
N80-33435
TDA Progress Report 42-59 July and August 1980

The DSN Programming System
A. P. Irvine

TDA Engineering Office

The DSN Programming System is described by a heuristic model. Interaction with two
elements of that system, anomaly reporting and the MBASIC1™ language, is described in
detail.

I. Introduction
The DSN Programming System is composed of a body of

methodologies, tools, and practices whose major components
are the following:

(1) DSN Software Standard Practices.

(2) DSN standard programming languages.

(3) Software implementation aids.

(4) Management aids.

The goal of the system is to produce software:

(1) On time.

(2) Within budget.

(3) Conforming correctly to functional requirements.

(4) Of a low life-cycle cost.

Reference 1 presents a hierarchical model of the DSN Pro-
gramming System, and Ref. 2 describes each major element in
detail. This article will describe information flow generated
from activities which provide a heuristic process for the DSN
Programming System.

II. The Heuristic Model
Heuristic is defined in Ref. 3 as "pertaining to exploratory

methods of problem-solving in which solutions are discovered
by evaluation of the progress made toward the final result."
Figure 1 shows a heuristic model of the DSN Programming
System, with information source elements as well as key com-
ponent elements of the end-to-end system. Also, the paths of
information and feedback between the various key elements
are shown.

A. Inputs

The inputs to the model, as shown in Fig. 1, consist of the
following:

1. TDA planning. The Telecommunications and Data
Acquisition (TDA) Planning Office is responsible for generat-
ing a DSN Programming System Long-Range Plan which will
give, in broad outlines, the general direction of the system.

2. Technology development. Programs developed under
the direction of the TDA Technology Development Office
provide appropriate research and prototypes prior to
implementation.

51

https://ntrs.nasa.gov/search.jsp?R=19800024927 2020-03-21T15:29:55+00:00Z



3. Research from NASA Centers. Of particular interest is
work being done at the Software Quality Laboratory of the
Goddard Space Flight Center and work done under the Multi-
Purpose User-Oriented Software Technology (MUST) Project,
led by the Langley Research Center.

4. Other research. Both industry and universities actively
engage in research in the software area. A goal of the Pro-
gramming System is to make use of research from these
sources. An example of this technology transfer would be the
use of Program Design Language (PDL) (Ref. 4) instead of
flow charts for software documentation.

5. Operations needs. The operations organization provides
feedback which helps to identify needed improvements to the
man-machine interface and to software documentation and
operating procedures.

6. Implementation activities. The process of implementing
software helps to identify and focus needs which should indi-
cate future activities for the Programming System. The neces-
sity for implementation tools and the usefulness of certain
procedures are examples of this kind of feedback. Other paths
of feedback contain information concerning anomaly rates
and schedules which are outputs of the implementation
process.

7. Work Authorization Document (WAD). The WAD serves
as an input of constraints to the Programming System for any
given fiscal year.

B. Outputs

The output from the model consists of information which
enables the system to direct activities of the components
shown in Fig. 1 and listed in the Introduction. All outputs of
the system eventually feed into the implementation process.

This article will discuss two subcomponents of the system
and how the direction of their activities consists of a heuristic
process. The first, anomaly reporting, is a subcomponent of
management aids, but is shown as a separate feedback path in
Fig. 1 because of its importance to the heuristic model. The
second is the MBASICtm language which is a subcomponent of
DSN Software Standard Programming Languages.

1. Anomaly reporting. Of all the paths of feedback, that of
anomaly reporting is one of the more significant. Anomalies
can be reported against any discrepancy noted during verifi-
cation testing and acceptance testing or subsequent transfer.
Anomalies are charged against the subsystem or assembly in
which the originator believes the anomaly resides. Reference 5
describes how an anomaly rate lower than industry-reported

averages was experienced by the DSN Mark III Data Subsys-
tems Implementation Project (MDS) using the DSN Program-
ming System methodology.

The rate of anomalies incurred is only a quantitative
measure for feedback. A qualitative assessment is also necessary
to determine from where in the software life-cycle many of
the errors originate. There are approximately 1000 reports
available which are currently classified as to subsystem and
severity. Severity is defined as follows:

Category A: Critical to the operation of the software.
The software will not function as required.

Category B: Does not meet specifications. The software
functions, but may operate in such a manner
as to lead to a misunderstanding of the
performance.

Category C: Does not prevent software from operating
and satisfying all requirements, but is
operationally undesirable.

An effort is being initiated by which causal relationships
may be uncovered. This will be done by:

(1) Identifying existing software error taxonomies in use
that capture meaningful data.

(2) Auditing historical anomaly reports and assigning each
anomaly to the appropriate error type.

(3) Also, auditing historical anomaly reports for the time-
wise occurrences in relation to the software life-cycle.

(4) Analyzing the data for trends and significant clusterings
of error data.

The outcome of this analysis should point to areas where
efforts of the system should be directed.

2. The MBASICtm language. The MBASICtm language is
the DSN standard non-real-time language and is described in
Ref. 6. Its initial implementation was as an interpreter. An
interpreter essentially consists of an executive routine that, as
computation progresses, translates a stored program expressed
in some pseudocode or source language into machine code and
performs the indicated operations by means of subroutines as
they are translated. This method of code execution is much
slower than directly executing machine code.

Feedback from costs expended, as reported by users,
showed that for Central Processing Unit (CPU) bound jobs in
production mode, an interpretive method of execution was
very expensive. Based on estimated expenses incurred by the
DSN in FV79, it was determined that the implementation of
the MBASIC*1" language as a compiler was cost-effective. The

52



speed increase needed to pay for the implementation of the
compiler is a five-fold increase in CPU execution times. Any
greater increase would not appreciably affect costs. Figure 2
shows the relation between increase in speed and cost-savings.

It has been calculated (Ref. 7) that considerable savings can
be realized by the user of higher-order languages. This is true
in the implementation of compilers as well as real-time appli-
cations programs because compilers exhibit many of the fea-
tures of a real-time program. Consequently, the PASCAL
language was selected as the language of implementation for
the MBASICtm compiler. The University of Wisconsin imple-
mentation of this language was chosen as the most suitable
compiler for this effort. This compiler was recommended by
users at the Langley Research Center.

DEMOBASIC, a subset of the MBASICtm language, was
implemented on the MODCOMP II and was successfully
demonstrated during the Configuration Control and Audit
Demonstration. That activity terminated in December 1978.
Feedback from the demonstration provided the information
and incentive to pursue a complete MBASICtm implementa-

tion for the MODCOMP II. DEMOBASIC has been upgraded
to match the implementation currently available on the
Univac series of computers and is scheduled to be transferred
to operations September 15, 1980.

III. Conclusions
Feedback from anomaly reporting indicated that the

methodology resulted in a low anomaly rate (Ref. 5) and
thereby also provided positive feedback. Further analysis of
anomaly reporting will provide more valuable information for
future efforts. The need to reduce operating costs prompted
the implementation of the MBASICtm compiler, which was
written in a higher order language suggested by another NASA
Center.

The DSN Programming System can be considered to be
both adaptive and heuristic, incorporating new technology as
it is introduced and redirecting emphasis as information rele-
vant to the evaluation of progress toward a fixed goal becomes
available.

References

1. Hodgson, W. D., "The DSN Programming System," in The Deep Space Network
Progress Report 42-41, pp. 4-9, Jet Propulsion Laboratory, Pasadena, Calif., Oct. 15,
1977.

2. Irvine, A. P., "The DSN Programming System," in The Deep Space Network Progress
Report 42-50, pp. 4-6, Jet Propulsion Laboratory, Pasadena, Calif., Apr. 15, 1979.

3. Computer Glossary, The Funk and Wagnalls Library of Computer Science, Funk and
Wagnalls, New York.

4. Caine, S. H., and Gordon, E. K., PDL - A Tool for Software Design, 1975 NCC,
AFIPS Press, Montvale, NJ., 1975.

5. Irvine, A., and McKenzie, M., "Evaluation of the DSN Software Methodology," in
The Deep Space Network Progress Report 42-48, pp. 72-81, Jet Propulsion Laboratory,
Pasadena, Calif., Dec. 15, 1978.

6. MBASIC™ Manual, Volumes I and II, Jet Propulsion Laboratory, Pasadena, Calif.,
Aug. 1975.

7. McKenzie, M., "Cost Evaluation of a DSN High Level Real-Time Language," in The
Deep Space Network Progress Report 42-42, pp. 214-225, Jet Propulsion Laboratory,
Pasadena, Calif., Dec. 15, 1977.

53



TECH-
NOLOGY
DEVELOP-

MENT

STANDARD
LANG-
UAGES

RESEARCH
FROM OTHER

NASA
CENTERS

IMPLEMEN-
TATION

AIDS ALL DSN
SOFTWARE

IMPLEMENTATIONS

THE DSN
PROGRAMMING

SYSTEM

RESEARC
FROM

INDUSTRY &
UNIVER-

SITIES

OPERA-
TIONS
NEEDS

ANOMALY
REPORTING

MANAGE-
MENT
AIDS

Fig. 1. Heuristic model of DSN Programming System

10X

u
z 5X

IX

100 K
ESTIMATED COST SAVINGS IN FY79

IN K DOLLARS

Fig. 2. Speed vs cost

54




