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SUMMARY

This paper is concerned with both the solution sensitivity and solution
accuracy of large dynamic problems involving NASTRAN SOLUTION 8 (i,e0, the
steady state dynamic response option wherein all response quantities vary as
eiwtj where to is the driving frequency and t is time). Using a submerged
steel plate with a viscoelastic layer as the bench mark sample, the solu-
tion sensitivity and solution accuracy is checked. The solution sensitivity
is examined by running the same finite element model on different computers,
different versions of NASTRAN, and different precision levels,, The solution
accuracy is evaluated for these same runs by comparing the NASTRAN results
with the exact solution of the same problem.

SYMBOLS

[B] Damping Matrix
c"i Dilational Wave Speed in Fluid
{F} Applied Force Vector
[K] Stiffness Matrix
[K] Modified Complex Stiffness Matrix
[M] Mass Matrix
k Wave Number (
P. Incident Fluid Pressure
P Plane Wave Amplitude
PD Back Side Fluid Pressureb
P<j Front Side Fluid Pressure (Scattered Component)
t Time
{U} Solution Displacement. Vector
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SYMBOLS (Cont'd)

x Spatial Coordinate
u Driving Frequency

{A} Residual Solution Vector
w* y»

A ,p Real Elastic Lame1 Constants
X ,y Corresponding Viscoelastic Constants
p Material Mass Density

INTRODUCTION

This paper is concerned with the solution accuracy of 1, 2, or 3-dimen-
sional steady state (time harmonic) structural and/or continuum problems whose
response quantities all vary in time in proportion to e1a)t. The linear equa-
tions of motion for such problems usually reduce to an expression of the form

= {F} . . (1)

[K]

where [M], [B], and [K] denote the mass, damping and stiffness matrices (MOD,
BDD and KDD using usual NASTRAN DMAP notation), u is the driving frequency and
{F} are the applied forces. The results presented in this paper focus on con-
tinuum type (e.g., figure 1) applications with structural damping, however,
once the form of equation (1) has been constructed, the solution becomes a
matter of solving large banded symmetrical systems of complex linear algebraic
simultaneous equations. Clearly, such equations can also be the end point
resulting from many other NASTRAN steady state formulations, either from direct
structural formulations or from related fields through analogies. Thus compari-
sons of solution accuracy, run time, etc. can be viewed and interpreted in a
more general vein than simply applying only to problems of the type depicted in
figure 1.

The motivation for this comparative study resulted as a consequence of
obtaining some unexpected results on some solution 8 (steady state time har-
monic rigid format) problems similar to the one shown in figure 2, except for
the fact that the initial model had inclusions throughout the rubber thus mak-
ing analytical solutions to the problem unwieldy.



PARAMETRIC STUDY MODEL

In order to better understand the .accuracy limitations of the results of
the initially more complicated inclusion filled model, a simpler homogeneous
layered model (figure 2) was constructed and physically corresponds to a
totally submerged 2.0" steel plate with a 3.05" viscoelastic rubber layer
glued to the steel surface. The input corresponds to an incident pressure
wave

Pi =
i(kx k = (2)

where x is the horizontal coordinate along the line of propagation, Cj is
the dilatational wave speed in the fluid, and P0 is the plane wave amplitude.
The exact analytical solution to this problem is known (ref. 1), consequently
an accuracy check on the finite element solutions is available. Clearly, the
figure 1 model is a spatially one-dimensional problem, consequently the cor-
responding finite element model.need only be one element wide as was done,
for example in ref. 1. However, the finite model was made up to eight ele-
ments wide for the following reasons: (1) the model simulates the more com-
plex model except for the fact that the inclusions are removed by filling
their space are with uniform elements having the same material property as
the surrounding rubber material; (2) the problem is artificially made mathe-
matically larger so that more meaningful comparisons of CPU run times could
be made; (3) larger problem sizes tend to draw out any potential problems
with equation solvers. It is not our intent to discuss or explain the setup
of wave propagation problems of the type represented by the figures 1-2
example model; the reader is referred to refs. 1 and 2 for supplementary
details. In fact, the demonstration problem used here is very similar to
the one used in the ref. 1 sample problem except that the plate and visco-
elastic thicknesses are different, the damping coefficient in the visco-
elastic layer is different and that the steel plate is represented here
approximately with CBAR elements rather than with solid elements as in ref. 1.
Specifically, the material constants employed are listed below

DEMONSTRATION PROBLEM PHYSICAL CONSTANTS

MATERIAL

Water

Steel

Viscoelastic
Material

Ar

psi

345̂ 600.

17,307,000.

86,703.

r
y

psi

0.0

11,538,000.

115.9

X1

psi

0.0

.0.0

8670.3

y
psi

0.0

.0.0

11.59

Ib-sec2/in^

.000096

.000735

.0003599

where the meaning of the elastic and viscoelastic constants are defined in
detail in ref. 1.
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Since the topic of interest here is related to the class of problem
treated by ref. 1, it appears appropriate to print an errata to the ref. 1
paper

• in equation (15) of ref. 1, replace 622 = xr with G22 = *r + 2/
• in equation (16) of ref. 1, replace G22 = e with G22 = e(l + 2̂ /̂ )
• in equation (2) of ref. 1, replace to2 with -o>2

• in equation (17) of ref. 1, replace +nj with +irij in the k2 defi-
nition dz d2

PARAMETER VARIATIONS

The basic finite element model, figure 2, was exercised for a frequency
sweep of 7 different incident frequencies (3.0 kHz, 4.0 kHz, 6.0 kHz, 8.0
kHz, 17.5 kHz, 22.5 kHz, 35.0 kHz). Running the figure 1 model on NASTRAN
for the above frequency sweep is designated as a typical run and correspond-
ingly assign it a "run number", which runs from the number 2 through 9. Run
number 1 is the exact solution and therefore is the only nan NASTRAN designa-
tion.̂  is called a run since even the analytical solution involves a computer evalua-
tion).

Next, the same frequency sweep input data was rerun while varying the
following parameters:

• solution precision (S.P. or D.P. on the same computer)
• type of computer (UNIVAC 1108; DEC-VAX; CDC Cyber 175)

• level of NASTRAN (both NASA and MSC versions are considered)
• date (i.e., the same input is resubmitted on the same computer,

using the same version of NASTRAN but on different days)

The last parameter (i.e., the date) seems a waste of computer time, however
as is shown later, some unexpected results are encountered.

DMAP INSTRUCTIONS FOR PRINTING SOLUTION ERROR RESIDUAL

It is of interest to know the accuracy of the solution solving capa-
bility of the equation solver used by the particular version of NASTRAN
employed by the user. Specifically, if the solution {U} is found by NASTRAN,
how well does it satisfy the linear simultaneous equations (1)? Consider
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substituting the solution {U} into equation (1) and then transposing the
applied force vector to the left hand side of equation (1) to obtain

LTKU} - {F} = {A} . (3)

If the equations have been solved exactly, then the residual vector {A} will
be identically zero. The appearance of large nonzero entries in {A} would
imply potential inaccuracies in the solution vector {U}. The question of
"how large is large?" should be viewed by comparing the size of a particular
entry in the {A} vector to the size of the applied loads (for this reason,
the load vector {F} is also printed). For example, a residual of .2 would
be a big residual if the applied forces are on the order of 1=0 Ibs,: however,
if applied forces are say 100,000 Ibs., the .2 residual is acceptable.

In order to print out the residual vector {A} for the 3,000 Hz driving
frequency case, the following DMAP instructions were used (note, the {A}
vector is printed with the heading DELS0L).

• For UNI VAC 1108, SOL 8, LEVEL 17.0 (Runs 3a, 4a)

ALTER 159
ADD5 KDD,BDD,MDD,,/KBARX/C,Y,ALPHA=(1.0,0.0)/C,Y,BETA=(0.0,18849.5592)7

C,Y,GAMA=(-355305758.44,0.0) $
MPYAD KBARX,UDVF,PDF/DELS0L/C,N,0/C,N,1/C,N,-1/ $
MATPRN DELS0L,PDF,,,// $ .
ENDALTER
CEND

where frequency dependent input constants BETA and GAMA are to be input by
the user and are simply defined as:

BETA =0.0 + iu

GAMA = -a)2 + i 0.0

where u> = the driving frequency in radiains/sec

• For UNIVAC 1108, SOL 8, NASA LEVEL 15.5 (Run 2) replace ALTER 159
with ALTER 139

• For VAX, SOL 8, NASA LEVEL 17.5 (Run 5b) same as 1108, NASA LEVEL
17.0

• For CDC CYBER, SOL 8, MSC LEVEL 48B (Run 6) replace ALTER 159 with
ALTER 139

• For VAX, SOL 8, MSC LEVEL 52 (Run 7) replace ALTER 159 with ALTER
139

• For VAX, SOL 8, MSC LEVEL 60 (Run 8) replace ALTER 159 with ALTER
139

• For VAX, SOL 26, MSC LEVEL 60 (Runs 9b, 9c, 9d)
replace ALTER 159 with ALTER 409
replace UDVF with UHV (3rd line)
replace PDF with PD (3rd and 4th line)

53






















