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SUMMARY

Using the nonlinear load elements in thermal analysis to simulate an
undocumented nonlinear thermal boundary condition is presented. The treatment
of the nonlinearity arising from the temperature-dependent convective film
coefficients is shown in detail. As an illustration, emphasis is placed on
the modeling techniques and their interrelationships with the solution accu-
racy as affected by a specific integration algorithm of the transient thermal
analysis used in the NASTRAN Thermal Analyzer. Briefly shown is the under-
lying theory on which the maneuvering of terms pertinent to the modeling
depends. This demonstration provides some insight into the intricacies of the
method that would be general to all applications. A recommendation is also
made to modify a nonlinear load element that will enhance the solution capa-
bility and broaden the scope of application. '

INTRODUCTION

The known solution capabilities of the NASTRAN Thermal Analyzer (NTA)
have been well documented (ref. 1 and 2), and a large part of them have been
demonstrated in detail (ref. 3). Despite their frequent encounterment in
engineering applications, certain nonlinear solution capabilities have not
been provided by the NTA in the transient-state thermal analysis (APP HEAT,
SOL 9). Those excluded are, for instance, the temperature-dependent thermo-
physical properties, temperature-dependent convective film coefficients, etc.
Their absence from the original NTA's capability list was solely attributed to
the fact that the required computer processing time (CPU and 1-0 times) would
be excessive. Computations involving the reassemblages of the thermal conduct-
ance matrix, together with the decompositions of the relevant matrices that
contain the nonlinear thermophysical properties, would have to be repeated for
all steps of the time increment in integration. The program shortcomings,
however, may be compensated by an appropriate application of the available
nonlinear load elements (NLLEs) in NASTRAN, although some elements were origi-
nally developed for structural analyses. The intrinsic modular structure of
NASTRAN permits them to be accessible to the NTA. Those NLLEs, obviously, can
function as nonlinear thermal loads, and they can be employed to simulate other
complex physical phenomena as well. Otherwise, new modules would have to be
developed and implemented, even though an excessive computer processing time
was tolerable. Such an alternative would be an expensive and time-consuming
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proposition. The user would be deprived of immediate solution meanwhile.

Six NLLEs are currently available in NASTRAN, namely NOLIN1*, NOLIN2,
NOLIN3, NOLIN4, NOLIN5 and NFTUBE. The last two were developed specifically
for thermal analyses: NOLIN5 is capable of simulating temperature sensitive
thermal radiation surface properties, such as a louver (ref. 4), and NFTUBE is
capable of dealing with thermal energy transfer between the wall and the fluid
flowing inside a tube (ref. 5). The remainders are four nonlinear elements of
general type capable of accommodating four different functions with a temper-
ature or heat flux being the argument. NOLIN1 allows to specify a table through
TABLED! (i = 1,2,3,4), and it is the most versatile NLLE in NASTRAN.

The main purpose of this paper is to illustrate how to acquire a non-
routine, but essential solution capability by an application of the NLLEs
through modeling. For a systematic demonstration, NOLIN1 was employed to
simulate the temperature-dependent convective film coefficients, h(T). The
importance of this problem is evident in view of a variety of applications
ranging from a domestic heating system, a hot gas flowing through a nozzle,
a fluid flow in a nuclear reactor, and a flow in a wind tunnel during the
start-up to a thermal ablation including a receding surface. They are air
characterized by such a nonlinear boundary condition. More specifically,
treatments of the temperature-dependent .film coefficients based on one and
two reference temperatures are given in detail. The dilemma arising from the
presence of the MFC to establish an average temperature of two reference
temperatures and the reference with that average temperature by the NLLEs was
resolved by a trick modeling. A brief review of the theoretical aspect serves
not only to provide a basis for the maneuvering in modeling and to provide
insight into the intricacies of the method, but to amplify basis of modeling
techniques that are equally valid to other applications. A recommendation for
the improvement of the NOLIN2 is outlined. It would enhance solution capa-
bilities and broaden the scope of engineering application. Guidelines for the
user to apply the NLLEs in thermal analysis are provided.

THE DEMONSTRATIVE PROBLEM

For the convenience of easy reference and discussion, and later on, to
demonstrate the modeling techniques, a relatively simple problem without losing
any generality has been designed, and it is described below:

The transient temperature responses in a composite slab (pipe) of an infinite
extent are to be determined. Initially, the slab has a uniform temperature of
293 K (20°C) throughout its body. The boundary surface of the metallic layer
is in contact with a stream of hot gas maintained at 1422°K (1149°C) from time
t = 0. The dimensions and thermophysical properties of the slab are tabulated
in Table 1. The system depiction, together with its finite element model,
is shown in Figure 1.

*The names of actual NTA cards are capitalized.
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THE THEORETICAL CONSIDERATION

The success of attempting a solution utilizing any NLLEs to simulate a problem
with nonlinear thermophys ical properties relies upon the following factors:

(1) The nonlinear terms, arising from the temperature-dependent thermophys ical
properties, which are embraced in the square matrices of the thermal conduct-
ance and/or the thermal capacitance, must be extractable and separable from
their normal positions. The resulting products of the temperature-dependent
'Coefficients (kA/£ and hA or C) and their respectively associated variables
i(T or T) must be transposed and merged into the nonlinear thermal load êc: ..,
vector .

(2) An NLLE of an appropriate form suited to accommodate the transposed
quantities must be selected. Any restraints associated with the use of the
NLLEs must be strictly observed.

(3) A full acquaintance with the characteristics of each NLLE and the
integration algorithm for the transient heat transfer analysis (APP HEAT, SOL 9)
is essential in controlling and accomplishing desired solution accuracy,
stability and efficiency at wish.

To serve as the theoretical basis for such a maneuvering, a brief review
of pertinent mathematical operations is in order.

A transient thermal analysis in the NTA is based on the general heat equation
in the matrix form as follows (ref. 1):

(1)

where

T = the vector of temperatures at grid points
T = the rate change of temperature vector
K = the thermal conductance matrix of constant elements
C = the thermal capacitance matrix of constant elements

Q* = the vector of applied linear thermal loads
Qn = the vector of applied nonlinear thermal loads

The convective coupling terms are normally incorporated with the thermal
conductive couplings in the thermal conductance matrix [K] regardless of their
dependency. When the convective film coefficient is temperature-dependent, the
convective coupling terms embracing h(T) have to be separated from their orig-
inal [ K0 J , and thus[K0] JTJ. The extracted terms being a new vector [H(T)j
are transposed to the other side of the equal sign in equation (1) , and they
become or merge with the vector of nonlinear thermal loads, {Qn} • The
rearranged new equation conforms exactly to equation (1), meaning that it is
then within the solution capability of the NTA. , Mathematically, it can be
expressed by
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[K0(k,h(T))]{T} = (2)

The integration algorithm for equation (1) is based on the modified
Newmark Beta Method (ref. 6). It is a forward and backward differencing
method with a parameter 0 that enables the user to select a value in the
range of 0<0<1. When equation (1) is transformed into such a difference
expression, it reads (ref. 1):

At

the subscript n refers to the nth time step. The accuracy and stability of
solution are closely related to (3. Equation (3) can be rearranged to give

At

(1+0) {Qn} ~0{Qn_]) (4)

Thjejna.trix.[.l./̂ t C + 0 K ] . _is.._decompgsec!.__into__its Jtriangular factors and
solved at each time step via the forward and backward substitution ~~
process. If [K] contains terms of k(T) or h(T), a search from the tables
and replacement of new values based on (Tn£ have to be carried out for all
terms residing inside those two square matrices that are associated with
T̂n+i} and {Tn}. Consequently, the matrix decomposition has to be performed
for each time step. This requires a very excessive computer processing time.
However, [K] needs be evaluated only once if its constituent terms are all
constant. This situation is equally valid in [C] , although C(T) is not
considered in this study.

Relating the terms of nonlinear thermal load to the specific demonstrative
problem, it is obtained from equations (1) and (2) that

(qn} = - {H(T)J =- (5)

200

where

H-L = h(Tr)AT1

H200 = - h(Tr)AT200
(6)
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and h(Tr) denotes the dependency of the convective film coefficient in a refer-
ence temperature Tr which can be the wall temperature or an average temperature
of the free stream and the wall temperature as will be discussed and treated in
following sections. In the NTA, the NOLIN1 card defines an NLLE of the form

Qn(t) = S±F(T.j(t)) (7)

n
where Q̂ (t) is the load being applied to the GRID i at time t, S^ is a scale
factor. F(T-(t) denotes a tabulated function in TJ to accommodate Ĥ (T̂ )
and (̂T-s) as defined in equation (6). The equivalent nonlinear thermal load
functions are entered through a TABLEDi (i = 1,2.3,4) card. T (t) is any
permissible time-varying temperature on which the functions depend. Other
NLLEs, NOLIN2, NOLIN3 and NOLIN4, can be selected as long as their specific
forms are suitable for respective applications.

THE CONVECTIVE FILM COEFFICIENT h(Tr)

The convective film coefficient h governs the magnitude of heat transfer
between the hot gas and the boundary surface of structure, h, in general, can
be expressed as h(Tr) where the reference temperature Tr may refer to only one
temperature, such as the wall temperature, or more than one temperature through
an intermediary, such as the average value of the free stream temperature and
the surface temperature of the wall. A typical example is a fully developed
pipe flow. The expression for h is (ref. 7)

h = 0.023̂  (Re)°'8(Pr)°'4 (8)
Dh

For large temperature differences, a mean temperature is used in evaluating
all physical properties except the flow velocity. This procedure would involve
very tedious interrations. To simplify computations, it is desirable to
separate the temperature-dependent from the independent factors. An alterna-
tive form is, therefore, obtained by an application of the equation of state
and the continuity equation, which leads to

h - 0.023 V̂
2Pr-°-

6G2V0-2LV-8 - (9)
J-oo

As the free stream temperature T^ is known, all quantities in the preceding
equation except Tw are constants, h is, therefore, a function of Tw. For the
problem of concern, it is h = h(T̂ ). The values of this function obtained by
using equation (9) are listed in Table 2. Similar expression, but referencing
with an average value of the free stream temperature and the surface tempera-
ture is also widely used in engineering practices. For this demonstrative
problem, it is h = h(Tr) and Tr = %(!•£ + T2QO)- The values of h vs Tr are
given in Table 3.
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THE MODELING TECHNIQUES AND DISCUSSION

A one-dimensional finite element model is sufficient to represent the
demonstrative problem, and this model is shown in Figure 1, A listing of the
input data deck is reproduced in Figure 2. With comments appropriately inserted,
functions regarding various segments of the deck are self-explanatory. The
space bounded by two rows of asterisks is reserved for adding a packet of cards
which simulate the effect of the convective film coefficients. Three cases of
h are considered: (1) h of a constant value, (2) h = h(Ti) , and (3) h =h(Tr)
with Tr = %(Ti + T200>-

h of a constant Value

To assure correctness of modeling and to evaluate the obtainable accuracy
of solution by the nonlinear load approach, the case of a constant film co-
efficient with h = 0.467 W/cm^-K was tested first. Because, this case is well
within the documented capability of the NTA. It can be accomplished using a
train of cards CHBDY, PHBDY and MAT4 by the conventional modeling method. The
temperature results so obtained serve as a base to compare with that obtained
by the nonlinear load approach. The two packets of input data cards, whose
images are shown in Figures 3(a) and 3(b), were used in respective computer
runs. The equivalent nonlinear thermal loads for the pair of NLLEs through
NOLIN1 405 with TABLED1 4051 and TABLED1 4052 are given in Table 4. The effect
of selecting the time-step size At for integration on solution accuracy was
also studied.

Temperature results summarized in Table 5 with the headings of Cases 1 and
3 are solutions yielded by these two approaches. In both cases, the same time-
step size (the At-set (a) in Figure 4) was used. The largest difference between
the two temperature profiles occurs at t = 0.25 sec., suggesting that a refine-
ment of the time-step size is warranted. To maximize the efficiency of the
computer processing time, refinements of At were made only. in the beginning
segments of time. Three sets of time-step size, which are presented in the
NTA TSTEP card format and identified as the At-sets (a) , (b) and (c) , are shown
in Figure 4. A total of five cases were computed, two (Gases 1 and 2) by the
conventional modeling method and the other three (Cases 3, 10 and 11) by the
nonlinear load approach. Temperature results are tabulated in Table 5 for
comparison. It is evident that both modeling methods can yield comparable
temperature solutions with a desired accuracy, provided an appropriate At-set
is used (e.g., to compare Case 2 with Case 11).

This test gave confidence in the nonlinear load approach and verified the
adequacy of the two sets of time-step size, namely the At-sets (b) and (c) .
They were, therefore, selected in all following computations. Inevitably,
efficiencies of those runs using the At-sets (b) and (C) were penalized by a
certain amount. They are reflected by the CPU and 1-0 times, which are also
summarized in Table 5.

126



h = h(TT)

The modeling procedure similar to that used in the preceding case of a
constant h is equally applicable to this case of a convective film coefficient
h, which is dependent on the surface temperature of the wall. The preparation
of the equivalent nonlinear thermal loads, however, is much more involved.
Computations of those equivalent loads were based on the expressions given in
equation (6). The computational steps and results are detailed in Table 3.
The relevant packet of input data cards is shown in Figure 3(c).

Two computer runs were executed with the specified At-sets (b) and (c).
Table 6 displays their temperature results under the headings of Cases 12 and 13.
Results are in excellent agreement, meaning that either At-set is satisfactory
to render accurate solutions. The At-set (b) was then selected in studying the
effect of the parameter |3 in the integration algorithm on temperature solutions.

The integration algorithm available in the NTA for its transient thermal
analysis is a modified Newmark Beta Method. It uses a fixed time-step size,
but permits different time-step sizes to be changed at discrete times upon the
user's specification. To avoid excessive matrix decompositions, the number of
changes should be kept low. This algorithm is known to be an efficient one for
large systems of linear equations, but it is uncertain for problems with strong
nonlinearities. As accuracy and stability of a solution are closely related to
the parameter (3 , a numerical investigation with different values of 0 was
conducted. The values of 0 , including 0, 0.25, 1 and 0.55 (the default value),
were executed. Except .the case of using |3 = 0.5 (the central differences),
whose temperature results are virtually identical to that of Case 13 (using 0
= 0.55) and, therefore, eliminated from the tabulation in Table 6. Case 16
(using (3 = 1.0, the backward differences), yields comparable temperature results
as that of Case 13. However, the solution instabilities caused both cases with
0 =0.25 and 0 (Euler integration) to terminate in their mid-courses. They
are respectively labeled as Cases 17 and 18 and also included in Table 6.

h = h(Tr) with Tr = %(Tj + T2QO)

When the average temperatures Tr of the free stream temperature T2QO
 an^

the surface temperatures of wall TI are referenced by the temperature-dependent
convective film coefficients h = h(Tr), the MFC (Multipoint constraint) card is
suited to provide such a relation. When TIQO = Tr is assigned, the equivalent
nonlinear thermal loads are functions of TIQO> meaning that TiQO(t) will be
referenced by the nonlinear thermal load tables, if the modeling technique
similar to that used in the two preceding cases is followed. Since T̂ oO is
constrained by an MFC, this modeling has violated one cardinal rule that must
be strictly observed by a user in applying the nonlinear loads. The grid points
to which the nonlinear loads are applied and the variables (either temperature
or heat flux) on which they depend must not be variables eliminated by con-
straints, i.e., they must be in the solution set. To circumvent this dilemma,
a fictitious point GRID 150 was created for TISQ, and it was connected to TlOO
by a super conductor, so that Tioo(t) = Ti5o(t). TISQ instead of TIQO was then
referenced by h(Tr), i.e., h(Tr) = h(Tioo) = MTiso), which, in turn, produced
the equivalent nonlinear thermal loads. Figure 3(d) shows all relevant cards
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and their relationships in detail, and the entered quantities in the nonlinear
load tables are easily identifiable in comparison with those values given in
Table 4.

The two t-sets (b) and (c) were again selected to execute the computer
runs. Results with the labeling of Cases 14 and 15 are shown in Table 7.
Temperatures are still overall in good agreement with each other, but they no
longer show the same quality as evidenced in previous cases. A scrutiny of the
results reveals that relatively large temperature differences exist between
these two temperature profiles in the range of time from 1.0 to 3.0 sec. This
is a typical example showing the intricacies of this method, the interplays of
the selected time-step sizes with the integration algorithm, and the effect on
temperature results due to the presence of the MFC.

Equation (4) shows that an inherent time lag error exists in applying the
nonlinear thermal loads. They are computed for T of the (n+l)th time step
based on temperature values at the nth and (n-l)th time steps. The larger the
time-step size, the greater the deviation of the nonlinear thermal load from
the desired value. When MFC is employed to relate a floating temperature (e.g.,;
TI) to a reference temperature (e.g., TISQ) on which values of the nonlinear
thermal loads depend indirectly, it introduces an additional step of time lag,
and thus, an aggregated error for the-nonlinear thermal load value. The errors
are now induced by the time lag steps spanning from the (n+l)th to (n-2)th
steps. Consequently, the selection of a finer time step size is appropriate
in applying the nonlinear thermal loads, especially when an MFC is present
to average two temperatures.

OTHER APPLICATIONS AND RECOMMENDATIONS

The modeling techniques of using the NLLEs to simulate the temperature-
dependent convective film coefficients have been methodically illustrated.
The demonstrated equivalent nonlinear thermal loads are all functions of
temperature. If a simulation calls for the nonlinear thermal load to be a
function of heat flux, a combination of the EPOINT and TF cards, in addition
to the NOLINls and TABLEDls, have to be used. In all cases, values for the
equivalent nonlinear thermal loads must be prepared by the user manually. This
is an error-prone and elaborate process inherent in using the NLLEs. This
deficiency, however, can be removed with only a relatively simple change made
to the NOLIN1. It-will further broaden its capability greatly. The recommen-
dation is to modify the computer code pertinent to S, the fifth field, in the
NOLIN1 card so that it will accept any time-varying temperature, whether
specified or computed values at some grid points in the models The expanded
capabilities will include, for instance, the same demonstrative problem with
the hot-gas temperatures being a specified time-dependent temperature function.

128



CONCLUSIONS

The nonlinear load elements have been illustrated to simulate nonlinear
boundary conditions, in particular the temperature-dependent convective film
coefficients in transient thermal analyses. The following remarks also serve
as guidelines for those who attempt to use the NLLEs:

(1) Prior to applying the nonlinear thermal loads to an NTA model in a
transient thermal problem, a trial run on a simplified model is advisable.
Only the linear thermal loads equal in magnitude to that of the nonlinear load
set are necessary to apply to this model, and a relatively coarse time-step
size may be used in the execution. The profile of the temperature results will
provide a good indication on which the final selection of appropriate time-step
sizes in runs with the real NLLEs depends.

(2) Taking into consideration of the time lag errors, very small time-step
sizes are always desirable. However, it is not necessary to select the same
fine size uniformly over the entire range of time for integration. To maximize
the processing efficiency, the selection of nonuniform time-step sizes according
to the results of the trial run is a sensible and practical approach. Very fine
time-step sizes should be reserved to concentrate at which the temperature
profile has the largest slope in its rate change of temperature curve.

(3) When MFC (also TF, if used) is present in the model for establishing a
reference temperature that is referenced by the NLLEs, such as NOLIN1, a ficti-
tious super thermal conductor has to be used to connect to that original grid
point of referencing. A new grid point at the other end of the super thermal
conductor is then to be referenced by any NLLEs so as not to violate the cardi-
nal rule in applying the nonlinear loads.

(4) For solution stability, which also affects accuracy, the proper selection
of a value for the parameter j3 of the integration algorithm depends on the
degree of nonlinearity in presence. However, only the range of 0.5<0<1
should be considered.
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TABLE 1

DIMENSIONS AND THERMOPHYSICAL
PROPERTIES OF THE COMPOSITE SLAB (PIPE)

Material Stainless Steel (a) Insulation-Phenolic (b)

Thermal Conductivity

k (W/cm-k)

0.16258 0.00502

Thermal Capacitance

PCp (J/cm3-k)

4.029 1.725

Thickness

AX (cm)

0.30 0.40

Cross-section

A (cm2)

1.0 1.0
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TABLE 2

THE EQUIVALENT NONLINEAR LOADS FOR
THE CASE OF h = 0.467 W/cm2-k

T200

1422.0

N200 = hAT200

664.

1

074

TI

293

589

867

1144

,1422

-NI = hATi

136.831

275.063

404.889

534.248

664.074.

TABLE 3

THE EQUIVALENT NONLINEAR LOADS
FOR THE CASE OF h = h(Ti)

TI

293

589

867

1144

1422

h(Ti)

0.132

0.231

0.314

0.393

0.467

-NI(TI) = hATj.

38.676

136.059

272.238

449.592

664.074

T200

1422

i

N200(Tl) = hAT200

187.704

328.482

446.508

558.846

664.074
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HĵiooCMH•**11Q̂
)J>n)

HOOCM
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TABLE 5

A COMPARISON OF TEMPERATURE RESULTS
FOR THE CASES WITH A CONSTANT h

Time
fser )

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

3.00

4.00

5.00

6.00

7.00

8.00

At-set

CPU/I-0
(min)

Case No.

1

293.00

575.82

665.64

723.79

768.38

806.14

839.92

871.04

900.10

1000.39

1080. 22

1143.93

1194.83

1235. 52

1268.08

(A)

0.125/1.170

2

293.00

580.41

668.29

725.67

769.88

807.42

841.08

872.11

901.10

1001.21

1080.90

1144.50

1195.29

1235.90

1268.39

fc)

0.189/1.133

3

293.00

578.73

667.90

725.68

770.07

808.22

842.04

873.17

902.23

1003.56

1083.37

1146.93

1197.61

1238.05

1270.35

(A)

0.154/1.309

10

293.00

582.08

669.82

727.06

771.19

809.19

842.93

873.99

903.00

1004.18

1083^86

1147.32

1197.92

1238.29

. 1270.55

on
0.177/1.368

11

293.00

581.00

668.75

Z26.06

770.23

807.75

841.40

872.42

901.41

1002.48

1082.23

1145.81

1196.53

1237.04

1269.43

(C)

0.198/1.256
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TABLE 6

A COMPARISON OF TEMPERATURE RESULTS
FOR THE CASES WITH h =

Time
(sec)

0

• 0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

3.00

4.00

5.00

6.00

7.00

8.00

At-sec

CPU/I-0
(min)

Parameter /3

Case No.

12

293.00

401.14

445.89

478.54

505.58

529.69

552.17

573.65

594.44

673.30

746.00

813.37

875.67

929.48

9.77.03

(C)

0.224/1.487

0.55.

13

293.00

401.27

446.07

478.76

505.83

530.07

552.62

574.15

594.99

673.96

746.73

814.15

876.52

930.38

977.96

(B)

0.200/1.606

0.55

16

293.00

401.06

445.82

478.61

505.82

530.17

552.80

574.40

595.28

674.38

747.09.

814.46

876.80

930.66

978.18

(B)

0.192/1.615

1.0

17

(B)

-

0.25

18

1

(B)

-

0
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TABLE 7

A COMPARISON OF TEMPERATURE RESULTS
FOR THE CASES WITH h = h(Tave)

Time
( sec^

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

3.00

4.00

5.00

6.00

7.00

8.00

At-sec

CPU/I-0
(min)

Case No. ;

14

293.00

350.94

387.00

420.17

453.04

486.41

521.83

559.79

600.52

724.14

832.04

928.13

1006.74

1075.18

1135.05

(B)

0.192/1.661

15 ;

293.00

351.29

387.63

420.99 '•

454.05

488.16

524.19

562.77

603.20 ;

725.32

833.01

928.48 \

1006.81

1075.07

1134.79

(C) i

0.235/1.490
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i fcXECUTIVE CONTROL DECK
ID H P LtE, NASA-GSFC, SPACE TECHNOLOGY DIVISION
APP HtAT
SOL 59
CtND
S CASE CONTROL DECK
bCHO=BUTH

T1TLE= DEMONSTRATION OF TEMPERATUKt-UEPENDENT CONVECTIVE F ILM COEFFICIENT
T= WITH A CONSTANT HOT GAS TEMPERATURE AT GRID 200

MPC=3US
ULOAD=401
NONLINtAK=405
TSTEP=601
IC=701

OUTPUT
SET 20=1,2,200
ULOAO=20
ELrORCE=20
NLLOAO=20
SET 40= 1,4,7,8,100,150,200.
THERMAL= 40
6EGIN ttULK
S BULK DATA DECK
$ GRIU POINTS
GRID 1
GKID 2
GRID 3
GRIU 4
GRID 5
GRID 6
GKID 7
GRID 8
GRID 200
S, CONDUCTION ELEMENTS
CKUD 1
CROD 3
CROD 5
PROD 101
MAT4 102
CROD 7
PROD 103
MAT<t 104
S INITIAL
TEMP 701

101
101
101
102
0.16258
103
104
0.00502

CONDITIONS
200
1 m f\

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.70
-1.0

3-
5
1.0
4.029
7
1.0
1.725

1422. 0

2 2 101 2 3
4 4 101 4 . 5
6 6 101 6 7

TEMPO 701 293.0
$ ESTIMATED TEMPERATURES
TEMPU 705 1422.0
S SPECIFIED CONSTANT TEMPERATURE FOR THE HOT GAS AT GRID 200
CELAS2 301 1.E6 200 1
DAREA 601 200 1 1422.E6
TLOAD2 401 501 0 0.0 1.E5 0.0. 0.0 +LD1
•i-LDl 0.0 0.0
S TIMt INCREMENTS AND INTEGRATION STEPS
T S T E P 601 25 0.005 10 +TS1
+TS1 35 ' 0.025 5 +TS2

.+TS2 20 0.05 5 +TS3
+TS3 120 0.10 10
$ ** " '

5 ^V* ********************* *******^ **^******** ******************* ̂
ElMDDATA

Figure 2 <- A Listing of the Input Data Deck of the Demonstrative Problem
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5 L U N V t C i I V E BOUNDARY IN CONTACT W I T H HOT GAS
CHtSDY 1001 1002 POINT 1

200-i-CY
PHbUY
i-1 AT 4

1002
1003

1003 1.0

(a) A constant h by the conventional modeling technique

•NOL INI 405 1 1
TABLEDI 4051
+TB1 293.0 136.831 589.0
+TB2 1422.0 664.074 ENDT

-1.0 1

275.063 867.0

1 4051
+TB1

404.869 1144.0 534.248 + TB2

'NOLIN1 405
TABLEbl 4052
+TB52 293.0

1 40521 1 664.074 1

1.0 1450.0 1.0 ENDT

(b) A constant h by the equivalent nonlinear thermal load approach

+ TB52

NOLIN1 405
TABLEU1 4054
+ TB7
+ TB8
NGL IM

293.0
1422.0
405

TABLE01 4055
+ TB55 293.0
+TB56 1422.0

187.704 589.0
664.074 bNDT
1 1

38.676 589.0
664.074 bNDT

1*0 150

328.482 867.0

-1.0 150

136.059 867.0

1 4054

446.508 1144.0

1 4055

272.238 1144.0

+ TB7
55>' f .846 -t-TBs

449.592
+TB55

(c) h = h(T^) by the equivalent nonlinear thermal load approach

» USING MPC TO C R E A T E AN A V E R A G E T E M P E R A T U R E AT GRID 100 FOR G R I D S 1 AND 200
MPC 305 100 1 1.0 1 i -0.5 +MC
+MC 200 1 -0.5
i C R E A T I N G GRID 150 TO A V O I D GRID 100 BEING D I R E C T L Y REFERENCED BY NOLIN1
G R I D 100 -0.5 0.0 0.0
G R I D 150 -0.5 1.0 0.0
CkOD 8 105 100 15o
PRUD 105 106 1.0
MAT 4 106 5.0 0.1
T fcMP ^ ^ V O l ' 100 .857'5 150^ __ ̂ 857 .5 ,

£ ^SIMULATING" TE^rplRATURb-UEPENUENT rF"llM C O E F F I C I E N T S BASED ON T ( 1 50 )
fMOLINl 405
TABLEDI 4061
•i-TBl 857.0
+TB2 1^22.0
NOLINI 405
TABLEDI 4062
+TB3 857.0
+TB4 1422.0

187.704 1005.5
664.074 ENDT
1 1

113.19 1005.5
667.074 fcNDT

.1.00 150 1 4061

320.482 1144.5. 446.508 1283.0

'-1.0 150 . 1 4d62

136.059 1144.5 272.238 1283.0

•i-TBl
558.846 +TB2

•1-TB3
449.592 -J-TB4

(d) h = h(Tr) by the equivalent nonlinear thermal load approach

Figure 3 - The Images of Packets of Data Cards for Simulating
Various Convective Film Coefficients

138



i 
cn-4-

I 
••S

>'<S
>

+ +

r-ic\jro
oooooo

COCo•H*-'S
O<u<u•uI

O
L

O
J

||_00 
'

I'2
0

 
O

L
L

J
O

O
-4

i—
 
.
 .
 .

2
O

O
O

'U
LJ

1
2
 O

«

<o
i

O
O

C
M

LO
O

Z
O

O
O

OOtM
t—

 C
\jrO

(\J--H

L̂Us:U
U

0
0
0
0

2tnc\J
C

j

•
"
•

>
-

<tm

I—
 
O

O

0
0

LUs:L
U

LU

0)toC
O8a)>
-l

139




