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ABSTRACT

There are currently no well-established numerical techniques for

evaluating the bit error probability performance of a Satellite Communication

System that includes:

-	 Uplink and downlink noise

•--°	 Uplink interference

-	 Transponder AM/AM and AM/PM nonlinearities

In this report we present new computational techniques that efficiently compute

these bit error probabilities when only moments of the various interference ran-

dom variables are available. The approach taken is a generalization of the well-

known Gauss-Quadrature rules used for numerically evaluating single or multiple

integrals. In what follows, we develop the basic algorithms, show some of its

properties and generalizations, and describe its many potential applications.

Some typical interference scenarios for which Lhe results are particularly

applicable include:

-	 Intentional jamming

-	 Adjacent and co-channel interferences

-	 Radar pulses (RFI)

-	 Multipath

-	 Intersymbol interference

While the examples presented stress evaluation of bit error probabilities in

encoded digital communication systems, the moment techniques can also be applied

to the evaluation of other parameters, such as computational cutoff rate under

both normal and mismatched receiver cases in coded systems. Another important

application is the determination of the probability distributions of the output

of a discrete-time dynamical system. This type of model occurs widely in

control systems, queueing systems, and synchronization systems (e.g. discrete

phase-locked loops).
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I.	 Introduction

Our primary motivation for investigating the moment techniques presented

here is the numerical evaluation of satellite communication system performance.

These systems typically possess transponders which exhibit such nonlinearities as

AM/AM and AM/PM conversion and are further corrupted by a combination cf uplink

and downlink noise, and various interference signals such as those due to:

—	 Intentional jamming

—	 Adjacent channels

—	 Radar pulses

--	 Multipath

—	 Intersymbol interference

—	 Co--channel interferers

It is often difficult to have a complete statistical characterization of

these interference signals. Some moments, however, are often easily computed

based on some simple models of the various interference signals. Hence, given

the available moments, we should desire a technique by which one could achieve

an approximate performance evaluation.

The particular moment technique presented here is based on the solution

to the classical "Hamberger Moment Problem" as discussed in Krein (Ref. 1). This

solution has previously been applied to linear communication channels by

Benedetto, Biglieri, and Castellani. (Ref. 2) and Yao and Biglieri (Ref. 3). It is

also known to be a generalization of the well-known "Gauss-Quadrature Rules" for

numerically evaluating integrals (Ref. 4). We present here some new algorithms

for solving the basic moment problem and then generalize them to complex and

multi-dimensional random variables. Although our primary application is motivated

by the evaluation of satellite communication system performance, there are numer-

ous other practical applications of this moment technique which shall be discussed

at the conclusion of this report.

In Section II, we examine the transponder satellite model and motivate the

need for developing a computationally efficient numerical technique for evaluating

the bit error probability of such systems. The moment technique will have appli-

cations to all types of signal modulations including the new bandwidth efficient

modulations such as MSK, SQPSK, CPFSK, and TFM (Refs. 5-7). Section III dis-

cusses the basic assumptions and statement of the classical one variable moment

problem. Section IV presents a solution to the moment problem using the

1



Berlekamp-Massey algorithm (Ref. 8) * and an accompanying root-finding algorithm

along with some numerical examples illustrating their use. Section V presents an

efficient algorithm for computing the moments of a sum of independent random

variables in terms of their individual moments. Section VI presents some basic

existence theorems concerning the solutions to the moment problem. Generaliza-

tions to complex random variables and pairs of correlated random variables are

given in Section VII. Sec.tioaa V1.71 shows how to solve the moment problem given

some constraints on mass points. The accuracy of this moment technique as well

as the derivation of bounds on the approximation error are presented in Sec-

tion IX. Finally, various applications are discussed in Section X along with

conclusions.

*
Another algorithm which can be applied to this problem is the Euclid algorithm
whose relation to the Berlekamp-Massey algorithm is discussed in Ref. 9.

2
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II.	 Transponder Satellite Channel

Typically, a transponder satellite is modelled as shown in Figure 1 where

we define

x(t) = transmitted uplink signal.

i(t) = uplink interference signal

nu (t) = uplink noise

r(t) = x(t) + i(t) + nu (t) = signal entering the satellite system

BPF = bandpass filter

a(t) = signal entering the TWT

TWT = traveling wave tube amplifier

ZF = zonal filter

z(t) = satellite downlink signal

nd (t) = downlink noise

y(t) = signal received at the ground station 	 (2.1)

We now illustrate the problem of performance evaluation for the above satel-

lite channel when the modulation is coherent binary phase shift keying (BPSK) for

which

	

s (t)	 "0" data bit is sent

(2.2)

	

-s (t)	 "1" data bit is sent

nU(t)
	 SATELLITE TRANSPONDER	 nd(t)

r(t)	
sPF
	

TWT I 	 ZF	 Y(t)

Figure 1. Satellite Channel

z(t) ^
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where

S(t) = dip cos w0t;	 0 <_ t < T

(2.3)

P = transmitter power

We assume the BPF is ideal in that it limits the satellite input signal

r(t) to the signal space generated by the pair of quadrature basis functions

IS) = 'AT cos W 0 
t

^S (t) _ - IT sin w t;	 0 < t v T	 (2,4)
U

Hence

a(t) = rA(t) + rSTS (t) 	 (2.5)

where

T

rc =	 r(t)Jc(t) d  = x+ 	 is + nu`

0

(2.6)

T

rs =	 r(QS(t) A= x  + is + nus
0

are the projections of r(t) on these basis coordinates.

F,

4
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Here for BPSK we have x = 0 and
s

n0" data bit

x =	 (2.7)
C

-^T ,	 "1" data bit

while

ic , i s are the qu4drature components of the interference signal

n
uc' nus are the independent components of the uplink additive white

Gaussian noise.

The bandpass filter's function is to filter out all noise and interference

outside this signal space (spectrum) without distorting the signal. We have

assumed the bandpass filter works ideally.

Next we define the envelope

R =	
T Ir

e + rs^	 (2.$)

and phase

r

r^ = tan -1
	 s	

(2.9)
r

C

of the signal a(t); i.e.,

a(t) = r c ^h c ( t ) + rs$s(t)

a	 I

= R cos [Wot + n]	 (2.10)

5
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The TWT is assumed to create AM/AM and M/PM nonlinear conversions which:

are mathematically described by the zer , . , moriwj y functions of the input envelope R;

viz.,

f(R) = AM/All nonlinearity

g(R) = AM/PM nonlinearity

Thus, the TWT output followed by a zonal filt4r is given by

z(t) = f(R) cos [w 0t + g(R) + rl]

F12 
f(R) cos [ g (R) + rlI ^'c(t)

+,4F!
 
f(R) sin [g(R) + rl] ^ S (t)	 (2.11)

In general, we aasume a conventional/ground station receiver based on t'`ie

ideal additive white Gaussian noise channel. With few exceptions, it is usually

impractical to design special receivers for each channel. The conventional

receiver is modelled as in Figure 2.

Y( t)Y^	 fT( )dt	 Yc = Zc + -dc0

¢c(t)

Figure 2. Ground Station Receiver

Here we have

T

ndc =	 Wt c(t)dt

0 

nd (2.12)

6
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z r =	 f(x) cos [ g (K) + n - g^

(2.13)

g = receiver phase reference

and the derision or demodulation rule

deride "0" if y > 0
c.

(2.14)

decide "1" if yG :5 0.

Suppose the "0" data bit is sent I
'
X(t) = s(t) =	 r s ^ c (td where

E A PT is the energy per symbol. Then, given z , the conditional error probabil-s 
ity is

I	 '

2	 \

	

PP (z c ) = Prob ) yr < ;^ I z c ; xc = ^ = Q	
N z

c	 (2.15)

(1

where N  is the single:-sided noise spectral density of the downlink noise nd(t).

The average error probability is then

P EO = E ) PSO(zc)1

i

(2.16)

We assume a phase-locked loop tracks the long time u 3erage phase of the satellite
output signal.

The function

Q(x) =2 r	 eXp (-y2)dy
fx

is the well-known Gaussian probability integral.

7
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where E { - } denotes the expectation over the probabi.l.ity density function of z
c

Since from (2w 13) together with (2.8) and (2.9), z is a function of r and r
c	 c	 s

with Tlow

r 	 s+ic.+nuc

r = i + ns	 s	 us

then, equivalently

^c = F s + is + nuc , i s + nus l	 (2.18)

for some known function F(.,.).

Hence, the average bit error probability has the form

r
P E = H JPE

O
 iF s + is +nuc , is + nus )]	 (2.19)

0 	 L

where E {•} is now the expectation over the random variables ic' e's' nuc' 
and 

nus'

Another form for this error probability can be had by first defining the

complex random variable

W = T (r c + jrs)

= T [(/E, s + is +nuc ) + j(i s + nus)

= Re  n

where

j = 3-1

R = I WI

TI	 -^ w

(2.20)

(2.21)

8
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Then we have for some known function G( • ) the error probability

1'E0 .e. F G(W)
	

(2.22)

The key to evaluating the bit error probability for the BPSK modulation

technique with the general satellite channel involves the evaluation of

PE = E G [ F (r r rs )l; j
a	 1	

c
U	 )

.= EI,(w)I
	

('2.23)

wheiv.e r  and r  are, in general, two correlated real random va-iables. This

requires knowledge of the joint probaMlity distribution p(r c ,rs ) of the pair of

random variables r  and r s . This is not always available and even when we have

it, we :still have to evaluate the double integral

PE0 =

	

	 P'0 [,(rr)rs)]p(rc,rs)dredrs 	 (2.24)

_C 

In practice, it is often easier to obtain'some joint moments

(rcm)km 	
rs	 Q.,m = 0,1,2,..., N
	

(2.25)

--r complex moments

	

PM = E (Wm) ;	 M = 0,1,2, ••• , N
	

(2.26)

9



The remainder of this report 
`
examines how we can use available moments and

obtain an approximation to E {P EO [F(rC ,rs )] or E[G(W)]. in particular, we

describe a way of obtaining discrete approximate probability distributions of the

form*

n
	Pr(W = zQ) = W  ;	 R = 1,2, ••• , v	 (2.27)

based on mo)-ents of the complex random variable W as in (2.26) or

	

Pr (r c = xQ , rs = yQ ) = pp, 	 = 1, 2, ... , v	 (2.28)

based on joint moments of two real random variables r C , r  as in (2.25). These

approximate distributions then yield approximations to (2.23) in the form,

V

o^E PE [F(rr;^ rs )^

	

	 wQPE (F(x,,y,))	 (2.29)

R=1

and

[G(W)]	 vE 
	
= 

E 
p,G (z,)	 (2.30)

k=1
=.1.1

Equations (2.29) and (2.30) represent generalizations of the Gauss-Quadrature

technique which is often applied to numerically evaluate double integrals of the

form in (2.24) when p(rc ,rs ) happens to be of a Gaussian nature.

Although we limited this example to BPSK, the approach outlined here

applies equally well to coherent MPSK for all integer M and also to other general

bandwidth efficient modulation techniques.

*The hat "^" is used to denote the word "approximate."

10



III. The Classical One Variable Moment Problem

Let X be a random variable (continuous or discrete) and suppose we only

know its N + 1 moments

Pk
 = E(Xk);	 k = 0,1,2,..., N	 (3.1)

where u 0 = 1. We want to find an approximation to the true probability distri-

bution of X in the form of a discrete probability distribution. The classical.

moment problem is to fiml the smallest numb;:, of points xl , x2 ,	 x  and

weights wl,w2,	 W  so that the approximating distribution

Pr{X = xt^ = wR	k = 1,2, ••• , v	 (3.2)

satisfies the given moment constraints,

V

Ilk
 = E(Xk) _	 Wzxk ; k = 0,1,2, ••• , N	 (3.3)

Q=1

Suppose we start by assuming that Pr(X = xQ ) = wQ ; Q = 1,2, ••• , v is the

true distribution so that

V

Ilk
 = E(Xk) _	 Wkxk	 (3.4)

Q=1=l

is true for all values of k = 0,1, ••• . Next define the polynomial

V

C(D) = H (1 - DxQ)

R=1

= c0 + c1D + c 
2 
D 2 + •	 + cvDv	(3.5)

FPO-

11
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P.

K.

where co = I. Also consider, for arbitrary n, the relation

v	 v	 v
_	 n-j

e j pn^j - E c j	 u^^ x^

j=0	 j=0	 Q=1

v	 v

_	 wQxQc,xQ3
J

Q=1	 j =0

v
_	 cvP, z \xx1)

Q=1

k; (3.6)

since X-1 is a root of C(D). Then recalling the fact that c: 0 = 1, (3.6) can be
91

written in the al.ternate form

^v
pn 

= - E C  Pn- j
	

(3.7)

j=111
111

This form of the relationship between moments allows us to interpret moments as

outputs of a real field linear feedback shift register as shown in Figure 3.

Figure 3. Moment Generating Linear Feedback
Shift Register

12
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Note that, although at this point, we do not know the points x 1 , x2 , ••., X 

nor the polynomial C(D) given in (3.5), we have the interpretation that the

given N + 1 moments of (3.1) are generated by some linear feedback shift

register with feedback coefficients that specify this polynomial. This is a new

interpretation or formulation of the Classical moment problem.

Next define the polynomial

V	 v

P (D) _
 YJ

W, rI(1 - Dx
Z=1 j =11111

j^&

= p0 + p 
1 
D + p 

2 
D 2 + ... + PV-1 Dv-1

	
(3.8)

Then the moment generating function polynomial

CO

p(D) g E uk D 

k=0

	

C	 v

= E W X 
k 

D k

k=0 k=1	 )

	

v	
00

-	

wY, E (xQD)k

	

k=1	 , k=0

v

_r	 1
^k C 1 - DxQ

Q=1

(3.9)

13
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when multiplied by the polynomial C(D) yields the relation

	

57,
v	 v

(D)C(D) _ 	 wQ fla - Dxj )	 (3.10)

	

Z=1	 j=1

jOY,

= P (D)

By equating terms with equal powers of D, the coefficients of P(D) are given as

follows:

PO = u0

p  = u1 + c1 u0

P2 - u2 
+ C  u l + c 2 u0

pv-1 - uv-.L + cl uv
-2 + ... + c

v-1u 0	 (3.11)

Thus, given the polynomial C(D) and the known moments of X, we can easily obtain

the polynomial P(D). Given these two polynomials we show next how the weights

wy , w2 , —, w  are easily found.

14
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Assume we have polynomials C(D), P(D) and the reciprocals of the roots of

C(D) which are the points x l , x2 , • ' , xv . Then,. from (3.5)

C' (D) A dD C (D)

	

v	 v

_ - Exz F(1 - Dxj)

Z=l	 j=1

j^z

	

= cl + 2c2D + 3c 3D2 + ••• + ve Dv-1	 (3.12)

Note that

v

C' (Xkl)xki(1-xklxj)(3.13)
 

j =1	 /
j^k

and from (3.8)

v

p (Xk1 ) = wk H (1 - xklx
j 
)	

(3. 14)/ 
j=1
j^k

Thus,

1

	

mk = - xkP 	 k = 1,2, ...v	 (3.15)
C° xk )

15
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From the above relationships, we see in summary that the classical moment

problem is solved by first finding the shortest length linear feedback shift

register that generates the given N + l moments. This feedback shift register

is specified by the polynomial. C(D) whose roots have reciprocals which are the

desired probability mass location points xi, x2 , ... xv . Next obtain P(D) from

(3.11) and the probability mass values w l , w25  3 
wv from (3.15).

In the next section, we describe two basic algorithms, namely the

'Berlekamp-Massey algorithm which enables one to find the polynomial C(D) and an

algorithm to find the roots of C(D),

16
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IV.	 The Berlekamp-Massy AlAorithm (Ref. 8)

Given 11 0 , 1119 ..., 11N the Berlekamp-Massey linear feedback shift register

synthesis algorithm is a technique for finding a smallest length feedback shift

register that generates 11 0 , 11 1 , •••, 11N and is described by the polynomial

v

C(D) _	 (1 - DxQ)

Q=1

= c0 + c 1D + c 
2 
D 2 + ••• + c 

V D 
V
	 (4.1)

The following is a step-by-step descrip

Define the following variables:

(a) m, n, Q

(b) b, d

(c) C(D),B(D), T(D)

C(D) = 1 + c 1D + c 2 D 2 + •••

tion of this algorithm.

integers

real numbers

polynomials in D

+ cQDP`

Step 1:	 Input moments

110 = 1, 11 1 9 11 2 ,	 11N

Step 2:	 Set initial condition's

C(D) = 1, B(D) = 0, T(D) = 1

m=1, n=0, 2 = 0, b=1

Step 3:	 Compute

d = V  + c 1 1in-1 + c211n-2 + ... + ckpn-Q

17
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Step 4:	 If d = 0, then*

m+ 1-}m

and go to Step 7.

Step 5:	 If d	 0 and 2R > n, then:

C(D) - b DmB(D) -)- C(D)

M + 1 -} in

and go to Step 7.

Step 6:	 If d ^ 0 and 2k:5 n, then

C (D) -} T (D)

C (D ) - b DmB (D ) -} C (D)

n+1-k-}-k

T(D) > B(D)

d } b

1 } m

Step 7:	 n+1-}n

Step 8:	 If n = N + 1, stop. Otherwise go to Step 3. This algorithm results

in C (D) of (4.1)

and

P(D) = p0 + p 1D + p 
2 
D 2 + ... + pv-1Dv-1	 (4.2)

The notation "A-->-B" means replace B with A.

18



where from (3.11) we have

p 0 1	 0	 0	 . .	 .	 .	 .	 0 `'0

p 1 cl	 1	 0	 . .	 .	 .	 .	 0 u1

PV-1
J

cv-1 cv-2
1

uv-.1.

We next want to find the distinct real reciprocal roots

where we assume

i

(4.3)

xV x2 , ... 7 x 

x11 2: 	 2: 	
a ... 

2! (xv1
	

(4.4)

and because of the distinct condition, Ix i j = Ix  I only if x i = -x^.

In general, the linear feedback shift register relationship

v

uk = -	 cjuk-j
 J

3-1

k = 2v + 1, 2v + 2, •• - (4.5)

for some initial conditions 
u1' u2'	

pv is satisfied by outputs of the

form

V

uk = a i x	 k = 2v + 1, 2v + 2, •••

i=1

Section VI will prove these reciprocal roots are distinct and real.

(4.6)

19



with arbitrary coefficients a l , Ix 2 , •••, ay . To s .-,! this, substitute (4.6) into

(4.5) which produces

V

11 
k	

C.
	 l

:1 =1.

V	 v

c	 a xk-jC.
	 i i

v	 v

-	 a x 	 c x-j	 (4.7)
i i	 j i

i=1	 j=1

Since from (4.1) the quantity in parent}lases can be identified as C (x i1
) 	 - c0

which from the factored form of (4.1) is seen to have: value -1, then (4.7)

immediately reduces to (4.6).

Note that only when the initial conditions of the feedback register are

set to the given moments of the random variable X do we necessarily have.

cx i = w i ; i = 1., 2, ... , v. Here we consider arbitrary initial conditions for the

linear feedback shirt register defined by C(D).

Mr-t consider for some k > 2v,

V

}I k = E aixi
i=1

	

a2
	

k	 a (X3k 	
axk

 (al	
a x

xk 1 + 2
	 2	 + a3x 	

+ ... + a 
v xv	

(4.$)

	

1	 1	 1	 1	 1	 1

1

20



bef iuc

^x2	
)k	

a3 
(,
x3 ^, k
	 av xv k

«I x
l	 al. x1	 a7. x1

and note that if the magnitudes of the x.'s are ordered as in (4.4), thenI.

	lim F(k) = 1	 (4.10)

k-*

where convergence is primarily determined by the term,

k
a x
2	 2

al x 

Here we can take the ratio of the feedback shift register outputs

	

1IM-1 = x F (k + 1)	 (4.11)
11k	

1	 F (k)

and find the first reciprocal root by

X = lim uk+1	 (x.12)
1	 k..,m uk	;

	If we have Ixl 1 = 1x2 1 > Ix.1; Q = 3, 4, • 	 v then x2 = -xl and F(k) has

the form

	

k	 k

	

F(k) = 1 + a? (-1) k + a

3 x3	 a (

	

+ ... + ^ 
x	

(4.13)
a l	 al xl	 al xl

21
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a
which oscillates between the limits 1 +: a2 as k increases to inf:inity.. Thus, we

have	
l

lim r(k + 2)	
1

k•^	
^ (k)

and the ratio

}ik+2	 2 F(k + 2)

k 
= xl

yields the first two reciprocal roots

x = li.m }A l:+2
l	 1"X) P 

x2 = - x 

(4.14)

(4.1.5)

(4.16)

Note that we need to choose the initial condition of the feedback shift

register such that uk ^ 0 for k > 2v.

An efficient way to generate x1 is to define

(4.17)
r	

Pr

Then

ur-1u	 - x r A r-1 * * * a r -i+]_	
( 4 .18).8

r
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xl = lim 1
k-) k

(4.21)

Now recalling from (3.7) with k = n that

-Ilk	 c ,l uk-1 + 02uk_.2 + ..: + c:v11k-v 	
(4.19)

then dividing by 
uk-1 

we get

1	 c+ c a	 + c A	 a	 + ... + c X	 x	 ••• x	 (4.20)
x 
	 1	 2 k^-1	 3 k-1 k-2	 v k-1 k-2	 k-v+l

This recursion relationship together with (4.12) and (4.17) gives

.

provided jxl l > ixQ I; Q = 2,3, •••, v. Alternately using (4.16), the first two

reciprocal roots become

x = Tim	
1 

-
1	 k-^- ^k^k+l

x2 = -x1
(4.22)

The procedure for finding the remaining reciprocal roots is outlined as

follows. , Suppose we find x1 as described above for the case where Ix11 > Ix'I;

Q = 2,3,	 v. Then, we remove the corresponding factor from C(D) and define

a new polynomial

23



^v"j
C (1) (D) = 1 f (1 - Dxx)

Z=2

_ C(D)

- Dx1

	= c (1) + c MD + ...	 c M D
 V-1

0	 1	 v-1	 (4.23)

From the relation

C (D) = (1 - Dxl)c 1 ',D)	 (4.24)

we equate the coefficients of equal. powers of D and obtain the relations

_ (1)
c0 - c0

1	 1	 10

(1)	 (1)
c 2 = c2 - x1c1

(1)	 (1)

cv-1 - cv-1 - xlcv-2

(1)
c _ - 

xIcv-1	 (4.25)

r

24



L^, 	 r

or equivalently

c(1)
0

=c	 =1
0

(1) (1)c
1

= c	 +
1

x c
1 0

(1) (1)
c = c	 +k xcl k-1

(1) (1)	 cv
c
v-1

__
c
v-1

__

+ xlcv-2	 - xl
(4.26)

The recursive relations in (4.26) define the polynomial C(1)(D).

If we have a pair of reciprocal roots such that x 2 = -xi , then we first

remove both of the corresponding factors from C•(D) and define a new polynomial

v,

C (2) (D) _ 14 (1 - Dx,)

P, =3

C(D)

(1 - Dx1)(1 - Dx2)

C (D)

1 - x 
2 D 2

= c(2) + c (2) D + ... + c(2)Dv-2
	

(4.27)
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From the relation

C(D) _ (1 - x2D2)C (2) (D)	 (4.2$)

we obtain

(2)c	 = c0	 0

(2)
c	 = c
I	

1

c (2) = c + x2c(2)
2	 2	 1 0

c (2)	 2 (2)
v-2 - cv-2 + xlcv-4	 (4.29)

2)The recursive relations in (4.29) define the polynomial C 	 (D).

The above approach for finding the largest magnitude reciprocal root or

roots is then applied to the new polynomial C (1) (D) or C (2) (D) to find the next

largest magnitude reciprocal root or roots. This procedure is continued until

all reciprocal roots have been found.

The following is a summary of the reciprocal root-finding algorithm just

described.

Root Finding Algorithm

Assume moments }.t 0 , u l ,
	

P are used in the Berklekamp-Massey algorithm.

to find the polynomial

C(D) = c0 + c 
1 
D + c 

2 
D 2 + ••• cvDv

26



where c o = 1. The roots of C(D) are unique and real. The following; algorithm

finds their reciprocals:

Step 1:	 Input

^c
c.l. e2' ... cv ;	 NE and e

Step 2:	 Set

a1 = a2 = ... = av-1 ` 1

Step 3:	 Set

k = v

Step 4: Compute

z 
	 = c1 + 

c 2 xk-1 + c 3 xk-.1 xk-2 +  	 + cv k-l xk-2 	 ^k-v+1

Step 5: Compute

a =— i
k z

Step 6: Compute

__	 1
Tk	

Xkxk-1

Step 7: If	 IT 
	 - Tk-1 I + IT k-1 - Tk-2 1 `	

E 2	 go to Step 10.

Step 8: If k > NE , go to Step 21.

Step 9: k -} k + 1 and go to Step 4.

Step 10: If	
Izk - 

zk-l I 	 > E,	 go to Step 16.

Step 11: Set

xv = -zk

NE and E are convergence parameters.

27

d

ID



Step 12:

c1 + xvc0 , 
cl

c2 + x 
v 

c 
1 ->. c2

cv-1 + xv cv-2 cv-1

Step 13:

v } v-1

Step 14:	 If v = 1 ,

set x1 = -c1 and stop.

Step 15:	 Go to Step 2.

Step 16:

xv k

xv-1 
= - T

Step 17:

	

C2	 0+ x2c 4. C2

c + xvc

	

3	
1 } c3

2
cv-2 + xv cv-4 } cv-2

Step 18:

v + v - 2

Step 19:	 If v = 1, set x1 = -c I and stop.

Step 20:	 If v = 0, stop.

Step 21:	 Go to Step 2.

Step 22:	 Declare ill-conditioned and redo Berlekamp-Massey algorithm with

moments U0, U 1' ..., uN-1'

i a
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If the original moments 
IA O , I'1 , 

•••, 11  are in fact not true moments, then

the Berlekamp-Massey algorithm can result in a polynomial C(D) whose roots area

complex. This can be caused by various errors in computing these moments, as

well. as possible roundoff errors in the above algorithms. Step 22 attempts to

detect such problems.

Typically small changes in the coefficients c l , c2 , •••, C  can cause large
changes in the roots of C(D), particularly the larger roots. The smaller roots

of C(D) are generally more stable. This means that for the reciprocal roots

xl , x2, ..., xv , the larger magnitude points tend to be more stable.

To reduce roundoff errors in the Berlekamp-Massey algorithm, it helps to

control the dynamic range of the moments

	

Iik = E(Xk) ;	 k = 0,1,2,	 N	 (4.30)

by defining

Y = pX	 (4.31)

with moments

	

Pk(p) = pkuk ;	 k = 0,1,2, ..., N	 (4.32)

If we apply the Berlekamp-Massey and the root-finding algorithms to the moments

of Y = pX, then the resulting mass location points yl , y22	
y  are related

to the desired points xi , x2 ,	 x  by

1,2,
y

xQ = p 	 R. = 	 • • • , v (4.33)

The weights wl , w2 ,	 w  remain the same in both cases. Here p can be

selected to control the dynamic range of the input moments to the Berlekamp-

Massey algorithm. A good choice is governed by the condition

U 2 0) = 1	 (4.34)
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or

1	 (4.35)

We conclude this section with a f	 numerical examples to illustrate the

use of the algorithms just discussed. The examples chosen will correspond to

probability distributions for which all moments are known. Thus the end products

of applying the foregoing algorithms will serve as verification of well-known

Gauss-Quadrature results for these distributions (Ref. 4).

As a first example, consider a zero-mean Gaussian probability density

function for which

p 2 = 1 . 3 . 5 ... (2n-1) A (2n - 1)
(4.36)

112n-1	 0 '	 n = 1,2, -__

Assume for the purpose of this example that only the first ten moments in

(4.36) are known. Then, using these as an input, the Berlekamp-Massey algorithm

proceeds step-by-step, as follows:

Step 1:	 (N = 9)

p 0 = 1, p1 =0,
It2=1, p 3 = 0, p4=3,

p 5 = 0, p 6 = 15, u 7 = 0, u 8 =105, p9=0

Step 2:

C(D) = 1, B(D) = 0, T(D) = 1

m = 1, n = 0, Q = 0, b = 1

Step 3:

d=po=1

30
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Step 6:	 (29. = n)

T(D)=1

C(D) = 1 = 1- (0)D ; cl=0

Q = 1

B (D) = 1

b = 1

m = 1

Step 7:

n = 1

Step 8:	 (n < 10)

Step 3:

d=ui+c1u0=0

Step 4:

M = 2

Step 7:

n = 2

Step 8:	 (n < 10)

Step 3:

d = u 2 + clui = 1

Step 6:	 (2R = n)

T(D) = 1

C (D) = 1 - D2 	c1 = 0, c 2 = -1

R= 2+ 1- 1= 2

B(D) = 1

b = l

m = 1

31
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Step 7:

n = 3

Step 8:	 (n < 10)

Step 3:

d = u 3 + c 11 2 + c2 u l = 0

Step 4:

m = 2

Step 7:

n = 4

Step 8:	 (n < 10)

Step 3:

=0
d = u4 +c^3 + c2p2 = '2

-^ -	 //̂1	 ^---. ----
3	 (-1) (1)

Step 6:	 (2k = n)

T(D) = 1 - D2

C(D) =1- D 2 -2D2 =1-3D 2 ; c
1	 2

=0, c =-3

k= 4+ 1- 2= 3

B(D) = 1 - D2

b = 2

m = 2

Step 7:

n = r

Step 8:	 (n < 10)

Step 3:

-0	 -0	 -0
d = u 5 +cA4 +c/u 3 +ck'2 = 0

F

32



Step 4:

m = 2

Step 7:

n = 6

Step 8:	 (n < 10)

Step 3:

d = N 6
t-0	 -0

I-C j1 5 +c2 u 4 +c/11 3 = 6

15 (-3) (3)
Step 6:	 (2k	 n)

T (D) = 1 - 3D2

C(D) = 1 - 3D 2 - 2 D 2 (1 - D2)

= 1- 6D 2 +3D4 ; c1 = 0, c 9 =6, c3 -0, c4=3

Q= 6+ 1- 3= 4

B (D) = 1 - 3D2

b = 6

m = 1

Step 7:

n = 7

Step 8:	 (n < 10)

Step 3:

0	 =0	 ==0	 0	 =0
d = /7 + c1^6 + c 2 ^5 + c3/4 + c4/3 ='0

Step 4:

m = 2

Step 7:

n = 8

33



Step 8:	 (n <; 10)

Step 3:

	

0	 =0

d = ^'8 + c1/7 +
	

c2}'6 + c
3}6 + x 4 11 4 = 24

105	 (-6)(15)	 (3)(3)

Step 6:	 (29 = n)

T(D) = 1 - 6D 2 + 3D4

C(D) = 1 - 6D 2 + 3D4 - 6 D 2 (I - 3D2)

= 1 - 10D 2 + 15D4 ; c l = 0, c2 = -10, c3 = 0, c4 = 15, c5 = 0

Q- 8+ 1- 4 = 5

B (D) = 1 - 6D 2 + 3D4

b =24

m = 1

Step 7:

n = 9

Step 8:	 (n < 10)

Step 3:

r 0	 -0	 1=0	 =0	 =0	 =0
d = 9 + c-11/8 + c2 ^Q 7 + c3 y( 6 + c4 t^ 5 + c5

/
4 = 0

Step 4:

m = 2

Step 7:

n = 10

Step 8:	 (n = 10). Stop.
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The resulting linear feedback shift register analogous to Figure 3 is

illustrated below:

1	 0	 1	 0	 3	 0	 15
1	 0	 1	 0	 3	 0	 15	 0

1	 0	 1	 0	 3	 0	 15	 0	 105
1	 0	 1	 0	 3	 0	 15	 0	 105	 0

Figure 4. Moment Generating Linear Feedback Shift Register for
Ten Gaussian Moments

The corresponding generating polynomial is

C(D) = 1 - lOD 2 + 15D4
	

(4.37)

which is the desired result.

Note that the Last value of R [the order of the polynomial C(D)) computed

by the algorithm is t = 5. Thus, since (4.37) is only a fourth order polynomial

in D, we immediately conclude that

c5 = 0
	

(4.38)

Equivalently, from the factored form nf C(D) in (,:1,?, (4.38) tells us that

one reciprocal root has value zero; i.e.,

x1=0
	

(4.39)
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The remaining roots can easily be obtained by solving a quadratic equation or

applying the root-finding algorithm. In the former case, let Z = 1) 
2
in (4.37)

and equate the result to zero, namely,

1-107.+1.522=0
	

(4.40)

whose solutions are

10 -1:4707. -	
30	

= .54415 1844, .1.2251.4823	 ('+.41)

or

	

D = 1.737666486, -x.350021175	 (4.42)

Finally, the corresponding reciprocal roots are

x2,3 = ±1.35562618

(4.43)

x4,5 = ±2.856970014

Before showing how the root-finding algorithm can be used to approach the

results in (4.43), we shall finish the solution for the approximating probability

distribution by finding the five weights w l , m 2 ,	 w5. From the coefficients

of C(D) and the given moments, (3.11) allows us to compute the coefficients of

the polynomial. P(D) which for this case becomes

p5 	1	 0	 0	 0	 0	 1

p l 	0	 1	 0	 0	 0	 0

p 2 	 =	 -10	 0	 1	 0	 0	 1_	 (4.44)

p 3	0	 -10	 0	 1	 0	 0

P4	
15	 0	 -10	 0	 1	 3

P	 C	 la
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or

PO = 1 , p.l = 0, p 2 = -9, p.3 = 0, P4 = 8

(4.45)

P (D) = 1 - 9D 2 + 8D4

Differentiating (4.37) with respect to I) gives

C' (D) = -201) + 60D 3 	(4.46)

Finally applying (3.15), we get the distribution weights

1

W = - -P^Xlc._k	 xk1C, (xkl)

8 - 9x2 + x 

- - 60 - 20x2	 (4.47)

or, using (4.43)

w2 3 = .222075922

(4.48)

w4,5 _ •011257411

Clearly, if we try to apply (4.47) to the reciprocal root x l = 0, we get the

result cnk = -8/60 which is meaningless since probability distribution weights

cannot be negative. Thus, whenever one of the reciprocal roots is zero, we must

determine its corresponding weight from the usual normalization constraint on

probability distributions, namely,

v

	

mk = 1
	

(4.49)
k=1
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Letting v = 5 and substituting (4.48) in (4.49) gives the remaining desired

result, namely,

w1 = .533333333	 (4.50)

To check with the result given in Ref. 4 for Gaussian-Hermite Quadrature,

we need to divide the reciprocal roots {x i } of (4.39) and (4.43) by Vr2_ and multiply
the weights {wl } of (4.48) and (4.50) by >T. When this is done, we obtain exact

agreement with the tabulations for n = 5 in Appendix B of Ref. 4 of page 343.

We now demonstrate how the root-finding algorithm can be used to rapidly

approach the results found in (4.43) by solution of a , quadratic equation.

Step 1:

c1=0, c 2 = --10, c 3 =0, c4=15

Step 2:

a1=a2=a3=1

Step 3:

k=4

Step 4:

z4 = _10(l.) + 15(l)(1)(1) = 5

Step 5:

^4	 5

Step 6:

1

Step 9:

k = 5

t
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Step 4:

z5 = -10^- 5 + 15 ^- 5) (1) (1) _ -1
i

Step 5:

a5 = 1.

Stem 6:

T =	 1	 _ -5

5)

Step 9:

k = 6

Step 4:

_ -13z6 = -10(1) +15(1) ( 1)( 1)

Step 5:

__	 1

^6	 13

Step 6:

T6 =	
11	

= 13

Step 9:

k = 7

Step 4:

z.^ _ -1013) + 15(13) (1) (- 5) _ -1

Step 5:

^ 7 = 1

Step 6:

T7 =	 1 
1	 = 13

(1)(13)
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Step 7:

IT 7  - T 6 1 + I T6 - T 5 1 = 0 + 18 = 18

L: ep 9:

z8 = -10(1) + 15(1)( 13) (1) _ - 113

__ 13
^8	 115

	

_	 1	 _ 115
T8	 / 13) (1)	 13

`115

IT8
-T 7 I +IT7 -T6

1
= X135 -1.3I +0= 13

ll

	 = 4.153846

k = 9

Z9 = -
10(115, + 15(115)(1)(13) _ -1

X 9 = 1

	

__ _	 ].	 _ 1.15

T9 13	 13
(1)(115) -

(T9 - T S - T7 1 = 0 + ' 13 - 13I = 13

k = 10

z10 = -10 (1) + 15(1)(13 ) (1) 	
123

23

X 10	 191.

	

_	 1	 _ .191

T10 (19
	 23

Herein we avoid writing out the particular steps we are at since the sequence
is always Step 4, Step 5, Step 6, Step 7, Step 9 until convergence is
obtained.
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IT10 - T9 I + I T9 - T 8 LL'
	
13.5 + 0 = .541806

23	 13

Notice how rapidly

Iz k - zk-1I is not.
so will the test in

the two reciprocal

to the true results

Step 16, we have

T 	 Tk-1 I + IT k-1  - Tk-2 I
Thus, ultimately the test

Step 10 which takes us to

roots of largest magnitude.

in (4.43) at this point in

is converging. However,

in Step 7 will be satisfied, and

Step 16, namely the solutions for

Let us examine how close we are

the root-finding algorithm. From

x5	 V'^10 =	 231 = 2.881726536

(4.51)

x4 ~- V  17-
 
 = - 2.881726536

Comparing (4.51) with (4.43), we observe that after only 7 iterations of the

algorithm, we are already quite close to the true result, namely

x4,5 = ±2.856970014.

The next example chosen for illustration is a uniform distribution; i.e.,

1	 (xl	 1
2 '

p (x)

0	 IxI > 1

(4.52)

The moments of this distribution are easily found to be

1	 0	 ; k odd

uk = 2- x^dx =
1	

k even
1	 k+1

(4.53)
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Again let's start by assuming knowledge of only seven moments. Then, the

Berlekamp-Massey algorithm proceeds as follows:

Step 1:	 (N = 6)

u0 = 1, u l = 0, >' 2 = 3 p3 = 0, P4 - 5 f U 5 = 0, u 6 =
Step 2:

C(D) = 1, B(D) = 0, T(D) = 1

m = 1, n = 0, k 0, b=1

Step 3:

d=u0=1

Step 6:	 (2k = n)

T (D) = 1

C(D) = 1 = 1- (0)D ; c1=0

k = 1

B(D) = 1

b = 1

m = 1

Step 7:

n = 1

Step 8:	 (n < 7)

Step 3:

d=/
- 0	 f-0

l
+cl/O = 0

Step 4:

m = 2

r-

42
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Step 7:

n = 2

Step 8:	 (n < 7)

Step 3:

d u2+c1u1 -3
Step 6:	 (2	 n)

T (D) = 1

C(D) = 1 - 3D 2 ; c
1 	

0, c2	 - 
3

k= 2+ 1- 1 = 2

B (D) = 1

b = 1
3

m = 1

Step 7:

n = 3

d = u 3 + c 111 + c 211 = 0

m = 2

n = 4

d= u4	 1 3	 2 2+cu+c u =5 +0+ (
- 3)(3, 45

T (D) = 1 - 5 D2

4

C(D) =1-
1 2D- \45

D2 =1- 32 ; c =0, c =-3
3
	 (

11	 5	 1	 2	 S
3

k= 4+ 1- 2= 3

Here again we shall omit the step numbers until we reach n = 7.
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X .

B(D)=1=3D2

b	
45

M = 1

n = 5

d = p 5 + c lu4 
+ C 211 + c3112 = 0

m = 2

n = 6

d = u 6 + clp5 + c 2 u4 + c3u3 = + 0 +
(2)(1)   + 0

_ 4

175

T (D) = 1 - 5 D2

/4

C (D) = 1 - -35D 2 - 145 D2 \1 - 3D2 /
T5

=1-6 2 +35D4

Q= 6+ 1- 3 = 4

B(D) = 1 - 5 D2

4
b - 175

M = 1

n = 7. Stop.

Since the last value of Z (namely R = 4) in this case agrees with the order

of the final polynomial C(D), there is no reciprocal root which has value zero.

The four reciprocal roots can be obtained as before by substituting Z = D 2 in C(D)

and solving the resulting quadratic equation. In particular,

1- ^Z +3SZ2=0	
(4.54)
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whose solutions are

7 = 8.651483715, 1.348516283 	 (4.55)

or

D = 12.941340462, x.1.161256338	 (4.56)

Finally, the corresponding reciprocal roots are

x1,2 = ±.339981044

(4.57)
x3,4 = ±.861136312

Again the weights of the approximating probability distribution are found

by substituting the given moments and the coefficients of C(D) in (3.11). Thus,

P O 	1	 0	 0	 0	 1

p l 	0	 1	 0	 0	 0

P2	
- - 6	 0	 1	 0	 3	 (4.58)

p 3	0	 - 6	 0	 1	 0

or

p0= 1, p l = 0, p 2 =- 11 p3=0
(4.59)

P (D) = 1 -21 D2

Differentiating C(D) with respect to D gives

C' (D ) _ - 12 D + 35 D3	 (6.60)
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Finally applying (3.15), we get the distribution weights

P (x-kl)
Wk = - xk1G I 

(Xk1)

4 11 2
x

_
 21 xk

- - 12 12 2
35 7 xk

(4.61)

or using (4.57), these evaluate to

w112	 .326072569

(4.62)

w
3,4 = •173927423

To check with results given in Ref. 4 for Gauss-Quadrature with constant

weight function, we merely need to multiply the weights of (4.62) by 2. When

this is done, we obtain exact agreement with the tabulations for n = 4 in

Appendix A of Ref. 4 on page 337.
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V.	 Computing Moments of Sums

In many applitations, we wish to compute the moments of the sum of

independent random variables. An efficient algorithm for doing this when given

the moments of the individual terms in the sum is presented here. This approach

is due to T. C. Huang (Ref. 10).

We assume the random variable X with moments

m  
A 

R(Xk) ; k = 1, 2, ...	 (5.1)

has a moment generating function

(D (m) = EWX)	 (5.2)

Using the expansion

CO
k

emX = 7 +	 kiXk	 (5.3)

k=1

the moment generating function is given in terms of the moments by

CO

k
(DM = 1 +k!mk	 (5.4)

Ekk

Next use the expansion

CO
_ j+1

kn (1 + a) = E ((-- j	 a^	 (5.5)
^

j=1

47

0



w	 +

to obtain the form

00

EQn (D(w) = 2n 1 + 

	

	 k! mk
k=1

j

wk

-E j!	 k! mk
j=1	 k=1

CO

_	 w
Q

C=1

(5.6)

Here a l , A 2 , ... are the so-called semi-invariants of X and can be expressed as
a weighted sum of the moments.

We now determine an algorithm for computing the semi-invariants from the

moments and vice-versa.

Define

CO
Q

E(w) _	 Qi a Q 	(5.7)

2=1

Then,

^M = eE(w)	 (5.8)

has derivatives

n-1

4) (n) (w) -
	

(nk1) (D (k) (w)E(n-Ic) (w)

k=0	 J

n

- (j-1-1) (,(n-j) (w)E(j) ( w )	 (5.9)
j=l	 n = 1,2, •••
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Since from (5.4)

(n)(0) = m 

and from (5.7)

E  ) (0) = x 

then evaluating (5.9) at w = 0 gives us the desired relationship, namely*

n

m =	 (j-1}m ^n ^^^+ 1 nJ j-

j=1

n-1

an `+'37( n-lim a,
.	 vJ-1 n-3 I
j=1

(5.10)

(5.11)

(5.12)

or equivalently

n-1

X = mn -	 (j_In a m n- (5.13)n
J 	 j

j=1

Here (5.12) and (5.13) together with the initial condition

ml = x1	 (5.14)

allows us to easily compute semi-invariants from moments and moments from

semi-invariants.

A	 *Note: m0 
4 

'D(0) = 1.
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Suppose now we have a sum of independent random variables X l , X2 , '••, XL,

i.e.,

'Y = X1 + X2 + ••• + XL	 (5.15)

and we wish to find the moments of Y defined by

"kA E(Yk)	 k = 0,1,2, •••, N	 (5.16)

when given the moments of the individual Xi 's, namely,

mik A E (Xi)	 k = 0,1,2, ... N

i = 1,2, •••, L	 (5.17)

We beg.1n by defining a recursion equation analogous to (5.13) which relates

the moments and semi-invariants of each random variable X i , namely,

n-1

In	
m
in	 (j-l)iji,n-j	

n = 1,2, ... N	 (5.18)

j=1

where

Xil	
mil for i = 1,2, •••, L.	 (5,.19)

Next, recall from (5.7) and (5.8) that

( "0
wX,)Q

Ee i	 exp	
T! Xi2	

(5.20)

Q=1

M
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Now consider the moment generating £unctiox: of Y as follows:

^DY (w) = E(ewY)

w(X1+X2+•••+XL))
= E (e

L wX.
E	 e

i

i=1

- L E(ewXi)

i=1

L
Q

Wexp
	Q 

i aiQ

i=1

exp Ey
co Q LL

` 
) ]

t L.r Pik	
(5.21)

Q=1	 i=1

Thus, the moments of Y are obtained from a recursion relation identical to (5.12)

i.e,,

k-1

	

UK = ^k +^ (j 1)uk-.a. 	 (5.22)
j -	 J J

j=1
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L

-I=1

mik = E (Xik)

k = 1, 2, ..., N
i = 1, 2, ..., L

X ik
k = 1, 2,...,N
i = 1, 2, ..., L

;where

(5.23)

Figure 5 is a flow chart representation

µk	
T1	 Xk i=1 'ikk = 1, 2, ..., N	

k= 1, 2, ..., N

Figure 5. Moments of Sums

which shows how the moments of Y are easily obtained from the moments of X 1 , X2,

•••, XL . The procedure involves L transformations, T, from moments to semi-

invariants using (5.18), taking the sum of these semi-invariants to obtain the

semi-invariants of Y, and finally inverting the transformation T-1 once, using

(5.22) to obtain the desired moments of Y.

As an example of the application of the results in this section, consider

the important problem of assessing the performance of the satellite communication

system modeled in Section II in the presence of multiple pulsed RFI sources. For

the purpose of this example, we assume that each RFI source emits pulses with

Poisson arrival times and the sources are independent of one another. Thus, for
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-,!i Yiew	 yi (ew_1)

e e	 = e (5.26)

the ith source, i = 1, 2,	 L, the probability that n pulses occur in an

interval T is described by the distribution

_y	 n
i Y n.

p (n) = e	 n = 0,1,2,••.
n!

(5.24)

where the mean of the distribution, y i , is typically linearly related to T, i.e.,

y i = aiT
	

(5.25)

We wish to characterize the moments of the discrete random variable corresponding

to the total number of pulses in an interval T contributed by the L sources.

ThFs random variable X i corresponds to the number of pulses which arrive

from source i in the interval T. Using the Poisson distribution of (5.24), we

compute the moment generating function of Xi as

CO
	 n

^D (w) = E{ewn
1
^ = e 1	 ewn((1 )

1	 l 
n=0

0 (Yi

wn
-yie

= e
n!

n=0

Using (5.6), we can immediately identify the semi-invariants of X i as follows:

00
n

!Cn (X (w) = y i (ew-1) = yi	
n!

1	 n=1

00
n

_	 wa	 (5.27)
n! in

n=1
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or

	

`yin - Yi	
for all n	 (5.28)

Thus, for a Poisson process, we see that all the semi-invariants are equal to the

mean of the process.

Letting Y of (5.15) now correspond to the random variable characterizing

the Total number of pulses in the interval T contributed by the L sources, then

we can immediately apply (5.22) and (5.23) to obtain its moments. Thus,

	

L	 L

_..	 A.n =	 xin	 Ti 
A y
	 for all n	 (5.29)

	

i=1	 i=1

and

k-1	 ^'

	

Pk = Y 1 I 	
( j-11)'Ik-jk' 	i	 (5.30)
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VI.	 Existence and Uniqueness of Solutions

Given the moments 11o , 11 1 , ..., 11N of the random variable X, the Berlekamp-

Massey algorithm finds the smallest number v and coefficients c l , c2 , •••, c 

such that

V

11 n -	 cQ11n-Q	
n = v, v + 1, .••, N	 (6.1)

Q=1

where if N is odd then*

V < 
N 2 1	 (6.2)

We now show that for N an odd integer, the reciprocals of the roots of the

polynomial

	

C(D) = c0 + c	
1 
D + c 

2 
D 2 +	 + cvDv	(6.3)

	

are the desired mass points, xi, x2 ,	 xv, and the probability masses at these

points, wl , w2 , ••• 1 
W  

given by (3.15), do indeed yield the approximate

probability

	

Pr(X = xQ) = wQ	Q = 1,2,	 v	 (6.4)

which is the unique solution to the moment problem given moments 110' 11 1 1 •• , 11N.

In the following, if X is a discrete random variable, we assume that the

true probability distribution has at least v points with nonzero probability.

Otherwise there would be no point in finding an approximating probability

*Except for pathological cases, we have v = N + 1,
2
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distribution for X. Now note that since c o = 1, (6.1) can be expressed in

matrix form as follows:

PO u1 . . . . .	 P 	 c 

u1 u 2 	 uv+l	 cv-1

= 0
	

(6.5)

u
v-1 uv . . . . . 11 2v-1	 c0

This corresponds to v linear equations in v variables c l , c 2 ,	 c  and has

a unique real solution if

110

u1

M=

]IV-1

is nonsingular. M is singular if

with elements a 0 , a1 , ..', av-1 
s,

Il l
	.	 . .	

uv-1

11 2 	 uv

(6.6)

u v	. . . . .	 112v-2

and only if there exists a column vector a

ich that

aTM a = 0	 (6.7)
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or

i

V-1 v-1

5 IL--j

aiajui+j = 0
i=0 ^j =0

(6.8)

Recalling the definition of the moments, then equivalently

V-1 v-1

EE aiaj E(Xi+j ) = 0	 (6.9)

i=0 j=0

or

din i 21
	E `

	
aiX	 = 0	 (6.10)

i=0

This is possible only if all the values of t:Le random variable X are at the

v-1 roots of the polynomial

v-1

	

A 	 _	 aixi
	

(6.11)

i=0

For our case, this is not true since we assumed that at least v points have

nonzero probabilities. Hence, M is nonsingular and the Berlekamp-Massey

algorithm yields a unique solution given by the polynomial C(D) in (6.2).

The roots of the polynomial C(D) must be distinct and real. To see this,

we consider the reciprocal polynomial

Q(D) = DvC(D)

= c  + C.v-1D + cv-2D2 + ... + c0Dv	(6.12)

I

57



and show that the roots of Q(D) are distinct and real.

Suppose, for m < v, X  X22 ,.,' am are the only distinct roots of Q(D),

Let fl , S2° —s 
0m, (m' < m) be those real distinct roots where Q(D) changes

sign for real D. Define polynomial

jm 
I

R(D) = 1 1 (D

i=1

m'

j riDl	(6.13)

i

i=---Oddd

Then

Q(D)R(D)  > 0	 (6.14)

for all real D since changes in sign of Q(D) are reversed by sign changes in

R(D). Also the only real numbers for which

Q(D)R(D) = 0
	

(6.15)

are the roots 
X l' X2,	

am' Since the random variable X takes on values at

other points besides these m root points (m < v) we have

E[Q(X)R(X)] > 0
	

(6.16)

K
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However,

	

v	 m'

Et'.Q(X)R(X)] = E	 Cie-)(r 
i 
xi

j=0	 i=0

m'

E L r	
J

1 ) c Xv+i-j

L^
	i=0	 j=0

m'	 v

-	 r 	 cjuv+i-j
i=0	 j=0

which equals zero since

v

	

Lc,
J 

u
n-j 

=0	 for n>v

j=0

(6.17)

(6.18)

Thus, by contradiction, we must have m = v and all roots of Q(D) and C(D) must be

real and distinct.

Since all roots are real and distinct

xkP(xk1)
wk = - C I (xk1) (6.19)

must be real since the polynomials P(D) and C(D) have real coefficients. We

also know that w l , w2, ..., w  satisfies

v

k
Ilk =	

W 
k 
x 9

Q=1

k = 0,1,2, •••, N (6.20)
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Hence, for any polynomial F(X) of degree < N, we have

V

E[F(X)] = 57, wQ F(xQ)L
k=

1
Choose, for some 1 < Q < v,

V

F(X) _ H (X - x; ) 2 > 0
1j=1

j^k

which has degree 2v - 2 < N. Then

v

E[F(X) ] _	 wiF(xi)

i=1

V

= w R FI (xR _ x; ) 2
j=lj#k

> 0

and thus

wR>0

1

I

(6.21)

(6.22)

(6.23)

(6.24)

The condition

'	 v

]J O = ) wQ=1
	

(6.25)
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completes the proof that w l , w2 , • 1 wv is a set of discrete probability

weights.

It is also easy to see that this set is unique from the constraints of the

moments given by (6.20). In matrix form, this is

i

I`0

Pi

P2

uv-1

1 1 1	 .	 . 1
W 

x  x2 x3 X w2

2 2 2 2
x1 x2 x3	 . .	 .	 xv

v-1 v-1 v-1 v-1
x1 x2 x3	 .	 . .	 ,	 x wv

(6.26)

where the matrix

M =

1 1 1 1

x
1

x7 x3
x 

2 2 2 2
xl x2 x3

X 

v-1 v-1 v-1 v-1
X 

x2 x3	 .	 . .	 .	 xv

(6.27)

is a Vandermonde matrix (Ref. 11) with nonzero determinant since x 1 , x2,	 X 
are distinct.
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VII. Generalization to Correlated Random Variables

In many communication systems such as the satellite transponder system

example in Section I, we want to evaluate the expected value of a function of a

complex random variable such as

W=X+jY ;	 j =
	

(7.1)

This is typically the complex envelope of a narrowband signal. If we follow our

earlier approach and assume we have available a set of complex moments

	

P
k = E (Wk)	 k = 0,1,2, ..., N
	

(7.2)

then we can again apply the Berlekamp-Massey algorithm. The Berlekamp-Massey

algorithm works for any field so certainly the complex number field is no

problem. This algorithm, in .fact, was originally developed for finite fields.

Despite what seems like an obvious extension of the previous results, the

complex random variable generalization of the moment technique needs to be

investigated further as there are some special cases where it does not seem to

work. Suppose, for example,

W = eje	 (7.3)

where 8 is uniformly distributed over (0,27x). Here, we have

	

Il k 
= E^Wkl =	 1 ;	 k = 0	

.. f
0 ,	 k = 1,2,3,	 (7.4)

which yields the trivial uninteresting solution

1	 w = 0
Pr(W = w) =	 (7.5)

0	 w 0
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1.

In this case, however, we can reformulate the basic desired expectation as

E[G(W)] = E[G(ea©)]

= E[H(0)]
	

(7.6)

where we achieve an approximation using moments of the real random variable 0.

Another example which causes problems is W = X + jY where X and Y are

independent zero mean Gaussian random variables with variance a 2 . Then

	

W = Ae0 0
	

(7.7)

where A is a Rayleigh random variable that is independent of 0, a uniformly

distributed phase random variable. Again we have complex moments given by (7.4)

yielding the trivial approximation (7.5). This case can also be solved easily

using a reformulation as follows:

E[G(W)] = E[G(X + jY)]

= E[F(X,Y)]	 (7.8)

Now we can ;apply the real random variable approximation for X and Y to

obtain

	

Pr(X = xk) = Pr(Y = y k ) = w k	k = 1,2, •••, v	 (7.9)

based on moments E(Xk) = E(Yk); k= 0,1,2, -- . ,N. Then

V v

E[F(X,Y)] = j] j: wkwmF(xk ,xm)	 (7.10)

k=i m=1

This, in fact, is the double application of the Gauss-Quadrature rule for

Gaussian integrals called Gauss-Hermite approximation.

64

G



The above pathological cases can be easily handled using the single real

random variable moment technique described in Sections II through VI. They

{point out, however, the need to further investigate the complex random variable
generalization.

We now consider the generalization to two correlated real random variables

which includes the complex variable nroblem as a special ease. As shown next,

this approach requires multiple application of the single random variable tech-

nique and, most importantly, does not result in unique solutions.

Assume we wish to evaluate E[F(X,Y)] when we only know the (N + 1) 2 joint
moments

Pik = E(XlYk) ;	 i, k = 0,1,2,	 N	 (7.11)

We assume the joint probability of X and Y is approximated by v 2 pairs of
points*

{XkYMI }	 ;	 R, m = 1,2, ..•, v

and probability masses at these points given by

A
Pr(X = x., Y = yMIZ ) = pmiQwQ	 Q, m = 1,2, ..., v	 (7.12)

where PMIZ is the approximation to the conditional probability of Y = ym1 . given

X = xQ while w  = Pr(X = xZ).

This allows for the approximation

V v

	

E[F(X,Y) I - E E pm I QwQF(xV Ym 1 2,	 (7.13)

k=1 m=1	 I

*The notation ymlQ indicates that the discrete set of points at which Y will be
allowed to have probability mass depends on the discrete set of points chosen
for X to be allowed to have probability mass.

W .
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To find the approximating joint discrete distribution, consider first the

constraints imposed by the given joint moments of (7.11), namely,

Pik = E(XiYk)

v v

Pm I tYkyM I L 	 k = 0,1,2,	
., N	 (7.14)

Q=1 m=1

ForFor k = 0, we have

v

Pi0 =
	 WRxk	 i = 0,1,2, ..., N 	 (7.15)

2=1

By applying the single real random variable moment technique, we can find the

smallest set of v [v = (N + 1)/2 for N odd except for pathological cases] unique

mass poin^s xl , x2 , ''" x  and weights Wl , W 2' - " , W
v satisfying the N + 1

moments of (7.15).

Next observe that if we define the approximating conditional moments*

v

PkIZ =	 PmlZYm,Q	 k = 0,1,2, ..., N	 (7.16)

m=1

*Note that this approach does not insure that the approximating conditional
moments ukIL be equal to the true conditional moments	 E(XkJX = xQ) nor
does it guarantee that they are a valid set of moments in tha sense of producing
a convergent Berlekamp-Massey algorithm. More often than not, however, the
approach will be successful and y.eld meaningful results.
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for each R = 1,2, 	 v, then we merely apply the real random variable moment

technique v times to find the points (y M19,and conditional probabilities

{P	 WeWe get these conditional moments from the following --pression:

Pik - F(X,y

v v
_	 i k_	

pm I RwRxJt ym I R
R=i m=1

V	 v

W
91	 pmlRymlR

R=1	 m=1

v
= v ukIRwRxei	 (7.17)

R=1

For each fixed k we have a set of linear equations for 
ukll' pkl2' • ' wkly

since {w R} and {xR} are known. These equations can be expressed in the matrix

form

I	 .

u0k

ulk

u2k

l'v•-1,k

1	 1	 1	 1
r W  Ilk 11

J

xl	 x2	 x3 	.	 .	 .	 .	
x,)

w2 
n
ukl2

2	 2	 2	 2
x1	 x2	 x3	 xv

w3 ukl3

V-1	 v-1	 v-1
x 	 x2	 .	 .	 .	 .	 .	 x ,.

W  Ukly

(7.18)
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where the transformation matrix is M of (6.27). Defining the LaGrange

polynomials (Ref. 11)

V

11 (D - xPI)

Q=1

T(D) _ Rvn
;	 n = 1,2, ..., v
n 

H(X 
n 

X 
PI)

R=1
k#n

= a0 (n) + a
1 
WD + a

2 
WD 2  + ... + a

v-1
(n)Dv-1	 (7.19)

with the obvious property that

^1 ;	 R=n

Tn (xQ ) _	 (7.20)
0 ;	 Q ^` n

then, equivalently the coefficients a (n); n = 0,1,2, 	 v - 1, which are
^	 1

easily found, have the inner product property

[

a0 (n) , a 1 (n) , ... , av-1I I 11

xR

2
xQ

1	 Q = n

	

_	 (7.21)
0 ;	 9	 n

v-1
:Q

*See Appendix A.

i
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Hence, the inverse of M in (6.27) is easily seen to be

a0(1) a 1 (1) a2(1)	
av-1(1)

a0 ( 2 ) a1 ( 2 ) a2 ( 2 )	 . . . 
av-1(2)

M I
	

(7.22)

a0 (v) a 1 M a 2 (v) . . . av-1(v)

and from (7.18), the desired conditional moments are found from the joint moments

by

w  ukll

w2 "k 12

= M 1

w  Ilk ly

This completes the solution.

uOk

u ik

k = 0,1,2,	 N
	

(7.23)

uv-1,k
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= T	 (7.24)

Q-1,2, ..., vzQ = (xQayQ) ( 7.26)

The above solution to the two correlated real random variables moment

problem is clearly not unique since we could have interchanged the role of the

random variables X and Y. Also it is not clear if this approach results in the

fewest number of mass points compatible with the given joint moments. Finally

this procedure may be improved by using an invertible transformation T to define

new variables X and Y where

11

Joint moments uik - E(kl
 ) can be easily found from the original moments and we

can easily find F(•,•) such that

E[F(X,Y)] = E[F(x,Y)]
	

(7.25)

The choice of new transformed variables would come from examination of the original

physical problem that led to the requirement for evaluating E[F(X,Y)]. Joint

moments may a'_ao be easier to find by an appropriate transformation. For special

cases such as when X and Y are correlated Gaussian random variables, we can

always find a transformation such that X and Y are independent zero mean Gaussian

random variables with variance o 2 = 1. Then the problem of evaluating the expec-

tation of F(X,Y) = F(X,Y) reduces to a double application of the single real

variable moment solution.

An alternate approach to the correlated random variable problem, which

does not depend on whether X or Y is chosen as the unconditioned random variable,

is based on a direct two-dimensional generalization of the one-dimensional solu-

tion. In particular, we do not search for pairs of points and associated prob a-

bility masses whose values for the second dimension are conditioned on those

found for the first dimension. Rather, we directly proceed to find joint mass

points
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and weights w Q ; Q = 1,2	 v at these points giving the approximate joint

probability distribution

Pr(X	 xQ , Y = yQ ) = wQ	Q = 1,2, ..., v
	

(7.27)

Here again the available input consists only of the (N + 1) 2 joint moments of

(7.11) and the desired output is the evaluation of E[F(X,Y)J. Once we have the

approximate joint probability of (7.27) we may make the approximation

v

E[F(X,Y)7 =	 WkF(x,,yd

Q=1

Our goal is to find an approximate joint probability distribution as given

in (7.27) with the fewest number of points v that satisfy the joint moment

condition

uik = 
E(X1Y1c)

v

_	 Wkxkiykk	 i,k = 0,1,	 N	 (7.28)

Q=1

First, we denote xl , x2 ,	 xvx as the set of distinct numbers among the

set xi, x2 , •••, xv . Similarly, we let y l,	 y2,yv 
Y 

be 	 the set of distinct num-

bers among the set yl , y
2' •••, yv. Thus, there are a total of v 

x 
v 
y 5 v distinct

pairs (x., ym) and the desired set of mass points (x,, yR );	 =1,2 •••, v is a

subset of all such distinct pairs.

Next, define the polynomial

v
x

CX (D) _	 (1 - DRQ)

k=1

vx
=a0 +a1D+ ••• + a 

v 
D	 (7.29)
x
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where a0 = 1. Note that analogous to (3.6),

V	 v
x	 x	 V

__E amui-m, j	 m E (AQxQ i-m yQ j

M=O	 m=0	 Q=1

v
V	 x

Fa 
wkxQ, yR E amxQ

Q=1	 m=0

YWPxPiykjCx(xz-l)
Q=1

=0 (7.30)

since xQ
-1 

(or m 1) is a rooc of CX (D). Thus, (7.30) can be written in the

alternate form

v
x

uij	 amui-m,j	
i ? vx ,' j ? 0	 (7.31)

m=1

For a given value of j, (7.17) has a shift register interpretation analogous to

Figure 3. In particular, the conditions on the coefficients a l
, a2 " ' avx

imposed by (7.17) are those of a v  tap feedback register that is required to

be able to generate N + 1 different sequences, namely,

v

-'
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1

Pool' 1110'	 11vx-1,0' u vx20' ...' 
''NO

Pol, 1111'	 Pvx-1^Il' PlvxX	 PN1

PON' PIN' ...' Pvx_l$N' P vx N3 ... ' PNN

Initial Condition

For each of the above N + 1 sequences of 'length N + 1, the first v  terms serve

as the initial loading of the feedback shift register specified by the polynomial

coefficients al , a2 ,	
a 

X

Next define

v
y

CY t(*7, _ H (1 - z9d

Q=1

V
= b0 + b 

1 
Z + •-• + by Z y	 (7.32)

y

where b0 = 1. Using the same development as that leading to (7.30), we obtain

now
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vy 	 vy	 v

_ EE bnui,j-n	 b 
	

WRxRi, yR j-n

	

n=0	 n=0	 k=1

v	 vY
j	 -n

cv P, PI	 '	 bny.Z

Z=1	 n=0

v

wkxkiYk i
cy

(yz- 1)

2=1

= 0	 (7.33)

since yQ 1 (or ym 1) is a root of CX (Z). Thus, analagous to (7.31), we can write

(7.33) in the alternate form

v
Y

	

uij - - E bnui ^ j-n ; i ? 0, j >_ vy 	 (7.34)

n=1

Note that, although at this point, we do not kzi Ft"° the two sets of points

xl' X2' • •	 Rvx and ql? y2 , • • • , Yvy or their gen t:tt ;i 'olyriomials CX (D) and

Cy (Z), we have the interpretation that the given (N	 5:Z I% int moments of
(7.11) are generated by two linear feedback drift regi,^; .,rl: with feedback tap

coefficients that specify these polynomials. This is a new interpretation or

formulation of the classical two-dimensional moment problem. Furthermore, even

after we were to find these two sets of points by some suitable algorithm, they

would not yet be paired together. Thus, at that point, it would still be unclear

which v pairs (x,, yQ); R, = 1,2, ••-, v out of the vv pairs (RV ym) arex 
Y

valid mass points.
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To resolve this ambiguity, we proceed as in the one-dimensional case by

next defining the polynomial

V	 vV Hx 	 y

F(D,Z) _	 WZ 	 (1 - Dxj (1 -Zqi)
k=

1
	 j=1

	 1=1

V -1 v -1
x y

pi,DiZj	
(7.35)

i=0 j=0

where the primes on the two products in (7.35) respectively denote omission of

the factors corresponding to 2  = x  and qi = yQ . Thus, we may write the equiva-

lent relations

V
x

V	 11(1-Dx)x ^	 j

H
(1 - Dxj ) _	 (1 - Dx )

X11	 Q
j =1

V
y

vy	 F1(1 - Zqi)

(1 - Zq.) = 1i=1
11 1	 (1 - ZyR )	 (7.36)

i=1

Also define the joint moment generating polynomial

CO	 CO

u(D ,Z) 
= E Y, 

uijDiZJ	 (7.37)

i=0 j =0

Then, assuming the moment relationship of (7.28), we get

75

o



00	 0	 v

V(D ) Z) _ E 57,	 wzxziyplj Dizi

i=00 j =0 9,=1

V	 CO

	

Ew, E(xD) 	 (yzZ)d
1P,=1 	

i=0	 j =0

V

__	 1

E
W

Q (1 - Dx^) (1 - ZyR)	
(7.38)

Q=1'

which when multiplied by CX (D) and CY (Z) produces the relation

i
V	 Vx 

y

V	 H (1 - Dxj ) I 
H 

(l - zyi)

	

u(D , Z ) CX (D ) CY ( Z )	 wQ , (1 - DxQ)	
i- 

(1 - ZyR)
Q=l

= P(D,Z)	 (7.39)

Equating coefficients of equal powers of D and Z in (7.39) yields the coefficients

pij of the polynomial P(D,Z). The procedure for accomplishing this is as follows.

Substitute the polynomial representations of u(D,Z), C X (D), and CY(Z)

given in (7.37), (7.29), and (7.32) respectively into the product in (7.39) to

yield

V	 vx	 y ))CO	 CO

	

u(D + Z )Cx(D ) CY ( Z) _	
akbtuijDi+kZj+Q

k=0 Z=O i= 0 j =0

v	 v
x	 y CO	 CO

j-QD1ZJ
	 (7.40)

akbQUi-k, 
k=0 Z=0 i=k j =R
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Note that

vy	 CO ^. min 	 ,vy)

k=0 j =2 j =0	 k=0

v
x	 CO

EE (
min(i,v )^	 x

)	 E	 (	 )	 (7.41)

k=0 i=k i=0	 k=0

Using the equivalences of (7.41) in (7.40) yields

min(i,v 
x ) 

mi.n(j ,vy)

u(D,z)0x(D)OY(Z)	 ^
	 E	 F_ 	E	 akbkui-k,j-R,DlZj

i=0 j=0	 k=0	 k=0

V -1 v -1
x y

= P(D,Z) _ E E pijDiZi 	(7.42)
i=0 j =0

Finally,

i	 j

pij EL aOkui-k,j-k	 1 = 0,1, ...  X- 1
i=0 k=0

j = 0,1,	 vy - 1
(7.43)

This relation is fhe two-dimensional generalization of (3.11).

Note that for i> vx, we have from (7.42) the condition

V
x

E'Oi-k,j-k  = 0	 (7.44)

k=0
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I

and for j ? vy , the condition

v
y

L b Q U i-k, j - !C = 0

k=0

( 7 .45)

both of which agree with the conditions on aV 
a23 ..., avX and 

b l , b 2 ,	 bvy

previously found in (7.31) and (7634) respectively.

In summary, given the polynomials C X (D), CY (Z) and the known joint moments

of X and Y, we can easily obtain the polynomial P(D,Z). Given C X (D), CY (Z), and

P(D,Z), we show next how the weights W k ; Z = 1,2,	 v are found.

From the definition of CX (D) in (7.29), we have

CX (D ) Q dD C  (D)

v
	x 	 v

xm 11 (1 - Dxj )	 (7.46)

	

M=l	 ' -1
j^M

Thus, to evaluate CX (XZ-1) where xR = xm0,only the term corresponding to m = m0

in the summation of (7.46) would have a nonzero contribution, i.e.,

v
X

	

C' x 
1	

-x 	 XJ

	

X \ Q /
	 m0 

n 1 -
xk

j=1

' 
^m0

V
x

	

^	 X,

-xZ	 1-X'	 . (7.47)

U
j =1

Q
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where the prime is again used to denote omission of the factor in the product

for which R  = xQ . Similarly, for CY (Z), we would have

^	 1 __ d
CY(ym } 	 CY (D) D = y -1

m

V

y ^ 	 Y

	

_ - y	 1 - i	 ( 7.48)

	

M
	 ym

i=1

From the definition of P(D,Z) in (7.35), we observe that

P (x:1 ,  ym 1 ) = 0	 Z^ m	 (7.49)

Also,

v	 vx	
X	

y^	
yP (x2-1^ yQ-1

)
=

Wk
 	 1 - ^	 1 -

y

	

j=1	
Q	 i=1	

Q

= xwQ C^ ( xQ
-1

) 
CY 

(Y
	 (7.50)

QyQ	 `	 J 
or

x 
y	 r -1y-1^

w-91= Q, Q i
l

l xR Q1	 , Q = 1,2, ... v	 (7.51)

CX( xQ / CY1
( 
Y9. )

The above relation for the weights of the approximating joint probability dis-

tribution is clearly seen to be the two-dimensional generalization of (3.15).

Also, we have demonstrated that otit of the total of v x 
v 
y 

pairs of points

(Rt , ym) only v of these pairs, namely (x,, y.); Q = 1,2,	 v will result in

nonzero probability weights as determined from (7.51).
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As a check on our procedure, let us examine the known special case where

X and Y are independent. Here the joint moments have the form

uij = OIX)i (UY) j	; i, j = 0,1, • .. , N	 (7.52)

where

(UX)i n E(Xi) ; i = 0,1, ..., N

(7.53)

(uY)i 
A 

E(Yj ) ; l = 0,1,	 N

Here (7.31) reduces to

V
X

( uX) i = -

	

	 m(UX)i-m ; i ? v
X	(7.54)

M-- 1

which is the single sequence shift register requirement as in (3.7). Similarly

(7.34) reduces to

V
y

(PY) j _ - L 
.bn(uY) j-n ; 

3 ' vy	 (7.55)

n=1

Thus, we get the correct sets of points xl, R2, •••, xvX and 91, y2, 	 yvy

where v)v = v; i.e., all pairs (x Q , ym) have nonzero probability weights.
Y

Suppose now that (wX)m; n, = 1 9 2, • • • , vX and ((,)Y) n ; n = 1,2, • • • , v y are the

probability weights for each random variable. Then, (7.38) has the form
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Tr

v	 ^^
x y

u (D,Z)	 ^ (c,,X ) m (ioy ) i1	 1	
(7.56)

m=1 n=1	 (l — D R
) 

(1 — Zyn

and corresp)ndingly (7.35) becomes

v	 v	 vx	 y	 xp	

vy1" (1P (D,Z) _ EE  (u,X)m(a)Y) [1H (1 - D-2 	 - zyi )	 (7.57)

m=1 n=1	 j =11 	i=1

which agrees with (7.42). Also, from (7.57) we have

v	 v

	

x	 y
P 

(
xR— ley 1 _ (mX ) R (c.^Y ) nl F1 1 — X̂ ^

	

1 l	 RI1 —I 1	 ym^

	

=1	 i-1

	

x Rm ,	 1	 ,
=	 x	

y	 CX (xR	 CY(ym 1)	 (7.58)
Rym	 `	 J

Thus, in conclusion, we see that the general two-dimensional forms of the results

are consistent with the known case where X and Y are independent.

t
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VIII. Constrained Moment Problem

In some applications, we may wish to place a constraint on the mass points

when solving the moment problem. In this section, we consider a few special

cases where some of the probability mass points are fixed. Here let X be a

random variable with moments

ilk
 = N {Xk I	 k = 0,1,2,	 N	 (8.1)

We want to find an approximate discrete distribution for this random variable

based only on the given moments. Suppose, however, we require that the approxi-

mate distribution have probability mass at given points y l , y 2 , •••, y p . Our

goal is to find the fewest points x 1 , x2 , •••, x  and probabilities

Pr (X = x.
i.	 i
) = w	 i = 1,2 9 - - . 1 v

(8.2)

Pr(X = yj ) = Z 	 j = 1,2, ... , P

that yields

v	 p
'

Il k
	ixk + Y, zj y

k
	k = 0,1,2,	 N	 (8.3)

i=1.	 j=l

Hence, given moments 11 0 , 111, ...1 11N and a set of fixed points y l , Y V '") yP'

we wish to find the smallest v, mass points xi, x2 , •••, x  and probabilities

WV W21 ...) wv > z 11 z2, .'. z
P 
where

v	 p

Wz +^ z = 1
p

i=1	 j=1

.1V ..

(8.4)
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., r

j. .

Suppose the unconstrained moment problem yielded v* and x 1 , x2,	 x*

	

w1, 1102, •••, w**. 	 Let a,b be any numbers 	 where

a < min x'^

	

— i	 1

(8.5)

b > max x*

	

i	 i

We now examine some special cases of the constrained moment problem [see Krein

(Ref. 1), pp. 53-55].

Case I: p = 1, y l = a

v

uk = E w ixii + z lak	k = 0,1,2, ... , N

i=1

Consider
v	 v

wlxi.l + z1ak+1 - a	 wlxk + zlak

uk+1	 au k _ i=1	 i=1
Ii i 
 - a 	

vv'1
w ixi + z la - a

i^=J1

v

w, xk (x. - a)

_ i=1
V

L
wixi - (1 - z1)a

i=1

v

L
w,xk(x. - a)

= v

EW  (x
j - a)

j=1

(8.6)

(8.7)
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V

since 1 - z l =	 wi. Defining

i=1

wi(xi - a)

wi	 v

57, W  
(xj - a)

j=1

i = 1,2, •••, v
	

(8.8)

(8.9)

we see that

w. > 0	 since x. > a

and

v

(8.10)

i=1

(8.9) and (8.10) reveal that the set of weights {w i ; i = 1,2, •••, v} has the

properties of a probability distribution. Substituting (8.8) into (8.7) gives

_	 v

	

ukul - 
auk -	

wixac	
k •= 0,1,2,	 N-1	 (8.11)

1	 i=1

Hence, given u 0 , u 1 , •••, uN , compute new moments,

	

uk+l	 auk	 N-1	 (8.12)Uk =	
p 
	
a	

k = 0,1,2, ..
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and use the unconstrained moment solution to get x 1 , x2 , • , xv and

w1 , w 2 ,	 wv. Note that

V

11 - a =	 wj (xj - a)	 (8.13)

j =1
...1111

so that

W  (xi - a)	
(8.14)I	

u1-a

or

wi (u1 - a)
i = 1,2,	 v	 (8.15)

z	 x. - aI

and

i

v

z 1 = 1 - L wi
i=1

v
- ^ w i ( u l - ui

1	 xi - a
i=1

(8.16)

We thus find the solution to the moment problem where.(8.6) is satisfied with

one mass point y1 = a fixed and all other mass points having values greater than

yl'

86

a



Case II: p = 1, yl = b

v

;ak —

	

	 wixi + z lbk 	k = 0,1,2, ..., N
	

(8.17)

i=1

Consider

v	 v

b	
Wixlk + z

ibk
/ 

-	
w.xi+l + zlbk+l

buk - uk+l

b - ul	 v^
b - L W 

i 
x i + zlb

i=1

v

l.^.J 
w ixk. (b - xi)

i=1

v

E.... 
W  (b - xj )

j=
 1l

(8.18)

v

since 1 - z  
= E 

a) , . Def ining
J

j=1

wi(b - xi)

i	 v

W  (b — xj )

j=1

we see that

i= 1,2, ••• v
	 (8.19)

(8.20)cv. > 0	 since b > x.

87



and
	 i

v

wi = 1	 (8.21)

i=1

Thus

V

bub
- uk+l =	 wix	 k = 0,1,2,	 N-1

1	 i=1

Hence, given u 02 u l , ..., uN , compute new moments

	

uk = 
bub_	 p 1	 ;	 k = 0,1,2,	 N-1

1

and use the unconstrained moment solution to get xi, x2 , •••, x  and

w l , WV	 wv. Note that

(8, 22.)

(8.23)

b-u l = ) wj (b - xj)

j=1

(8.24)

so that

wi (b

W  b

or

wi (b
W  = b

i
6	 '

xi)
i = 1,2,	 v

ul

ul)	i = 1,2, ..., v
xi
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and

1

v

z1

i^=1J

v wi (b - ul)
1-	 b - xi

i=1

(8.27)

Case III: p = 2, yl = a, y 2 = b

v

uk = j w ixi +zlak + z 2bk	(8.28)

=l

Consider

v

-11k+2 + (a + b)>Jk+l - ab>Jlc - ^ wixi+2 +
 zlalc+2 + z2bk+2

i=1

v

+ (a + b)	 wixi+l + 
zlak+l + z2bk+1

i=1

v

- ab	 wixi + z lak + z2bk

i=1
.111

v

= L wixi (-x2 + (a + b) xi - ab)

-0	 =0
\
\

+ zlak (_a2 +	 ) 'a- b 1 
+ z 2bk (-b 2 +	 )b - ab^

v

_

	

	 wixi(b - x i )(xi - a)	
(8.29)

i.=1
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Thus,

v

Wxk(b - x )( ix - a)

-uk+2 
+ (a + b)uk+l - abuk  i=1 i i	

i 

-p 2 + (a + b)p l - ab	 V

E
Wj (b - xj ) (x - a)

j=ll

Define the new probability distribution

w  (b - xi ) (xi - a)
wi = v
	

—	 i = 1,2, .. , v

EWj 
(b - .,i (x - a)

j=11l

and moments

_ -pk+2 + (a + b)uk+1 - abuk
pk -
	

-p2 + (a + b)p l - ab	 k = 0,1,	 N-2

Thus, using moments 
p0' p 1'	 pN-2' 

find xV x2 ,	 x  and

W1 9 w2 ,	 WV from the unconstrained solution. Then

1
11 2 + (a + b)pl

W. _	 i = 1,2, •••, vx	 (b - xi ) (xi - a)

(8.30)

(8.31)

(8.32)

(8.33)

To find z  and z 2 solve

L`	 v

p0 =

	

	 Wi + z l + z2

i=1

v	 ,

ill =

	

	
Wixi + z 1a + z2 

i=1

(8.34)
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or

a .

v	 v

bu o - U 1 - b-E wi + E w,x,

Z =	 i= Z	 i=1
1	 b - a

v	 v

P 1	au0 -	 wixi + a	 W.

z =	 i=1	 i=1
2	 b - a

(8.35)
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IX.	 Accuracy of the Moment Approximation

In this section, we examine the accuracy of the moment approximation for

E{f(X)} where X is the random variable with given ' moments uk _ E(X
k
 ),

k = 0,1, -••, N. The solution to the moment problem yields points {xQ} and

weights {w^} where we have the approximation

Pr(X = X 9) = W  ;	 k = 1,2, ..°, v	 (9.1)

and

V

F{f (X) } = E W 9f (x91) 	 (9.2)

k=1

Two types of bounds are Dresented for the accuracy of this approximation. The

first bound assumes a bounded K + 1 st* derivative of f(x) while the second bound

assumes that X is a bounded random variable and the N + 1 st derivative of f(x)

is convex n or convex U in tr p finite range of X.

A.	 Bounded Derivative

Assume all K + 1 derivatives of f(x) exist everywhere and that

K+1
f(K+l) (x) ^ dxK+l f(x)	 (9.3)

is bounded for all x. That is

if (K+I)  (x) I < BK+I	 for all x	 (9.4)

I For N even we take K = N - 1 while for N odd we take K = N - 2.

P UTa MAN-
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f;

Next, consider integration by parts to obtain

f

r f
(n) (u) (x - u) 

n- 1
 du = (x - u)n 

.l 
f(n-1)

(n - 1) !	 (n - 1) !	 ( )
0	 0

	

+ 	 f (n-1) (u) (x - U) n-1. du

fo
(n-2)!

n^-1	 k

	

- -	
f (k) (0) k! + f (x)

k=0

Thus, setting n = K + 1, this becomes

f (x) = 7 f (k) (0) xf^ + (x f (K+1) (u) (x -' u)K duL^	 k.	 K.
k=0	 0

and changing the variable of integration,

f(x) = K f (k) (0) xk +xK+l

fo

1 (1 - u)K f(K+1)(xu)du
k.	 K '

k=0 

(9.5)

(9.b)

(9.7)
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Now using he bound on f(K+1)g	 (x) in (9. 4) , we have

1
II 

A xK+l	 (1 -^ u) K f 
(K+1) (xu) du < x ^^l l

K+l.	 K !

fo

1
(1 — u)K f(K+1)(xu)du

K!0
1

K!
< IxK+I I 	 (1 — u)K If (K+l)

(xu)I du

fo
1

< B
	

IxK+1I 	(1 — u)K du
K+1.	 K!

0

1xK+._s 1

= BKi-1 (K + 1) !	
(9.8)

Since the first N moments are the same for the true and approximate

probability distributions, we have

	

K	 k	 K	 k

E	
f(lc)(0) k !

	= t' 	

f(k) (0) X'	
(9.9)

	

( k=0	 k=0

Thus, the approximation error is due to file integral term in (9.7). Taking the

expected value of (9.7) with respect to the true and approximating distributions

and differencing the results yields the error bound

8N ° IE{f(X)} - E{f(X) }I

= IE{IK+1}
 - E{I

K+l }) < IE{IK+1 }I + 1^{IK+1}

< E{IIK+1I} + EIIIK+11}

E ^I XK+1 1 } + E^IXK+11
^J

< 
B
K+1	 (K + 1)!	

9.10
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If, as assumed, K = ^? - 1 for N even and K = N - 2 for N odd, then

!
XK-I-II = XK+I

for N even or odd

and

E^JXK+1J} = E`IXK+11^ = uK+l

Thus, substituting (9.12) into (9.10) gives the desired result

2B N	 ;	 N even
N N!

N	
uN-1

2B	 N odd
N-1 (N - 1)!	 '

(9.11)

(9.12)

(9.13)

The bound derived above can be generalized to functions of two correlated random

variables.

B.	 Bounded Random Variables

Suppose X is a bounded random variable where

a < X < b	 (9.14)

Given moments u 0 , 11 1 , •°•, 11N , we now define principal probability distribution

functions. These are approximate probability distribution functions subject to

various constraints on mass location points of the type previously considered in

^ecLion VIII.

Case I: N = 2n - 1 (N odd)

For this case, the principal distribution functions are the solutions to

the following:

(1)	 Unconstrained: v = n

X1' X2^	 x 

w1' w 2:	 mn

^)	 96



F	 --	 1

(2)	 Constrained: p	 2, y l = a, y2 = b, v = n - 1

x1, x2' ... , 'n.-1

co l , w2, ...
 
	
wn-1

and

71' Z2

Case II: N = 2n (N even)

For this case, the principal distribution functions are solutions to the

following:

(1)	 Constrained: p = 1, y l = a, v	 n

xl , x2,	
x 

WV W,)) ... 	 urn

and

z 

(2j	 Constrain

xl,

wi,

ed: p = 1, y l = b, v = n

x2)	 x 

w2'	 W 

and

z 

Denote the two principal distribution functions as

Pr  (X = xlQ ) 
= wl1C	

R = 1,2,	 vl	 (9.15)

and

Pr  (X = x2Q ) = W 2	
k = 1,2, •.', v2	 (9.16)
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An important bound due to Krein (Ref. 1) is given as followG:

Let f(x) be any function where

N+1
f(N+1)(x) =	 1. f(x)

dxN+ 

is either convex U or convex n in [a,b]. Than

E1 {f(X)} < Eff(X)} < E2{f(X)}

where

V 

E 1 {f (X) } _	 W12 
f(x 12,

Q=1

and

v2

E2 {f (X) } _L W22 f (x 2R )
k=1

Note that if

f(N+3)(x) > 0	 for all x e [a,b]

then f
(N+1)

(x) is convex U in [a,b] whereas if

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

f (N+3)
(x_) < 0	 for all x e [a,b]
	

(9.22)
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then f
(N+3)

(x) is convex n in [a,b]. Yao and Biglieri (Ref. 3) have applied

these results to the Gaussian probability integral f(x) = Q(x) [see (2.15)]

to obtain tight bounds on error probability performance of BPSK signaling over

additive white Gaussian noise channels with bounded interference signals.
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X.	 Conclusions and Other Applications

Our primary motivation for this study of computational techniques based on

moments is the evaluation of satellite communication system performance with

uplink interference signals and satellite nonlinearities. Here we presented new

ways of solving the moment problem, examined the accuracies of the approximations,

and extended the techniques to two correlated random variables. The computational

requirements are modest and the approximations are very accurate for evaluating

bit error probabilities (Ref. 3).

Although our example stressed evaluation of bit error probabilities, we

can apply these moment techniques to the evaluation of other parameters, such as

channel coding cutoff rates under both normal and mismatched receiver cases

(Ref. 12). Most modulations and interference signals can be handled using these

moment techniques.

Another very important- application of the computational techniques based

on moments is the determination of the probability distributions of the outputs

of a discrete-time dynamical system. Specifically, consider a discrete-time

system with inputs that are independent random variables with known probability

distributions. Figure 6 shows a generic system where X  has a known probability

distribution and {nk} are independent random variables with known probability

distributions. There are many examples of control systems, queueing systems,

and synchronization systems where this type of model occurs. Our goal is to

find approximate probability distributions for the state X k at time, t.k,

k = 1,2, •••, i.e., we wish to determine an approximate probability distribution

of the form

(10.1)Pr(Xk = xkP = W	 k = 1,2,	 v
kk

for k = 1,2, •• .

nk ► Fk (Xk,nk) Xk+l o

Xk+1 = Fk (Xk , nk); k = 0, 1, 2, ...

Figure 6. Discrete—Time System
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The moment technique can be used in a recursive manner to solve this

problem as follows:

Step 1:	 Compute the moments of X1.

_	 k
ulk	 E (X1

E(Fk (X0 , n0 )^	 k = 0,1,2, —, N (10.2)

where we use E( • ) to denote expectation over both the initial condition random

variable X0 and the input variable n0.

Step 2:	 Solve the moment problem to obtain the approximation

Pr(Xl = xit ) = w1Q ;	 Q = 1,2, ...' v
	

(10.3)

Step 3:	 Compute the approximate moments of X 2 using the probability distribu-

tion obtained in Step 2 for computing the expectation over Xi, viz.,

k
u2k = E i X2

V

w1QE^Fk(x1Q	
111111

, nl )^	 (10.4)
.. 

where E( • ) now denotes only the expectation over the variable nl.

Step 4:	 Solve the moment problem to obtain the next approximation

Pr(X2 = x2Q ) = W 2 ;	 Q = 1,2,	 v	 (10.5)
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etc. By repeating this procedure, we obtain

Pr(Xk = xkk) = w
kQ	 Q =, 1,2,	 v

k = 1,2, •••,	 (10.6)

as desired. Since in each step we use valid moments, the algorithms for solving

the moment problem should -ot encounter any difficulties. Increased accuracy

can be achieved by increas--g tice number of moments used in each stage. Indeed,

we could consider using dlfferen^7 values of N at each stage.

Note that the above procedure does not require that the system, which is a

Markov process, be irreducible. Also, we can extend the results to second order

processes of the form

'k+l - Fk ( k'Xk-1'nk)

	
k = 0,1, •• -
	

(10.7)

Here we can define

Y  = Xk-1

and obtain the vector first order form

Xk+l	 F  (- k' Yk' nk)

Yk+1 -

	

X 

(10.8)

(1U.9)

This is a special case of two dimensional systems of the form

Xk+1 Fk ( 1c' Yk nk)
(10.10)

Yk+l Gk ( k'Yk'zk)

where XO ,YO have known joint probability distributions and In k " z k I  is a

sequence of independent pairs of random variables with known joint probability

distributions.
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To find an approximate joint distribution for (Xk ,Yk) of the form

Pr(Xk = xkk, 
Y  - ykmIk)	 pkm.Ikmkk '	

m,k = 1,2, •••, v (10.11)

for k = 1,2, ••• we can repeat the steps given above using the joint moments and

the two random variable generalization of the moment technique discussed in

Section VII.

Here we have demonstrated an application of the computational techniques

baaed on moments to two dimensional first order Markov processes. Many special

cases of this application need to be further explored. Synchronization systems,

in particular digital phase-locked loops, fall nicely into this category.

Queueing systems analysis is another area where such techniques * ,-ill be very

useful .

The computational evaluation technique based on moments presented in this

report is a very general and powerful numerical technique for evaluating the

performance of a wide range of systems particularly communication systems. We

feel that the applications of these moment techniques have just begun. Subse-

quent reports will be devoted to the analysis of various modulation and coding

schemes used over satellite channels where the techniques described here will be

the basic analytical tool.

I
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APPENDIX A

A Recursive Method for Finding the Coefficients of a
Polynomial Generated by a Product of

First Degree Factors

Consider first the Problem of determine the coefficients {a k (v)} of the

polynomial

rryP  
(D) 

1^ (D - x Q )

k.=1

a0 (v) . + a l (v)D + a2 (v)D 2 + ••• + av (v)Dv 	(A-1)

We start by defining

P1(D) = D - x 1 = a0 (1) + a1 (1)D	 (A-2)

r'

Thus,

a0(1) 	 -x1

al (1) = 1
(A-3)

Next, consider	 ,

P 2 (D) _ (D - x1 )(D - x2 ) = P 1 (D)(D - x2 ) = a0 (2) + a1 (2)D + a2 (2)D 2 	(A-4)

Clearly their

a0(2) _ -x2 (-x 1 ) _ -x2a0(1)

al (2) _ -x2 (l) + ( 1)(-x l ) 	 -x2 a 1 (1) + a0(l)

a2 (2) _ (1)(1) = a l (1)	 (A-5)

^rT;ING Pi'M DL ^T^"' r^OT FIL1^M
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Generalizing to arbitrary k, we define

k+l

F1c+1(D) °- H (D - xR) 	 Pk (D) (D .. x. +,)
Q=l

= a0 (k + 1) + a
I
(k + 1)D + a2 (k + 1)D + ••• + ak+l(k + 1)D k+1 (A-6)

and hence

a0 (k + 1) _ -xk+]_ a0 (k)

a1 (k + 1) _ -xk+la1(k) + a0(k)

a2 (k + 1) = -xk+la2(k) + al(k)

ak (k + 1) _ -x111+1ak(k) + ak-1(k)

ak+l(k + 1) = ak (k)	 (A-7)

Finally, letting k = v - 1 in (A-7) gives the desired result, namely a recursive

relation for the coefficients of the polynomial in (A-1).

Now referring to (7.19), we are interested in determining the coefficients

{a (
k
n) (v)} of the polynomial

V
	 P (D)

Qvn) (D) Q fj (D - x.) Dv- xn
Q=l 
kin

a (n) (v) + a (n) (v)D + 
a(n) (v)D 2 ,+ ... + avn (v)Dv -1	 n = 1,2, ..., v

(A-8)
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The procedure to be followed is identical to that used in the root-finding

algorithm associated with the Berlokamp--Massey algorithm discussed in

Section IV. There a recursive procedure was described for removing a first

degree fa, .-.or from a known polynomial to arrive at the coofficients of the

reduced ;p olynomial. Applying; that procedure to this case results in

a0 (v) _ -xnapn)(v)

al (v) _ -xnaln) (v) + a(n)(v)

a2 (v) _ -xn a( n) (v) + a(n)(v)

av-1 (v) - -xnavn l ( v ) + avn2(v)

av (v) = avni(v)
	

(A-9)

or equivalently,

a (n) (v) _ - a0 (y)
0	 x

n

(n)	
al(v) - a (n) (v)

a1 (v) _ -	
x
n

a (n) v) _ - a
2 (v) — aln) (v)

2 (	 x
n

a	 (v) - a (n) (v)(n) (v) _ - v-1	
xn 

y- 1 	= av (v)	 n = 1,2,	 v	
(A-10)
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A special. cease occurs if xn = 0 for any n. In that situation (A-10) is replaced

by

a0n) (v) = 
al. (v)

a(n)(v) = a2(v)

avn) (v) = av(v)
	

(A-11)

Finally, (^omparing Q (n) (D) with Tn (D) of (7.19), we immed4ately find that

a(n) (v)
a i(n) = V i - -	 i - 0,1,2, •••, v - 1

P(xn - xQ)

u=i
Q., n

which completes the derivation.
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ADDENDUM TO:
SATELLITE COMMUNICATION PERFORMANCE EVALUATION:

COMPUTATIONAL TECHNIQUES b"SED ON MOMENTS

JPL PUBLICATION 80-71

Jim K. Omura
Marvin K. Simon

Sept,-.mber 22, 1980

Introduction

Section VIII of the above referenced report introduced the reader to the

constraint--d moment problem wherein a solution to the classical one variable

moment problem is sought subject to the constraint that some of the probability

mass points are fixed a priori. While the constrained moment problem was posed

in its general form (see Eqs. (8-2) - (8.4)), only the er'u tions for a few

special eases were actually discussed. These special cases included the situa-

tions where e1ther one or both of the end mass points of the approximating

probability density function (pdf) were fixed.

Often one is interested in cases where it is desirable to fix, a priori,

one or more of the interior mass points of the approximating pdf. (Examples

where this situation is applicable will be discussed in the next section.) The

solution to this more general problem was not discussed in the original report

and is the subject of this addendum. To avoid unnecessary duplication, it will

be assumed that the reader is familiar with the material in Section VIII and

thus r,ference to key equations in that section will be made wherever convenient.

As such, the material ,'iscussed here should be considered as if it was originally

integrated into the report with the only reason for not doing so being that it

was not available at the time the report was issued.

The General Constrained Moment Problem

Recall that the motivation for solving the general unconstrained moment

problem was the evaluation of

co

	

E1f(x )

	

	

r

	

^	 J f (x) p (x) dx	 (1)

-CO

-.

1



where f(x) was 'arbitrary" and p(x) was known only in terms of its first N+1

moments

00

	uk = E{xkI = f x  p(x) dx; k = 0,1,2,..., N	 (2)

-00

Although never explicitly stated, f(x) was assumed to have no jump discontinuities

since otherwise the approximate evaluation of (1), namely,

EAlf (x) _	 W i f (xi)

i=1

where the mass points xR ; R= 1,2,..., v and probability we!.ghts w k ; R=1,2,..., v

are determined from the unconstrained solution of the moment problem, would not

yield the most accurate solution. Rather, what would be desired in this situa-

tion would be an appr:)ximating solution of the form

	

v	p	 f(y. +) + £(y. )
Eif (x)} _	 wif (x i) +	 zj	 2	 3	 (4)

	

i=1	 j=1

where y l , y 2 , ..., y  are a set of fixed points corresponding to the locations

of the p jump discontinuities in f(x). The solut:..- , :o this problem is clearly

an application of the general constrained moment problem described by Eqs. (8.2)

-- (8.4) of the referenced report.

Before proceeding to the solution of this problem, we cite a simple

example of where an approximating evaluation such as (4) might be of use. Con-

sider the problem of evaluating the amount of probability P in a given closed

interval [a,b] of the pdf p(x) which is knoum to exist over the doubly infinite

(3)

v

2



p	 1

interval but whose form is known only in terms of ics N+1 moments as in (2).

Thus, we wish to evaluate

f

b

P =

	

	 p (x) dx	 (5)

a

which can be written in the alternate form

(CO

P = J f (x) p (x) dx	 (6)

-CO

where	 1	 s < x < b

f(x) _	 ; x=a, x=b	 (7)

0 otherwise

Using (4), the approximate evaluation of (6) would have the form

V1

A
P=	 wi+zI+z2	 (8)

i=1	 •

where we have employed the constraints y l =a, y2=b in finding the solution. Note

also that v  < v corresponds to the dimension of the set of unconstrained points

xi which fall in the open interval (a,b).

With the above as motivation, we now proceed to discuss the solution to the

general constrained moment problem.

Let us start as before by considering the special case of p=1, where, how-

ever, the unconstrained mass points x 1 , x2 , " " xv are nct necessarily all

3



required to lie above or below the constrained mass point y l . Thus, our goal is

to find the fewest points x l , x2 , ..., x  and probabilities

A
Pr(X = xi) 	

W 
	 ; i = 1,2, ..., v

(9)
A
Pr(X = y l ) = zl

that yiolds the given moments

V
e

Pk =
	 wixik + z ly lk 	k = 0,1,2, ..., N	 (10)

i=1

I^

Let q02 q l , and q2 be real numbers and define the polynomial 	 I

	

q(x) = q0 + q l x + q2 x2	 (11)

Next consider

V

g 0uk + g l uk+l + g 2 Uk+2 -	 wkxQ,k (
g0 

+ glxQ + 
g2xk 21 + Zlyl lc (g0 + glyl + g2y12\

Q=1	 l	

JJ

V

	

wQxQkq(x,,)  + 
Z ly lkg (y l)	 (12)

2=1

We now require that q(x) of (11) satisfy the conditions

q(y l ) = 0	 (13)

and

	

q(x) > 0	 for all. x^y l	(14)

4



Then, using (13) and (14) in (12) gives

IV	 >01: --^

	

g0 11k + g l uk+l + g211k+2 -	
wzq(xQ) xQk	(15)

Q=1

Next note that for k=0, (15) becomes

V

	

g0110 + g1111 + g2 11 2 =	 wYq(,Z)	 (16)
Q=1

and thus, dividing (15) by (16) produces

v
g0

Ilk + g l uk+l. + g2 uk+l =	 wig('k)	 k

80110
+

81111
+

82112	
v	 xQ	 (17)

Q=1

^LJ wJ q (xj)j=l

Defining

* 0 gOil k + g 1uk+1 + g2uk+2

	Ilk = ~ g011 0 + g l p l + g9p2	
(18)

and

	

w * A w Q q 
(
xQ,)	 > 0

Q	 v

wj q(xj )

	

j=1	 \

(19)

5
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F

we arrive at the new unconstrained moment problem given by

V

pk* 
_ E WQ

*xRk ; k = 0,1,2, ..., N7 2	 (20)

Q=1

to which we can apply our usual solution (Section III of the referenced report)

to find x l , x2 ,	 x  and W 1 , W 2 	 wv	 Once having solved this uncon-

strained moment problem, we can obtain our desired results, namely (9), from

(16) and (19) as

WZ* 1g0u0 + g l u l + g2u2/

(21)

z = 1 -

	

	 wQ

Q=1

the latter result representing the normalization condition as in (8.4) of the

.ref= erenced report.

Let us now examine some special cases when X is a random variable boutided

between a and b.

Case I: y i = a (Constrained lower end point)

For this case, we choose

q(x) =x - a
	

(22)

which clearly satisfies (13) and (14).

6
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Case II: y l = b (Constrained upper end point)

Here we choose

q (x) = b = x	 (23)

which again clearly satisfies (13) and (14). These two cases are identical to

the corresponding two cases given as examples in Section VIII of the referenced

report.

Case III: a < y 1 < b

The appropriate choice for q(x) is now

q (x) _ (x - y l ) 2 = y 1 2 - 2y lx + x2	(24)

i.e., a double root at x = y 1 . Comparing (24) with (11), we can immediately

identify that

2
qO = Y1

q 1 = -2y 1	(25)

q2=1

Finally, substituting (25) into (18) and (21) gives the specific desired results

2
u * = Y1 P k - 2y l uk+1 + uk+2	

(26)
k	 y12u0 - 2y 1P1 + u2

7	 1

i



and

2
u(Y	 Y

wR = c`' ^R, 21 0	
2 1 u 

1 + u2^ ; Q = 1,2, ... , v

y 1 - 2y1xQ + xQ

(27)

Z =1 -WQ
^=1

The previous results can easily be generalized to the case of two or more

point constraints. Specifically, we arcs now trying to solve the most general

problem described by Eqs. (8.2) - (8.4) of the referenced report where the p 	 s

constrained mass points may or may not include the end points.

To solve this most general case define the polynomials

qj (x)	 3	 j = 1,2, ..., p	 (28)

where qj (x) is the smallest degree polynomial that satisfies

q  (yj ) _ 0

qj (x) > 0	 for all x ^ y j	 (Z9)

Note that if yj is an interior point then q j (x) will be second degree, whereas
if y  is an end point, q  (x) will be first degree. Next, define

p

Q (x) 
= TT q  

(x)

j=1

= Q0 + Q 1x + .... + Qmxm	 (30)

8
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where m is the sum of the degrees of the polynomials q 1 (x), q 2 (x), ..., qp(x).

Analogous to (12), consider now

M	 m	 v	 p
k+i	 k+i

Qiuk+i 

=	
Qi	 41y^xQ	 +	 zjyj

i=0	 i=0	 Q=l	 j=1

V	 p

_
E W k 

x 
z 

k
 Q(xk) +E z

j yj kQ(yj )	 (31)

Q=1=1

But from (29) and (30), we have

	

Q(yj ) = 0	 ;	 j = 1,2, ..., p

	

Q(x R) > 0	 Q = 1,2, ..., v	 (32)

Hence, (31) simplifies to

m	 v	 >0

Qiuk+i -	
WRQ(~ x Qk 	 (33)

i=0	 Q=1

Evaluating (33) at ri=0, and dividing (33) by this result gives a relation

analogous to (17), namely,

m

E Qiuk+i v
i=0	 _	 "'QQ(xQ)	 x k	 (34)

m	 v	 Q

Q :1u i	
Q=1	

WjQ(xj)

i=0	 j=i

9
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Again defining the new moments

m

EQi11k+i
i=0

	

Uk	 m

E Qiui
i=0

and weights

^	 WRQ(xR)
W k = v
	

Z = 1,2, ..., v	 (36)

E W  Q (xj )
j=1

we arrive at the unconstrained moment problem given by (20) where the largest

value of k is now N-m. Once having solved this unconstrained moment problem

for x1 , x2 , x  and w 1 , 1112 60 we can obtain our desired results

from (33) with k=0 and (36) as

/ v

a^ R
	 I

J uJ

	

\ j=0 	 R = 1,2, ..	 v
R	 Q (xd

and z 1 , z 2 , ..., z
P 
which are the solutions to the set of linear equations

v	 p

uk =	
WRxQlc +
	 zjyj" ; k = 0, 1,2, ... , p - 1

R=1	 j =1

Let us again examine some special cases when X is a random variable

bounded between a and b.

(35)

(3i)

(38)
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Case IV: p = 2, y l = a, y 2 = b (Constrained End Points)

For this case, we choose

Q (x) = (x - a) (b - x) = -ab + (a + b) x - x2	(39)

This example is identical to Case III in Section VIII of the referenced report.

Case V: p = 3, y l = a, a < y 2 < b y 3 = b

Here we choose

Q (x) = (x - a) (x - y 2 ) 2 (h - x)

-aby2 2 + (2aby 2 + (a + b) y 2 2 ) x

- (ab + 2(a + b) y
2
 + y 9 2 ) x2 + (a + b + 2y 2) x 3 - x4	(40)

Comparing (40) with (30), we may immediately identify the coefficients Q.;
i

i=0,1,2, ..., 4 and proceed to find the desired solution from (37) and (38). The

details surrounding other special cases of further complexity are left as an

exercise for the reader. We do, however, point out that the recursive method for

finding the coefficients of a polynomial generated by a product of first degree

factors discussed in Appendix A of the referenced report is particularly helpful

in finding the coefficients of Q(x) in (30). Note that the method used in

Appendix A to arrive at (A-7) does not require that all. the factors correspond

to distinct roots. Thus, each second degree polynomial q j (x) need just be

looked upon as a product of two identical first degree polynomials.
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