الله https://ntrs.nasa.gov/search.jsp?R=19800024885 2020-03-21T15:30:18+00:00Z ۲۲۲۰۰۲۰۲۰ ۲/۱۰۰۰ ۲/۰۰۰۲۰

NASA Technical Memorandum 81889

NASA-TM-81889 19800024885

LOADS CALIBRATIONS OF STRAIN GAGE BRIDGES ON THE DAST PROJECT AEROELASTIC RESEARCH WING (ARW-1)

FOR REFERENCE

CLINTON V. ECKSTROM

REAL TO BE TRADE VIOLITICS LOOS

October 1980

LIBRARY COPY

OCT 16 1980

LIBRARY, NASA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

. .

LOADS CALIBRATIONS OF STRAIN GAGE BRIDGES ON THE DAST PROJECT AEROELASTIC RESEARCH WING (ARW-1)

by

Clinton V. Eckstrom

ABSTRACT

This paper presents details of and results from the procedure used to calibrate strain gage bridges for measurement of wing structural loads, i.e., shear (V), bending moment (M), and torque (T), for the DAST project ARW-1 wing which has an aspect ratio of 6.8, a quarter-chord line sweepback angle of 42.24° , and a taper ratio of 0.36. Results are in the form of loads equations and comparison of computed loads vs. actual loads for two simulated flight loading conditions.

INTRODUCTION

The first Aeroelastic Research Wing (ARW-1) undergoing flight testing as part of the Drones for Aerodynamic and Structural Testing (DAST) program is a supercritical wing of shape and planform similar to that of the F-8 supercritical wing airplane (reference 1) but of smaller size as appropriate for the BQM-34F drone aircraft. The primary purpose of this wing (ARW-1) is to evaluate an active control-flutter suppression system. The secondary purpose of the ARW-1 is to evaluate the effects of wing flexibility on aerodynamic loads measurements obtained over a range of Mach number and dynamic pressure flight test conditions. The aerodynamic loads measurements are being obtained in two forms, i.e., directly through chordwise surface pressure measurements and indirectly or in integrated form through determination of the structural loads, shear (V), bending moment (M), and torque (T). The surface pressure measurements are obtained at four spanwise stations on the right wing semi-span. The structural loads, which are derived from strain gage bridge measurements, are obtained at two spanwise stations on the right wing semi-span and at one station on the left wing semi-span.

N80-33393 #

The purpose of this paper is to document the procedures used to obtain the equations which define the relationship between structural loadings, V, M and T, and the strain gage bridge outputs and to provide an evaluation of the accuracy of the equations by comparison of computed vs. actual loads for two simulated flight loading conditions.

SYMBOLS

L _i	ith general load (V, M, or T)
M	bending moment, N-m (inlbs)
Т	torque, N-m (inlbs)
۷	shear, N (1bs)
^β ij	coefficient of jth bridge for ith load equation, load/mV
μ j	output of jth bridge, mV
х _w ,Y _W	axis system oriented perpendicular and parallel to wing 25 percent chord line with origin at vehicle centerline
^۲ W, ۲ _W	left wing axis system perpendicular and parallel to the wing 25 percent chord line with origin at Y _W = 1.118 m (44.0 in.)
^х _{W2} , ^ү W2	right wing axis system perpendicular and parallel to the wing 25 percent chord line with origin at Y_{W} = 1.118 m (44.0 in.)
× _{W3} , Y _{W3}	right wing axis system perpendicular and parallel to the wing 25 percent chord line with origin at Y_{W} = 1.880 m (74.0 in.)

WING AND INSTRUMENTATION

Wing

The ARW-1 is an early type supercritical wing designed for cruise at a high transonic speed (Mach number of 0.98). The airfoil shapes are defined in reference 2, and the wing characteristics are listed in table I. The general arrangement of the BQM-34F drone aircraft with the ARW-1 wing is shown in figure 1 and a photograph of the aircraft and wing during assembly check out is shown in figure 2. The wing structure consists of a wing center section and right and left wing panels with removable leading and trailing edges and tip section as shown in figure 3. The wing center section was machined from a thick aluminum plate in a configuration to provide a high degree of stiffness without consideration of minimum weight. The center section is located on the fuselage at the same position as the standard target drone wing and uses the same attachment bolt locations. The outboard ends of the center section are in a plane normal to the 25-percent chord line of the outer wing panels.

The primary structure of the wing panels, as shown in the photograph of figure 4, consists of a spar at the 25-percent chord line, a spar at the 60-percent chord line, upper and lower stringers at the 42.5-percent chord line, and ribs located perpendicular to the front spar (on a 12-inch spacing). A special tip rib functions as an outboard spar end fitting. The upper and lower fiberglass skins between spars are riveted in place whereas the fiberglass skins for the leading and trailing edge sections, and the tip section are held in place with removable screw fasteners. The wing panels fasten to the center section with two tension bolts at each spar.

The front and rear spars are fabricated of 17-4 PH stainless steel material whereas the stringers, ribs and outboard spar end fitting are fabricated of 7075-T6 aluminum alloy. Fiberglass was selected as the skin material and oriented to give low torsional stiffness as desired for flutter considerations. This was achieved by aligning the fiberglass filaments parallel and perpendicular to the wing front spar so that the torsional stiffness is essentially the stiffness of the binder material (matrix).

Vehicle Assembly

To accomplish the loads calibration of the ARW-1 wing, it was assembled on a new, spare, BQM-34F fuselage. The assembly included the wing gloves which were mounted to the fuselage. The entire assembly was inverted and placed on a special stand as shown in figure 5. The assembly was inverted for the loadings so that the inert masses (shot bags seen hanging from the wing in fig. 5) could conveniently apply forces in the proper direction.

Some negative loadings were also required and these were achieved by means of a cable-pulley arrangement.

Strain Gage Bridges

The wing was equipped with two identical sets of strain gage bridges, some oriented to be primarily responsive to shear loads and others to bending moment loads, at eight locations as shown in figure 6. A total of 32 strain gage bridges were installed. One set of 16 bridges consisting of one shear and bending moment strain gage bridge at each location is monitored during flight testing for loads measurement purposes. Individual gages in the second set of 16 shear and bending moment type strain gage bridges are available for backup use in case of failure of a primary bridge or for use as sensors for monitoring wing flutter. Two additional torsionsensitive strain gage bridges were located inboard on each wing semi-span as sensors for monitoring wing flutter but they are not reported on herein.

The triangular arrangement of the bridges at the inboard station on each wing half gives special consideration to the use of axis systems oriented either parallel and perpendicular to the fuselage center line or parallel and perpendicular to the wing 25-percent chord line (along the front spar); the latter will be referred to as a swept axis system. The bridges at the midwing location on the right wing half are oriented for the swept axis system only. Initially the swept axis system was oriented parallel and perpendicular to the 42.5 percent chord line (midway between the front and rear spar) since it was considered that this would be closer to the wing elastic axis. However, the swept axis was shifted to the 25 percent chord line (along the front spar) when it was found that the torsion load data correlated much better with the strain gage bridge outputs when the 25 percent chord line axis was used as the reference. Although the bridge arrangement at the inboard stations allows use of axis systems parallel and perpendicular to the fuselage centerline , the construction of the wing and the aspect ratio and sweep of the ARW-1 wing make the swept axis system more appropriate for use in following analysis.

Tables II and III identify the various strain gage bridges by assigned number, the mounting structure, the spanwise location, and the bridge type.

Note that on the right wing bridge no's. 1 through 10 constitute a set and that bridges 11 through 20 are an identical set with identical bridges having a numbering difference of 10 (i.e., bridges numbered 1 and 11 are identical as are 2 and 12, etc.). On the left wing the same numbering system was used (i.e., bridges numbered 21 and 31 are identical).

All of the strain gage bridges were subjected to an input or excitation of 10 volts. It should be noted that none of the strain gage bridge circuits had provisions to zero the bridge output for the zero load condition. Therefore, it was necessary to subtract out the zero load bridge output from all of the strain gage bridge readings taken during the calibration loading process. Shunt resistors were later added to the bridge circuitry to shift or bias the zero load bridge output so that during flight testing the expected bridge output variation would not exceed the available range of the telemetry channels on the aircraft downlink data system.

The selection of which one of a pair of identical strain gage bridges was to be monitored for the initial flight loads measurements setup and which one should remain as the spare or backup was based on the ease with which the individual bridges could be biased and amplified to make the best use of the available range on the telemetry downlink channel. The selected use status for each bridge is also defined in tables II and III. Only those strain gage bridges that were to be monitored for flight loads measurement purposes are considered as being available for inclusion in the regression analysis procedure to be discussed later.

CALIBRATION PROCEDURE

The calibration procedure consisted of: (1) determining the electrical imbalance or output of the strain gage bridges for a large variety of wing loading conditions and (2) using a regression analysis as described in reference 3, to establish a relationship (in the form of loads equations) between the strain gage bridge outputs and the applied wing loads in terms of shear (V), bending moment (M), and torque (T). Additional wing loadings were then used to check the accuracy of the established loads equations. For the ARW-1, results from both point and multipoint loading conditions were combined and used as input data to establish the loads equations. Two

different sets of simulated flight loadings were applied and used to check the accuracy of the established loads equations.

Single Point Loading Conditions

Single point loads were applied individually at the locations shown in figure 7. Table IV lists the magnitudes of the applied loads and the x and y location of the point of application. The resulting differential electrical imbalance or output of each of the strain gage bridges for each of the single point loadings is listed in Table V along with the wing loading in terms of shear (V), bending moment (M), and torque (T) for the appropriate wing station. These data, along with similar data from the multipoint loadings, were used as the input to the regression analysis for determination of the loads equations.

The loads applied along the stringer located between the spars was by means of scale weights placed on a 4-in. by 4-in. square pad of aluminum with a lower surface of soft rubber so that the wing surface would not be damaged. Application of loads at all other locations was provided for by removing a screw holding the wing skin leading edge, trailing edge or tip section, and replacing it with an eye screw. With the wing in the inverted position the loads listed in Table IV were achieved by hanging either scale weights or lead shot bags from the eye screws inserted in the wing upper surface.

Multipoint Loading Conditions

The steps in applying loads for the multipoint loading process are listed in Table VI. Note that the loads were applied sequentially in 12 increments on each wing, with each additional load at a new location, and that the sequence was repeated three times for a total of 36 loading conditions on the up load. By following the same sequence during the down loading process an additional 33 distinct loading conditions were achieved along with three repeats of previous loading conditions. The electrical imbalance or output of each of the strain gage bridges as measured for each of the 72 steps in the process is listed in Table VII. For the multipoint loading procedure all loads were again applied by hanging weights from eye screws on the wing upper surface. The photograph of figure 5 was taken during the multipoint loading procedure near the maximum loading condition. Equal loads were applied to or removed from both the right and left wing semi-spans at each step of the loading procedure to prevent large moments which could cause rotation of the fuselage in the support stand.

Simulated Flight Loading Conditions

The loadings and locations for the two simulated flight loadings are defined in tables VIII and IX and the electrical imbalance or output of each strain gage bridge is listed in table X. The first simulated flight loading represented the design loading condition analyzed for the straight and level flight at cruise condition. The second simulated flight loading represented the $2\frac{1}{2}$ -g loading analyzed as the maximum load for stress analysis. All loads on both wing semi-spans were in the positive direction and were applied by hanging weights from eye screws. For each loading condition the entire load was applied before the strain gage bridge outputs were recorded.

Loads Equations

Loads equations for calculating wing loadings as a function of the output of selected strain gage bridges were determined by means of the standard regression analysis methods described in reference 3. These load equations have the form:

where β_{ij} is the coefficient of the jth bridge for ith load, and μ_j is the output of the jth bridge.

The regression analysis can be performed using one or as many of the strain gage bridges as are available at each wing station. A stepwise regression analysis procedure (reference 4) was used which selects the best single strain gage bridge, then goes on to select a second bridge that, when used with the first bridge selected, gives the best combination of two bridges and continues on in the same manner to include as many bridges as are available for the location and axis system being used. The structural loads equations presented herein are for the swept axis system, only. For example, for the right wing inboard station swept axis system, only strain gage bridges 13, 4, 15, and 6 were used in the regression analysis. Similarily for the left wing inboard station only strain gage bridges 23, 34, 35, and 36 were in the regression analysis.

Data from both the single-point and the multipoint loadings (tables V and VII) were combined and used as input for the regression analysis. Table XI indicates which bridges were selected for each load measurement, shear (V), bending moment (M), and torque (T), and presents the associated load coefficients $(\beta_{\mbox{i},\mbox{i}})$ and probable errors along with the standard error of estimate for the equation and the multiple correlation coefficient which is an indication of how well the calibration data fit the linear regression equation selected. In all cases, except one, the multiple correlation coefficient is better than 0.9990. (A value of zero being no fit and a value of 1.0 being a perfect fit.) The one exception is for the torque equation for the right wing midwing station where the multiple correlation coefficient is 0.99754. Figures 8 through 16 provide a visual idea of how well the selected loads equations correlate with the data from which they are 'derived. These figures present load as calculated using the selected loads equations as a function of applied load for both single point and multi-point loadings. For a perfect correlation all the data would fall on a straight line with a one to one relationship between applied load and computed load.

The selected load equations were also used to estimate the loads applied during the two simulated flight loadings, table X. Results are presented in

table XII. For all shear and bending moment loads the selected load equations predicted the loads within ±4 percent of the actual applied load. For the torsion moment loads the selected loads equations were less accurate. For the load simulating the straight and level design point flight condition, the equations underpredicted the torsion load by 4 to 8 percent. For the load simulating a 2.5 g maneuver flight condition, the equations overpredicted the torsion load 3 to 5 percent at the inboard stations and by 26 percent at the right wing midwing station. The results are considered satisfactory except for the torque load estimate for the right wing midwing station.

CONCLUDING REMARKS

The ARW-1 Aeroelastic Research Wing consists of conventional spar, stringer, rib and skin construction. Strain gage bridges sensitive to shear and bending moment loads were installed for load measurement purposes at two spanwise locations on the right wing half and at one location on the left wing half. Results from both the single point and multipoint loadings were combined for use as input to the stepwise regression analysis used to derive loads equations for each load type (V, M, and T) at each wing station. Comparison of loads predicted using the derived loads equations with actual applied loads for the two simulated flight loading conditions indicated excellent results for shear and bending moment loads (within ± 4 percent). At the right and left inboard wing stations, the predicted torsion loads are good (within ± 6 percent). The predicted torsion loads at the right wing midwing station were less accurate than desired (error ranging from 8 to 26 percent).

REFERENCES

- Anon.: Supercritical Wing Technology A Progress Report on Flight Evaluations. NASA SP-301, 1972.
- Byrdsong, Thomas A.; and Hallissy, James B.: Longitudinal and Lateral Static Stability and Control Characteristics of a 1/6-Scale Model of a Remotely Piloted Research Vehicle With a Supercritical Wing. NASA TP-1360, 1979.
- 3. Skopinski, T. H.; Aiken, William S., Jr.; and Huston, Wilber B.: Calibration of Strain-Gage Installations in Aircraft Structures for the Measurement of Flight Loads. NACA Rep. 1178, 1954. (Supersedes NACA TN 2993)
- 4. Furnival, G. M.; and Wilson, R. W.: Regressions by Leaps and Bounds. <u>Technometrics</u>, vol. 16, no. 4, November 1974.

TABLE I.- WING CHARACTERISTICS

Aspect ratio	6.8	
Taper ratio	0.36	
Sweepback angle at ½ chord line, deg.	42.24	
Reference area, m ² (ft ²)	2.78	(30.0)
Thickness at root, percent chord	11.0	
Thickness at tip, percent chord	7.0	
Span, m (in.)	4.343	(171.0)
Tip chord length, m (in.)	0.343	(13.51)
Root chord length, m (in.)	0.940	(36.99)
Mean aerodynamic chord (MAC) length, m (in.)	0.687	(27.06)

; 3

Bridge No.	Structure	Υ _ν	I	Bridge Type	Use
1	FS	m 0 927	(in.)	V	Packup
	7.J.	0.927	(30.5)	V	Баскир
2	r.S.	0.927	(36.5)	М	Loads
3	F.S.	1.118	(44.0)	V	Backup
4	F.S.	1.118	(44.0)	М	Loads
5	R.S	1.118	(44.0)	V	Backup
6	R.S.	1.118	(44.0)	М	Loads
7	F.S.	1.880	(74.0)	V	Loads
8	F.S.	1.880	(74.0)	М	Backup
9	R.S.	1.880	(74.0)	V	Loads
10	R.S.	1.880	(74.0)	Μ	Loads
11	F.S.	0.927	(36.5)	V	Loads
12	F.S.	0.927	(36.5)	М	Backup
13	F.S.	1.118	(44.0)	γ.	Loads
14	F.S.	1.118	(44.0)	Μ	Backup
15	R.S.	1.118	(44.0)	V	Loads
16	R.S.	1.118	(44.0)	М	Backup
17	F.S.	1.880	(74.0)	V	Flutter
18	F.S.	1.880	(74.0)	М	Loads
19	R.S.	1.880	(74.0)	۷	Backup
20	R.S.	1.880	(74.0)	Μ	Backup

÷

.

;

F.S. = front spar, R.S. = rear spar, V = shear, M = bending moment.

12 ′

÷

Bridge No		١	L.		•
bridge no.	Structure	m	W (in.)	Bridge Type	Use
21	F.S.	0.927	(36.5)	V	Backup
22	F.S.	0.927	(36.5)	М	Backup
23	F.S.	1.118	(44.0)	V.	Loads
24	F.S.	1.118	(44.0)	М	Backup
25	R.S.	1.118	(44.0)	V	Backup
26	R.S.	1.118	(44.0)	Μ	Backup
31	F.S.	0.927	(36.5)	V	Loads
32	F.S.	0.927	(36.5)	М	Loads
33	F.S.	1.118	(44.0)	V	Flutter
34	F.S.	1.118	(44.0)	M	Loads
35	R.S.	1.118	(44.0)	V	Loads
36	R.S.	1.118	(44.0)	М	Loads

TABLE III.- IDENTIFICATION OF STRAIN-GAGE BRIDGES - LEFT WING

F.S. = front spar, R.S. = rear spar, V = shear, M = bending moment.

•••

TABLE IV. - SINGLE POINT APPLIED LOADS AND LOCATIONS

Part A. - Left Wing, Inboard Station

Location No. Applied Load			Location Coordinates						
(See Fig. 7)	N	(1bs)	· · · · ·	W 1	X _{W.1}				
			m	(in.)	m	(in)			
1	890	(200)	0.058	(2.30)	-0.012	(-0.47)			
2	890	(200)	0.066	(2.60)	0.095	(3.75)			
3	890	(200)	0.058	(2.29)	0.203	(8.00)			
4	712	(160)	0.363	(14.30)	-0.012	(-0.47)			
5	712	(160)	0.371	(14.60)	0.087	(3.44)			
6	712	(160)	0.362	(14.26)	0.185	(7.30)			
7	712	(160)	0.670	(26.36)	-0.012	(-0.49)			
8	712	(160)	0.675	(26.56)	0.079	(3.10)			
9	712	(160)	0.667	(26.26)	0.168	(6.60)			
10	667	(150)	0.975	(38.37)	-0.013	(-0.50)			
11	445	(100)	0.979	(38.56)	0.071	(2.80)			
12	667	(150)	0.972	(38.28)	0.151	(5.96)			
13	534	(120)	1.279	(50.34)	-0.012	(-0.47)			
14	222	(50)	1.285	(50.58)	0.061	(2.42)			
15	534	(120)	1.278	(50.32)	0.134	(5.28)			
16	356	(80)	1.578	(62.13)	-0.011	(-0.45)			
17	222	(50)	1.667	(65.63)	0.048	(1.90)			
18	356	(80)	1.723	(67.83)	0.110	(4.35)			

t

ŧ

TABLE IV. - Continued

Location No.	App1	ied Load		Location C	oordinates	
(See Fig. 7)	N	(1bs)		YWa	X	10
			m	2 (in)	m	2 (in)
1	222	(350)	0.063	(2.48)	-0.089	(-3.52)
2	890	(200)	0.054	(2.14)	-0.013	(-0.51)
3	890	(200)	0.066	(2.60)	0.095	(3.75)
4	890	(200)	0.056	(2.21)	0.202	(7.95)
5	267	(60)	0.066	(2.60)	0.330	(12.98)
6	890	(200)	0.217	(8.13)	-0.013	(-0.50)
7	890	(200)	0.208	(8.19)	0.194	(7.62)
8	222	(50)	0.369	(14.51)	-0.083	(-3.25)
9	712	(160)	0.362	(14.26)	-0.012	(-0.48)
10	667	(150)	0.371	(14.60)	0.087	(3.44)
11	712	(160)	0.362	(14.26)	0.185	(7.30)
12	267	(60)	0.368	(14.50)	0.273	(10.75)
13	667	(150)	0.511	(20.12)	-0.013	(-0.50)
14	667	(150)	0.515	(20.26)	0.177	(6.98)
15	133	(130)	0.674	(26.55)	-0.074	(-2.90)
16	667	(150)	0.665	(26.20)	-0.012	(-0.49)
17	667	(150)	0.675	(26.56)	0.079	(3.10)
[:] 18	667	(150)	0.669	(26.32)	0.168	(6.60)

Part B. - Right Wing, Inboard Station

TABLE IV. - Continued

Location No.	App1	ied Load	Location Coordinates						
(See Fig. 7)	N (1bs)		Ŷ	, W ₂	X	× _{W2}			
			m	(in.)	m	(in)			
19	133	(30)	0.673	(26.50)	0.241	(9.48)			
20	667	(150)	0.818	(32.21)	-0.013	(-0.50)			
21	667	(150)	0.820	(32.27)	0.160	(6.30)			
22	200	(45)	0.979	(38.56)	-0.053	(-2.10)			
23	667	(150)	0.971	(38.22)	-0.013	(-0.50)			
24	400	(90)	0.979	(38.56)	0.071	(2.80)			
25	667	(150)	0.971	(38.24)	0.151	(5.96)			
26	200	(45)	0.980	(38.60)	0.206	(8.10)			
27	534	(120)	1.124	(44.25)	-0.012	(-0.49)			
28	534	(120)	1.127	(44.36)	0.143	(5.63)			
29	200	(45)	1.287	(50.68)	-0.048	(-1.88)			
30	534	(120)	1.275	(50.19)	-0.012	(-0.49)			
31	267	(60)	1.285	(50.58)	0.061	(2.42)			
32	534	(120)	1.280	(50.38)	0.134	(5.28)			
34	400	(90)	1.444	(56.86)	-0.011	(-0.45)			
35	400	(90)	1.441	(56.75)	0.127	(5.00)			
36	200	(45)	1.547	(60.91)	-0.041	(-1.63)			
37	400	(90)	1.574	(61.96)	-0.011	(-0.45)			
38	267	(60)	1.666	(65.58)	0.050	(1.95)			
39	400	(90)	1.720	(67.70)	0.112	(4.40)			
40.	200	(45)	1.745	(68.72)	0.141	(5.55)			

	Part	B.	-	Concluded
--	------	----	---	-----------

TABLE IV. - Concluded

Part C. - Right Wing, Midwing Station

Location No.	Арр	lied Load		Location Coordinates					
(See Fig. 7)	N	(1bs)	Y _{W3}		X	× _{W3}			
			m	(in)	m	(in)			
20	667	(150)	0.056	(2.21)	-0.013	(-0.50)			
21	667	(150)	0.058	(2.27)	0.160	(6.30)			
22	200	(45)	0.217	(8.56)	-0.053	(-2.10)			
23	667	(150)	0.209	(8.22)	-0.013	(-0.50)			
24	400	(90)	0.217	(8.56)	0.071	(2.80)			
25	667	(150)	0.209	(8.24)	0.151	(5.96)			
26	200	(45)	0.218	(8.60)	0.206	(8.10)			
27	534	(120)	0.362	(14.25)	-0.012	(-0.49)			
28	534	(120)	0.365	(14.36)	0.143	(5.63)			
29	200	(45)	0.525	(20.68)	-0.048	(-1.88)			
30	534	(120)	0.513	(20.19)	-0.012	(-0.49)			
31	267	(60)	0.523	(20.58)	-0.061	(2.42)			
32	534	(120)	0.518	(20.38)	0.134	(5.28)			
34	400	(90)	0.682	(26.86)	-0.011	(-0.45)			
35	400	(90)	0.679	(26.75)	0.127	(5.00)			
36	200	(45)	0.785	(30.91)	-0.041	(-1.63)			
37	400	(90)	0.812	(31.96)	-0.011	(-0.45)			
38	267	(60)	0.904	(35.58)	0.050	(1.95)			
39	400	(90)	0.958	(37.70)	0.112	(4.40)			
40	200	(45)	0.983	(38.72)	0.141	(5.55)			

•

.

TABLE V.- WING LOADINGS AND STRAIN-GAGE BRIDGE DUTPHTS FOR SINGLE-POINT APPLIED LOADS

(A) LEFT WING, INBOARD STATION

WING LOADINGS

i .

n

STRAIN-GAGE BRIDGE OUTPUTS, MILLIVOLTS

1

.

SHEAR, LBS	MOMENT, IN-LBS	TORQUE, IN-LPS	MU 21	ru 22	MU 23	MU 24	MU 25	MU 26	MU 31	MU 32	MU 33	MU 34	MU 35	MU 36
200.00	460.00	-94.00	•651	.810	•778	038	•126	•373	•655	.843	.796	051	•120	. 369
200.00	520.00	750.00	•392	•699	•440	.244	.492	285	.392	.719	425	- 365	. 474	- 388
200.00	458.00	1600.00	.108	•581	.145	.330	936	019	.110	591	138	- 315	.922	.007
160.00	2288.00	-75.20	• 423	1.452	.510	1.013	.138	816	429	1.485	498	1.072	.133	. 848
160.00	2336.00	550.40	.253	1.272	.305	929	407	951	255	1.306	.295	- 961	. 206	1.002
160.00	2281.60	1168.00	.126	1.087	159	.837	613	1.026	130	1,114	.151	- 866	- 594	1 112
160.00	4217.60	-78.40	.377	2.227	.422	1.861	•117	1.507	-387	2.250	415	1.945	188	1.581
160.00	4249.60	496.00	.249	2.036	.272	1.752	327	1.687	-257	2.061	.267	1 222	224	1 704
160.CO	4201.60	1056.00	127	1.824	137	1.612	.527	1.810	.133	1.870	122	1 4 9 5	6324	1.024
150.00	5755.50	-75-00	- 314	2.718	.319	2.446	- 002	2.070	9732	2 700	010C	1.005	• 213	1.934
100.00	3356.00	280.00	137	1.720	.131	1,594	-176	1.500	140	20790	•310 121	2.000	•094	2.175
150.00	5742.00	894.00	-110	2.388	-080	2.229	•170	2 2 2 2 4	•140	10/29	•131	1.00/	•1/5	1.585
120.00	6040.80	=56.40	- 223	2.686	202	2 6 2 3 0	054	2.334	•119	2.442	•069	2.343	•411	2.472
50.00	2520.00	121.00	• 2 2 3	1 666	• Z U Z	24224	•054	20140	•234	2.749	•204	2.635	•060	2.303
120 00	6029 600	121000	•000	1.000	•047	1.047	•074	•976	•064	1.111	•047	1.095	•076	1.031
120.00	6030.40	033000	.078	2.401	.036	2.387	•281	2.375	•088	2.531	•041	2.500	•281	2.512
80.00	4970.40	-36.00	•128	2.126	●097	2.057	•021	1.008	•138	2.177	.101	2.147	.026	1,900
50.00	3281.50	95.00	•051	1.378	•027	1.366	.050	1.066	•056	1.408	.030	1.426	•055	1.322
80.00	5426.40	348.00	•038	2.160	•012	2.161	•144	2.090	•046	2.209	.005	2.226	•146	2.190

8I

.

TABLE V.- CONTINUED

(B) RIGHT WING, INBOARD STATION

WING LOADINGS

2

STRAIN-GAGE BRIDGE OUTPUTS, MILLIVOLTS

н у —

SHEAP	MOMENT	TORQUE												
LBS	IN-LBS	IN-LES	MU 1	MU 2	MU 3	MU 4	MU 5	MU 6	MU 11	MU 12	MU 13	MU 14	MU 15	MU 1€
50.0	0 124.00	-176.00	•176	•227	•205	•016	•011	.101	•182	•229	•194	•Ü11	006	.078
200.0	428.00	-102.00	•673	• € 12	•791	048	•119	•379	.674	. 524	•777	078	.116	-338
200.0	520.00	750.00	•388	•665	•385	•254	•550	.289	•363	.673	.364	.301	.521	• 376
200.0	442.00	1590.00	•096	•588	•124	• 3 3 3	•992	.002	.094	.588	.110	.309	.991	.020
60.0	156.00	778.80	050	•138	049	•094	•405	.049	051	.139	048	.065	.392	.066
200.0	0 1626.00	-100.00	615	1.349	•724	•662	•147	•667	.617	1.368	•692	•691	.142	.632
200.0	1638.00	1524.00	•136	•927	.156	.638	.878	•778	•133	.942	.142	.637	.847	.823
50.0	D 725.50	-162.50	•172	•482	.191	.322	009	.241	.175	.495	182	.333	006	229
160.0	2281.60	-76.EO	• 454	1.467	•501	1.012	•134	.838	•460	1.489	.482	1.042	132	.804
150.0	2190.00	516.00	•253	1.192	•278	.866	•379	•938	.254	1.202	.264	.878	.368	929
160.0	2281.60	1169.00	•126	1.078	•133	.824	•631	1.128	.127	1.091	.122	.826	.608	1.154
60 . 0	970.00	645.00	006	•364	008	•300	•312	•443	007	• 374	012	.307	.303	.447
150.0	3018.00	-75.00	•405	1.712	•422	1.330	•118	1.118	•409	1.731	.410	1.361	.119	1.055
150.00	3039.00	1047.00	•129	1.340	•121	1.105	•538	1.453	•130	1.356	•111	1.130	• 5 2 2	1.469
30.0	796.50	-87.00	•090	•420	•090	•356	•003	•268	•092	•421	.089	•371	.001	•261
150.0	3930.00	-73,50	•389	2.068	•362	1.710	.112	1.439	•394	2.086	.371	1.742	.113	1.410
150.00	3984.00	465.00	•243	1.860	•223	1.531	•325	1.665	•243	1.879	•213	1.622	.318	1.659
150.0	3948.00	990.CO	•134	1.684	.108	1.467	•496	1.828	•135	1.706	.101	1.504	.485	1.836
30.00	795.00	284.4C	•006	•311	.001	.274	•123	• 377	.006	.317	002	.256	.120	• 379
150.0	4831.50	-75.00	•368	2.348	•334	2.029	•102	1.771	•371	2.371	•327	2.070	.103	1.740
150.00) 4840 . 50	945.00	•136	2.006	.091	1.800	•445	2.130	•137	2.030	.084	1.848	.436	2.129
45.0	1735.20	-94.50	•117	.801	.102	•733	•004	•615	.118	.809	•100	•747	.007	.605
150.0	5733.00	-75.00	•358	2.691	•301	2.386	•087	2.124	•364	2.717	.297	2.310	.090	2.091
90.00	3470+40	252.OC	•139	1.525	•101	1.394	•164	1.417	•141	1.539	.100	1.425	•163	1.407
150.00	5736.00	894.00	•138	2.360	.071	2.170	•413	2.474	•139	2.384	•067	2.221	.405	2.469
45.00) 1737 . 00.	364.50	•011	•674	004	•638	•152	•769	•015	•654	005	•654	.150	•766
120.00	5310.00	-58.80	•269	2.379	•208	2.175	.061	1.977	•273	2.401	.206	2.218	•065	1.950
120.00	5323.20	675.60	•102	2.146	•035	2.028	•304	2.236	•104	2.164	•035	2.077	• 301	2.226
45.00	2280.60	-84.60	•105	•983	•078	•934	002	•821	•108	•991	.079	•952	.001	•809
120.00	0 <u>6022•80</u>	-58.80	•261	2.657	•183	2.462	•049	2.267	•265	2.681	.185	2.509	.056	2.236
· 60.00	3034.80	145.20	•084	1.278	•043	1.223	•090	1.222	•086	1.288	.044	1.250	•090	2.212
120.00) 6045 . €0	633.60	•106	2.424	•020	2.320	•276	2.503	.108	2.451	.020	2.374	•276	2.491
90.00	5117.40	-40.50	•184	2.181	•111	2.072	•027	1.923	•188	2.200	•114	2.111	•034	1.898
90.00	5107 •00	450 . CO	•073	2.019	003	1.964	•189	2.081	•075	2.039	000	2.011	•190	2.067
45.00	2740.95	-73.35	•097	1.144	•058	1.110	•008	1.003	•099	1.152	•059	1.130	.002	•988
90.00	5576.40	-40.50	•179	2.352	•095	2.255	•019	2.108	•192	2.372	•099	2.296	•026	2.078
60.00	3934.80	117.00	•085	1.615	•023	1.563	•061	1.544	•068	1.628	•025	1.594	• 0 66	1.528
90.00	6093.00	396.00	•073	2.453	027	2.364	•156	2.455	•050	1.618	014	1.610	•105	1.624
45.00) 3092.40	249.75	•020	1.170	032	1.176	•091	1.238	•023	1.182	027	1.202	•093	1.230
										_				

TAPLE V.- CONCLUDED

(C) RIGHT WING, MIDWING STATION

WING LOADINGS

 $\gamma = -\sqrt{c}$

....

STRAIN-GAGE BRIDGE DUTPUTS, MILLIVOLTS

.

..

•

SHEAR,	MOMENT,	TORQUES								
LBS	IN-LBS	IN-LBS	MU 7	MU 8	MU 9	MU 10	MU 17	MU 18	MIJ 19	MU 20
150.00	331.50	-75.00	•924	039	•117	•479	.968	107	•107	.419
150.00	340.50	945.00	•126	•500	1.116	333	•116	.453	1.164	- 413
45.00	385.20	-94.50	•266	•264	.025	.293	.253	.257	.021	.274
150.00	1233.00	-75.00	•879	•679	•174	.910	.832	.868	•156	859
90.00	770.40	252.00	•304	•590	•371	• 517	285	.582	.352	486
150.00	1236.00	894.00	•183	.960	•921	•730	•166	.933	.887	. 696
45.00	387.00	364.50	•013	.304	•312	.206	.009	292	-303	168
120.00	1710.00	-58.80	• 591	1.327	•170	1.138	.554	1.323	1 39	1.089
120.00	1723.20	675.60	.181	1.220	.621	1.198	•162	1.208	591	1.143
45.00	930.60	-84.60	•215	•717	.034	•608	-201	.714	.027	.583
120.00	2422.80	-58.80	.513	1.886	.174	1.605	479	1.880	.153	1,535
60.00	1234.80	145.20	.165	•923	192	.866	154	.920	.179	- 826
120.00	2445.60	633.60	185	1.726	539	1.734	162	1.534	.500	1.661
90.00	2417.40	-40.50	.330	1.844	122	1.608	.305	1.841	.1.01	1 542
90.00	2407.50	450.00	122	1.714	359	1.686	-105	1.712	. 2 2 2	1 616
45.00	1390.95	-73.35	.171	1.057	- 631	910	150	1 064	• 5 5 5	1010
90.00	2876.40	-40.50	.295	2.179	.107	1.020	01J7 271	2 177	+U10	• 6 0 1
60.00	2134-80	117.00	.131	1.551	.141	1 4 2 0	9471	20177	•000	1.085
90.00	3303.00	396-00	097	2 4 5 4	9141	10737	0115	1.000	•122	1.375
45.00	1742.40	240 75	•007	C + 4 2 4	• 2 9 1	T 938	•045	1.638	1.174	1.503
	1176970	677015	*019	10230	.100	10203	÷009	1.0239	•150	1.149

LOADING STEP	I (N	AP NCREMENT Each Wing (1bs	PLIED LOAI S TOT J) (Each) N	D AL Wing) (1bs)	LEFT WING ^Y W _l (in)	G, INBOARD XW1(i	RIG	LOCATIO HT WING, YW2(:-)	N INBOARD X	12	RIG Yuu	HT WING	, MIDWI Xw_	NG
1	111,21	25	111.2	25	1.723 67.83	0.110 4.	35 1.720	$2(1n_{\rm J})$. m 	- (in.)	m "	3(in.)	m "3	(in)
2	111.21	25	222.4	50	1.578 62.13	-0.011 -0.4	15 1 574	61.06	0.112	4.40	0.958	37.70	0.112	4.40
3	111.21	25	333.6	75	1.278 50.32	0.134 5	28 1 280	50 20	-0.011	-0.45	0.812	31.96	-0.011	-0.45
4	111.21	25	444.8	100	1.279 50.34	-0.012 -0 4	-0 1.200 17 1 275	50.38	0.134	5.28	0.518	20.38	0.134	5.28
5	111.21	25	556.0	125	0.972 38.28	0 151 5 0	0 0 0 0 7 1	50.19	-0.012	-0.49	0.513	20.19	-0.012	-0.49
6	111.21	25	667.2	150	0.975 38.37	-0 013 -0 6	0.371	30.24	0.151	5.96	0.209	8.24	0.151	5.96
7	222.41	50	889.6	200	0.667 26.26	0 168 6 6		38.22	-0.013	-0.50	0.209	8.22	-0.013	-0.50
· 8	222.41	50	1112.1	250	0.670 26.36	-0 012 -0 4		20.32	0.168	6.60				
9	222.41	50	1334.5	300	0.362 14 26	0.185 7 2	0 0.005	26.20	-0.012	-0.49				
10	222.41	50	1556.9	350	0.363 14 30	-0.012 0.4	7 0.362	14.26	0.185	7.30				
11	222.41	50	1779.3	400	0.058 2 29	0.012 -0.4	0.362	14.26	-0.012	-0.48				
12	222.41	50	2001.7	450	0.058 2.20	0.203 8.0	0 0.056	2.21	0.202	7.95				
13 to 36		*	6005.1	1350	2.30	-0.012 -0.4	/ 0.054	2.14	-0.013	-0.51				
37	- 111 . 21	-25	5893.9	1325	1.723 67 83	0 110 4 3	- 1 700							
38	-111.21	-25	5782.7	1300	1.578 62 13	-0.011 0.4		67.70	0.112	4.40	0.958	37.70	0.112	4.40
39	- 111.21	-25	5671.5	1275	1.278 50 32	0.124 5.00	5 1.5/4	61.96	-0.011	-0.45	0.812	31.96 ·	-0.011	-0.45
40	- 111.21	-25	5560.3	1250	1 279 50 24	0.134 5.2	3 1.280	50.38	0.134	5.28	0.518	20.38	0.134	5.28
41	- 111.21	-25	5449.1	1225	1.275 JU.34	-0.012 -0.4	1.275	50.19	-0.012	-0.49	0.513	20.19 -	-0.012	-0.49
42	- 111.21	-25	5337.9	1200	0.972 30.20	0.151 5.96	0.971	38.24	0.151	5.96	0.209	8.24	0.151	5.96
43	- 222.41	-50	5115.5	1150 /	0.575 30.37	-0.013 -0.50	0.971	38.22	-0.013	-0.50	0.209	8.22 -	-0.013	+0.50
44	- 222.41	-50	4893.0	1100 (1.007 20.20	0.168 6.60	0.669	26.32	0.168	6.60				
45	- 222.41	-50	4670 5	1050 (26.30	-0.012 -0.49	0.665	26.20	-0.012	-0.49				
46	- 222.41	-50	4448 2	1000 ().302 14.26	0.185 7.30	0.362	14.26	0.185	7.30				
47	- 222.41	-50	4995 Q	1000 (0.363 14.30	-0.012 -0.47	0.362	14.26	-0.012	-0.48				
48	- 222.41	-50	4003 4	900 (2.29	0.203 8.00	0.056	2.21	0.202	7.95				
49 to 72		+	0.00	900 (.058 2.30	-0.012 -0.47	0.054	2.14	-0.013	-0.51				
		•	U	U										

TABLE VI. - MULTIPOINT APPLIED LOADS, LOCATIONS AND APPLICATION SEQUENCE.

,

* Repeat steps 1 through 12 two more times.

+ Repeat steps 37 through 48 two more times.

21

۱. j

TABLE VII.- WING LEADINGS AND STRAIN-GAGE BRIDGE DUTPUTS FOR SINGLE-POINT APPLIED LOADS

(A) LEFT WING, INBOARD STATION

WING LOADINGS

STRAIN-GAGE BRIDGE OUTPUTS, MILLIVOLTS

4 V

SHEAP,	MOMENT,	TOROUS.												
LBS	IN-LRS	IN-LAS	MU 21	MU 22	MU 23	MU 24	MU 25	411-26	MU 31	MU 32	MU 33	MU 34	MU 35	MU 36
25.00	1695.50	105.75	.009	.684	004	.695	.044	• 6.62	-012	. 701	- 002	727	0//	700
50.00	3248.75	97.50	•047	1.363	•025	1.358	052	1.250	.055	1,301	003	1.4.6	0.65	• / 00
75,00	4506.75	229.50	•066	1.900	.037	1.872	.113	1.766	.074	1.941	.041	1.057	+000	1 547
100.00	5765.25	217.75	•115	2.493	•064	2.414	125	2.251	127	2.556	-066	2.524	•112	2 270
125.00	5722.25	366.75	•136	2.925	.103	2.801	•194	2.659	.147	2,997	-105	2.421	+140 104	2 011
150.00	7691.50	354.25	•193	3.423	.162	3.219	202	3.029	207	3,510	-164	3,366	• 1 70	2.200
200.00	8994.50	684.25	•241	4.060	•213	3.736	• 367	3.619	-256	4.164	. 214	3.910	- 210	3 635
250.00	10307.50	659.75	• 362	4.793	.354	4.315	405	4.109	.379	4.925	.250	6 6 2 6	• 507	0 + C 2 2 4 - 3 5 6
300.00	11020.50	1024.75	•411	5.198	•41ú	4.596	593	4 449	429	5.346	• 406	4.811	+ 4 9 Z 5 8 7	4 + 350
350.00	11735.50	1001.25	• 548	5.691	.575	4.920	-635	4.718	-565	5.850	.568	5 154	+ J 0 1 4 2 7	5 007
400 . CO	11850.00	1401.25	•580	5.885	.619	5.007	.867	4.714	598	6-031	• 500	5.241	+0// 957	5.001
450.00	11965.00	1377.75	•744	6.085	. 820	5.023	.901	4.812	.762	6.27.		5 221	000	2.001
475.00	13660.50	1486.50	•776	6.911	•E3E	5.711	.940	5.516	.793	7.146	• 0 1 0	5 07	• 0 0 0	5.049
500.00	15213.75	1475.25	.815	7.603	.875	6.372	.946	5.103	- 836	7.966	021 025	5.470	• 9 3 0	2.547
525.00	16471.75	1607-25	•835	8.175	.892	6.889	1.005	6.618	•957	6.451	.962	7 266	• 930	0 • 403
550.00	17730.25	1595.50	. 885	008.3	.945	7.433	1.015	7.105	.911	9 161	000Z	7 7 7 7 5	•995	7.000
575.00	18687.25	1744.50	•°10	9.252	968	7.825	1.085	7.511	.034	9.101	0.57		1.007	(+713
600.00	19646.50	1732.00	• 6 69	9.764	1.031	8.247	1.100	7.884	- 004	10 000	• 957	0 • 1 C S	1.0078	7.944
650.00	20959.50	2062.00	1.016	16.426	1.0057	6.774	1.264	8.467	1 0 4 2	10 762	1.020	0.029	1.093	5.334
700.00	22272.50	2037.50	1.139	11.193	1.233	9.362	1.305	8.070	1.170	10.703	1 217	9.178	1.256	8.951
750.00	22985.50	2402.50	1.188	11.002	1,290	9.647	1.404	3 207	1 210	11.00/	1 272	9.799	1.294	9.476
800.00	23700.50	2379.00	1.330	12.124	1.463	9.974	1.541	9.502	1 9 4 1	11.904	1.272	10.091	1.481	9.839
850.00	23915.00	2777.00	1.365	12.297	1.505	10.066	1.776	3 50/	1 204	12.520	1.440	10.441	1.523	10.132
900.00	23930.00	2755.50	1.528	12.525	1.706	10.061	1,612	70274	1 540	12.097	1.479	10.531	1.757	10.135
925.00	25625.50	2-64.25	1.551	13.306	1.719	10.768	1 660	10 205	1.500	12.935	1.000	10.522	1.791	10.237
950.00	27178.75	2853.00	1-608	14.095	1.772	11.448	1.669	11 020	1 6 6 6	13.750	1.694	11.265	1.841	10.968
975.00	23436.75	2985.00	1.626	14.651	1.757	11 060	1 024	11 5/5	1.044	14.040	1.740	11.962	1.854	11.613
1000.00	29695.25	2973.25	1.681	15.286	1 644	12 524	1 0 4 7	11.049	1.504	12.127	1.761	12.531	1.918	12.164
1025.00	30652.25	3122.25	1.700	15.721	1.562	12 012	10741	12.041	1.722	15.779	1.817	13.119	1.934	12.680
1050.00	31611.50	3109.75	1.772	16.247	1 632	12 747	2 072	120471	1.742	16.228	1.030	13.527	2.007	13.108
1100.00	32924.50	3439.75	1.821	16.000	1 697	13 30/	2.013	12.920	1.817	16.758	1.905	14.028	2.058	13.631
1150.00	34237.50	3415.25	1.047	17.654	2 126	13.094	20242	130714	1.55	17.430	1.959	14.585	2.228	14.262
1200.00	34950.50	3790.25	2.001	160.4	2 105	14.000	2.292	14.037	1.998	18.200	2.107	15.236	2.273	14.806
1250.00	35665.50	3756.75	2.124	16 644	C 8140	744123	2.489	14+344	2.049	18.622	2.166	15.552	2.464	15 . 189
1300.00	35750.00	4156.75	2,172	160000	20102	120129	2.540	14+580	2.199	19.137	2.330	15.908	2.513	15.428
1350.00	35895 DA	4133.25	2 2 5 1	10 030	20410	12.222	2.114	14.076	2.225	19.316	2.370	16.000	2.745	15.486
		713304-	60201	1~058	20017	100595	2.826	14.861	2•403	19.617	2.580	16.069	2.796	15.667

. .

-

.

TABLE VII.- CONTINUED

(A) CONCLUDED

WING LOADINGS

• 1

STRAIN-GAGE BRIDGE OUTPUTS, MILLIVOLTS

/ F

SHEAR,	MOMENT,	TOPOUL												
LBS	IN-LBS	IN-LBS	MU 21	MU 22	MU 23	MU 24	MU 25	MII 26	MU 31	MU 32	ML: 33	MU 34	MU 35	MU 36
1325.00	34199.50	4024.50	2.352	18.378	2.624	14.597	2.782	14.211	2.403	18.956	2.584	15.352	2.752	14.077
1300.00	32646.25	4035.75	2.320	17.715	2.591	13.941	2.773	13.629	2.366	18.287	2.551	14.665	2.740	14.363
1275.00	31388.25	3903.75	2•30B	17.197	2.580	13.438	2.712	13,123	2,350	17.761	2.539	14.137	2.681	13.824
1250.00	30129.75	3915.50	2.263	16.629	2.536	12.906	2.700	12.653	2.306	17.180	2.494	13.560	2.667	13.325
1225.00	29172.75	3766.50	2.243	16.202	2.515	12.526	2.628	12.247	2.285	16.745	2.475	13.162	2.597	12.896
1200.00	28213.50	3779.00	2.193	15.734	2.458	12.114	2.611	11.889	2.232	16.264	2.419	12.752	2.580	12.514
1150.00	26900.50	3449.00	2.153	15.141	2.410	11.610	2.447	11.309	2.190	15.655	2.372	12.225	2.420	11.890
1100.00	25587.50	3473.50	2.037	14.423	2.273	11.036	2.407	10.820	2.072	14.923	2.237	11.622	2.380	11.370
1050.00	24974.50	3108.50	1.996	14.056	2.219	10.767	2.213	10.482	2.030	14.545	2.164	11.386	2.194	10.997
1000.00	24159.50	3132.00	1•864	13.575	2.055	10.450	2.167	10.213	1.895	14.047	2.025	11.007	2.149	10.717
950.00	24045.00	2732.00	1.633	13.416	2.013	10.366	1.935	10.214	1.864	13.887	1.987	10.924	1.919	10.709
900.00	23730.00	2755.50	1.671	13.202	1.812	10.373	1.901	10.117	1.702	13.661	1.786	10.935	1.887	10.612
875.00	22234.50	2646.75	1.654	12+457	1.803	9.630	1.654	9.420	1.683	12.890	1.776	10.209	1.839	9.865
850.00	20681.25	2658.00	1.615	11.749	1.766	9.024	1.848	8.817	1.641	12.157	1.737	9.523	1.831	9.227
P25.00	19423.25	2526.CC	1.598	11.191	1.749	8.514	1.788	8.292	1.674	11.582	1.721	8.965	1.770	8.664
800.00	18164.75	2537.75	1.549	10.585	1.697	7.974	1.775	7.800	1.574	10.951	1.669	8.424	1.758	8.143
775.00	17207.75	2388 . 75	1.530	10.150	1.676	7.539	1.705	7.384	1.553	10.500	1.650	3.022	1.687	7.699
750.00	16248.50	2401.25	1.475	9.658	1.614	7.175	1.690	7.012	1.498	9.985	1.587	7.584	1.671	7.306
700.00	14935.50	2071.25	1.431	9 . 030	1.562	6.659	1.525	6.413	1.452	9.341	1.537	7.045	1.509	6.664
650.00	13622.50	2095.75	1.312	F.297	1.419	6.079	1.485	5.916	1.330	8.574	1.397	6.437	1.471	6.139
600.00	12909.50	1730.75	1.267	7.915	1.365	5.806	1.295	5.579	1.287	8.185	1.345	6.153	1.284	5.767
550.00	12194.50	1754.25	1.132	7.418	1.195	5.439	1.251	5.305	1.149	7.663	1.181	5.61E	1.242	5.517
500.00	12080.00	1354.25	1.099	7.252	1.154	5.400	1.018	5.304	1.116	7.497	1.142	5.732	1.011	5.475
450.00	11965.00	1377.75	• 533	7.013	•948	5.403	•985	5.197	•949	7.245	•938	5.735	•980	5.369
425.00	10269.50	1269.00	•91F	6.267	•942	4.702	•937	4 . 495	•930	6•463	•929	5.000	•931	4.621
400.00	8716.25	1280.25	•F71	5.522	■897	4.038	•931	3.884	•893	5.698	•684	4.304	•922	3.979
375.00	1458.25	1148.25	• 149	4.948	•882	3.543	• 8 7 0	3.358	•961	5.107	•867	3.765	•8.62	3.417
350.00	6149.75	1160.00	• 795	4.316	•626	2.979	•858	2.862	•806	4.455	•814	3.192	• 8 4 P	2.899
325.00	5242075	1011.00	•771	3.865	• 805	2.588	•786	2.446	•780	3.991	•793	2.761	•777	2.458
300+00	4283.50	1023.50	•711	3.355	•743	2.170	•770	2.072	•720	3.462	•731	2.339	•760	2.067
250.00	2970.50	693.50	+653	2.691	•689	1.646	•606	1.484	•663	2.777	•676	1.789	• 5 9 9	1.441
200.00	1527.000	718.00	•515	1,911	•542	1.054	•563	•971	•521	1.966	•535	1.165	• 5 59	.907
150.00	944.50	353.00	•458	1.497	•484	•771	•372	•640	•465	1.535	•47E	•666	•374	• 551
T00+00	229.50	3/6+10	•310	•975	• 313	• 445	• 326	•360	•316	•989	•313	•519	• 3 30	• 261
20.00	11200	-23.00	•269	•789	•270	•351	•096	• 363	•276	•799	•272	•426	.102	•262
0.00	0.00	0.00	•101	•554	•068	•353	•061	-260	•106	•547	•069	•433	•070	•15G

TABLE VII.- CONTINUED

(B) RIGHT WING, INBUARD STATION

WING LEADINGS

, ,

STRAIN-GAGE BRIDGE HUTPUTS, MILLIVOLTS

ъ – з

SHEAR.	MOMENT.	TOROUL.												
LBS	IN-LBS	IN-LBS	MU	1 MU 2	MU 3	MU 4	MU 5	MIL 6	MIL 11	MH 12	MI 13	MIL . 4	MII 15	M11 16
	_					110				10 12		10 14	10 10	40 16
25.00	1692.50	110.00	•01	.676	.009	.675	•042	.691	•017	• 681	064	-690	.044	- 682
50.00	3241.50	98.75	•066	5 1.344	.018	1.319	.047	1.293	068	1.355	.020	1.349	.051	1.278
75.00	4501.00	230.75	•(9)	2 1.869	.025	1.820	.108	1.833	.093	1.903	•027	1.856	.110	1.814
100.00	5755.75	218.50	•154	4 2.488	•067	2.348	•119	2.324	.155	2.516	.068	2.394	.123	2.296
125.00	6711 . 75	367.50	.184	4 2.933	• 082	2.724	167	2.744	.184	2.966	.053	2.779	189	2.711
150.00	7667.25	355.00	• 259	9 3.474	•141	3.136	.205	3.127	.256	3.516	.140	3,191	.207	3.087
- 200.00	8983.25	685.00	•314	4 4.090	•164	3.636	•363	3.733	•311	4.147	160	3.702	• 361	3.688
250.00	10293.25	660.50	• 460	0 4.854	•319	4.211	•406	4.240	.455	4.923	.309	4.251	.403	4.166
300,00	11006.25	1025.50	• 51	5 5.360	•371	4.495	•599	4.605	.508	5.338	•357	4.560	.588	4 553
350.00	11719.25	1001.50	•66	9 5.766	• 534	4.808	•644	4.886	•659	5.833	.512	4.855	.633	4.822
400.00	11829.75	1399.00	•700	5.929	•570	4.896	•884	4.886	.691	6.025	.546	4.970	.871	4 818
450.CO	11936.75	1373.50	• E 74	4 £.162	• 769	4.890	•920	4.988	•964	6.261	•741	4.954	905	4.913
475.00	13629.25	1483.50	• 924	4 6.963	•778	5.573	•965	5.724	•911	7.083	.751	5.645	.951	5.636
500.00	15178.25	1472.25	• 986	7.676	.812	6.230	•974	6.343	.974	7.800	.764	6.306	959	6 236
525.00	16437.75	1604.25	1.027	7 8.256	•827	6.736	1.033	5.895	1.013	8.398	801	6.823	1.018	6.781
550.00	17692.50	1592.00	1.105	5 8.689	• 86 Đ	7.283	1.048	7.407	1.088	9.025	.849	7.367	1.032	7.274
575.00	18648.50	1741.00	1.136	5 9.337	• 897	7.663	1.120	7.836	1.121	9.495	.867	7.761	1.102	7.699
600.00	19604.00	1728.50	1.214	4 Se237	•959	8.073	1.135	3.222	1.199	9+992	•927	8.185	1.120	8.071
650.00	50950.00	2058.50	1.280	0 10.497	1.005	8.596	1.303	8.837	1.260	10.660	•971	8.707	1.279	8.673
700.00	22230.00	2034.00	1.430	11.219	1.147	9.183	1.347	9.353	1.412	11.390	1.105	9.366	1.323	9.176
750.00	22943.00	2399.00	1.486	5 11.634	1.198	9.463	1.540	9.712	1.464	11.800	1,151	9.565	1.507	9.531
800.00	23656.00	2375.00	1.643	3 12.129	1.362	9.793	1.589	10.007	1.621	12.300	1.365	9.928	1.556	9.811
850.00	23766.50	2772.50	1.675	5 12.309	1.348	9+899	1.833	10.004	1.653	12.480	1.341	10.014	1.798	9.804
900.00	23973.50	2747.00	1.845	5 12.519	1.592	9.883	1.865	10.107	1.824	12.700	1.533	10.003	1.833	9.901
925.00	25566.00	2857.00	1.588	3 13.279	1.596	10.583	1.917	10.808	1.863	13.440	1.539	10.707	1.880	10.581
950.0C	27115.00	2845.75	1.955	5 13.989	1.635	11.243	1.930	11.428	1.931	14.160	1.576	11.391	1.895	11.191
975.00	29374.50	2977.75	1.593	3 14.569	1.647	11.773	1.995	11.978	1.965	14.750	1.567	11.919	1.957	11.721
1000.00	29629.25	2965.50	2.064	15.169	1.695	12.333	2.011	12.488	2.037	15.340	1.635	12.489	1.975	12.201
1025.00	30585.25	3114.50	2.093	8 15.609	1.711	12.713	2.00.2	12.908	2.066	15.790	1.649	12.875	2.046	12.621
1050.00	31540.75	3102.00	2.168	16.099	1.766	13.153	2.102	13.298	2.140	16.280	1.705	13.319	2.066	12,991
1100.00	32356.75	3432.00	2.227	7 16.739	1.813	13.663	2.269	13.908	2.197	16.920	1.746	13.539	2.227	13.581
1150.00	34166.75	3407.50	2.373	17.439	1.947	14.263	2.314	14.428	2.345	17.620	1.077	14.444	2.273	14.051
1200.00	34979.75	3772.50	2.428	17.529	2.001	14.543	2.510	14.788	2.397	18.030	1.925	14.739	2.462	14.441
1250.00	35092.75	3748.51	2.593	16.329	2.161	14.893	2.558	15.098	2.551	16.520	2.076	15.065	2.507	14.711
1300.00	35703.25	4146.00	2.616	16.499	2.201	14.973	2.799	15.078	2.583	18.700	2.114	15.159	2.750	14.701
1350.00	35810.25	4120.50	2.789	18.719	2.396	14.963	2.835	15.188	2.755	18.930	2.307	15.149	2.794	14.791

24

**

1

,

4

ý.

•

TABLE VII.- CONTINUED

(B) CONCLUDED

WING LPADINGS

1 ,

STRAIN-GAGE BRIDGE DUTPUTS, MILLIVOLTS

· •

SHEAF	· MIMENT,	TOROUL												
LBS	IN-LBS	IN-LBS	MN 1	MU 2	ľU 3	MU 4	MU 5	MU 6	MU 11	MU 12	MU 13	MU 14	MU 15	MU 16
1325.0	0 34117.75	4010.50	2.731	18.129	2.466	14.343	2-517	14.588	2.750	16 220	2 214		3 7(3	
1300.0	0 32568.75	4021.75	2.733	17.469	2.357	13.693	2.815	13.998	2.702	17.660	2.260	13 566	2 7 5 0	14.19]
1275.0	0 31309.25	3889.75	2.710	16.949	2.374	13.193	2.759	13.478	2.681	17.140	2 2 2 2 3	13 34039	20709	13.611
1250.(0 30054.50	3902.00	2.658	16.399	2.337	12.673	2.752	12.999	2.628	16.580	2 2 2 4 4	13 516	2.4705	13.041
1225.0	0 29098.50	3753.00	2.633	15,989	2.323	12.303	2.685	12.578	2.604	16.176	2 2 2 2 2 2	12 (20	2.090	12.611
1200.0	0 28143.00	3765.50	2.573	1: 539	2.374	11.893	2.670	12,218	2.543	15.710	26233	12+434	2.030	12.201
1150.0	0 26827.00	3435.50	2.521	14.949	2.334	11.393	2.509	11.619	2.403	15.120	2 1 6 7	12+019	2.014	11.841
1100.0	0 25517.00	3460.00	2.390	14.269	2.110	10.833	2.466	11.128	2.411	14.420	2 0 2 7	11.914	20427	11.231
1050.0	0 24804.00	3095.00	2.343	13,901	2.062	10.563	2.474	10.778	2,316	14.060	20021	10 447	2+417	10.751
1000.0	0 24091.00	3119.00	2.198	13.439	1.907	10.263	2.229	10.500	2.171	13 500	1 5 3 6	10.007	2.00	10.393
° 950•C	0 23980.50	2721.50	2.168	13.269	1.671	10-163	1.985	10.508	2.142	13 6 20	1.039	10.324	20135	10.131
900.0	0 23873.50	2747.00	2.000	13.059	1.676	10.173	1.949	10.415	1.072	13 910	1.603	10.201	1.945	10.131
875.0	0 22181.00	2637.00	1.967	12.329	1.680	9,493	1-905	9.708	1.943	12.470	1.611	10.291	1.91/	10.041
850.0	0 20632.00	2648.25	1.900	11.619	1.650	8.853	1.9/2	9.106	1 005	11 740	1 5014	9.005	1.870	9.351
825.0	0 19372.50	2516.25	1.875	11.049	1.639	8,353	1.546	3-166	1.952	11.100	1.002	8.953	1.864	8.751
800.0	0 18117.75	2528.50	1.510	10.439	1.596	7.823	1.833	8-068	1 790	11+190	1.520	8.447	1.807	8.216
775.0	0 17161.75	2379.50	1.778	9.989	1.579	7.453	1.764	7.620	1 760	10.570	1.529	7.914	1.795	7.672
750.0	0 16206.25	2392.00	1.710	9.501	1.523	7.047	1.746	7.265	1 401	10.210	1.513	7.533	1.726	7.307
700.0	0 14890.00	2062.00	1.651	8.861	1.477	6.543	1.552	6-628	1.475	9.023	1.459	7.124	1.710	6.043
650.0	0 13580.25	2086.50	1.511	1.122	1.345	5.975	1.542	6 126	1 605	0.771	1.417	0.012	1.549	6.325
600.0	0 12867.25	1721.50	1.459	7.733	1.295	5.705	1-344	5.764	1 4490	0.222	1.269	6.039	1.509	5.833
550.0	0 12154.25	1745.50	1.305	7.232	1,135	5.389	1.268	5.400	1 205	7.022	1.244	5.165	1.319	5.460
500.0	0 12043.75	1349.00	1.274	7.059	1.097	5.301	1.057	5 498	1 24 2	7 1 4 6	1.009	2.445	1.275	5.196
450.0	0 11936.75	1373.50	1.099	6.119	.507	5.306	1.022	5.380	1 090	(+14U	1.056	2.364	1.035	5.197
425.0	0 10244.25	1263.50	. 061	6.059	.996	4.627	.977	4.658	1 052	6 110	•00U	2.376	1.001	5.099
400.0	0 8695.25	1274.75	. 994	5.320	. 560	3.976		4 0 2 5	10075	C+11C	• 5 2 7	4.007	• 957	4.388
375.0	0 7435.75	1142.75	C 57	4.735	. 549	3-470	- 506	7002	• 700 0E0	20302	•021	4.030	•947	3 • 783
350.0	0 61F1.00	1155.00	. 893	4.204	-860	2,033	- BCA	2 0 7 9	• • • • •	4 ● / / 1	•811	3.515	.888	3.246
325.0	0 5225.00	1006.00	.+4+	3.639	.782	2.546	. 824	2 5 4 7	• 7 (0	4.128	• (63	2.914	• 974	2.757
300.0	0 4269.50	1018.50	.771	3,132	.723	2.134	• 2 T	2 1 4 /	er43 740	3.000	• / 46	2.563	•805	2.336
250.0	0 2953.50	688.50	702	2.456	• 663	1.616	• 6000	40104	+/57 703	3.140	•689	2.162	•757	1.969
200.0	0 1643.50	713.00	. 551	1.701	.534	1.034	● 1911 5C7	1010	• (1)3	2.449	•043	1.640	•625	1.349
150.0	0 930.50	342.00	499	1.273	- 4FO	.740	404	1015	• 7 4 ť	1.673	306	1.046	• 586	.856
100.0	0 ?17.50	372.00	.331	.763	215	• 1 7 7	• 704 . 357	• 7 7 / 2 7 5	•402 201	1.240	•460	•761	•400	• 498
50.0	0 107.00	-25.50	.292	.574	- 275	• 720	• 3 9 7	+ 373	• 3 3 4	• 720	•301	•432	•355	•230
0.0	0. 0.00	0.11	11C	- 345	-075	• 2 2 3 2 2 E	•115	• 373	•297	• 5 2 6	•266	• 345	•116	•231
		/ • • •	• • • • · ·	• J 7 G	• CrC	* 2 3 C	÷079	• < n 9	•123	♦ 2 € 7	+°70	•357	.05?	•135

TABL" VII.- CONCLUDED

(C) PIGHT WING, MIDWING STATION

WING LOADINGS

1 . I

STRAIN-GAGE BRIDGE OUTPUTS, MILLIVOLTS

1 *1*

SHEAR,	MOMENT,	TOROUE,								
LBS	IN-LBS	IN-LBS	MU 7	MG 8	MU 9	MU 10	4U 17	MII 19	MU 19	MU 20
25.00	942.50	110.00	-1.24	.704	-053	- 672	.016	. 703	074	61.3
50.00	1741.50	98.75	.105	1.325	112	1.225	- 066	1.225	.000	1 172
75.00	2251.00	230.75	.147	1.696	-228	1.597	.131	1.601	-206	1 526
100.00	2755.75	218.50	255	2.096	.225	1.943	- 233	2.001	-240	1.666
125.00	2961.75	367.50	288	2.260	-267	2.071	•253	2,252	.390	1.976
150.00	3167.25	355.00	.436	2.153	423	2.225	-402	2,308	.419	2,123
175.00	4109.75	465.00	460	3,112	.519	2.854	- 422	3.088	.470	2 7 2 4
200.00	4908.75	453.75	• 546	3.727	-550	3.408	-500	3.697	-502	3,256
225.00	5418.25	585.75	. 186	4.091	•664	3.779	-536	4.058	-610	3.610
250.00	5923.00	573.50	. (96	4.487	.703	4.124	.637	4.450	- 644	2 0 2 7
275.00	6129.00	722.50	729	4.649	-859	4.251	•666	4.606	.794	3 + 7 5 7 4 - 0 5 7
300.00	6334.50	710.00	. 877	4.799	891	4.407	•807	4.752	.822	4.203
375.00	7277.00	820.00	. 902	5.494	954	5.030	- 228	5.434	-980	4.800
350.00	8076.00	808.75	-988	6.107	965	5,583	-906	6-041	.904	5.220
375.00	8585.50	940.75	1.029	6.473	1.098	5.966	942	6.403	1.011	5-692
400.00	9090.25	928.50	1.139	6.869	1.137	6.312	1.044	6.795	1.045	6.022
425.00	9296.25	1077.50	1,171	7.028	1.291	6.436	1.074	6.950	1,194	6.141
450.00	9501.75	1065.00	1.321	7.177	1.321	6.595	1.216	7.095	1,222	6.267
425.00	8559.25	955.00	1.293	6.493	1.220	5.873	1,193	6.397	1,133	5.592
400.00	7760.25	966.25	1.208	5.875	1.186	5.319	1,115	5.779	1,108	5-063
375.00	7250.75	F34.25	1.167	5.507	1.675	4.950	1.079	5.414	1.001	4.710
350.00	6746.00	P46.50	1.058	5.111	1.036	4.306	.977	5.071	.967	4.382
325.00	5540.00	697.50	1.(25	4.948	.862	4.480	947	4.860	.818	4.260
300.00	6334.50	710.00	•E78	4.798	.649	4.325	•807	4.714	.739	4.116
275.00	5392.00	603.00	.852	4.541	.783	3.698	.755	4.081	-730	3.510
250.00	4593.00	611.25	.756	3.494	753	3.145	.707	3.408	.706	2.682
225.00	4083.50	479.25	.725	3.114	.639	2.774	.671	3.042	598	2.625
200.00	3578.75	491.50	.617	2.720	599	2.429	.570	2.647	555	2.300
175.00	3372.75	342.50	.584	2.556	. 4 4 5	2.302	540	2.488	416	2.110
150.00	3167.25	355.00	• 436	2.407	.414	2.147	400	2.341	397	2.033
125.00	2224.75	245.00	.412	1.708	.345	1.519	-360	1.653	- 328	1.430
100.00	1425.75	254.25	.327	1.093	.318	.966	301	1.041	- 305	-963
75.00	916.25	124.25	.286	.724	.205	593	-266	.677	197	-547
50.00	411.50	136.50	.175	.325	.166	248	.164	280	163	.210
25.00	205.50	-12.50	145	.160	012	.119	-135	.121	-014	-695
0.00	0.00	0.40	02	.009	019	036	005	025	-013	042

TABLE VIII. - LOADING FOR SIMULATED DESIGN CRUISE FLIGHT CONDITION

•

-

.

~

-

	APPLIEI (Each	D LOAD Wing)				LO	CATION							
	(LEFT WI	NG. INBOAR	RD		RIGHT W	ING, INBOA	RD	RIG	HT WING.	, MIDWIN	G
				۲ _{Wl}		X		Y _{W2}		X _{W2}	۲ ₁	Na	х	W_
1	N 111.21	(1bs) 25) m 1.723	(in.) 67.83	m 0 110	(in) 4 35	m 1 720	(in.)	m 0 112	(in.)	m	3 (in)	m	''3 (in.)
2	111.21	25	1.578	62.13	+0.011	-0.45	1.720	61 96	-0.011	4.40	0.958	37.70	0.112	4.40
3	111.21	25	1.483	58.40	0.123	4.85	1.482	58.35	0 123	-0.45	0.012	31.90	+0.011	-0.45
4	111.21	25	1.279	50.34	-0.012	-0.47	1.275	50.19	-0 -12	-0.49	0.720	20.10	0.123	4.35
5	111.21	25	1.278	50.32	0.134	5.28	1.280	50.38	0.134	5 28	0.515	20.19	-0.012	-0.49
δ	111.21	· 25	1.127	44.37	-0.012	-0.49	1.124	44.25	-0.012	-0.49	0.362	14.25	-0.012	-0.49
7	111.21	25	1.128	44.39	0.143	5.63	1.127	44.36	0.143	5.63	0.365	14.36	0.143	5.63
8	111.21	25	0.975	38.37	-0.013	-0.50	0.971	38.22	-0.013	-0.50	0.209	8.22	-0.013	-0.50
9	111.21	25	0.983	38.70	0.206	8.10	0.980	38.60	0.206	8.10	0.218	8.60	0.206	8,10
10	111.21	25	0.822	32.35	-0.013	-0.50	0.818	32.21	-0.013	-0.50	0.056	2.21	-0.013	-0.50
11	111.21	25	0.821	32.31	0.160	6.30	0.820	32.27	0.160	6.30	0.058	2.27	0.160	6.30
12	111.21	25	0.783	30.83	0.161	6.35	0.782	30.77	0.163	6.40	0.020	0.77	0.163	6.40
13	111.21	25	0.670	26.36	-0.012	-0.49	0.665	26.20	-0.012	-0.49				
14	111.21	25	0.678	26.69	0.243	9.55	0.673	26.50	0.241	9.48				
15	111.21	25	0.551	21.82	-0.013	-0.50	0.550	21.66	-0.013	-0.50				
16	111.21	25	0.554	21.80	0.174	6.87	0.553	21.77	0.173	6.83				
17	111.21	25	0.478	18.80	-0.011	-0.45	0.474	18.66	-0.013	-0.50				
18	111.21	25	0.440	17.33	0.182	7.15	0.439	17.29	0.182	7.15				
19	111.21	25	0.363	14.30	-0.012	-0.47	0.361	14.20	-0.013	-0.50				
20	111.21	25	0.362	14.26	0.185	7.30	0.362	14.26	0.185	7.30				
21	111.21	25	0.248	9.73	-0.011	-0.45	0.245	9.64	-0.013	-0.50				
22	111.21	25	0.249	9.80	0.191	7.52	0.247	9.71	0.192	7.54				
23	111.21	25	0.173	6.80	-0.011	-0.45	0.168	6.61	-0.012	-0.43				
24	111.21	25	0.134	5.26	0.198	7.80	0.133	5.24	0.197	7.77				
25	111.21	25	0.058	2.30	-0.012	-0.47	0.054	2.14	-0.013	-0.51				
26	111.21	25	0.058	2.29	0.203	8.00	0.056	2.21	0.202	7.95				
27	111.21	25	-0.017	-0.67	-0.011	-0.45	-0.021	-0.82	-0.012	-0.48				
28	111.21	25	-0.079	-3.12	0.232	9.14	-0.077	-3.03	0.234	9.20				
29	155.69	35	-0.093	-3.68	-0.011	-0.45	-0.099	-3.88	-0.012	-0.49				
30	66.72	15	-0.165	-6.50	0.236	9.30	-0.162	-6.39	0.239	9.40				
31	111.21	25	-0.209	-8.21	-0.011	-0.45	-0.213	-8.38	-0.013	-0.50				
32	111.21	25	-0.246	-9.70	0.242	9.51	-0.245	-9.64	0.243	9.58				

TABLE IX. - LOADING FOR SIMULATED DESIGN STRENGTH FLIGHT CONDITION (2.5 g MANEUVER).

,

LOCATION														
	, (Ea	ach Wing)	LEF	T WING,	INBOARD	•	RIGHT	WING,I	NBOARD		R	IGHT WING	, MIDWIN	G
	:			Y _W ,	X _{VI}		YW		х	N.		Y _{W3}	ХМ	3
	N	(1bs)	m	(in.)	m	(in.)	2 m	(in.)	m	2 (in.)	m	(in)	m	(in.)
1	111.21	25	1.667	65.63	0.048	1.90	1.666	65.58	0.050	1.95	0.90	4 35.58	0.050	1.95
2	444.82	100	1.578	62.13	-0.011	-0.45	1.574	61.96	-0.011	-0.45	0.81	2 31.96	-0.011	-0.45
3	111.21	25	1.400	55.13	0.128	5.05	1.400	55.12	0.129	5.09	0.63	8 25.12	0.129	5.09
4	222.41	50	1.447	56.98	-0.010	-0.40	1.444	56.86	-0.011	-0.45	0.68	2 26.86	-0.011	-0.45
5	333.62	75	1.275	50.19	-0.012	-0.49	1.275	50.19	-0.012	-0.49	0.51	3 20.19	-0.012	-0.49
6	111.21	25	1.280	50.38	0.134	5.28	1.280	50.38	0.134	5.28	0.51	8 20.38	0.134	5.28
7	333.62	75	1.165	45.88	-0.012	-0.48	1.162	45.74	-0.012	-0.48	0.40	0 15.74	-0.012	-0.48
8	111.21	25	1.128	44.39	0.143	5.63	1.127	44.36	0.143	5.63	0.36	5 14.36	0.143	5.63
9	222.41	50	1.050	41.35	-0.013	-0.50	1.047	41.21	-0.013	-0.50	0.28	5 11.21	-0.013	-0.50
10	222.41	50	1.011	39.80	0.148	5.83	1.009	39.73	0.149	5.88	0.24	7 9.73	0.149	5.88
11	444.82	100	0.860	33.85	-0.013	-0.50	0.857	33.74	-0.013	-0.52	0.09	5 3.74	-0.013	-0.52
12	222.41	50	0.857	33.73	0.158	6.23	0.857	33.75	0.158	6.23	0.09	5 3.75	0.158	6.23
13	333.62	75	0.707	27.83	-0.013	-0.50	0.704	27.70	-0.013	-0.50				
14	333.62	75	0.705	27.75	0.166	6.53	0.707	27.82	0.166	6.53				
15	333.62	75	0.592	23.30	-0.013	-0.50	0.589	23.18	-0.013	-0.50				
16	222.41	50	0.554	21.80	0.174	6.87	0.554	21.80	0.171	6.75				
17	333.62	75	0.439	17.30	-0.012	-0.48	0.435	17.12	-0.012	-0.48				
18	333.62	75	0.401	15.77	0.182	7.15	0.401	15.78	0.183	7.20				
19	333.62	75	0.325	12.80	-0.012	-0.47	0.320	12.60	-0.012	-0.49				
20	222.41	50	0.286	11.27	0.189	7.45	0.284	11.19	0.190	7.48				
21	333.62	75	0.211	8.30	-0.011	-0.45	0.207	8.13	-0.013	-0.50				
22	222.41	50	0.172	6.77	0.196	7.70	0.171	6.72	0.197	7.74				
23	333.62	75	0.058	2.30	-0.012	-0.47	0.054	2.14	-0.013	~0.51				
24	222.41	50	0.058	2.29	0.203	8.00	0.056	2.21	0.202	7.95				
25	333.62	75	-0.055	-2.17	-0.011	-0.45	-0.060	-2.35	-0.013	-0.50				
26	222.41	50	-0.049	-1.92	0.230	9.05	-0.048	-1.89	0.232	9.13				
27	333.62	75	-0.169	-6.67	-0.011	-0.45	-0.174	-6.85	-0.013	-0.50				
28	222.41	50	-0.165	-6.50	0.236	9.30	-0.168	-6.60	0.236	9.30				
29	111.21	25	-0.209	,-8.21	-0.011	-0.45	-0.213	-8.38	-0.013	-0.50				
30	111.21	25	-0.246	-9.70	0.242	9.51	-0.249	-9.80	0.240	9.45				

28

.

Design		Wing loadings				Strain-	gage brid	dge out	puts, mi	llivolt	s. for -				
Flight Condition	Shear	Bending Moment	Torsional Moment								,				
	N (1bs.)	N-m (in1b.) N-m	1 (in1b.)					,							
		Left wing, inboard		^μ 21	^μ 22	^μ 23	^μ 24	^μ 25	^μ 26	^μ 31	^µ 32	^µ 33	^μ 34	^μ 35	^μ 36
Cruise	650	18698	2234	1.217	9.356	1.129	7.648	1.405	7.639	1.242	9,666	1.089	8 013	1 377	8 117
Maneuver	1450	43042	3148	3.134	22.135	2.972	17.932	2.472	17.365	3.234	22.895	2.906	16.798	2.424	18.344
		Right wing, inboard		^µ 1	^μ 2	^μ 3	μ4	^μ 5	^μ 6	^μ 11	^μ 12	^μ 13	^μ 14	^μ 15	^µ 16
Cruise	. 650	18634	2251	1.424	9.404	1.037	7.455	1.416	7,803	1.412	9 559	0 976	7 570	1 275	7 670
Maneuver	1450	42910	3139	3.595	21.840	2.724	17.673	2.483	17.550	3.601	22.122	2.613	17.867	2.398	17.167
		Right wing, midwing		^μ 7	^µ 8	^μ 9	^μ 10	^μ 17	^μ 18	^μ 19	^μ 20				
Cruise	300	4732	963	0.810	3.607	1.082	3.049	0.763	3.542	1.106	2.897				
Maneuver	650	11228	837	2.398	8.402	1.645	7.633	2.237	8.291	1.491	7.222				

TABLE X.- DESIGN CRUISE AND MANEUVER FLIGHT CONDITION WING LOADINGS AND ASSOCIATED STRAIN GAGE BRIDGE OUTPUTS

1

,

)

TABLE XI.- SUMMARY OF SELECTED STRAIN-GAGE BRIDGES, LOAD COEFFICIENTS,

PROBABLE ERRORS, AND ACCURACY EVALUATION

A. Left Wing, Inboard Station.

Load measurement	Selected bridges	Load co ± proba	pefficient able error	Average wing calibration loading	Probable error of load estimate	Multiple correlation coefficient
V, N	23	762.0 ± 37.8 N/mV	(171.3 ± 8.5 1b/mV)	2522 N	±56 N	.99985
(16)	35	693.0 ± 41.4 N/mV	(155.8 ± 9.3 lb/mV)	(567 lbs)	(±12.5 lbs)	
	36	132.1 ± 4.0 N/mV	(29.7 ± 0.9 1b/mV)			
M, N-m (in1b)	23	-121.1 ± 9.8 N-m/mV	(-1071.6 ± 87.0 in1b/mV)	1704 N-m	±28 N-m	.99992
	36	279.5 ± 1.7 N-m/mV	(2473.6 ± 14.7 in1b/mV)	(15084 in1bs)	(±244.6 inlbs)	
T, N-m	23	- 79.5 ± 4.3 N-m/mV	(-703.4 ± 38.3 in1b/mV)	196 N-m	±6 N-m	.99967
(in1b)	35	220.1 ± 4.7 N-m/mV	(1947.8 ± 41.8 in1b/mV)	(1737 in1bs)	(±56.6 in1bs)	
	36	4.1 ± 0.4 N-m/mV	(36.7 ± 3.9 in1b/mV)			

Т

.

TABLE XI.- CONTINUED

"

.

> •.

B. Right Wing, Inboard Station.

Load measurement	Selected bridges	Load coefficient ± probable error	Average wing calibration loading	Probable error of load estimate	Multiple correlation coefficient
V, N (1b)	13 4 15	800.2 ± 33.8 N/mV(179.9 ± 7.6 lb/mV)141.9 ± 4.0 N/mV(31.9 ± 0.9 lb/mV)708.6 ± 31.6 N/mV(159.3 ± 7.1 lb/mV)	2122 N (477 1bs)	±62 N-m (±13.9 1bs) .	.99976
M, N-m (in1b)	13 4	-129.1 ± 11.7 N-m/mV (-1142.3 ± 103.9 in1b, 288.7 ± 1.8 N-m/mV (2555.2 ± 16.3 in1b,	/mV) 1435 N-m /mV) (12700 in1bs)	±32 N-m (±287.1 in1bs)	.99986
T, N-m (inlb)	13 4 15	- $86.9 \pm 3.8 \text{ N-m/mV}$ (-769.3 ± 33.6 in1b, 4.4 ± 0.5 N-m/mV (39.3 ± 4.0 in1b, 214.6 ± 3.6 N-m/mV (1894.6 ± 31.6 in1b,	/mV) 165 N-m /mV) (1458.7 in1bs) /m/V)	±7 N-m (±61.7 inlbs)	.99903

ω

TABLE XI.- CONCLUDED

C. Right Wing, Midwing Station.

•

)

Load measurement	Selected bridges	Load co ± proba	pefficient ble error	Average wing calibration loading	Probable error of load estimate	Multiple correlation coefficient
V. N	7	593.8 ± 15.6 N/mV	(133.5 ± 3.5 1b/mV)	792 N	±24 N	.99971
(1b)	18	79.2 ± 3.6 N/mV	(17.8 ± 0.8 1b/mV)	(178.1 lbs)	(±54 lbs)	
	9	512.4 ± 15.6 N/mV	(115.2 ± 3.5 1b/mV)			
M, N-m (in1b)	18	46.9 ± 12.5 N-m/mV	(415.5 ± 110.5 in1b/mV)	409 N-m	±14 N-m	.99964
	9	29.7 ± 9.7 N-m/mV	(263.2 ± 85.6 in1b/mV)	(3616.9 in1bs)	(126.0 1n10S)	
	10	107.7 ± 12.7 N-m/mV	(952.9 ± 112.6 in1b/mV)			
T, N-m (in1b)	7	-41.2 ± 3.1 N-m/mV	(-364.8 ± 27.1 in1b/mV)	48 N-m	±5 N-m	.99754
	18	-25.2 ± 4.0 N-m/mV	(-223.3 ± 35.5 in1b/mV)	(423.4 in1bs)	(±40.1 1n1DS)	
	9	123.9 ± 3.2 N-m/mV	(1096.5 ± 28.4 in1b/mV)			
	10	29.3 4.2 N-m/mV	(259.1 ± 36.9 in1b/mV)			

. .

•

.

		Desig	jn cruis	se simulated wi	ng loading)		Design	maneuve	er simulated w	ing loading		
	She	Shear Bo		ng moment	Torque		Shear		Bending moment		To	Torque	
	N	(1bs.)	N-m	(in. lbs.)	N-m	(in. 1bs.)	N	(1bs.)	N-m	(in.lbs.)	N-m	(in. 1bs.)	
	Left	wing, ir	iboard s	station			Left v	ving, inbo	ard stat	ion			
Calculated	2886.9	(649)	2132	(18868)	247	(2186)	6369.9	(1432)	4767	(42195)	272	(2204)	
Actual	2891.3	(650)	2113	(18698)	264	(2334)	6449.9	(1450)	4863	(43042)	356	(3304)	
Difference	-4.4	(-1)	19	(170)	-17	(148)	-80.1	(-18)	-96	(-847)	18	(156)	
% - Error	-0.2	-0.2	0.9	0.9	-6.3	-6.3	-1.2	-1.2	-2.0	-2.0	5.0	5.0	
	Right	wing, ir	nboard s	station			Righ	t wing, ir	nboard s	tation			
Calculated	2811.3	(632)	2018	(17864)	243	(2147)	6294.2	(1415)	4750	(42046)	365	(3220)	
Actual	2891.3	(650)	2105	(18634)	254	(2251)	6449.9	(1450)	4848	(42910)	355	(3220)	
Difference	-80.1	(-18)	-87	(-770)	-11	(-104)	-155.7	(-35)	-98	(-864)	10	(9135)	
% - Error	-2.8	-2.8	4.1	4.1	-4.6	-4.6	-2.4	-2.4	-2.0	-2.0	2.8	2.8	
	Right	t wing, m	idwing	station			Right	: wing, mi	dwing st	tation			
Calculated	1316.7	(296)	527	(4662)	101	(890)	2926 9	(658)	1260	(11151)	119 22	(1055)	
Actual	1334.5	(300)	535	(4732)	108	(963)	2891.3	(650)	1269	(11228)	04 56	(1000)	
Difference	-17.8	(-4)	-8	(-70)	_7	(-73)	35.6	(8)	_0	(11220)	94.00 25	(037)	
% - Error	-1.3	-1.3	-1.5	-1.5	-7.6	-7.6	1.2	1.2	-0.7	-0.7	25 26.0	26.0	

.

.

TABLE XII.- EVALUATION OF PREDICTED LOADS FOR TWO SIMULATED FLIGHT LOADINGS

r >

33

.

Figure 1.- General arrangement of BQM-34F drone aircraft with ARW-1 wing.

J.

r

34

ι

r.

.

-

Figure 4.- Photograph of primary wing structure.

NASA 1...78...5981

Figure 5.- Photograph of aircraft and wing inverted during loading procedure.

.

.

.

٤

SHEAR . COMBINED LOADINGS

Figure 8.- Correlation of computed shear loads with applied calibration shear loads for the left wing inboard station.

Figure 9.- Correlation of computed bending moment loads with applied calibration bending moment loads for the left wing inboard station.

Figure 10.- Correlation of computed torque loads with applied calibration torque loads for the left wing inboard station.

SHEAR, COMBINED LOADINGS

Figure 11.- Correlation of computed shear loads with applied calibration shear loads for the right wing inboard station.

Figure 12.- Correlation of computed bending moment loads with applied calibration bending moment loads for the right wing inboard station.

Figure 13.- Correlation of computed torque loads with applied calibration torque loads for the right wing inboard station.

SHEAR, COMBINED LOADINGS

Figure 14.- Correlation of computed shear loads with applied shear loads for the right wing midwing station.

Figure 15.- Correlation of computed bending moment loads with applied bending moment load for the right wing midwing station.

T.

,

TORQUE, COMBINED LOADINGS

Figure 16.- Correlation of computed torque load with applied torque load for the right wing midwing station.

49

٦

,

· · ·

.

· · ·

1. Report No. NASA TM-81889	2. Government Access	ion No.	3. Recip	ecipient's Catalog No.					
4. Title and Subtitle LOADS CALIBRATIONS OF STI PROJECT AEROELASTIC RESE	RAIN GAGE BRIDGES ARCH WING (ARW-1)	ON THE D	AST 5. Repo	5. Report Date October 1980					
			6. Perto	b. Performing Organization Code					
7. Author(s)			8. Perfo	rming Organization Report No.					
Clinton V. Eckstrom									
9. Performing Organization Name and Addre	255		10. Work 505	Unit No. -33-53-02					
NASA Langley Research Cer Hampton, VA 23665	nter		11. Contr	ract or Grant No.					
		<u></u>	13. Type	of Report and Period Covered					
12. Sponsoring Agency Name and Address	• •••••••••••••••••••••••••••••••••••		Tec	lechnical Memorandum					
Washington, DC 20546	Space Administrat	ion	14. Spon	14. Sponsoring Agency Code					
15. Supplementary Notes			I						
16. Abstract									
This paper presents details of and results from the procedure used to calibrate									
strain gage bridges for n	neasurement of win	g struct	ural loads, i.e	e., shear (V),					
bending moment (M), and t	torque (T), for th	e DAST pi	roject ARW-1 w	ing which has an					
aspect ratio of 6.8, a qu	aspect ratio of 6.8, a quarter-chord line sweepback angle of 42.24 ⁰ , and a taper								
ratio of 0.36. Results a	are in the form of	loads e	quations and co	omparison of					
computed loads vs. actual loads for two simulated flight loading conditions									
			J						
17. Key Words (Suggested by Author(s))		18. Distribution Statement							
Wing loads calibration		Unclassified - Unlimited							
Strain gage bridges		Subject Category 05							
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22, Price°					
Unclassified		49	A03						

÷

.

•

٠.

-

* For sale by the National Technical Information Service, Springfield, Virginia 22161

: .

. •

.

•