are then routed out the opposite end of the sleeve in the wing (fig. 6) through the splitter plates and out through the tunnel walls to the data acquisition equipment in the tunnel control room. A single reference pressure tube from each dynamic transducer is also inserted into the plastic sleeve and routed through the splitter plate to the scanivalvetransducer assembly outside the tunnel. The transducer reference pressure can be selected to be the static pressure of the adjacent static orifice on the wing or any other selected pressure (such as the tunnel static pressure). Six accelerometers were mounted inside the wing, one at each of the attachment points of the four push-pull rods near the corners of the wing and two at midspan near the leading and trailing edges. The actual motion of the wing can be determined from the accelerometer output and compared with the output of the motion transducers located in the actuator piston rods. These data s. owed that the wing motions were faithfully recorded by the motion transducers.

Model support system- The wing model, mounted between the splitter plates, is connected to the push-pull rods through epecial flexure bearings. The pushpull rods are, in turn, screwed directly into the actuator pistons. Both the wing and the push-pull rods are fabricated from a lightweight graphite-epoxy material. A short discussion of the fabrication of the rods and wings is given later in this section. The push-pull rods, 0.0412 m (1.625 in.) in diameter, are each capable of a 22,000 N (5,000 lb) tension load. The flexures located between the push-pull rods and the wing are also designed for a 22,000 N (5,000 lb) load. A pair of graphite-epoxy rods mounted to the wing with a flexure support and attached to the splitter plates forward of the wing provide a means of counteracting the drag loads (see fig. 5); each rod can withstand 6,700 N (1,500 lb).

<u>Model fabrication</u> The fabrication of both the wing models and the pushpull rods required an extensive development effort by the Ames Model Development Branch. The requirements for maximum strength, stiffness, and light weight suggested the use of composite fiber materials. The problem of constructing the wing was compounded by the requirement for internal mounting of the pressure transducers. The following description will illustrate briefly the steps used to fabricate the wing models.

The outside contour of the wing was defined by using a steel female mold split into two halves and machined to the coordinates of the airfoil section. The mold was made of common steel with a coefficient of thermal expansion compatible with that of the carbon graphite composite fibers. Using this mold, a fiberglass mold was made to construct the four interior silicone mandrels about which the carbon graphite fibers were wrapped to form the internal structure. These mandrels were later removed from the wing after curing, leaving hollow sections between the webs (see fig. 6). The core mandrels were pregrooved for instrumentation tubes before wrapping with the appropriate number of layers of fiber strips. Tapered steel rods were inserted in the pre-cut grooves. The ribs between the four cores joining the upper and lower surfaces together were individually laminated and placed between the wrapped cores. A fixture was built to hold the four cores in place for wrapping of the entire model. Thirty-two plies of unidirectional graphite tape were wrapped around the pre-wrapped cores with plies at 0°, 45°, and 90° with respect to the chord. The model layup was then sandwiched between the two halves of the steel mold and caps were bolted on the ends. The entire assembly was heated in an autoclave 250° F to expand the silicone core. This cycle forced the layup tightly against the interior walls of the mold. The model was subjected to a cure cycle of 350° F for 2 hr. After cooling, the model was removed from the mold and the cores removed. The tapered steel rods were also removed and a 0.5-mm hole drilled through the surface of the model to intersect the cavity left by the rods. The dynamic transducers were mounted in the end of a long plastic tube, which was inserted into the hollow cavity in the wing. The transducer body sealed against a shoulder in the tube forming a pneumatic seal. The volume between the transducer diaphragm and the orifice on the model surface was quite small, thus providing good highfrequency response.

The push-pull rods were constructed of carbon-graphite fibers, using similar procedures. A two-part mold was made from mild steel with outside dimensions of 10.16 cm (4 in.) square by 203 cm (80 in.) long and a 4.13-cm (1.625-in.) bore. A silicone core approximately 2.5 cm (1 in.) in diameter was made, and graphite fibers were carefully wrapped around it to a wall thickness of approximately 0.63 cm (0.25 in.). After curing and removing the core, the ends of the rocs were attached to steel end caps which provided an attachment point for the actuator system and flexures.

Motion Generators

The servo-hydraulic actuator system was designed especially for this test. It is driven by two 11-kW (150-hp) hydraulic pump units rated at $4.1 \times 10^{-3} \text{ m}^3/\text{sec}$ (65 gal/min) at 20.7 × 10⁶ N/m² (3,000 lb/in.²). Each of the four actuators consists of two separate pistons on a single rod enclosed in a dual-chamber cylinder. The upper piston is used for generating dynamic forces, the lower piston for load biasing. The load bias system is necessary to support the mean aerodynamic lift load, thereby reducing the power required to drive the dynamic piston. As static bias requirements change, the servo-valve system responds to produce the required force output to maintain the set position. Velocity and Evaluation transducers are combined into a single

physical unit with coils and cores aligned axially for mounting in the center of the actuator.

Pretest Verification of System Components

Because every part of this system was new, there was no test information available for judging performance and reliability of the apparatus. Therefore, a special pretest facility was built to permit a detailed checkout program. Many of the components, including the wing, push-pull rods, drag restraints, and the hydraulic actuator motion generator system, were new designs and could not be risked in the wind tunnel without pretest experiments. A special test stand was built for system verification. Figure 3 is a photograph of the assembly in the test area. A support structure was constructed to which the various components were attached. The hydraulic actuators were mounted at the base with the push-pull rods attached to the top of the pistons. The wing was mounted on the push-pull rods with flexures and angle-of-attack blocks between the rod end and the wing end cap. The drag restraint was fastened on top of the rear flexures and the other end tied to the support frame. Lift loads were simulated by an inflatable bag between the lower surface of the wing and a support cradle fastened to the support stand. Drag loads were simulated by a pneumatically activated piston coupled to cables and straps looped over the wing. A nearly complete envelope of test conditions could be evaluated on the test stand. In the early stages cf the test checkout a wing constructed of fiberglass (shown in fig. 3) was used before risking the graphite-epoxy test wing. This proved to be an extremely valuable and low-risk method of evaluating the performance of the entire system. The only real limitations were that the fiberglass wing was not stiff enough to prevent large deflections at midspan (particularly in plunging) at frequencies above 30 Hz, and was not strong enough to accept the maximum lift loads. A limited amount of testing was done with the carbonepoxy wing before installation in the wind tunnel.

3. DATA ACQUISITION SYSTEM

In the past, multichannel unsteady aerodynamic data were acquired using analog tape recorders where raw data were recorded and stored for future analysis. On-line analysis was restricted to a few selected channels, using special instrumentation to extract usable data from the great mass of incoming data. These systems suffered from long time lags between acquisition and analysis and the probability of unknowingly recording spurious data. In the present test a new computational data acquisition and analysis system was developed for on-line display of steady and unsteady aerodynamic data. Figure 10 depicts the main elements of the new system. It can graphically display the first-harmonic pressure distribution (both magnitude and phase) due to arbitrary pitch-plunge motions of the airfoil along with the conventional static pressure distribution. At the user's option, an overlay of selected theoretical or experimental pressure distributions from computer-resident codes or from a dedicated data bank can be accessed.

The system comprises a Data General Eclipse Model S/200 minicomputer, a high-speed (500 kHz) multichannel analog-to-digital converter, a large capacity (92 Mbyte) storage device, and a graphics terminal. The software system consists of approximately 50 independent Fortran-coded programs. The independent programs are controlled by two executive programs: one for dynamic data, the other for static data.

Dynamic Data equisition

The raw data come from a variety of sensors, the two most important being the airfoil motion (the input) and the surface pressures on the model (the output). The same sinusoidal signal that drives the four-channel hydraulic actuator system, which in turn drives the four push-pull rods attached to the wing, is also used to trigger a pulse to initiate the unsteady data acquisition process. Once the actuator control system is adjusted to impart the desired motion to the wing, the motion of the four push-pull rods is continuously monitored and acquired along with the unsteady data.

The dynamic signals from up to 41 miniature pressure transducers are amplified and filtered before they enter the analog-to-digital converter. Because the signal is periodic, it is possible to obtain good waveform samples with minimum storage per data point by signal-averaging the data. Theoretically, a periodic signal is completely defined by just one cycle of data (e.g., a 40-msec record is all that is necessary to characterize a 25-Hz periodic oscillation). However, the experimental signal is usually so contaminated by random pressure fluctuations due to wind-tunnel and modelinduced turbulence that one cycle of data is not very useful.

The signal-averaging technique is implemented as follows: the raw data are synchronized with a pulse train which is triggered at the same phase position for each cycle of the airfoil's motion. These timing relations are shown \cdot figure 11. At time t_0 , the sample waveform is recorded for τ seconds. At time $t_0 + nT$ the waveform is recorded again for τ seconds. The process is repeated M times. These M samples, each being initiated by the phase-locked pulse, are then ensemble-averaged to obtain the averaged signal. In the current experiment τ is chosen to be slightly greater than one period, n = 2, and M = 100 is sufficient for a good average. At the user's option, the signal-averaged waveform and its Mth realization for any selected channel can be displayed on the graphics terminal.

For on-line analysis, the first harmonic of the response is most useful. A simple Fourier analysis algorithm is implemented to extract the magnitude and phase information at the fundamental frequency. These data are displayed in tabular form on the graphics unit within 30 sec of the termination of data acquisition. These data are usually sufficient to determine if the unsteady data acquisition process was successful. If more on-line analysis is required, the first-harronic data may be displayed graphically in pressure coefficient form. The magnitude and phase of the chordwise pressure distributions on the upper and lower surfaces of the airfoil are displayed along with certain theoretical curves, such as (1) linear, incompressible small-disturbance theory (Theodorsen function) and (2) linear, compressible small-disturbance theory (Possio integral equation solver). For time-efficient on-line analysis it does not seem feasible to include unsteady transonic codes on the current generation of minicomputers. •••••

i y

.

.

Also available for comparison are the results of other investigations (theoretical or experimental) which have been stored in the data bank. For comparing with NACA 64A010 data, the theoretical investigations of Magnus (ref. 10) are available. For the NLR 7301 wing, experimental data obtained at NLR-Amsterdam (ref. 11) are available. It is possible to obtain a comparison between the current data and the selected theoretical-experimental overlay in approximately 45 sec after the termination of data acquisition.

Static Data Acquisition

The static pressures are sensed with a conventional system using pneumatic tubing connected to a pressure scanning valve. The electrical output of the pressure cell to which the unknown pressures are multiplexed are read with a digital voltmeter whose BCD (Binary Coded Decimal) output feeds directly into the minicomputer.

The splitter-plate arrangement used for the oscillatory airfoil test requires special attention with regard to the free-stream Mach number (M_{∞}) . As discussed in previous reports (refs. 2, 7) the Mach number in the channel between the plates is not the same as that computed from a static pressure tap in the plenum chamber. To obtain the approach Mach number (M_{∞}) , the splitter plates are equipped with 125 static pressure orifices distributed among 10 rows above and below the plane of the wing on the inner and outer walls of the splitter plates. These pressures are also sensed by the scanning system. The computed Mach numbers on the splitters are displayed on the graphics unit and the approach Mach number is selected interactively by fairing the graphics unit's horizontal cursor to the data. Using this procedure, the Mach number can be selected to an accuracy of ± 0.002 .

Once the Mach number has been chosen, the static-pressure distribution on the wing is displayed along with selected overlays. A static pressure distribution with overlays can be displayed in approximately 30 sec after the raw data have been acquired.

4. TEST PROGRAM

As mentioned in the introduction, the test program was designed to meet the following primary goals: (1) to expand the existing unsteady test envelope to higher Reynolds numbers, higher reduced frequencies, different modes, and more diverse mean flow conditions; (2) to overlap the existing data base wherever possible; and (3) to provide a data base for the computation of unsteady transonic flows. A wide range of static and dynamic parameters was investigated in meeting these goals. The selected parameters are listed in table 5. All of the data presented here were measured without a boundarylayer trip. Of the thousands of possible combinations, a subset of approximately 200 comprises the current test matrix. Each selected combination is identified by a unique dynamic index (DI). A complete list of the test program in ascending numerical order is presented in table 6. The data in sets of "frequency sweeps" according to airfoil type and motion are given in table 7 for the NACA 64A010 airfoil and in table 8 for the NLR 7301 airfoil.

In reference 9 a series of airfoils was designated as AGARD standards for validating computational methods. The two airfoil sections used in this experiment are included in the standard series. Certain preferred flow conditions were chosen for comparative purposes. Ten cases for the NACA 64A010 are presented in table 8 of reference 9. The corresponding dynamic indices are listed below:

Test Case	1	2	3	4	5	6	7	8	9	10
DI	7	29	51	52	53	55	57	49	65	12

Table 12 of reference 9 gives 14 test cases for the NLR 7301. These test cases were selected from the data reported in reference 11 and do not correspond exactly with the current series. In particular, mean flow conditions at the supercritical design point were slightly different. In table 8 of this report, the NLR 7301 frequency sweeps designated by rows 1-8 are the experimentally determined shock-free design conditions for this airfoil in the Ames 11-Foot Wind Tunnel. They should be used for assessing computational methods.

5. DATA REDUCTION AND PRESENTATION

The primary output data are the pressure distributions on the airfoil along with quantities derivable from them. The data reduction and scaling applied to the raw data are described in this section. The data include static pressure coefficients, integrated static loads, complex amplitudes of the first harmonic pressure coefficients, and integrated first harmonic loads.

Static-Pressure Coefficients

The static pressure data were converted to coefficient form using the conventional scaling:

$$CPU = (PU - PINF)/QINF$$

$$(1)$$

$$CPU = (PL - PINF)/OINF$$

where PU and PL are the measured mean pressures (in newtons per square meter) on the airfoil, and both PINF and QINF are flow parameters. (All symbols are defined in the nomenclature list.) The static-pressure data are presented in tabular and graphical form along with the dynamic data to be discussed subsequently.

Integrated Static Pressures

The chordwise static pressure data were integrated according to the following formulas:

$$IU(Q) = \int_{0}^{1} [CPU(X/C)][(X/C)^{Q}]d(X/C)$$

$$IL(Q) = \int_{0}^{1} [CPL(X/C)][(X/C)^{Q}]d(X/C)$$

$$CL = IL(0) - IU(0)$$

$$CM = -[IL(1) - IU(1)]$$
(2b)

The I-integrals are the Qth moments of the static-pressure distributions. Note that the moment coefficient is defined at the leading edge, nose-up positive. Some difficulties were encountered with the usual trapezoidaltype numerical integration scheme. The integration method that was ultimately adopted is described in detail in appendix A.

Each static pressure run is associated with a unique identification — the static index (SI). Table 9 associates a static index with each dynamic index. Table 10 presents the integrated upper surface, lower surface, and total load on the airfoil for each static index.

Dynamic Pressure Complex Amplitudes

The dynamic pressure data needed some preliminary processing. The first step was to Fourier-analyze the time-history data up to its fundamental frequency component. The fundamental frequency component is interpreted as a complex number that indicates its magnitude and phase shift with respect to the input motion. Figure 12 shows the steps used in decomposing the timehistory into its real and imaginary components. The complex amplitudes CPU,A(CPL,A) are the quantities presented in this report. The physically realizable first harmonic unsteady pressure time-history is given by

$$CPUD = [Mag(A)][Re(CPU,A)\cos \omega t - Im(CPU,A)\sin \omega t]$$

$$CPLD = [Mag(A)][Re(CPL,A)\cos \omega t - Im(CPL,A)\sin \omega t]$$
(3)

where the complex amplitudes of the pressure coefficients CPU,A(CPL,A) have been normalized by the amplitude of the input motion Mag(A). The timehistory of the input motion is (fig. 12)

$$A = [Mag(A)] \cos \omega t$$

where A is interpreted as an angular quantity for pitching motion or a translational quantity for plunging motion.

The 209 sets of first harmonic data, arranged by dynamic index (DI), are presented graphically (real and imaginary parts) in figure 13. The corresponding static pressure distribution is also shown for reference. The tabulated static and dynamic data are presented in the enclosed microfiche (appendix B). Note that only upper surface dynamic data were measured on the supercritical airfoil (DI \geq 115).

Integrated Dynamic Pressures

The first harmonic data were integrated in the same manner as the static data (eq. (1)).

$$IU, A(Q) = \int_{0}^{1} [CPU, A(X/C)][(X/C)^{Q}]d(X/C)$$

$$IL, A(Q) = \int_{0}^{1} [CPL, A(X/C)][(X/C)^{Q}]d(X/C)$$

$$CL, A = IL, A(0) - IU, A(0)$$

$$CM, A = -[IL, A(1) - IU, A(1)]$$
(4b)

These complex numbers are converted to time histories in exactly the same manner as in equation (3). The sign convention, interpretation of the lift and leading-edge moment, as well as the integration scheme, are the same as used in the preceding subsection on integrated static pressures.

The six quantities in equation (4b) are given in table 11 for the NACA 64A010 airfoil and in table 12 for the NLR 7301 supercritical airfoil.

6. SUMMARY OF RESULTS

Unsteady pressure data from an oscillating airfoil experiment in the Ames 11- by 11-Foot Transonic Wind Tunnel were presented. The data covered a wide range of parameters including airfoil geometry, mean flow conditions, motion mode, and frequency. These experimental results should be useful both for validating new computational methods and as an aid in aeroelastic analysis.

To aid in the interpretation of the data, detailed discussions were included on the tunnel installation, tunnel geometry, and airfoil contour. The novel model fabrication and the new experimental techniques that were developed especially for this test program were also discussed.

The data, presented in tabular and graphical form, include measurements of the mean pressure coefficients and real and imaginary parts of the fundamental (first harmonic) frequency unsteady pressure coefficients. The pressure coefficient data are also presented in integrated form to facilitate interpretation of parametric trends.

The data show that the unsteady aerodynamic response can be sensitive to . 11 of the parameters considered in this experiment. For subcritical flows, the two most important parameters are Mach number and frequency. In the range of mild transonic flows, airfoil geometry is an additional important factor. Finally, in the flow regime where strong shock-wave/boundary-layer interactions are important, Reynolds number becomes another important parameter. This progression into increasingly complicated flows is consistent with the theoretical withods that are used to predict these flows. Linearized subsonic theory includes the effect of the flow parameters M and k, and transonic theory correctly accounts for airfoil geometry. In the most complex flow regime, Mavier-Stokes modeling will be necessary to correctly predict the unsteady viscous interactions.

APPENDIX A

METHODS FOR INTEGRATING EXPERIMENTAL PRESSURE DISTRIBUTIONS

The integration of a function that is defined at a discrete number of points is not a simple problem. If a smooth curve can be fit through one or more of the discrete points, the integration becomes simple. The difficult part is to choose the appropriate family of smooth curves.

A simple example will best illustrate the problem. Consider a pressure distribution having the functional form

$$CP(\bar{X}) = \sqrt{1 - \bar{X}} / \sqrt{\bar{X}} \quad 0 \le \bar{Z} \le 1$$
 (A1)

ŧ

This is the distribution that would be computed from thin-airfoil theory. The area under the curve, defined as the integral of equation (Al) bet een the limits 0 to 1 is 6.283 (to four significant figures).

Now consider a routine application of the trapezoidal rule. (The family of curves is simply the straight line connecting successive data points.) It is most convenient to consider the trapezoidal rule with equally spaced increments. A typical case is shown in figure 14, where the function is divided into 20 strips. The value at the leading edge was approximated by extrapolating the slope at the first chord position backwards to the leading edge. The computed loads for a 20-strip integration was 5.546. Compared with the exact area, this represents an error of 11.7%.

In actual practice, the leading-edge singularity is ameliorated by leading-edge bluntness and the errors computed above are probable upper bounds. However, in oscillating airfoil experiments, these leading-edge suction peaks can be quite high. This problem was pointed out some time ago by Runyan et al. (ref. 12).

If the problem were only one of square-root-type singularities, an elegant solution is available. Gaussian quadrature techniques have been developea (ref. 13) to approximate definite integrals by the finite sum

$$\int_{0}^{1} W(\bar{X}) f(\bar{X}) dX = \sum_{i=1}^{N} W_{i} f_{i}$$
(A2)

They have not been widely used because the value of the function must be computed at sample points \bar{X}_1 that are usually irrational numbers. Standard tables are available giving the sample points and weights W_1 for a given weight function $W(\bar{X})$. One such method — the Gauss-Jacobi quadrature — has a weight function $W(\bar{X}) = \sqrt{1 - \bar{X}} / \sqrt{\bar{X}}$. Figure 15 shows the sample points needed for a 20-strip Gauss-Jacobi quadrature. The computed area is 6.283, essentially the exact value. Gauss-Jacobi quadratures have been used extensively in a recent theoretical report on oscillating airfoils in wind tunnels (ref. 14). A serious defect in the quadrature method for transonic flows is clear from figure 15. Sample points are sparsely located in the central region of the airfoil. Transonic flows with discontinuous pressure distributions (shock waves) are not well approximated by a scheme with such large increments in the region of discontinuity. Numerical experiments with discontinuous pressure distributions have confirmed that unacceptably large errors can result.

The numerical integration scheme that was finally adopted was the one described by Woodward (ref. 15). This method rectifies the leading-edge singularity by a simple transformation of variables:

$$X' = \sqrt{\overline{X}}$$

$$(A3)$$

$$CP' = 2\sqrt{\overline{X}} CP$$

The pressure distribution presented in figure 14 is shown in the primed coordinance system in figure 16. The curve is finite everywhere and a simple trapezoidal rule with 20 intervals has approximately six elementary trapezoids in the first 10% of chord. (Compare with fig. 14 where only two intervals constitute the first 10% of the chord.) Higher resolution is not compromised by a coarse mesh width in the area of discontinuities. Extensive numerical experiments have confirmed the validity of this procedure. For example, computations with a 20-strip integration resulted in an area of 6.288. The accuracy of the integrated quantities has been augmented by performing both a 20- and 40-strip integration and by using a Richardson's extrapolation (ref. 16) to increase the accuracy.

Once the integration scheme is selected, the remaining computational problem is to choose an acceptable interpolation-extrapolation scheme to transform the physical pressure tap locations to the desired mesh points. The method adopted was a polynomial fitting method for interpolating between data points and a linear extrapolation method for predicting values very near the leading and trailing edges.

APPENDIX B

٠

TABULATED FUNDAMENTAL FREQUENCY DATA

Refer to the enclosed microfiche (inside back cover) for the 209 sets of tabulated steady and unsteady pressure data.

,

REFERENCES

- Malcolm, G.; and Davis, S.: New NASA-Ames Wind Tunnel Techniques for Studying Airplane Spin and Two-Dimensional Unsteady Aerodynamics. Dynamic Stability Parameters, AGARD CP-235, Nov. 1978, pp. 3-1 to 3-12.
- Davis, S.: Computer/Experiment Integration for Unsteady Aerodynamic Research. International Congress on Instrumentation in Aerospace Simulation Facilities, ICIASE 79 Record, Sept. 1979, pp. 237-250.
- 3. Davis, S.; and Malcolm, G.: Experiments in Unsteady Transonic Flow. AIAA Paper 79-769, St. Louis, MO, Apr. 1979.
- 4. Chyu, W.; and Davis, S.: Calculation of Unsteady Transonic Flow over an Arbitrary Airfoil. AIAA Paper 79-1554, Williamsburg, VA, July 1979.
- 5. Davis, S.; and Malcolm, G.: Unsteady Aerodynamics of Conventional and Supercritical Airfoils. AIAA Paper 80-734, Seattle, WA, May 1980.
- Davis, S.: Experimental Studies of Scale / Jects on Oscillating Airfoils at Transonic Speeds. Paper presented at AGARD Specialists Meeting, Aix-en-Provence, France, Sept. 1980.
- 7. Davis, S.; and Satyanarayana, B.: Two-Dimensional Transonic Testing with Splitter Plates. NASA TP-1153, 1978.
- 8. Olsen, J. J.: AGARD Standard Configurations for Aeroelastic Applications of Transonic Unsteady Aerodynamics. AFFDL-TM-76-6-FBR, 1978.
- 9. Bland, S. R.: AGARD Two-Dimensional Aeroelastic Configurations. AGARD AR-156, Aug. 1979.
- 10. Magnus, R. J.: Calculations of Some Unsteady Transonic Flows about the NACA 64A006 and 64A010 Airfoils. AFFDL TR-77-46, July 1977.
- 11. Tijdeman, H.: Investigations of the Transonic Flow Around Oscillating Airfoils. NLR TR 77090U, Oct. 1977.
- 12. Rungan, H. L.; Woolston, D. S.; and Rainey, A. G.: Theoretical and Experimental Investigation of the Effect of Tunnel Walls on the Forces on an Oscillating Airfoil in Two-Dimensional Subsonic Compressible Flow. NACA TR-1262, 1956.
- Abramowitz, M.; and Stegun, I.: Handbook of Mathematical Functions. Department of Commerce, National Bureau of Standards, Applied Mathematics Series, No. 55, 1964, pp. 887-890.
- Fromme, Joseph; Golberg, Michael; and Werth, John: Two Dimensional Aerodynamic Interference Effects on Oscillating Airfoils with Flaps in Ventilated Subsonic Wind Tunnels. NASA CR-3210, 1979.

15. Woodward, D. S.: On the Integration of Functions Specified Only at Discrete Data Points, with Special Reference to the Processing of Wind Tunnel Pressure Measurements. TR 67151, British Royal Aircraft Establishment, 1967. 1

16. Salvadori, G.; and Baron, M. L.: Numerical Methods in Engineering. Second ed. Prentice-Hall, Inc., 1964, pp. 96-101.

و موجود مر و مر و

.

SECTION
AIRFOIL
64A010
NACA
THE
OF
GEOMETRY
1
TABLE

	r/c	Theoretical	0.0000	0038	0052	0064	0074	0082	0089	0096	0102	0108	0113	0133	0146	0161	0173	0185	0196	0206	0216	0225	0234	0255	0274	0291	0307	0322	0336	0349	0362
eometry	rdinates,	Smoothed	0.0000	0038	0054	0066	0076	0084	0093	0100	0106	0112	0118	0139	0157	0173	0187	0200	0212	0223	0233	0243	0252	0273	0?92	0309	0324	0339	0352	0364	0375
r surface g	0	Measured	0.0000	0033	0050	0065	0077	0086	0095	0102	0109	0115	0121	0142	0158	0173	0187	0199	0210	0220	0230	0239	0248	0268	0288	0305	0322	0337	0352	0365	0378
Lower	Ming	X/C	0.0000	.0010	.0020	.0030	.0040	.0050	.0060	.0070	.0080	0600.	.0100	.0140	.0180	.0220	.0260	.0300	.0340	.0380	.0420	.0460	.0500	.0600	.0700	.0800	0060.	.1000	.1100	.1200	.1300
	F	7	1	2	m	4	Ś	9	-	œ	6	10	11	12	13	14	15	16	17	18	16	20	21	22	23	24	25	26	27	28	29
	Y/C	Theoretical	0.0000	.0038	.0052	.0064	.0074	.0082	.0089	.0096	.0102	.0108	.0113	.0133	.0146	.0161	.0173	.0185	.0196	.0206	.0216	.0225	.0234	.0255	.0274	.0291	.0307	.0322	.0336	.0349	.0362
eometry	rdinates,	Smoothed	0.0000	.0038	.0053	.0066	.0076	.0084	.0092	6600.	.0106	.0112	.0118	.0139	.0156	.0172	.0186	.0199	.0210	.0221	.0232	.0242	.0251	.0272	.0291	.0308	.0324	.0338	.0352	.0364	.0376
: surface g	0	Measured	0.0000	.0043	.0056	.0070	.0081	.0089	.0097	.0104	.0110	.0116	.0121	.0141	.0157	.0172	.0185	.0198	.0208	.0219	.0229	.0238	.0246	.0267	.0286	.0304	.0321	.0337	.0351	.0365	.0379
Uppei	Wing station	x/c	0.000	.0010	.0020	.0030	.0040	.0050	.0050	.0070	.0080	0600.	.0100	.0140	.0180	.0220	.0260	.0300	.0340	.0380	.0420	.0460	.0500	.0600	.0700	.0800	.0000	.1000	.1100	.1200	.1300
		4	ы	8	m	4	Ś	و		8	م	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

. 4

19

ماير وها بالغام الداري و

Concluded.
TAB'E

÷

.

	Y/C	Theoretical	-0.0373	0384	0430	0464	0486	0498	0498	0485	0459	0424	0382	0335	0283	0228	0172	0118	0067	0025	. 0000
eometry	rdinates,	Smoothed	-0.0386	0396	0440	0475	0502	0521	0529	0522	0503	0472	0433	0387	0337	0283	0228	0171	0113	0055	.0003
er surface g	0	Measured	-0.0390	0402	0450	0488	0514	0529	0532	0524	0502	0470	0432	0386	0337	0284	0229	0174	0117	0061	.00:00
Lowe	Wing	X/C X/C	0.1400	.1500	.2000	.2500	.3000	.3500	.4051	. 4500	.5000	.5500	.6000	.6500	. 7000	.7500	. 8000	. 8500	. 9000	.9500	1.0000
	F	-	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
	Y/C	Theoretical	0.0373	.0384	.0430	.0464	.0486	.0498	.0498	.0485	.0459	.0424	.0382	.0335	.0283	.0228	.0172	.0118	.0067	.0025	.0000
er surface geometry	rdinates,	Smoothed	0.0387	.0398	.0443	.0478	.0505	.0523	.0529	.0521	.0500	.0469	.0430	.0385	.0334	.0281	.0226	.0169	.0112	.0055	0003
	0	Measured	0.0391	.0403	.0453	.0489	.0515	.0530	.0531	.0523	.0500	.0468	.0429	.0383	.0333	.0280	.0227	.0173	.0118	.0064	.0000
Uppe	Wing	station, X/C	0.1400	.1500	.2000	.2500	. 3000	.3500	.4051	.4500	.5000	.5500	. 6000	.6500	. 7000	. 7500	. 8000	. 8500	. 9000	.9500	1.000
	- F	-	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48

SE(
AIRFOIL
7301
NLR
OF
GEOMETRY
2
TABLE

NOITC

Theoretical -.0072 -.0117 -.0318 -.0237 -.0515 -.0560 -.0590 -.0745 -.0764 -.0774 -.0750 0.0000 -.0402 -.0721 -.0348 -.0648 -.0768 -.0668 -.0194 -.0276 -.0376 -.0430 -.0615 -.0688 -.0719 -.0464 -.0776 -.0141 Y/C Ordinates, Smoothed -.0226 -.0336 -.0365 -.0103 -.0183 -.0392 -.0458 -.0767 - 0778 ...0778 -.0728 -.0059 -.0128 -.0307 -.0611 -.0583 - .0744 -0.0000 -.0266 -.0556 -.0586 -.0715 -.0089 -.0421 -.0510 -.0644 -.0769 -.0752 Lower surface geometry Measured -.0059 -.0103 -.0183 -.0226 -.0307 -.0365 -.0510 -.0556 -.0586 -.0769 -.0728 -.0679 -.0611 -.0744 0.000 -.0089 -.0128 -.0392 -.0458 -.0336 -.0644 -.0752 -.0421 -.0683 -.0715 station, .0005 0295 0358 .0619 0810 0965 .1338 0014 0046 .0073 0107 0154 0197 0244 1114 1667 1997 3153 3560 .0021 2764 0451 2361 3966 4372 5200 4744 0.0000 Wing X/C \mathbf{c} 450 12 ~ 8 10 11 н Theoretical .0081 .0550 0143 0165 0258 0309 .0482 0503 0520 0666 0732 0768 0798 0.000 0184 0367 0420 0454 0511 0584 0624 0694 0817 0832 0847 0859 0869 Y/C 6, Smoothed .0518 0170 0100 0283 0385 0433 0467 .0497. 0538 0608 0652 .0696 0724 0796 0823 0842 0858 0896 .0101 0141 0211 0331 .0571 0761 0873 0886 -0.0000 Upper surface geometry Ordina Measured 0525 .0088 0158 0180 .0198 0326 .0438 .0502 0518 .0575 0609 0649 0719 0756 0792 0820 0839 0856 0873 0898 0131 0385 0544 0887 0.000.0 0691 station, 0029 .0006 .0012 .0018 .0023 .0057 0083 0166 0204 .0242 0267 0293 0312 0474 0810 0277 0380 0969 .0121 .0616 .1227 1534 1832 2066 2296 2549 0.0000 2830 3138 Wing X/C 321 25 9 3 н 1

TABLE 2.- Concluded.

,

IWing station, X/COrdinates, Y/CMing station,Ordinates, Y/C30 0.3476 0.0905 0.0975 30 0.5534 0.0614 -0.0614 -0.0602 31 3377 0.9975 0.0875 30 0.5534 -0.0614 -0.0602 -0.0613 31 $.3837$ $.0904$ 0905 0.0975 30 0.5534 -0.0614 -0.0602 32 $.4731$ $.0899$ $.0901$ 0875 32 $.6636$ 0202 0201 33 $.4731$ $.08972$ $.08812$ $.08812$ 33 $.7223$ -0.0281 -0.0232 34 $.5160$ $.0844$ $.0874$ 32 $.7223$ -0.0281 -0.0261 35 $.5616$ $.0844$ $.0874$ 33 $.7223$ -0.0281 -0.0261 36 $.5995$ $.08442$ 33 $.7752$ 0113 0123 37 $.5616$ $.0844$ $.0827$ $.0842$ 33 $.7752$ 0113 38 $.5744$ $.0789$ $.0749$ $.0743$ $.0743$ $.0743$ $.0025$ 39 $.7752$ $.0123$ 0123 0123 0224 39 $.7752$ $.0123$ $.0163$ $.0025$ $.0025$ 39 $.7752$ $.0123$ $.0163$ $.0023$ $.0023$ 30 $.7926$ $.0749$ $.0743$ $.0576$ $.0222$ 0003 41 $.7705$ $.0202$ $.0023$ $.0023$ $.0023$ <th></th> <th>Uppe</th> <th>r surface g</th> <th>eometry</th> <th></th> <th></th> <th>Lowe</th> <th>r surface g</th> <th>eometry</th> <th></th>		Uppe	r surface g	eometry			Lowe	r surface g	eometry	
X/CMeasuredSmoothedTheoreticalLeasuredSmoothedTheoretical30 0.3476 0.0905 0.0913 0.0875 30 0.5634 -0.0614 -0.0602 31 $.3837$ $.0904$ $.0905$ $.0874$ 32 $.6196$ -0.0614 -0.0602 32 $.47307$ $.09944$ $.0905$ $.0874$ 32 $.7223$ -0.0614 -0.0614 33 $.4731$ $.08994$ $.0901$ $.0874$ 32 $.7223$ -0.0614 -0.0612 34 $.5160$ $.0876$ $.0842$ $.33$ $.7223$ -0.0614 -0.0613 35 $.5616$ $.0876$ $.0842$ $.33$ $.7223$ -0.0213 -0.023 36 $.5516$ $.0844$ $.0827$ $.0812$ $.34$ $.7722$ -0.0113 -0.023 36 $.5616$ $.0844$ $.0827$ $.0812$ $.34$ $.7722$ -0.013 -0.023 37 $.5616$ $.0749$ $.0779$ $.3646$ 0023 0220 0113 36 $.5744$ $.0701$ $.0692$ $.0630$ $.39$ $.7752$ 0113 0115 37 $.5616$ $.0779$ $.0636$ $.0630$ $.0779$ $.0023$ 0025 0023 37 $.5616$ $.0779$ $.0636$ $.0779$ $.0759$ $.0023$ $.0023$ 38 $.6744$ $.0779$ $.0636$ $.0530$ $.0779$ $.0023$ $.0022$ 40 $.7795$ $.0779$	-	Wing	0	rdinates,	Y/C	+	Wing	Ö	rdinates,	Y/C
30 0.3476 0.0905 0.0913 0.0875 30 0.5634 -0.0614 -0.0614 -0.0604 31 $.3837$ $.0904$ $.0905$ $.0905$ $.0905$ $.0377$ 31 $.6196$ 0505 0505 0505 32 $.4731$ $.0892$ $.0904$ $.0905$ $.0874$ 32 $.6636$ 0408 0201 33 $.4731$ $.0892$ $.0904$ $.0901$ $.0874$ 33 $.7223$ 0208 0201 34 $.51160$ $.0876$ $.0861$ 33 $.7723$ 0208 0222 0222 35 $.55165$ $.0846$ $.0782$ $.0842$ 34 $.77566$ 0222 0222 36 $.5995$ $.0806$ $.0749$ $.0779$ 36 $.8040$ 0113 0123 37 $.5395$ $.0749$ $.0743$ 37 $.8396$ 0008 0115 37 $.6331$ $.0762$ $.0749$ $.0743$ 37 $.8396$ 0022 0123 36744 $.0764$ $.07636$ $.0743$ 37 $.8396$ 0008 0003 47 $.7795$ $.0764$ $.0636$ $.0534$ $.0534$ $.0636$ 0002 47 $.7795$ $.0018$ $.0022$ $.0022$ $.0022$ 47 $.7795$ $.0018$ $.0022$ $.0022$ 47 $.9806$ $.0073$ $.0022$ $.0022$ 47 $.9937$ $.0022$ $.0$	-	X/C	Measured	Smoothed	Theoretical	-	scation, X/C	Measured	Smoothed	Theoretical
31 $.3837$ $.0904$ $.0905$ $.03877$ 31 $.6196$ 0505 0505 0505 0505 0501 32 $.4731$ $.0892$ $.0901$ $.0874$ 32 $.6636$ 0408 0408 0411 33 $.4731$ $.0892$ $.09876$ $.0876$ $.0876$ $.0876$ 0220 0220 0221 35 $.55160$ $.0876$ $.0827$ $.0842$ $.33$ $.7723$ 0169 0170 35 $.5595$ $.0844$ $.0827$ $.01812$ 35 $.8040$ 0120 0170 36 $.5995$ $.0844$ $.0789$ $.0749$ $.0749$ $.0773$ 36 $.90169$ 0170 36 $.5744$ $.0701$ $.0692$ $.0749$ $.0743$ 37 $.8396$ 0159 0170 37 $.6331$ $.0762$ $.0749$ $.0743$ 37 $.8396$ 0169 0170 38 $.6744$ $.0701$ $.0692$ $.0630$ 39 $.9129$ 0018 0015 40 $.7792$ $.0749$ $.0749$ $.0743$ 37 $.8396$ 0022 0025 41 $.7705$ $.0749$ $.0743$ $.0018$ $.0018$ $.0018$ $.0022$ 42 $.8806$ $.0637$ $.0022$ $.0022$ $.0022$ $.0022$ 43 $.8040$ $.0018$ $.0018$ $.0022$ $.0022$ 44 $.7705$ $.07458$ $.0576$ $.0576$ $.0022$ <td>R</td> <td>0.3476</td> <td>0.0905</td> <td>0.09.33</td> <td>0.0875</td> <td>30</td> <td>0.5634</td> <td>-0.0614</td> <td>-0.0614</td> <td>-0.0602</td>	R	0.3476	0.0905	0.09.33	0.0875	30	0.5634	-0.0614	-0.0614	-0.0602
32 .4207 .0899 .0901 .0874 32 .6636 0408 0408 0411 33 .4731 .0892 .0886 .0861 33 .7223 0281 0281 0281 34 .5160 .0876 .0861 33 .7223 0261 0220 0223 35 .5616 .0844 .0812 35 .7752 0113 0115 0115 36 .5995 .0806 .0749 .0779 36 .8040 0113 0115 37 .6331 .0762 .0749 .0779 36 .8040 0113 0115 37 .6331 .0762 .0749 .0779 36 .8763 0013 0115 37 .6331 .0762 .0749 .0744 .2722 0013 00115 38 .6744 .0761 .0636 .0630 .9576 .40 .9579 .0022 .0022 40 .7705 .0754 .0616 .06646 .0630 .99129	31	.3837	.0904	.0905	.0877	31	.6196	0505	0505	0501
33 .4731 .0892 .0886 .0861 33 .7223 0281 0281 0283 34 .5160 .0876 .0963 .0842 34 .7506 0220 0220 0223 35 .5616 .0844 .0827 .0842 34 .7506 0220 0220 0220 0220 0223 36 .5995 .0806 .0789 .0779 36 .8040 0113 0113 0115 37 .6331 .0702 .0749 .0743 37 .8396 0113 0115 38 .6744 .0701 .0692 .0686 38 .8763 0013 0113 0115 39 .77096 .0744 .0730 .0730 .0022 .0003 .0022 .0005 40 .77035 .05546 .06466 .0554 .0636 .0554 .0022 .00022 .0022 .00022 41 .77035 .05546 .06444 42 .9579 .00122 .0022 .0022	32	.4207	.0899	1060.	.0874	32	.6636	0408	0408	0411
34 .5160 .0876 .0823 .0842 34 .7506 0220 0220 0222 35 .5616 .0844 .0827 .0812 35 .7752 0113 0113 0113 36 .5995 .0806 .0789 .0779 36 .8040 0113 0113 0113 37 .6331 .0762 .0749 .0743 37 .8396 0113 0113 0113 38 .6744 .0701 .0642 .0749 .0743 37 .8396 0013 0013 0113 0113 0115 39 .6744 .0701 .06630 39 .9129 .0022 0003 0003 40 .7732 .0556 .0554 .0576 40 .9579 .0018 0022 0023 41 .7792 .0556 .0554 .0576 40 .9579 .00022 0022 0022 42 .8040 .0773 .0576 40 .9579 0022 0022	33	.4731	.0892	.0886	.0861	33	.7223	0281	0281	0283
35 .5616 .0844 .0827 .0812 35 .7752 0169 0169 0170 36 .5995 .0806 .0779 36 .8040 0113 0113 0113 37 .6331 .0762 .0749 .0779 36 .8040 0113 0113 0113 38 .6744 .0701 .0692 .0749 .0743 37 .8396 0055 0055 0055 0113 0115 39 .7096 .0701 .0692 .0686 38 .8763 0008 0055 0055 0055 0055 0055 0056 0023 0023 0023 0023 0023 0023 0023 0023 0023 0025 0055 0055 0055 0055 0056 0055 0056 0055 0056 0056 0056 0056 0056 0055 0056 0055 0056 0055 0056 0056 0056 0056 0055 0056 .0023 .00	34	.5160	.0876	.0963	.0842	7	.7506	0220	0220	0222
36 .5995 .0806 .0789 .0779 36 .8040 0113 0113 0113 0115 37 .6331 .0762 .0749 .0743 37 .8396 0113 0113 0115 38 .6744 .0701 .06622 .0749 .0743 37 .8396 0055	35	.5616	.0844	.0827	.0812	35	. 7752	0169	0169	0170
37 .6331 .0762 .0749 .0743 37 .8396 0055 0055 0055 0055 0055 0055 0055 0055 0055 0055 0055 0055 0055 0009 0009 0009 0005 0005 0005 0005 0005 0005 0009 0009 0009 0009 0009 0009 0009 0009 0009 0003 0002 .0018 .0018 .0018 .0022 .0022 .0023 .0022 .0023 .0023 .0023 .0022 .0003 .0023 .0003 .0022 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .0003 .0023 .00033 .0272 .0003	36	. 5995	.0806	.0789	.0779	36	.8040	0113	0113	0115
38 .6744 .0701 .0692 .0686 38 .8763 0008 0008 0008 39 .7096 .0644 .0636 39 .9129 .0018 .0022 .0023 40 .7392 .0584 .0576 40 .9579 .0018 .0022 .0023 40 .7792 .0526 .0576 40 .9579 .0018 .0022 .0023 41 .7705 .0526 .0576 40 .9579 .0022 .0023 41 .7705 .0526 .0576 40 .9579 .0022 .0023 42 .8040 .0756 .0525 .0514 41 .9885 .0005 .0003 47 .8806 .0277 .02290 .0362 .0972 .0003 .0003 45 .9240 .0176 .0188 .0172 .0082 .0003 .0040 46 .9637 .0042 .0018 .0012 .0010 .0022 .0003 47 .9831 .0042 .0012<	37	.6331	.0762	.0749	.0743	37	.8396	0055	0055	0056
39 .7096 .0644 .0636 .0630 39 .9129 .0018 .0028 40 .7392 .0576 40 .9579 .0022 .0022 .0023 41 .7705 .0526 .0576 40 .9579 .0022 .0022 .0023 41 .7705 .0526 .0576 40 .9579 .0022 .0023 .0023 41 .7705 .0526 .0576 40 .9579 .0022 .0023 .0023 47 .8040 .0454 .0514 41 .9885 .00022 .0003 .0023 .0023 .0003 43 .8407 .0370 .0379 .0362 .0362 .0002 .0002 .0003 .0003 44 .8806 .0277 .0290 .0272 .0022 .0003 .0014 .0172 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0014 .0040 .0937 .00103 .0012 .0003 .0003 .0014 .0014 .00103 .00103 <td>38</td> <td>.6744</td> <td>.0701</td> <td>.0692</td> <td>.0686</td> <td>38</td> <td>.8763</td> <td>0008</td> <td>0008</td> <td>0009</td>	38	.6744	.0701	.0692	.0686	38	.8763	0008	0008	0009
40 .7392 .0590 .0584 .0576 40 .9579 .0022 .0023 41 .7705 .0526 .0525 .0514 41 .9885 .0022 .0023 41 .7705 .0526 .0525 .0514 41 .9885 .0005 .0005 47 .8040 .0454 .0458 .0444 42 .9972 0002 0005 43 .8407 .0370 .0379 .0362 .0362 .0005 0003 44 .8806 .0277 .0290 .0272 .0002 0002 0003 45 .9240 .0176 .0188 .0172 .0982 0002 0003 46 .9637 .00093 .0082 .0082 .00040 .0172 .0012 .0003 47 .9831 .0047 .0010 .0010 .0010 .0010 .0010 .0010	39	. 7096	.0644	.0636	.0630	39	.9129	.0018	.0018	.0020
41 .7705 .0526 .0525 .0514 41 .9885 .0005 .0005 4 ⁺ .8040 .0454 .0458 .0444 42 .9972 0002 0003 4 ⁺ .8407 .0379 .0362 .0362 .0362 0002 0003 44 .8806 .0277 .0362 .0362 .0002 0002 0003 45 .9240 .0176 .0188 .0172 .0290 .0272 .0003 45 .9240 .0176 .0188 .0172 .0082 .0003 .0003 46 .9637 .00093 .0082 .0082 .0010 .0240 .0172 47 .9831 .0047 .0010 .0012 .0010 .0010 .0010	40	. 7392	.0590	.0584	.0576	40	.9579	.0022	.0022	.0023
4 ⁷ .8040 .0454 .0458 .0444 42 .9972 0002 0002 43 .8407 .0370 .0379 .0362 .0362 0002 0002 0003 44 .8806 .0277 .0290 .0272 .0272 .0272 0003 45 .9240 .0176 .0172 .0272 .0082 .0172 46 .9637 .0085 .0082 .0082 .0082 .0040 47 .9831 .00042 .0010 .0012 .0010 .0010	41	. 7705	.0526	.0525	.0514	41	. 9885	.0005	.0005	.0006
43 .8407 .0370 .0379 .0362 44 .8806 .0277 .0290 .0272 45 .9240 .0176 .0172 .0272 45 .9240 .0176 .0172 .0272 45 .9240 .0176 .0172 .0272 45 .9637 .0085 .0083 .0082 47 .9831 .0042 .0040 .0010 48 .9977 .0009 .0012 .0010	4,	.8040	.0454	.0458	.0444	42	.9972	0002	0002	0003
44 .8806 .0277 .0290 .0272 45 .9240 .0176 .0188 .0172 46 .9637 .0085 .0082 .0082 47 .9831 .0042 .0047 .0040 48 .9977 .0009 .0012 .0010	43	.8407	.0370	.0379	.0362					
45 .9240 .0176 .0188 .0172 46 .9637 .0085 .0082 .0082 47 .9831 .0042 .0047 .0040 48 .9977 .0009 .0010 .0010	44	.8806	.0277	.0290	.0272					
46 .9637 .0085 .0083 .0082 47 .9831 .0042 .0047 .0040 48 .9977 .0009 .0012 .0010	45	.9240	.0176	.0188	.0172					
47 .9831 .0042 .0047 .0040 48 .9977 .0009 .0012 .0010	46	.9637	.0085	.0093	.0082					
48 .9977 .0009 .0012 .0010	47	.9831	.0042	.0047	.0040					
	48	7266.	.000	.0012	.0010					

....

*. *

ş

۔ بر

C = 0.500 m

in.)			X/C		0.034	.054	.094	.141	.200	.243	.293	.341	. 394	.441	.490	.537	.582	.631	.678	.733	.781	.831	.888	. 923
(19.685		r surface	X, in.		0.669	1.064	1.854	2.777	3.942	4.775	5.758	6.716	7.755	8.673	9.637	10.574	11.460	12.421	L3.345	14.435	15.370	16.354	17.489	18.114
	rifices	Lowe	X, cm		1.699	2.956	4.709	7.054	10.013	12.128	14.625	17.059	19.698	22.029	24.478	26.858	29.108	31.549	33.896	36.665	39.040	41.539	44.422	46.136
	bynamic o		X/C	0	.033	.057	160.	.140	.208	.243	.294	.339	.402	.440	.488	.538	.584	.633	.682	.733	.781	.829	.872	.941
	н	r surface	X, in.	0	.653	1.030	1.782	2.762	4.105	4.792	5.778	6.672	7.910	8.652	9.602	10.583	11.498	12.454	13.416	14.438	15.375	16.324	17.170	18.520
		Uppe	X, cm	0	1.659	2.616	4.526	7.015	10.427	12.172	14.676	16.947	20.091	21.796	24.389	26.881	29.205	31.633	34.077	36.672	39.052	41.463	43.612	47.041
			x/c		0.032	.053	.093	.142	.199	.244	.293	.341	. 393	.440	.490	.537	.583	.625	.679	.734	.789	.832	.886	. 941
		r surface	X, in.		0.632	1.048	1.824	2.796	3.918	4.808	5.777	6.703	7.732	8.666	9.649	10.574	11.486	12.296	13.370	14.449	15.525	16.380	17.432	18.522
	rifices	Lowe	Х, сш		1.605	2.662	4.633	7.102	9.952	12.212	14.674	17.026	19.639	22.012	24.508	26.858	29.174	31.232	33.960	36.700	39.434	41.605	44.277	47.046
	Static o		X/C	0	.030	.052	.091	.142	.211	.243	.292	.341	.399	.440	.487	.537	.585	.634	.682	. 733	. 783	.827	.874	. 924
		r surface	X, in.	0	.585	1.023	1.794	2.804	4.147	4.776	5.750	6.711	7.859	8.669	9.592	10.566	11.511	12.490	13.424	14.437	15.407	16.289	17.205	18.185
		Uppe	X, cm	0	1.486	2.598	4.557	7.122	10.533	12.131	14.605	17.046	19.962	22.019	24.364	26.838	29.238	31.725	34.097	36.670	39.134	41.374	43.701	46.190

.

,

. ;

.

• • •

,

•

. 2

* .

. .

, ,

.

TABLE 3.- NACA 64A010 AIRFOIL SECTION: ORIFICE LOCATIONS

•

.......

1

23

**

. ...

TABLE 4.- NLR 7301 AIRFOIL SECTION: ORIFICE LOCATIONS

															_							
8		x/c	0.016	.043	.067	.092	.117	.142	.164	.191	.245	. 294	.319	. 343	.366	. 393	.424	.448	.470	.496	.521	.547
lc orifice	er surface	X, in.	0.310	.845	1.314	1.805	2.300	2.804	3.239	3.771	4.821	5.784	6.279	6.765	7.218	7.745	8.362	8.824	9.258	9.785	10.264	10.786
Dynami	Uppe	X, cm	0.787	2.146	3.338	4.585	5.842	7.122	8.227	9.578	12.245	14.691	15.949	17.183	18.333	19.672	21.239	22.413	23.515	24.854	26.070	27.396
	a	x/c	0.033	.053	.106	.209	.309	.381	.460	.532	.614	.684	.779	.874	_							
58	er surface	X, in.	0.658	1.043	2.083	4.128	6.087	7.501	9.067	10.489	12.095	13.485	15.360	17.225								
orifices	Love	Х, сш	1.671	2.649	5.291	10.485	15.461	19.052	23.030	26.642	30.71	34.25.	39.014	43.752								
Static (x/c	0.023	.045	.070	.094	.122	.147	.168	.195	.249	.297	.321	. 348	.369	. 396	.420	.450	.473	.499	.524	.550
Sté	er surface	X, in.	0.457	. 893	1.371	1.854	2.410	2.898	3.303	3.850	4.900	5.857	6.334	6.853	7.268	7.804	8.280	8.864	9.330	9.834	10.320	10.843
	Npp€	X, cm	1.161	2.268	3.482	4.709	6.121	7.361	8.390	9.729	12.446	14.877	16.088	17.407	18.461	19.822	21.031	22.514	23.698	24.978	26.213	27.541

•

·· •

•

TABLE 4.- Concluded.

		Static (orifices			Дупаш	ic orifice	œ
Uppt	er surface	-	Lơ	ver surface	0)	ŋppı	er surface	
X, cm	X, in.	X/C	Х, ст	X, in.	X/C	Х, сп	X, in.	X/C
28.931 30.020 31.242 32.657 35.037 37.473 39.883 42.156 45.750	11.390 11.819 12.300 12.857 13.794 14.753 14.753 15.702 16.597 16.597	0.578 .600 .624 .652 .749 .749 .749 .914				28.478 29.764 30.937 32.385 34.897 37.338 37.338 37.338 42.080 42.080	11.212 11.718 12.180 12.750 12.750 13.739 14.700 14.700 16.567 16.567 18.054	0.569 595 .595 .7697 .746 .746 .746 .746 .746 .746 .7496 .7496 .7496 .7496

2

.

Ş

. . . .

.

.

•

.

,

Parameter	Symbol	Range of values
	Stati	c quantities
Airfoil geometry Free-stream Mach number Mean angle of attack, deg Reynolds number	M _{es} ^O na Re	NACA 64A010, NLR 7301 0.45, 0.50, 0.65, 0.70, 0.75, 0.80, 0.85 0, 0.37, 0.57, 2.5, 4 2.5×10 ⁶ to 12.6×10 ⁶ , depending on M _w
	Dynam	ic quantities
Motion mode Pitching axis location Pitching amplitude, deg Plunging amplitude, cm Reduced frequency	a h k	Pitching, plunging 0.25C, 0.40C, 0.50C ±0.25, ±0.50, ±1, ±2 ±1 0.025, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

TABLE 5.- RANGE OF PARAMETERS USED IN TEST PROGRAM

4

1

*

••

TABLE 6.- TEST PROGRAM ARRANGED IN ASCENDING ORDER

¥	0.048 .200 .200 .200 .249 .151 .151 .151 .200 .201 .201 .201 .201 .201 .201 .20
f, Hz	20.88 20.88 20.88 20.03
Motion	Plunging0.35 cm(0.137 in.)Pitching0.94 deg about X/C = 0.236Pitching.95 deg about X/C = .512Pitching.96 deg about X/C = .233Pitching.96 deg about X/C = .233Pitching.97 deg about X/C = .233Pitching.97 deg about X/C = .234Pitching1.01 deg about X/C = .234Pitching1.01 deg about X/C = .233Pitching1.945 deg about X/C = .234Pitching1.95 deg about X/C = .235Pitching1.45 deg about X/C = .235Pitching1.27 deg about X/C = .235Pitching.95 deg about X/C = .235Pitching.95 deg about X/C = .237Pitching.96 deg about X/C = .237Pitching.97 deg about X/C = .237Pitching.98 cm (.349 in.)Pitching.97 deg about X/C = .237Pitching.97 deg about X/C = .237Pitching.97 deg about X/C = .237Pitching.97 deg about X/C = .257Pitching.97 deg about X/C = .257Pitching.92 deg about X/C = .257Pitching
Re×10 ⁻⁶	2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52
um, deg	
×8	0.489 .489 .489 .489 .490 .490 .490 .490 .491 .497 .497 .497 .497 .497 .497 .502 .497 .497 .497 .497 .497 .497 .502 .497
Airfoil	NACA 64A010
IC	38388888888888888888888888888888888888

. .-- •-

. . . .

. .

....

4

t

.

: 1

1. A. . . .

••

TABLE 6.- Continued.

-

	_																											_	_				
k	0.200	.200	.200	.251	.251	.151	.151	.101	.050	.050	101.	.201	.201	.101	.201	.101	.201	.025	.051	.101	.151	.202	.247	. 303	.252	.202	.101	.051	.025	.201	.201	.101	.201
f, Hz	21.5	21.5	21.5	26.9	26.9	16.2	16.2	10.8	5.4	5.4	10.8	27.8	32.0	17.1	34.2	17.1	34.2	4.2	8.6	17.2	25.7	34.4	42.0	51.5	42.9	34.4	17.2	8.6	4.3	34.3	34.3	17.2	34.3
Motion	Pitching 2.13 deg about X/C = 0.503	Pitching 1.06 deg about X/C = .506	Plunging 1.01 cm (.399 in.)	Pitching 1.00 deg about X/C = .252	Pitching 1.07 deg about X/C = .506	Pitching 1.00 deg about X/C = .250	Plunging 1.01 cm (.396 in.)	Plunging 1.02 cm (.401 in.)	Plunging 1.03 cm (.405 in.)	Pitching 1.02 deg about X/C = .248	Pitching 2.04 deg about X/C = .245	Pitching .97 deg about X/C = .249	Fitching 1.01 deg about X/C = .248	Pitching .30 deg about X/C = .202	Pitching .25 deg about X/C = .234	Pitching .51 deg about X/C = .247	Pitching .50 deg about X/C = .248	Pitching 1.03 deg about X/C = .249	Pitching 1.02 deg about X/C = .246	Pitching 1.02 deg about X/C = .248	Pitching 1.01 deg about X/C = .254	Pitching 1.01 deg about X/C = .248	Pitching 1.02 deg about X/C = .248	Pitching deg about X/C = .252	Pitching 1.08 deg about X/C = .502	Pitching 1.09 deg about X/C = .500	Pitching 1.08 deg about X/C = .502	Pitching 1.09 deg about X/C = .501	Pitching 1.12 deg about X/C = .499	Pitching 1.95 deg about X/C = .471	Pitching 1.94 deg about X/C = .231	Pitching 2.00 deg about X/C = .239	Plunging 1.01 cm (.396 in.)
Re×10 ⁻⁶	9.89	9.89	9.89	9.89	9.89	9.89	9.89	9.89	9.89	9.89	9.89	11.63	12.31	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.56	12.40	12.40	12.40	12.40
άm, deg	-0.13	13	13	13	13	13	13	13	13	13	13	22	22	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	08	08	08	08
×8	0.499	.499	. 499	. 499	.499	.499	.499	.499	.499	. 499	.499	.648	. 744	. 796	. 796	. 796	. 796	. 796	. 796	. 796	. 796	. 796	. 796	. 796	. 796	.796	. 796	•796	.796	. 797	. 797.	767.	.797
Airfoil	NACA 64A010	_																															•
DI	34	<u></u> сс	36	37	38	60	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66

:

.

~ .

•
ъ
ã
=
- F
÷
C
ñ
~
0
1
S.
-
ц.
_
рд
-

7	0.151	.050	.025	.202	.202	.149	.030	.049	.049	.198	.059	.102	.205	.103	.203	.202	.203	.026	.051	.102	.153	.204	.255	. 306	.205	.205	.256	.102	.215	.203	.199	.198
f, Hz	25.8 17.4	8.6	4.3	36.4	36.5	25.1	5.0	8.3	8.3	33.3	10.0	17.3	34.7	17.4	34.3	34.2	34.9	4.4	8°8	17.5	26.3	35.1	43.9	52.7	35.2	35.2	44.0	17.6	35.2	28.8	22.2	22.0
Motion	Plunging 1.02 mm (0.401 in.) Plunging 1.02 cm (.400 in.)	Plunging 1.02 cm (.400 in.)	Plunging 1.04 cm (.409 in.)	itching 1.01 deg about X/C = .248	itching 1.01 deg about X/C = .247	itching 1.01 deg about X/C = .247	Plunging .44 cm (.173 in.)	itching 1.02 deg about X/C = .248	itching 2.03 deg about X/C = .248	itching 2.00 deg about X/C = .248	itching .64 deg about X/C = .328	itching .25 deg about X/C = .232	itching .25 deg about X/C = .229	itching .51 deg about X/C = .244	itching 1.01 deg about X/C = .247	itching 1.02 deg about X/C = .248	itching .51 deg about X/C = .234	itching 1.04 deg about X/C = .246	itching 1.03 deg about X/C = .246	itching 1.02 deg about X/C = .248	itching 1.01 deg about X/C = .247	itching 1.01 deg about X/C = .249	itching 1.01 deg about X/C = .248	it ching 1.00 deg about X/C = .248	itching 1.08 deg about X/C = .499	Plunging .84 cm (.330 in.)	itching 1.08 deg about X/C = .501	<pre>itching 2.00 deg about X/C = .245</pre>	itching 1.02 deg about X/C = .246	<pre>itching 1.01 deg about X/C = .247</pre>	itching 1.02 deg about X/C = .249	<pre>[tching 1.09 deg about X/C = .499</pre>
Re×10 ⁻⁶	12.40 12.40	12.40	12.40	12.45 F	12.43 F	3.34 I	3.34	3.34 F	3.34 I	3.34 F	12.40 F	12.01 F	12.01 F	12.01 F	6.15 F	6.18 F	11.88 F	11.88 F	11.88 F	11.88 F	11.88 F	11.88 F	11.88 F	11.83 P	11.88 P	11.88	11.88 F	11.88 F	11.22 P	10.60 P	10.20 P	9.45 P
ав, deg	-0. 38 0. 38 08	08	08	00	22	- 00	- 00	- 00	°	8.	.08	4.00	4.00	4.00	3.93	4.01	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.03	3.99	4.00	3.99
× ⁸	0.797	797.	. 797	.842	.842	.805	.805	.805	. 805	. 505	. 794	. 782	. 782	. 782	. 792	. 793	.789	. 789	. 789	. 789	. 789	.789	. 789	. 789	. 789	.789	. 789	. 789	. 741	.642	.504	.506
Airfoil	NACA 64A010																															•
Id	67 68	69	70		72	73	74	75	76	77	78	62	80	81	82	8	84	85	86	87	88	68	06	61	92	63	64	95	96	67	98	66

÷

,

ł

					·															~~~~			_	-									
*	0.198	.247	.247	.203	.199	.199	.199	.248	.203	.197	.201	.201	.252	.201	.202	.028	.055	.110	.221	.331	.055	.221	.055	.221	.025	.050	.200	.050	.200	. 050	.200	.025	.050
f, Hz	22.0	27.5	27.5	35.0	21.6	21.6	21.6	26.9	27.6	31.0	33.5	33.5	42.0	35.5	36.3	2.7	5.4	10.7	21.5	32.2	5.4	21.5	5.4	21.5	3.7	7.5	29.9	7.5	29.9	7.5	29.9	4.0	8.0
	_	. 302	.502	.243	.245	.499	~	.502	.250	.247	.500	~	.502	.248	.248	.394	.404	.400	. 391	. 394	. 384	. 389	. 393	.403	. 394	.401	.402	. 397	. 398	.401	. 399	.401	.401
	97 In.	X/C =	X/C =	X/C =	X/C =	X/C =	01 in.	X/C =	X/C =	X/C =	×/C ≖	98 In.	X/C =	X/C =	X/C =	≍)/X	x/c =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =	X/C =				
-	ш (0·3	about	about	about	about	about	7.) п;	about	about	about	about	с.) п.	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about	about
Motio	1.01	09 deg	14 deg	01 deg	01 deg)9 deg	1.02 0	Db deg	02 deg	D2 deg	J9 deg	1.01	38 deg	01 deg	01 deg	52 deg	50 deg	48 deg	49 deg	49 deg	04 deg	deg	deg	00 deg	52 deg	50 deg	49 deg	01 deg	00 deg	02 deg	00 deg	51 deg	50 deg
	unging	ing 1.(Ing 2	Ing 2.(ing 1.(ing 1.(unging	ing l.(ing 1.0	ing 1.(ing 1.(unging	Ing 1.(ing 1.(ing 1.(ing .	ing 1.(ing 1.	fng 2.	ing 2.(lng.	ing	ing .	ing l.	ing 1.6	ing 2.(ing 2.	ing .	ing .				
	PL	Pitch	Pitch	Pitch	Pitch	Pitch	P1.	Pitch	Pitch	Pitch	P1tch:	Plu	Pitch	Pitch	Pitch	Pftch	Pitch	Pitch	Pitch:	Pitch	Pitch:	Pitch	Pitch	Pitch	Pitch.	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch	Pitch
Re×10 ⁻⁶	9.45	9.45	9.45	11.72	4.94	4.94	4.94	4.94	5.92	6.36	6.30	6.50	6.50	6.59	12.39	4.47	4.47	4.47	4.47	4.47	4.47	4.47	4.47	4.47	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.21	6.21
άm, deg	3.99	3.99	3.99	4.00	4.00	4.00	4.00	4.00	3.78	3.89	4.01	4.01	4.01	3.89	3.79	.57	.57	57	.57	.57	.57	.57	.57	.57	.58	.58	.58	.58	.58	.58	.58	.37	.37
×8	0.506	.506	.506	. 790	.503	. 503	.503	. 503	.642	.747	. 797	. 797	797.	.848	.840	.453	.453	.453	.453	.453	.453	.453	.453	.453	.708	. 708	. 708	. 708	. 708	.708	.708	. 752	.752
foil	4A010															7301																	-
Airi	NACA 6															NLR	-																-
DI	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	1.15	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132

٠,

TABLE 6.- Continued.

б., ња - П 30

.

20 **m** 2

×	0.100	.300	.050	.200	.050	.200	.050	.199	.050	.200	.050	.025	.100	.150	.201	.301	.050	.200	.050	.200	.050	.200	.025	.050	660.	.199	.298	.050	651.	.050	1 99
f, Hz	16.0 32 0	48.0	8.0	32.0	8.0	32.0	8.5	34.0	8.7	35.0	8.2	4.1	16.5	24.7	33.0	49.5	8.2	32.8	8.2	32.8	8.2	32.8	3.9	7.7	15.4	30.8	46.2	7.7	30.8	7.7	30.8
Mot ion	Pitching 0.50 deg about X/C = 0.402 Pitching 49 deg about X/C = 403	Pitching .50 deg about X/C = .403	Pitching 1.01 deg about X/C = .398	Pitching 1.00 deg about X/C = .397	Pitching 2.02 deg about X/C = .400	Pitching 2.01 deg about X/C = .399	Pitching .50 deg about X/C = .402	Pitching .50 deg about X/C = .407	Pitching .49 deg about X/C = .404	Pitching .49 deg about X/C = .398	Pitching .50 deg about X/C = .403	Pitching .51 deg about X/C = .399	Pitching .49 deg about X/C = .400	Pitching .49 deg about X/C = .401	Pitching .50 deg about X/C = .403	Pitching .50 deg about X/C = .400	Pitching 1.00 deg about X/C = .398	Pitching 1.00 deg about X/C = .400	Pitching 2.02 deg about X/C = .399	Pitching 2.00 deg about X/C = .402	Plunging 1.00 cm (.395 in.)	Plunging .98 cm (.386 in.)	Pitching .51 deg about X/C = .400	Pitching .50 deg about X/C = .402	Pitching .50 deg about X/C = .399	Pitching .49 deg about X/C = .401	Pitching .49 deg about $X/C = .404$	Pitching 1.01 deg about X/C = .398	Pitching 1.00 deg about $X/C = .398$	Pitching 2.01 deg about X/C = .401	Pitching 2.00 deg about X/C = .402
Re×10 ⁻⁶	6.21 6.21	6.21	6.21	6.21	6.21	6.21	6.26	6.26	11.78	11.78	11.48	11.48	11.48	11.48	11.48	11.48	11.48	11.48	11.48	11.48	11.48	11.48	11.22	11.22	11.22	11.22	11.22	11.22	11.22	11.22	11.22
αn, deg	C.37	.37	.37	.37	.37	.37	.36	.36	.36	.36	.37	.37	.37	.37	.37	.37	.37	.37	.37	.37	.37	.37	.59	. 59	. 59	.59	.59	.59	.59	.59	.59
Σ ⁸	0.752	. 752	.752	.752	. 752	. 752	.808	.808	.807	.807	.751	. 751	.751	.751	.751	.751	.751	.751	.751	.751	.751	.751	. 706	. 706	. 706	. 706	. 706	. 706	. 706	. 706	. 706
Airfoil	NLR 7301 A																														
DI	133 134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164

.nued.
Conti
- • 9
TA BLE

.

31
Continued.
9
TABLE

k	0.199	.025	.049	660.	.198	.297	.049	.198	.049	.198	.049	.198	.049	.197	.049	.197	.049	.197	.050	.197	.050	.197	.050	.197	.050	.200	.050	.200	.050	.050	.198	.050	.201
f, Hz	30.8	2.8	5.5	11.0	22.0	33.0	5.5	22.0	5.5	22.0	5.5	22.0	7.4	29.7	7.4	29.7	7.4	29.7	5.4	21.4	5.4	21.4	5.4	21.4	7.8	31.4	7.8	31.4	7.8	8.4	33.4	7.5	30.2
Motion	Plunging 1.00 cm (0.392 in.)	Pitching .53 deg about X/C = .396	Pitching .51 deg about X/C = .401	Pitching .50 deg about X/C = .403	Pitching .50 deg about X/C = .404	Pitching 50 deg about X/C = .404	Pitching 1.02 deg about X/C = .399	Pitching 1.01 deg about X/C = .399	Pitching 2.04 deg about X/C = .400	Pitching 2.01 deg about X/C = .402	Plunging 1.01 cm (.396 in.)	Plunging .99 cm (.389 in.)	Pitching .50 deg about X/C = .403	Pitching .49 deg about X/C = .403	Pitching 2.02 deg about X/C = .402	Pitching 2.00 deg about X/C = .402	Plunging 1.00 cm (.394 in.)	Plunging .98 cm (.388 in.)	Pitching .50 deg about X/C = .402	Pitching .50 deg about X/C = .405	Pitching 2.03 deg about X/C = .400	Pitching 2.00 deg about X/C = .401	Plunging 1.01 cm (.396 in.)	Plunging .99 cm (.389 in.)	Pitching .50 deg about X/C = .403	Pitching .50 deg about X/C = .401	Pitching 2.02 deg about X/C = .401	Pitching 2.00 deg about X/C = .401	Plunging 1.00 cm (.394 in.)	Pitching .50 deg about $X/C = .403$	Pitching .50 deg about X/C = .404	Pitching .49 deg about $X/C = .406$	Pitching .49 deg about X/C = .405
Re×10 ⁻⁶	11.22	9.34	9.34	9.34	9.34	9.34	9.34	9.34	9.34	9.34	9.34	9.34	3.09	3.09	3.09	3.09	3.09	3.09	2.54	2.54	2.54	2.54	2.54	2.54	3.25	3.25	3.25	3.25	3.25	3.29	3.29	11.80	11.80
dez	0.59	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.58	.37	.37	.37	.37	.37	.35	.35	2.53	2.53
W ⁸	0.706	. 505	. 505	.505	.505	.505	.505	.505	.505	.505	.505	. 505	.712	.712	.712	.712	.712	.712	.508	.508	.508	.508	.508	.508	. 752	.752	.752	.752	.752	.812	.812	. 700	. 700
Airfoil	NLR 7301																												-				•
DI	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	. 184	185	186	187	188	189	190	191	192	193	194	195	196	197	198

...

1.00

TABLE 6.- Concluded.

;

Ŋ	Airfoil	Σ ⁸	deg.	Re×10 ⁻⁶	Motion	f, Hz	×
199	NLR 7301	0.700	2.53	11.80	Pitching 1.01 deg about $X/C = 0.398$	7.5	0.050
200		. 700	2.53	11.80	Pitching 1.00 deg about X/C = .399	30.2	.201
201		. 700	2.53	11.80	Pitching 1.31 deg about X/C = .403	7.5	.050
202		.700	2.54	11.69	Plunging 1.00 cm (.395 in.)	7.5	.050
203		. 700	2.54	11.69	Plunging .86 cm (.339 in.)	30.2	.201
204		.710	2.53	3.15	Pitching .50 deg about X/C = .403	7.4	.050
205		.710	2.53	3.15	Pitching .50 deg about X/C = .403	29.5	.199
206		.710	2.53	3.15	Pitching 1.01 deg about X/C = .400	7.4	.050
207		.710	2.53	3.15	Pitching 1.00 deg about X/C = .399	29.5	.199
208		.710	2.53	3.15	Plunging 1.01 cm (.398 in.)	7.4	.050
209	•	.710	2.53	3.15	Plunging .87 cm (.341 in.)	29.5	.199

ŭ t

;

- - -

. :,

.

. . . .

· · · · ·

.

_					_																									
	k = 0.30															57												16		
	k = 0.25						37					15				56												90		
	k = 0.20		30	31	7	21	32	11	33	45	46	12	48	50	16	55	64	72	104	98	108	97	109 .	. 96	80	84	82	89	103	113
	k = 0.15	C			9		39					73				54			-		-							88		
	k = 0.10	ng at 0.25	27	28	7		29		77					49		53	65								19	81		87	95	
	k = 0.05	le: Pitchi			80		43	10				75		78		52												86		
	k = 0.025	Mod			6								in Press			51												85		
	tα, deg		±0.25	±.50	±1	1	+1	<u>+</u> 2	• +i	±1	1+1	+1	±.25	±.50	+1	-1 +i	+	+1	+	+1	 +-	+1 +1	+1 +1	F1	±.25	±.50	+ +	+	±2	,
	Re×10 ⁻⁶		10	10	2.5	2	10	2.5	10	11.6	12.3	3.3	12.5	12.5	6.7	12.6	12.4	12.4	4.9	10.2	5.9	10.6	6.4	11.2	12	12	6.2	11.9	11.9	6.6
	deg		0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	4.0	4.0	4.0	4	4	4	4	4	4	4	4	4
	Σ ⁸		0.50	.50	.50	.50	.50	.50	.50	.65	.75	. 80	. 80	.80	. 80	.80	- 80	.85	.50	.50	.65	.65	.75	.75	.80	.80	.80	. 80	.80	.85
·			1	7	ო	4	'n	9	~	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

•

TABLE 7.- TEST PROGRAM ARRANGED ACCORDING TO FREQUENCY SWEEPS: NACA 64A010

<u>مە</u>

-											
	Σ ⁸	αm, deg	Re×10 ⁻⁶	±α, deg	k = 0.025	k = 0.05	k = 0.10	k = 0.15	k = 0.20	k = 0.25	k = 0.30
					ром	e: Pitchi	ng at 0.5C				
29	0.50	0	2.5	1 +					£	5	
30	.50	0	Ś	1 +					22		
31	.50	0	6.)	+1 +					35	38	
32	.50	0	9.6	+2					34		
33	.80	0	3.4	, - +					13		
34	.80	0	6.7	+					17	19	
35	.80	0	12.6	±1	62	61	60		59	58	
36	.80	0	12.4	<u>+</u> 2					63		
37	.50	4	4.9	±1					105	107	-
38	.50	4	9.5	<u>+</u> 1					66	101	
39	.50	4	9.5	<u>±</u> 2						102	<u> </u>
40	. 80	4	6.5	+1					110	112	
41	.80	4	11.9	- - 1					92	94	
]					Ŵ	de: Plung	fing ±1 cm				
42	.50	0	2.5	1					4		
43	.50	0	ŝ	1					23		
44	.50	0	6.9	1		42	41	40	36		
45	.80	0	3.4	1					14		
46	. 80	0	6.7						18		
47	.80	0	12.4	1	70	69	68	67	66		
48	.50	4	4.9	1	•				106		<u> </u>
49	.50	4	9.5	1					100		
20	.80	4	6.5	:					111		
51	.80	4	12						63		

TABLE 7.- Concluded.

35

- مو_ا م

.

ыт,

																		.														_	
	k = 0.35			135	149										119	171								160						<u> </u>			
	k = 0.25																																
	k = 0.20		191	134	148	137	151	193	139	153	196	141	143	185	118	170	121	173	187	123	175	179	126	159	128	162	181	130	164	205	198	207	200
	k = 0.15				147																												
	k = 0.10	ng at 0.4C		133	146										117	169								158									
	k = 0.05	e: Pitchi	190	132	144	136	150	192	138	152	195	140	142	184	116	168	120	172	186	122	174	178	125	157	127	161	180	129	163	204	197	×07	199
	k = 0.025	рощ		131	145									<u> </u>	115	167							124	156									
	±α, deg		±0.50	±.50	±.50	+ +	+ 1	C 7 +1	±2	+2	±.50	±.50	±.50	±.50	±.50	±.50	+1	+ 1	+2	+2	±2	±.50	±.50	±.50	۱	+1	±2	+2	+2		+.5	+	+1
	Re×10 ⁻⁶		3.3	6.2	11.5	6.2	11.5	3.3	6.2	11.5	3.3	6.3	11.7	2.5	4.5	9.3	4.5	9.5	2.5	4.5	9.3	3.1	6.2	11.2	6.2	11.2	3.1	6.2	11.2	3.2	11.8	3.2	11.8
	a_m , deg		0.37	.37	.37	.37	.37	.37	.37	.37	.37	.37	.37	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	.57	2.5	2.5	2.5	2.5
	Σ ⁸		0.75	.75	. 75	.75	.75	. 75	. 75	.75	.80	.80	. 80	.50	.45	.50	.45	.50	.50	.45	.50	.71	.70	.70	. 70	.70	.71	. 70	.70	.70	.70	.70	.70
•			7	2	m	4	Ś	9	~	8	6	10	11	12	13	14	F 2	١٦	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

.

.

,

.

. .

TABLE 8.- TEST PROGRAM ARRANGED ACCORVING TO FREQUENCY SWEEPS: NLR 7301

36

.,

.

~

k = 0.30									
k = 0.25									
k = 0.20			155	189	177	183	166	209	203
k = 0.15									
k = 0.10	ging ±1 cm					_			
k = 0.05	de: Plung	194	1.54	188	176	182	165	208	202
k = 0.025	Mc								
±α, deg		-	ł	1			1		•
Re×10 ⁻⁶		3.3	11.5	2.5	9.3	3.1	11.2	3.2	11.7
deg		0.37	.37	.57	.57	.57	.57	2.5	2.5
×°		5.75	. 75	.50	.50	.71	. 70	.70	.70
						_			

TABLE 8.- Concluded.

متس

37

1

DI	SI	DI	S1	DI	SI	DI	SI	DI	SI
1	1	43	26	٩5	44	127	72	169	78
2	2	44	26	86	44	128	72	170	78
3	3	45	28	87	44	129	72	171	78
4	4	46	29	88	44	130	72	172	78
5	5	47	30	89	44	131	73	173	78
6	5	48	30	90	44	132	73	174	78
7	5	49	30	91	44	133	73	175	78
8	5	50	30	92	44	134	73	176	78
9	5	51	30	93	44	135	73	177	78
10	5	52	30	94	44	136	73	178	79
11	6	53	30	95	44	137	73	179	79
12	13	54	30	96	45	138	73	180	79
13	13	55	30	97	46	139	73	181	79
14	14	56	30	98	47	140	74	182	79
15	14	57	30	99	49	141	74	183	79
16	16	58	30	100	49	142	75	184	80
17	16	59	30	101	49	143	75	185	80
18	16	60	30	102	49	144	76	186	80
19	16	61	30	103	51	145	76	187	80
20	20	62	30	104	53	146	/6	188	80
21	20	63	31	105	53	14/	/0	189	80
22	20	64	31	106	53	148	/0	190	18
23	20	65	31	107	53	149	70	191	16
24	21	66	15	108	59	150	/0	192	81
25	22	6/	31	1109	62	151	70	193	01
20	24	60	31	110	60	152	70	194	02
27	24	09	15		60	123	70	195	04
20	24	70	11	112	63	154	76	107	02
29	24	71	22	112	70	155	70	100	60
21	25	72	34	114	70	157	77	100	0.0
32	20	75	27	116	71	159	11 77	200	83
32	26	74	37	117	71	150	77	200	83
34	26	76	37	118	71	160	77	201	84
35	26	77	37	110	71	161	77	202	84
36	26	78	30	120	71	162	77	204	85
37	26	79	40	121	71	163	77	205	85
38	26	80	40	122	71	164	77	206	85
39	26	81	40	123	71	165	77	207	85
40	26	82	42	124	72	166	77	208	85
41	26	83	43	125	72	167	78	209	85
42	26	84	44	126	72	168	78		
1 1	1	a 🌱	1 7				1		1

TABLE 9.- IDENTIFICATION OF STATIC DATA CORRESPONDING TO EACH DATA SET

38

. . . .

TABLE 10.- STATIC PRESSURES: INTEGRATED VALUES

[6]-(7)	1r (^)	S	(1)(1)	(1)11	3 C	5.1.	1-1 (0)	11 (0)	ป	(1)=1	11 (1)	è
	• .] - \$		652	**()*+	60 J*•	24	195	- "Onb	125.	192	040	
		110.		****	90000	4 U	• • • • •	·035	. 433	143	012	13
	151	2 3 11 *	050			4 7	625° -	.068	.546	-104	900.	
	1.4	9127		****	07	47	• • 435	.075	.510	161	. 11.	
	154	• ت ف		045	+ • 0 c 4	23	-,153	149	.014	+ • 0 # 0	042	00
		1 i c •			#00 * -	0 3	-, 429	.074	505.	••••	515°	
		. 255	077		59	50		.153	.726	121	.024	
		¥35°		050	e e (: : 5	5	242	044	.528	•• - •	065	
_	102	~ 15.	ゼレン・	54J -	400-	č S	5 8 A	017	115.	230		.13
	2 55	• 11 5	7	-012	• • 6:5	53	*~* -	.072	963.	100	6 00 •	,
		P.94 **		4/0	100	. 2	572	.151.	.723	-,123	.027	.15
~	- 112			441.2	000*•		15/	150	. 007	047		00.1
•	444.0	5 00.	9¥0°-	4/0**	80J°-	ų T		154	• [] •		- 047	ĉ.
v		. 625		- 0 H G	• • 0 = 5	57	- 154	661		052	- 054	30.
τ	122	4[j.		÷10	665	т Г	-,180	172	100	05	- 050	00
3	- 1/7		077	240	15	÷.	515	050	565		.002	
r	~ 7 3 • •	. 19 .	152	55 2 -	113	50			- 024		0-7	00
¥					4:0	4			941	- 067		0
r	515	650	141		6:3**	5 4 9	A54	.025	. 153	- 154	+CO	
•	124	5 5	4 8 4 8 -		8-10"-	÷3	4U9 -	- 075		210	064	
-	141.	1 (1 I) *	e • > •	0 * 0 *	033	4	750	-,059	. 491	- 269	6/0° -	
~	31	142.	Ul>	014	5 .0.+	÷5	• • 5A6	547	92:.		-,162	
3		. : 41	052	193	••(1]	7		342	.:34	174		
	130	•1	0 4 5	-005	50000	47		289	.250	224		3.0
c	142	•[]•	# 0 C C =	~=こ・=	203 -	1	358	335	220.	152	155	3.4
•		· · · ·				34	55	345	6 00 °		160	0 j • •
	100.	144.		~~~~	061	10	512	54X	542.	461	205) :) •
-		50.7*	050	050	000 -	5	SOX	377	847.	562"-		2.1
3.	* やや・・	1511.		240	S	52	539	190	4 4 A .	177	002	
	ルジヘ・・	• • - • •	5/ 1	074	555.0	15		• • 0 • •	.534	217	•00•	ă.
3	152.1	* 10 * *	じんつ 。		503.	74		-,37A		249	217	
		.11	e41°-	1 4 1	*~~-	75	•.550	504	.047	228	224	ă
•	531	5 .	~ 7 7	141	t = 0 *	76		235	. 358	198	+ [c " -	
•	- 445	シンコート	135		¥00*	11	145	-,192	. 350		233"-	-
	* 5 * • •	5 û û .		~*~*	~):: ~	7 4	5.64.9	- 105	. 117	149	6 I 0 °	
3	.154	105*-	5400	09	132**	19	626 2	203	. 522	171	(07	
r		\$ 11 J	H 4	~ 4 2 • =	00*	C W	.15	•	. 59.		- 01 -	
	560°°•	. 543	151	~ +	÷1:1*-	Ĩ	4 5 4		. 596	222	014	2
~	こすべ。・	013		61A	1 i i j •	24	14		885	272	224	
	たさこ * *	. 4 4 4					. 172		717		020	
-	142	127	7 4	- , C & 3	100.	34	2.74.5	995	197	- 237	124	Ā
_	220.1	s 2 2 4		120.8	•• 1 + +	î,			.790	- 254	120	
	***	5×5.	リイン・・	1.05			•	•	•	•	•	•

1.

į

ς

1

: .

,

TABLE 11.- NACA 64A010 AIRPOIL: DYNAMIC PRESSURE DATA, INTEGRATED VALUES

منهدا المعلاد

4

. I	È	(1) 4 °	1.	(n) v ,	U	۵ م ا	141	4(1)	11	(1)*	ũ	
	14.34	JA AL	4 4 L	1. AG	7694	1 ~ 4 6	16 34	1- 46	9 Z A L	9441	7434	2 M M E
	121	443.1-	042.	1.154	.541	792.4	110	430	~ I	. 445	22	26×
~		107	2 2 2 4 4		455.5	53	- 562			26.1	-1.155	202 -
-1		8 U / O	2.410		5.540	-1.548	- 577	036	.600	110.	-1.177	÷ 50 • •
7	よさと、	. h 3 P	455.	142	~ * ~ *	7 3	.00	140	500°	-014	100.	210
r	0-3.2-	424.	2.541		0103	-1.254	555	161	101		-1.034	61c
£	-2.915	145.	2.728	107-1	J. 50 W	5 4 5			544.	c20.	-1.229	
2	5	. 174	2.957	4 1 7	A.159	P21.1-	67 5	. 5.8.4		- 040	-1.370	.124
I	- 3. 542	122	1.210	105 -	6.770		- 77A		. 17 %	076	-1.551	153
¢	- 3 . 7 % ~	. 255	5,555		1.997		798	< 3 3	2	800 -	1.420	101
10		404	3.043		A.550			. 554	. 752	- U U P	-1.524	¥60 °
11	-2.7.5		2.341	P 4 2	555.5		5 8		114	7 7	-1.074	- 202
5	*=5.0-	1.344	2.801	-1.122	5.404	-2.471		.057	944.	- 013	-1.711	.019
13	5=2 . 4 =	1.425	7.42V	-1.345	4.757	-3.012	- 199	242.		- 142	-1.613	. 346
71	1-1-1-	. 7 2 3	4 5 4	. 542	- 252		61 A	.215	.00	0.00	140	
15	-20-4-	.977	2.256	- 7 47	4.275	-1.704	- 220	127		.173	-1.115	105
16	+ 5 ° 5 + 5	1.444	2.540	-1.134	4.175	-2.400		24 2	.745		7 M F - 1 -	600°
17	-2°-155		2.247	-).445	4 5 5 7 4	332.54		.160	726	101		242
13			427		959	-1.174	601	76.		10.7.0	075	
19	-1.54	1.134	1.471	320.1	3.424	7	44]	101	.624	.17	-1-040	100
	•	•	•					•		•		
21	ヘサコ・ドー	÷12.	2. 314	- 555	4.741	574	529	158	.540	260 .	-1.069	252
べん	10%	104.	2.254	550	4.434	-1.150	524	040	-15.	0 H U	-1.0.1	120
53	045.*	414.	~ * ~ ~ -	37A			6 00 -	.102	6 00 -		00	.191
54												
5.4												
22	-2.514	554.	12075	4(4	404.4	X 9. 5 · •		C10.	442	5 4	-1.135	940.
82	- 3 - 1 7 -	.574	2.794	- 471	999	- 1 - 547	50/ -	046	0.0	1 7 0 T	-1.159	1207
62	- 9 . 1 4 7	.515	3.015		5.165	45.0	- 7 n s	140.	174.	031	-1 - 374	HS O
30	-2.491	.4.51	25%.4	561	5.445	- 427	. 65°	- 105		105	-1.155	802 -
31	-2.1-	5-5.	2.73H	0 4 N * -	5.541		- 549	- 105	. 525	÷,	-1.155	- 220
32	* ~ 1 ~ ~ ~	. 137	25422	340	5.375	714	- 544	- 113	.570	\$01.	-1.164	- 214
53	~~ ~ ~ ~ ~	. 175	2.122	-,193	5. 5 4 4	544		103	.99.	.104	-1.214	100.1
76	-2.412	.421	2.544	7UA	5.235	-1.329	- 5AA	-,052	.574	.047	-1.152	382°-
35	よいい きょうし	. 592	2.584	447	1	-1.24]	66 6°-	054	115.	• • • •	-1.144	
35	5 T T T T T T T T T T T T T T T T T T T	514.	-,152	045-	-,294	-1.252	007	.154	000-	116	007	.244
37	- 2.21	₩ 4 ¢	2.570	14]	5.144	122	532	216	. 535	402*	-1.047	~~~ -
₹.	-5.450		2.500	~~~-	576.7	5-6-1	225.1	131	. 540	. 1 34	-1.061	265

ì

. .

۰ ۹

. . .

TABLE 11.- Continued.

0.1.	10,	(J) V (11	(0)••	Ũ	۲,۵	Tu,	A(1)	ור,	(1)*	ú	4
	HF AL	SEAL	HEAL	1 MAG	HF AL	I 4 A G	4E41	TRAG	92.41	THAG	16 24	L L L
39	-2.869	1.00	2.462	- 4 50	5-731	208		- 027	0.04		140.10	
C #	660.	. 254	116	572	- 215	625	100	101	-016			
٩) ا	.012	.334	820	165	0.39	- 665	100-	0.00	100 -	- 0 - 7	- 004	
~ 4	615	\$12	.01.	- , 224	.034		- 00		100		.011	ē
	-3.410	. 332	3.014	364	6. h 2 4	- 696	- 7.42	.031	745	- 032	-1.529	
4	-3.155	464.	5.1.5	509	6.340	=1 . no3	710	.019	.700		-1.410	C
ۍ ۲	-2.5.	.588	2.648	703	5.242	162.1-	541	112	545	160	-1.124	
9#	- 2 . 4 1 5	£06°	÷.423	104	484.9	-1.804	105 -	- 055	.536	142	-1.133	
47	-3.709	1-4-1	オンサーズ	-1.716	7.116	-3,530	479.0	.335		210	-1.867	
8	-2.44/	1.154	2.586	-1.453	5.232	-2.611	- 794	.042	.781	- 054	-1.576	
64	-1	1.715	5.577	-1.687	4.795	-3.403	-1.050	. 315	245.	222	-1.844	
20	-2.452	1.218	2.472	-1.333	4.924	-2.551	701	.047	.767			0.
5	-4.577	514.	4,739	755	4.316	-1.370	-1.154	.10.	1.196	- 130	-2.130	2
52	-4.25	1.224	a.3A7	-1.251	A.622	-2.479	-1.056		1.104	104	-2.160	36
53	-3.345	1.717	9.405	-1.670	4.740	-3,367	860	.247	964.	213	-1.758	54.
\$	*4°540	1.423	2.478	-1.422	5.403	-2.845	637	.124	. 4 2 3		-1.460	2
53	F45°2-	1.233	2.504	922.1-	4.847	-2.421	452	. 69.	.759	.03	-1.411	- 02
56	-2.102		2.273	-1.010	a, 375	194.1-	556		141.	.068	-1.297	- 30
57	-5.031	.105	1.604	- ,496		405	560	515	.673	202.	-1.533	9
5	-1.A13	599.	\$16.1	-1.373	3.728	-2,365	- 526	- 054	. 682	- 062	-1-207	20.
6 5	-2.145	1.529	2.249	-1.520	4°392	-5.057	640	.130	.742	- 067	-1.343	• 1 •
90	-3.255	204.1	5.299	-1,529	6.555	-3,/21		.298		- 256	-1.736	5
51		1.360	4.357	-1.549	A.545	-2.704	-1.057	.222	1.107	227	-2.144	
24	-4.520	. 675.	4.727	775	9.247	-1.450	-1,126	.130	1.194		-2.320	.26
64	116.1-	1.735	2.275	-1.405	4.245	-3,140	691	. 215.	.724		-1.19	2
•	-2.142	1.1.43	2.549	-1.039	a . 541	-2.22	664	6 I J .	. 733	.077	-1.596	So
- Cu - Qu	-3.115	1.550	3.025	-1.463	6,141	-3,113	164°-	.294	. 843	183	-1.774	
-0-	. 392	. 522	293	516		836	.016	.185	007	110	.022	
67	· · ·	.351	230	361	- 425	712	100	.101		123	.034	.22
		.179	6	180	110	359	9 00 -	-50.	200.	- 043	¥00°-	è
6-0			UUG	242	025	• • 455	007	250 °	900*	54	015	.16
70	19:**	• 051	4 7	057	\$6u*	108	016	210.	.014	014	- 030	20.
1	-1.497	6 0 6	260.2	- , 995	300°E	20601-	7 5 5	204.	. 887	35.	-1.655	. 7 6
12	ar1 - 1 -	. 719	2.104	ER(. 1-	9.884	-1.602	742	. 251	.922	- 420	-1.614	. 61
13	-2.174	1.573	3.120	-1.443	5.499	-3.056	746	.182	. 907	- 147	-1,655	. 32
 		1 1 4										
		****			512.6	824°2-	-1.205	912.	1.223	225	-2.435	÷.
Ē	12.045		4,205	7 62, [•	900.6	-2.530	-1.267	. 258	1.254	- 250	145.4.	04

ì

.....

Ń

TABLE 11.- Concluded.

-	•		i									
• • •	5	(1) •	1	• • • • •	Ū		10,	, A (1)	1.	A (1)	ũ	٠. ۲
1	9F AL	IMAG	HF AL	IMAG	REAL	SAM1.	REAL	1 MAG	REAL	IMAG	REAL	1 MAG
11 81	-2.641	1 . 30A	2,638	-1,209	5.279	-2.517		.05A	. 5 4 8	024	-1.645	.082
51	-2.407	-1.794	.546	1.994	2.953	3.675	-1-610	975	451	1221		AAC. 5-
9 0	-7.749	.827	5.042	2.436	111.51	1.609	- 3 - 954	2.005	2.337	2.405	195.4-	
14	-1.936	-1.434	.549	1.969	2.444	3,903	-1.522	- 962		1.287		-2.249
82	-4°108	1.800	200.5	1.022	7.099	776	-1.929	1.545	1.030	1.016	-2.954	577
11. 16.	-4.156	1.758	3,110	695.	7.246	763	-1.946	1.541	1.072	1.036	-3.018	506
9 6	-6.404	1.257	4.428	1.360	11.067	.103	-3.366	1.906	2.112	1.778	-5.480	126
5.0	-1.301	357	. 380	. 395	1.681	.751	125	- 214	47.5 -	144	162 -	
9 I E	-1.474	768	.367	20Z	1.545	1.471	166	- 440	182	054		
4 J	-2.542	-1.521	, 904	1.900	3.266	3,321	-1,545	726		1.199	-1-196	-1.927
812	-4.067	-1.007	2.159	2.000	6.724	3.007	-2.477	- 049	. 705	1.704	-3.192	-1-757
6	-5.331	1.637	4.017	1.232	9.349	- 405	-2,553	1.702	1.852	1.402	204 4 4	100
90	-3.005	2.112	3.421	.153	5.424	-1.959		1.751	1.593		-2.453	1.252
- 6	13.24	1.001	3,759	, 245	7.052	-,755	-1.041	1.004	1.671	.691	-2.712	. 313
6 2	-5.022	2.495	3.879	.302	100.8	-2.193	-2,237	2.104	100.1	N90 .	-4.127	1.241
5	195.	3.151	.705	-2,009	.437	-5.159	- 602	1.603	797	626 -	195	2.532
70	-2.592	2.441	5.170	587	5.772	664.61	- 476	1,915	1.573	0.00	-2.049	1.956
95	204°4	-1.053	1.470	1.389	4,163	2442	-1.556	518	.124	.975	-1-640	-1.493
9 6	-4.668	2.943	2.413	.493	7.041	-2.490	-1.706	1.363		567	-2.617	110
16	-4.423	1.451	1.823	196	6.246	-1.647	- 539	- 424	. 470	911.	809	
	-2.979	. 604	2.014	164	4,993	766	510	102	.542	.107	-1.052	- 20G
66	-2,676	.930	1.955	360	4.53)	-1.290	-,513	- 032	. 550	.073	-1.063	105
100	.165	.60.)14	-,386	279	166	011	.110	150	-100	610	.210
101	-2.458	.162	1.954	275	4.615	-1.037	436	140	. 537	.116	- 475	- 257
102	-2.630	.577	2.001	254	4.631	-,635	470	191	. 555	.124	-1,024	- 319
105	-3.965	1.345	3.243	.753	7.208	442	-1.785	1.122	1,359	1.034	-3,144	.00.
104	-3.220	.561	2,222	.026	5.443	535	549	124	593.	.121	-1.132	- 245
501	-3.076	506.	2,059	-, 153	5.135	-1.256	538	060	.554	. 045	-1.095	-108
00	.153	-525	075	334	225	856	006	.097	9 00 * -	087	500°	- 184
107	154.6-	242	2°019	- 241	4.970	-1.024		145	.551	.123	-1.039	273
108	120.0-	4.834	2.0.97	205	11.108	-5.042	- 705	045	.578	.136	-1.284	221
104	244.4-	2,373	2,234	. 559	6.h75	-1.944	-1.649	1.000	-132	. 476	-2.361	.522
110	-4.262	1.928	3.432	1.023	7.694	905	-2.116	1.476	1.204	1.137	-3.320	911
111	-144	1.306	.363	750	e15.	-2,056	.236	194	424	- 279	- 203	1.073
112	-1.921	2.373	5.379	.013	5.300	-2.360	- , 396	1.543	1.300	.470	-1.776	1.074
113	-1.514	.947	3,116	-,856	5 7 7 7 C	-1.843	165	.485	1.461	- 689	-1.751	1.175
114	-1.236	1.236	2.261	-1.304	3.497	-2.540	- 428	. 570	1.067	736	-1.495	1.407

42

and the second second

į.

	TABLE 12.	- NLR	/301 AIR	FOIL:	DYNAMIC PRESSURE DATA,	, INTEGRAT	ED VALI	JES	
0.1.	11,	(n) V (10,	(1)••	n.I.	10,	(0) V .	10,	
	HEAL	1×AG	HEAL	1 MAG		REAL	1 P AG	REAL	IMAG
115	-5,194	. 459	-1.009	090"	162	-2.899	1.607	537	100
116	576°3-	.437	- , 992	.107	163	-4.745	1.271	806	.171
117	145°41	1.150	8A1	.149	164	-2.789	164.1	547	360°
118	- 3 . 6 ! 5	1.123	691	.078	165	- , 0 6 0	.316	095	.050
119	• 3 ° 2 A H	808°	585	107	146	. 112.	.598	-,069	• 1 0 4
120	-4.963	.75.	926	.120	. 167	-3-24	.311	769	.076
121	-3.606	1.094	622	.024	158	- 3 . 3 4 2	064.	- 462	.073
122	-1.446	.200	232	.021	169	-3.067	. 7 6 5	577	.087
123	-3.519	1.128	523	.032	170	-2.444	. / 63	427	.007
124	-4.161	1.306	-1.132	. 313	171	-2.296	164.	-,414	172
125	-5.23	2.135	-,902	.450	172	-3.407	.465	530	.035
126	9.497	4.047	4.776	1.196	173	-2.489	. 747	471	000 -
127	-5, 313	120.1	930	.307	174	-3,308	264.	676	980 °
128	-2.720	1.943	467	.041	175	-2.504	.774	485	.029
129	a9,296	1.701	6 X 6 * *	2 M 5	176	€E0°*+	. 270	- 054	.117
130	-2.873	2.089	588	.140	177	.110	. 437	042	.057
131	-6.403	1.439	-1.952	.374	178	-4.518	1.345	- A08	.179
132	-5,717	2.377	0 F R . I -	.637	179	-2.439	1.642	469	040
133	-3, 433	2.097	-1.235	. 756	181	- 4.905	1.690	883	. 304
134	-2.343	2.821	889	.991	141	-2.717	2.022	- 428	140
135	426	1.745	007	.664	142	.001	- 231	- 045	045
136	-5.346	1.941	-1.850	194.	1.93	244	461	- 026	6 6 0 °
137	-2.280	2.504	470	. 723	1.54	-4.549	. 645	760	.069
138	- 4 . 6 5 4	1.220	-1.603	662°	145	-3.391	1.034	- 562	- 002
139	-7.450	2,495	626 .	.766	185	-4.255	. 590		.0.1
140	412	.151.	. 556	-007	1.47	-3.261	1.003	524	014
141	- 562	• 393	.146	410	1 4 4	052	.228	- 08C	040
142	-1.056	.258	.101	.01 M	189	.007	.601	048	.075
143	.115	[U Q .	. 723	.259	190	-5,626	5.177	-1,922	1.122
114	+5.224	2.070	-1.205	305.	191	-1.450	2,341	610	191.
145	-5.930	1.184	-1.362	671.	192	-4.693	1.434	-1.654	.505.
146	-3.685	2.403	-1.012	.430	193	-1.944	2.351	-,623	. 709
147	-2.504	2.662	817	. 374	194	.072	.299	900.	.117
148	-2.205	2.209	730	.391	195	-2.341	.482	728	.125
149	-1.171	.544	- 379	.375	196	-1.357	. 687	- 344	.279
150	-4.950	1.431	-1.248	.164	197	-3.018	.642	635	.017
151	-2.271	2.433	535	. 450	198	-2.719	1.531	-,769	- 081
152	-1.147	264°	-1.044	.034	199	-3,566	. 695	- 485	016
153	-2.471	2.218	-1.065	. 386	200	-2.516	1.462	702	143
154	.080	.298	\$00	.053	501	-3,138	134	666	218
155	. 340	.435	018	.165	202	052	045	-10	- 014
156	****	. 601	576	.060	202	.087	.274	003	.093
157	-4.545	1.022	• 52A	.067	204	-5.310	.541	-2.071	003
154	- 3.5A6	1.478	430	.031	205	-3.728	2.718	-1.524	506.
159	-2.8.5	1.540	- 476	127	50 R	-4.8.9-	.957	-1.487	.203
		1.722	- 465	145	202	-3.407	2.955	-1.296	1.0.1
161	-4.45	1.242	724	.133		.022	.226	500°	SV0.
					50Z	• 306	.502	107	- 200

IRFOIL: DYNAMIC PRESSURE DATA

-

Figure 1.- General arrangement of oscillating airfoil test apparatus in NASA-Ames 11- by 11-Foot Transonic Wind Tunnel.

. . .

14 A.

ï

-

Figure 4.- Ventilated wall geometry of NASA-Ames 11- by 11-Foot Transonic Wind Tunnel.

Figure 5.- Detail of drag restraint and side strut support.

Figure 6.- Wing end section with dynamic instrumentation leads.

Figure 7.- NACA 64A010 model installati

Figure 8.- NLR 7301 model installation.

ORIGINAL PACE IS

Figure 9.- Sketch of airfoil profiles used in test program.

DATA FLOW

2

The second beauting and the

۲

يرويه المراجع

Figure 10.- Block diagram of the data acquisition scheme for the oscillating airfoil experiment.

:

ì

Figure 11.- Timing diagram for dynamic data acquisition. Upper trace: dynamic data signal, τ, is slight'y greater than one period. Lower trace: trigger for analog-to-digital conversion, T = period, n = 2.

PHYSICAL PRESSURE = Re(Pe^{iωt}) N/m²

MOTION = $Re(Ae^{i\omega t}) deg$

، د 1

Figure 12.- Decomposition of pressure time histories into first harmonic complex amplitudes. (a) actual motion, (b) fundamental frequency component, (c) real and imaginary parts (amplitudes proportional to cosine and sine waves, respectively).

Figure 13.- Continued.

<u>.</u>

Figure 13.- Continued.

57

. . .

, ·

÷

Figure 13.- Continued.

60

the second second

Fif ire 13.- Continued.

Ę

Figure 13.- Continued.

:•

, I

;

ç

j,

Figure 13.- Continued.

ť

Figure 13.- Continued.

v2

. .

69

. . .

the Repair of the second

: :

Č,

76

<u>.</u> ملا

79

-....

: \$

Figure 14.- Numerical integration using trapezoidal rule.

. . .

2 agente

 $\overline{\tau}'$

Figure 15.- Numerical integration using Gauss-Jacobi quadrature.

.

ŀ

ł

~

Figure 16.- Numerical integration using transformed variables and trapezoidal rule.